
HAL Id: hal-03673451
https://u-paris.hal.science/hal-03673451

Submitted on 20 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Improved Quantum Lower and Upper Bounds for
Matrix Scaling

Sander Gribling, Harold Nieuwboer

To cite this version:
Sander Gribling, Harold Nieuwboer. Improved Quantum Lower and Upper Bounds for Matrix Scal-
ing. 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022),
Laboratoire d’Informatique & Systèmes (UMR 7020), Institut des sciences de l’information et de leurs
interactions (INS2I), Université d’Aix-Marseille (AMU), Mar 2022, Marseille, France. pp.35:1-35:23,
�10.4230/LIPIcs.STACS.2022.35�. �hal-03673451�

https://u-paris.hal.science/hal-03673451
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Improved Quantum Lower and Upper Bounds for
Matrix Scaling
Sander Gribling #

IRIF, Université de Paris, CNRS, France

Harold Nieuwboer #

Korteweg–de Vries Institute for Mathematics and QuSoft,
University of Amsterdam, The Netherlands

Abstract
Matrix scaling is a simple to state, yet widely applicable linear-algebraic problem: the goal is to scale
the rows and columns of a given non-negative matrix such that the rescaled matrix has prescribed
row and column sums. Motivated by recent results on first-order quantum algorithms for matrix
scaling, we investigate the possibilities for quantum speedups for classical second-order algorithms,
which comprise the state-of-the-art in the classical setting.

We first show that there can be essentially no quantum speedup in terms of the input size in
the high-precision regime: any quantum algorithm that solves the matrix scaling problem for n × n

matrices with at most m non-zero entries and with ℓ2-error ε = Θ̃(1/m) must make Ω̃(m) queries to
the matrix, even when the success probability is exponentially small in n. Additionally, we show
that for ε ∈ [1/n, 1/2], any quantum algorithm capable of producing ε

100 -ℓ1-approximations of the
row-sum vector of a (dense) normalized matrix uses Ω(n/ε) queries, and that there exists a constant
ε0 > 0 for which this problem takes Ω(n1.5) queries.

To complement these results we give improved quantum algorithms in the low-precision regime:
with quantum graph sparsification and amplitude estimation, a box-constrained Newton method
can be sped up in the large-ε regime, and outperforms previous quantum algorithms. For entrywise-
positive matrices, we find an ε-ℓ1-scaling in time Õ(n1.5/ε2), whereas the best previously known
bounds were Õ(n2polylog(1/ε)) (classical) and Õ(n1.5/ε3) (quantum).
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1 Introduction

The matrix scaling problem asks to scale each row and column of a given matrix A ∈ [0, 1]n×n

by a positive number in such a way that the resulting matrix has marginals (i.e., row- and
column-sums) that are close to some prescribed marginals. For example, one could ask to
scale the matrix in such a way that it becomes doubly stochastic.
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35:2 Improved Quantum Lower and Upper Bounds for Matrix Scaling

Matrix scaling has applications in a wide variety of areas including numerical linear
algebra [4], optimal transport in machine learning [13], statistics [23, 14, 9, 8], and also
in more theoretical settings, e.g. for approximating the permanent [28]. For a survey, we
refer the reader to [19]. Furthermore, the matrix scaling problem is a special (commutative)
instance of a more general (non-commutative) class of problems, which includes operator
and tensor scaling; these problems have many more applications and are a topic of much
recent interest [16, 10].

Formally, the matrix scaling problem is defined for the ℓp-norm as follows. Given a matrix
A ∈ [0, 1]n×n with at most m non-zero entries, entrywise-positive target marginals r, c ∈ Rn

with ∥r∥1 = 1 = ∥c∥1, and a parameter ε ≥ 0, find vectors x, y ∈ Rn such that the (rescaled)
matrix A(x, y) := (Aijexi+yj )i,j∈[n] satisfies

∥r(A(x, y))− r∥p ≤ ε, ∥c(A(x, y))− c∥p ≤ ε. (1.1)

Here r(A(x, y)) = (
∑n

j=1 Aijexi+yj )i∈[n] is the vector of row-marginals of the matrix A(x, y)
and similarly c(A(x, y)) = (

∑n
i=1 Aijexi+yj )j∈[n] is the vector of column-marginals. We refer

to x and y as the scaling vectors, whereas exi and eyj are called scaling factors. A common
choice of target marginals is (r, c) = ( 1

n , 1
n ), i.e., every row and column sum target is 1/n,

and we refer to these as the uniform target marginals. As is standard in the matrix scaling
literature, we will henceforth assume that A is asymptotically (r, c)-scalable: for every ε > 0,
there exist x, y such that A(x, y) satisfies Equation (1.1). This depends only on the support
of A [30, Thm. 3], and is the case if and only if (r, c) is in the convex hull of the points
(ei, ej) ∈ R2n such that Aij > 0, where the ei are the standard basis vectors for Rn. We will
also always assume the smallest non-zero entry of each of A, r and c is at least 1/poly(n).

Many classical algorithms for the matrix scaling problem can be viewed from the per-
spective of convex optimization. For example, one can solve the matrix scaling problem by
minimizing the convex (potential) function

f(x, y) =
n∑

i,j=1
Aijexi+yj − ⟨r, x⟩ − ⟨c, y⟩, (1.2)

where ⟨·, ·⟩ denotes the standard inner product on Rn. The popular and practical Sinkhorn
algorithm [31] – which alternates between rescaling the rows and columns to the desired
marginals – can be viewed as a (block-)coordinate descent algorithm on f , i.e., a first-order
method. Given its simplicity, it is no wonder that it has been rediscovered in many settings,
and is known by many names, such as the RAS algorithm, iterative proportional fitting, or
raking.

It is known that the iterates in the Sinkhorn algorithm converge to a (r, c)-scaled matrix
whenever A is asymptotically (r, c)-scalable. The convergence rate of Sinkhorn’s algorithm
is known in various settings, and we give a brief overview of the (classical) time complexity
of finding an ε-ℓ1-scaling, noting that a single iteration can be implemented in time Õ(m).
When A is entrywise positive then one can scale in time Õ

(
n2/ε

)
[15]; in the ℓ2-setting for

uniform target marginals a similar result can be found in [21, 20]. In the general setting where
A has at most m ≤ n2 non-zero entries the complexity becomes Õ

(
m/ε2) (for arbitrary

target marginals (r, c)); a proof may be found in [2] for the entrywise-positive case, [11]
for exactly scalable matrices (i.e., where the problem can be solved for ε = 0) and [5] for
asymptotically scalable matrices.

While simple, the Sinkhorn algorithm is by no means the fastest when the parameter ε

is small. The classical state-of-the-art algorithms are based on second-order methods such
as (traditional) interior point methods or so-called box-constrained Newton methods [12, 1],
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the latter of which we describe in more detail below. We note that these algorithms depend
on fast algorithms for graph sparsification and Laplacian system solving, so are rather
complicated compared to Sinkhorn’s algorithm. The box-constrained Newton methods can
find ε-ℓ1-scaling vectors in time Õ(mR∞), where the Õ hides polylogarithmic factors in n

and 1/ε, and R∞ is a certain diameter bound (made precise later in the introduction). For
entrywise-positive matrices, R∞ is of size Õ(1), and in general it is known to be Õ(n) [1,
Lem. 3.3]. Alternatively, the interior-point method of [12] has a time complexity of Õ

(
m3/2),

which is better than the box-constrained Newton method for general inputs, but worse for
entrywise-positive matrices.

Recently, a quantum algorithm for matrix scaling was developed based on Sinkhorn’s
algorithm [5]. It uses quantum approximate counting for computing marginals, and finds
ε-ℓ1-scaling vectors in time Õ

(√
mn/ε4) for general matrices or Õ

(
n1.5/ε3) for entrywise-

positive matrices. This improves the dependence on m and n at the cost of a higher
dependence on 1/ε when compared to the classical Sinkhorn algorithm (which we recall
runs in Õ

(
m/ε2), or Õ

(
n2/ε

)
for entrywise-positive matrices). Furthermore, it was shown

that this quantum algorithm is optimal for (sufficiently small) constant ε: there exists an
ε0 > 0 (independent of n) such that every quantum algorithm that ε0-ℓ1-scales to uniform
target marginals with probability at least 2/3 must make at least Ω(

√
mn) queries. It was

left as an open problem whether one can also obtain quantum speedups (in terms of n or
m) using second-order methods. In this work we give improved quantum lower and upper
bounds on the complexity of matrix scaling. We first prove a lower bound: we show that
every quantum algorithm that solves the matrix scaling problem for small enough ε must
make a number of queries proportional to the number of non-zero entries in the matrix, even
when the success probability of the algorithm is only assumed to be exponentially small.
This shows that one cannot hope to get a quantum algorithm for matrix scaling with a
polylogarithmic 1/ε-dependence and sublinear dependence on m. However, this does not
rule out that second-order methods can be useful in the quantum setting. Indeed, we give
a quantum box-constrained Newton method which has a better 1/ε-dependence than the
previously mentioned quantum Sinkhorn algorithm, and in certain settings is strictly better,
such as for entrywise-positive instances.

1.1 Lower bounds
As previously mentioned, we show for entrywise-positive instances that a polynomial 1/ε-
dependence is necessary for a scaling algorithm whose n-dependence is n2−γ for a constant
γ > 0. More precisely, we prove the following theorem (which we extend to an Ω̃(m)-lower
bound in the general setting of m ≤ n2 non-zero entries in Corollary 2.11):

▶ Theorem 1.1. There exists a constant C > 0 such that every matrix scaling algorithm that,
with probability ≥ 3

2 exp(−n/100), finds scaling vectors for entrywise-positive n× n-matrices
with ℓ2-error C/(n2

√
ln n) must make at least Ω(n2) queries to the matrix. This even holds

for uniform targets and matrices with smallest entry Ω(1/n2).

The proof of this lower bound is based on a reduction from deciding whether bit strings have
Hamming weight n/2 + 1 or n/2 − 1. Specifically, given k bit strings z1, . . . , zk ∈ {±1}n

for k = Θ(n), each with Hamming weight |zi| = n/2 + ai where ai ∈ {±1}, we show that
any matrix scaling algorithm can be used to determine all the ai. One can show that every
quantum algorithm that computes all the ai’s needs to make Ω(nk) quantum queries to the
bit string z1, . . . , zk, even if the algorithm has only exponentially small success probability: to
determine a single ai with success probability at least 2/3, one needs to make Ω(n) quantum

STACS 2022



35:4 Improved Quantum Lower and Upper Bounds for Matrix Scaling

queries to the bit string zi [7, 29, 3], and one can use the strong direct product theorem of
Lee and Roland [26] to prove the lower bound for computing all k ai’s simultaneously. To
convert the problem of computing the ai to an instance of matrix scaling, one constructs a
2k×n matrix A whose first k rows are (roughly) given by the vectors 1 + zi/b for some b ≥ 2,
and whose last k rows are given by 1− zi/b. For such an A, the column sums are all 2k, and
the row sums are determined by the ai. If the matrix A′ obtained by a single Sinkhorn step
from A (i.e., rescaling all the rows) were exactly column scaled, then the optimal scaling
factors encode the ai. We show that, if one randomly (independently for each i) permutes
the zi beforehand, this is approximately the case: the column sums of this A′ will be close
to the desired column sums with high probability, and hence the first step of Sinkhorn gives
approximately optimal scaling factors (which encode the ai). Then, we give a lower bound
on the strong convexity parameter of the potential f , to show that all sufficiently precise
minimizers of f also encode the ai. In other words, from sufficiently precise scaling factors,
we can recover the ai, yielding the reduction to matrix scaling, and consequently a lower
bound for the matrix scaling problem.

We additionally study the problem of computing an ε-ℓ1-approximation of the vector
of row sums of an ℓ1-normalized n× n matrix A. This is a common subroutine for matrix
scaling algorithms; for instance, the gradient of the potential function f from (1.2) that
we optimize for the upper bound can be determined from the row and column sums by
subtracting the desired row and column sums, so the complexity of this subroutine directly
relates to the complexity of each iteration in our algorithm. We give the following lower
bound for this problem.

▶ Theorem 1.2 (Informal). For ε ∈ [1/n, 1/2] and an ℓ1-normalized matrix A ∈ [0, 1]n×n,
computing an ε

100 -ℓ1-approximation of r(A) takes Ω(n/ε) queries to A. Moreover, there
exists a constant ε0 > 0 such that computing an ε0-ℓ1-approximation of r(A) takes Ω(n1.5)
queries to A.

The first lower bound in the theorem is proven in Theorem 2.12. Its proof is based on a
reduction from Θ(n) independent instances of the majority problem, as for the lower bound
for matrix scaling. The second lower bound can be derived from the lower bound for matrix
scaling given in [5]: using a constant number of calls to a subroutine that provides constant-
precision approximations to the row- and column-sum vectors, one can implement Sinkhorn’s
algorithm to find a constant-precision ℓ1-scaling, which for a small enough constant takes
Ω(n1.5) queries. Hence, there exists a constant ε0 > 0 (independent of n) such that computing
an ε0-ℓ1-approximation of r(A) takes at least Ω(n1.5) queries to the matrix entries.

1.2 Upper bounds
While the first lower bound (Theorem 1.1) shows that a (quantum) algorithm for matrix scaling
cannot have both an m1−γ-dependence for γ > 0 and a polylogarithmic 1/ε-dependence,
one can still hope to obtain a second-order Õ(

√
mn/poly(ε))-time algorithm with a better

1/ε-dependence than the quantum Sinkhorn algorithm of [5] (which we recall is based on
quantum approximate counting). We show that one can build on a box-constrained Newton
method [12, 1] to obtain a quantum algorithm which achieves this, at the cost of depending
quadratically on a certain diameter bound R∞; recall for comparison that the classical
box-constrained Newton methods run in time Õ(mR∞). For general matrices, one has the
bound R∞ = Õ(n) [1, Lem. 3.3]. The performance of the resulting quantum box-constrained
Newton method is summarized in the following theorem:
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▶ Theorem 1.3 (Informal version of Corollaries 3.14 and 3.15). For asymptotically-scalable
matrices A ∈ Rn×n

≥0 with m non-zero entries and target marginals (r, c), one can find (x, y)
such that A(x, y) is O(ε)-ℓ1-scaled to (r, c) in quantum time Õ

(
R2

∞
√

mn/ε2) where R∞
is the ℓ∞-norm of at least one ε2-minimizer of f . When A is entrywise positive we have
R∞ = Õ(1), so the algorithm runs in quantum time Õ

(
n1.5/ε2).

We emphasize that the diameter bound R∞ does not need to be provided as an input to
the algorithm. Note that for entrywise-positive matrices, the algorithm improves over the
quantum Sinkhorn method, which runs in time Õ

(
n1.5/ε3).

Let us give a sketch of the box-constrained method that we use, see Section 3.1 for details.
The algorithm aims to minimize the (highly structured) convex potential function f from
Equation (1.2). A natural iterative method for minimizing convex functions f is to minimize
in each iteration i the quadratic Taylor expansion 1

2 xT∇2f(x(i))x + xT∇f(x(i)) + f(x(i)) of
the function at the current iterate. A box-constrained method constrains the minimization
of the quadratic Taylor expansion to those x that lie in an ℓ∞-ball of radius c around the
current iterate (hence the name):

x(i) = argmin
∥x−x(i)∥∞≤c

1
2xT∇2f(x(i))x + xT∇f(x(i)).

This is guaranteed to decrease a convex function f whenever it is second-order robust, i.e.,
whenever the Hessian of f at a point is a good multiplicative approximation of the Hessian at
every other point in a constant-radius ℓ∞-ball. One can show that the steps taken decrease
the potential gap by a multiplicative factor which depends on the distance to the minimizer.

One then observes that the function f from Equation (1.2) is second-order robust.
Moreover, its Hessian has an exceptionally nice structure: given by

∇2f(x, y) =
[

diag(r(A(x, y))) A(x, y)
A(x, y)T diag(c(A(x, y)))

]
,

it is similar to a Laplacian matrix. This means that the key subroutine in this method
(approximately) minimizes quadratic forms 1

2 zT Hz + zT b over ℓ∞-balls, where H is a
Laplacian matrix; without the ℓ∞-constraint, this amounts to solving the Laplacian system
Hz = b. Such a subroutine can be implemented for the more general class of symmetric
diagonally-dominant matrices (with non-positive off-diagonal entries) on a classical computer
in (almost) linear time in the number of non-zero entries of H [12]. For technical reasons, one
has to add a regularization term to f , and the regularized potential instead has a symmetric
diagonally-dominant Hessian structure. Given the recent quantum algorithm for graph
sparsification and Laplacian system solving of Apers and de Wolf [6], one would therefore
hope to obtain a quantum speedup for the box-constrained Newton method. We show that
one can indeed achieve this by first using the quantum algorithm for graph sparsification,
and then using the classical method for the minimization procedure. We note, however,
that in order to achieve a quantum speedup in terms of m and n, we incur a polynomial
dependence in the time complexity on the precision with which we can approximate H and
b (as opposed to only a polylogarithmic dependence classically). Such a speedup with respect
to one parameter (dimension) at the cost of a slowdown with respect to another (precision) is
more common in recent quantum algorithms for optimization problems and typically requires
a more careful analysis of the impact of approximation errors. Interestingly, for the classical
box-constrained Newton method, the minimization subroutine is the bottleneck, whereas
in our quantum algorithm, the cost of a single iteration is dominated by the time it takes

STACS 2022



35:6 Improved Quantum Lower and Upper Bounds for Matrix Scaling

to approximate the vector b. Using quantum approximate counting (carefully) as in [5],
one can obtain an additive δ · ∥A(x, y)∥1-approximation of b in time roughly

√
mn/δ. To

obtain an efficient quantum algorithm we therefore need to control ∥A(x, y)∥1 throughout
the run of the algorithm. We do so efficiently by testing in each iteration whether the 1-norm
of A(x, y) is too large, if it is, we divide the matrix by 2 (by shifting x by an appropriate
multiple of the all-ones vector), which reduces the potential.

1.3 Open problems
Our lower bound on matrix scaling shows that it is not possible to provide significant
quantum speedups for scaling of entrywise-positive matrices in the high-precision scaling
regime. However, the best classical upper bound for ε-scaling when no assumptions are made
on the support of the matrices is Õ

(
m3/2), where m is the number of non-zero entries [12]

(recall that this hides a polylogarithmic dependence on 1/ε). The algorithm that achieves this
bound is an interior-point method, rather than a box-constrained Newton method. It is an
interesting open problem whether such an algorithm also admits a quantum speedup in terms
of m while retaining a polylogarithmic 1/ε-dependence. Note that while the interior-point
method relies on fast Laplacian system solvers, it is not enough to merely replace this by
a quantum Laplacian system solver, as the dimension of the linear system in question is
m + n rather than Θ(n). More generally, the possibility of obtaining quantum advantages in
high-precision regimes for optimization problems is still a topic of ongoing investigation.

A second natural question is whether the lower bounds from Theorem 1.2 for computing
an approximation of the row sums are tight. The best upper bound for the row-sum vector
approximation that we are aware of is the one we use in our scaling algorithm: we can
compute an ε-ℓ1-approximation of the row sums in time Õ

(
n1.5/ε

)
. For constant ε0 ≥ ε > 0

this matches the lower bound Ω(n1.5) (up to log-factors), but for non-constant ε > 1
100n it

remains an interesting open problem to close the gap between Õ
(
n1.5/ε

)
and Ω(n/ε).

2 Lower bounds for matrix scaling and marginal approximation

In this section we prove two lower bounds: an Ω̃(m)-lower bound for 1/poly(n)-ℓ2-scaling
n×n matrices with at most m non-zero entries, and for ε ∈ [1/n, 1/2] an Ω(n/ε)-lower bound
for ε-ℓ1-approximation of the row-sum vector of a normalized n×n matrix (with non-negative
entries). The proofs for both lower bounds are based on a reduction from the lower bound
given below in Theorem 2.1. In Section 2.1 we construct the associated instances for matrix
scaling, and in Section 2.2 we analyze their column marginals after a single iteration of the
Sinkhorn algorithm. Afterwards, in Section 2.3 we show that these column marginals are
close enough to the target marginals for the reduction to matrix scaling to work, and in
Section 2.4 we put the ingredients together, with the main theorem being Theorem 2.10.
Finally, in Section 2.5 we prove the lower bound for computing approximations to the row
marginals. The lower bound we reduce from is the following:

▶ Theorem 2.1. Let n be even, τ ∈ [1/n, 1/2] such that nτ is an integer, and let k ≥ 1
be an integer. Given k binary strings z1, . . . , zk ∈ {±1}n, where zi has Hamming weight
n/2+aiτn for ai ∈ {−1, 1}, computing with probability ≥ exp(−k/100) a string ã ∈ {−1, 1}k

that agrees with a in ≥ 99% of the positions requires Ω(k/τ) quantum queries.

Proof. Let D = {z ∈ {±1}n : |z| = n/2 + τn or |z| = n/2 − τn} and define the partial
Boolean function f : D → {±1} by f(z) = 1 if |z| = n/2 + τn, and f(z) = −1 otherwise.
It is known that computing f with probability at least 2/3 takes Θ(1/τ) quantum queries
to z [29, Cor. 1.2], i.e., the bounded-error quantum query complexity Q1/3(f) is Θ(1/τ).
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We now proceed with bounding the query complexity of computing 99% of the entries of
f (k) : Dk → {±1}k defined by f (k)(z1, . . . , zk) = (f(z1), . . . , f(zk)). We will make use of the
general adversary bound Adv±(f) [18] which is known to satisfy Adv±(f) = Θ(Q1/3(f)) [25,
Thm. 1.1]. The strong direct product theorem of Lee and Roland [26, Thm. 5.5] says
that for every 0 ≤ δ < 1, µ ∈ [ 1+

√
δ

2 , 1] and integers k, K, every quantum algorithm
that outputs a bit string ã ∈ {±1}k, and makes T quantum queries to the bit strings
z1, . . . , zk with T ≤ kδ

K(1−δ) Adv±(f) has the property that ã agrees with f (k)(z1, . . . , zk)
on at least a µ-fraction of the entries with probability at most exp(k( 1

K −D(µ∥ 1+
√

δ
2 ))).1

Here D(µ∥ 1+
√

δ
2 ) is the Kullback–Leibler divergence between the distributions (µ, 1 − µ)

and ( 1+
√

δ
2 , 1−

√
δ

2 ). For µ = 0.99, δ = 0.1 and K = 3, one has 1
K −D(µ∥ 1+

√
δ

2 ) ≈ −0.03 ≤
−1/100. Therefore, the strong direct product theorem shows that computing 99% of the
entries of f (k)(z1, . . . , zk) = a correctly, with success probability at least exp(−k/100), takes
Ω(k Adv±(f)) = Ω(k Q1/3(f)) = Ω(k/τ) quantum queries. ◀

We will use this lower bound with k = n/2 and τ = 1/n. The following intuition is
useful to keep in mind. For a fixed b ≥ 2, define the 2k × n matrix A whose (2i− 1)-th row
equals 1 + zi/b and whose (2i)-th row equals 1− zi/b. Then A has the property that the
row-marginals encode the Hamming weights of the zi, and are all very close to n. (This
implies that the first row-rescaling step of Sinkhorn’s algorithm encodes the ai.) Moreover,
the column-marginals are exactly uniform. Hence, one may hope that all sufficiently precise
scalings of A to uniform targets have scaling factors that are close to those given by the first
row-rescaling step of Sinkhorn’s algorithm (and hence learn most of the ai).

Below we formalize this approach. We show that if one randomly permutes the coordinates
of each zi (independently over i), then with high probability, all ε-scalings of the resulting
matrix Aσ are close to the first step of Sinkhorn’s algorithm; here we need to choose b

sufficiently large (∼
√

ln(n)) and ε sufficiently small (∼ 1
n2b ). The section is organized as

follows. In Section 2.1 we formally define our matrix scaling instances and we analyse the first
row-rescaling step of Sinkhorn’s algorithm. In Section 2.2 we show that after the row-rescaling
step, with high probability (over the choice of permutations), the column-marginals are close
to uniform. In Sections 2.3 and 2.4 we use the strong convexity of the potential f from
Equation (1.2) to show that if the above event holds, then all approximate minimizers of f

can be used to solve the counting problem.

2.1 Definition of the scaling instances and analysis of row marginals

Let n ≥ 4 be even. Let k = n/2 and let z1, . . . , zk ∈ {±1}n have Hamming weight
|zi| = |{j : zi

j = 1}| = n/2 + ai for ai ∈ {±1}. Sample uniformly random permutations
σ1, . . . , σk ∈ Sn and define wi by wi

j = zi
(σi)−1(j). Let b ≥ 2 be some number depending on n,

and consider the 2k × n matrix Aσ whose entries are Aσ
2i−1,j = 1 + wi

j

b and Aσ
2i,j = 1− wi

j

b .
Then each column sum cj(Aσ) is 2k, and the row sums of Aσ are given by

r2i−1(Aσ) = n + 1
b

n∑
j=1

wi
j = n + 2

b
ai, r2i(Aσ) = n− 2

b
ai.

1 In [26] the upper bound on T is stated in terms of Adv∗(F ) where F = (δf(x),f(y))x,y∈D is the Gram
matrix of f . For Boolean functions f one has Adv∗(F ) = Adv±(f) [25, Thm. 3.4].
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Let

X2i−1 = 1
2k
· 1

n + 2
b ai

and X2i = 1
2k
· 1

n− 2
b ai

for all i ∈ [k] (2.1)

be the row scaling factors obtained from a single Sinkhorn step. We first observe that the
difference between x2i−1 := ln(X2i−1) and x2i := ln(X2i) permits to recover ai.

▶ Lemma 2.2. For the specific row-scaling factors X for Aσ given in (2.1), for every i ∈ [k]
it holds that |ln(X2i−1/X2i)| ≥ 4

nb , and sign(ln(X2i/X2i−1)) = ai.

Proof. Using nb > 2, we have |ln(X2i−1/X2i)| =
∣∣∣ln(n+ 2

b

n− 2
b

)∣∣∣ = ln
(

nb+2
nb−2

)
≥ 4

nb . ◀

2.2 Concentration of column marginals
We record here an explicit expression for the j-th column marginal of XAσ for the X
from (2.1), which follows from straightforward algebraic manipulations.

▶ Lemma 2.3. We have cj(XAσ) = 1
2k(n2−4/b2)

(
2kn− 4

b2

∑k
i=1 wi

jai

)
for j ∈ [n].

We now show that with high probability (over the choice of permutations) the column
marginals are close to uniform. To do so, we first compute the expectation of

∑k
i=1 wi

jai

(Corollary 2.5). This quantity allows us to obtain the desired concentration of the column
marginals via Hoeffding’s inequality (Lemma 2.6).

▶ Lemma 2.4. Let I = {i ∈ [k] : ai = 1} and Ic = [k] \ I. Define random variables Wj, W c
j

by Wj =
∑

i∈I wi
j and W c

j =
∑

i∈Ic wi
j. Then E[Wj ] = 2|I|

n and E[W c
j ] = − 2|Ic|

n .

Proof. Observe that each wi
j is 1 with probability 1

2 + ai

n because σi is chosen uniformly
randomly from Sn, and is −1 with probability 1

2 −
ai

n . Therefore E[wi
j ] = 2ai

n . By linearity
of expectation, the result follows. ◀

▶ Corollary 2.5. We have E
[∑k

i=1 wi
jai

]
= E[Wj ]− E[W c

j ] = 2(|I|+|Ic|)
n = 2k

n .

▶ Lemma 2.6. For t ≥ 0 and j ∈ [n], with probability at least 1 − 2e−t2/2, we have∣∣cj(XAσ)− 1
n

∣∣ = O
(

t
b2n2

√
k

)
.

Proof. One can verify that
∣∣cj(XAσ)− 1

n

∣∣ = 4
2kn(n2−4/b2)b2

∣∣∣2k − n
∑k

i=1 wi
jai

∣∣∣. For fixed j

and distinct i, i′ ∈ [k], wi
j and wi′

j are independently distributed random variables because σi

and σi′ are independent. Therefore, Vj := Wj −W c
j =

∑k
i=1 wi

jai is a sum of k independent
random variables, with each aiw

i
j ∈ [−1, 1], and Hoeffding’s inequality yields for any t ≥ 0

that Pr[|Vj − E[Vj ]| ≥ t ·
√

k] ≤ 2 exp(−t2/2). Assuming that |Vj − E[Vj ]| ≤ t
√

k, we have∣∣∣2k − n
∑k

i=1 aiw
i
j

∣∣∣ = n|E[Vj ]− Vj | ≤ nt
√

k. With this estimate, we see that∣∣∣∣cj(XAσ)− 1
n

∣∣∣∣ ≤ 4
2kn(n2 − 4/b2)b2 · nt

√
k = 2t

b2(n2 − 4/b2)
√

k
. ◀

▶ Corollary 2.7. For any t ≥ 0, with probability ≥ 1− 2ne−t2/2, we have
∥∥c(XAσ)− 1

n

∥∥
2 ≤

2
√

nt

b2(n2−4/b2)
√

k
= O

(
t

b2n2

)
.
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2.3 Strong convexity properties of the potential
For a λ-strongly convex function f , the set {z : ∥∇f(z)∥2 ≤ ε} has a diameter that is
bounded by a function of λ (we make this well-known fact precise in Lemma A.4). We show
that our potential is strongly convex when viewed as a function from (a suitable subset of)
the linear subspace V = {(x, y) ∈ Rn × Rn : ⟨(x, y), (1n,−1n)⟩ = 0} to R (note that f is
invariant under translation by multiples of (1n,−1n)). We use this to prove the following
lemma, which shows that whenever ∇f(x, y) is small, (x, y) is close to the minimizer of f

on V . It is easy to verify that Corollary 2.7 in fact gives an upper bound on the ℓ2-norm
of the gradient at (ln(X), 0) (with X as in (2.1)). This implies that (ln(X), 0) is close to
the minimizer of f on V , and by the triangle inequality, is also close to any other (x, y) for
which ∥∇f(x, y)∥2 is small. The full proof is given in Appendix A.

▶ Lemma 2.8. Let f : V ⊂ Rn×Rn → R be the standard potential for the matrix Aσ, where
V is the orthogonal complement of (1n,−1n). Then for every (x, y) ∈ V and δ ∈ (0, 1), if
∥∇f(x, y)∥2 ≤ δ

27ne2 , then ∥(x, y)− (x∗, y∗)∥∞ ≤ δ.

2.4 Concluding the lower bound for matrix scaling
Let (x̄, ȳ) ∈ V be the unique vector such that (x̄, ȳ)− (x, y) is a multiple of (1n,−1n), where
(x, y) are the scaling vectors of the first step of Sinkhorn. By choosing t and b appropriately
we obtain, with high probability over the choice of permutations, a bound on the distance
between (x̄, ȳ) and the unique scaling vectors (x∗, y∗) ∈ V of an exact scaling of Aσ. This
allows us to conclude that, with high probability, all sufficiently precise scalings of Aσ encode
the Hamming weights ai.

▶ Corollary 2.9. There exists a constant C > 0 such that for b = C
√

ln n the following
holds. With probability ≥ 2/3 (over the choice of σ) we have for the exact scaling vectors
(x∗, y∗) ∈ V of Aσ that ai = sign(x∗

2i − x∗
2i−1) for all i. Furthermore, there exists a

constant C ′ > 0 such that for any (x′, y′) that yield a (C ′/n2b)-ℓ2-scaling of Aσ, ai can be
recovered from x′ as ai = sign(x2i − x2i−1) = sign(x′

2i − x′
2i−1).

Proof. Applying Corollary 2.7 with t = 10
√

ln n shows that with probability at least 2/3
we have ∥∇f(x̄, ȳ)∥2 = ∥∇f(x, y)∥2 = t

b
2

√
n

b(n2−4/b2)
√

k
. Hence, there exists a constant C > 0

such that for b = Ct we have ∥∇f(x̄, ȳ)∥2 ≤ 1
nb

1
27ne2 . Lemma 2.8 then implies that

∥(x̄, ȳ) − (x∗, y∗)∥∞ ≤ 1
nb and hence |(x∗

2i−1 − x∗
2i) − (x2i−1 − x2i)| ≤ 2

nb . Together with
Lemma 2.2 (which shows that |x2i−1 − x2i| ≥ 4

nb ) this means that ai = sign(x∗
2i − x∗

2i−1).
Moreover, |x∗

2i−1 − x∗
2i| ≥ 2

nb .
Now consider approximate scalings of Aσ. Without loss of generality we may assume

that the (x′, y′) that yield a ( 1
2nb

1
27ne2 )-ℓ2-scaling of Aσ belong to V (otherwise we shift it

by an appropriate multiple of (1n,−1n)). Then, again due to Lemma 2.8, we obtain that
∥(x′, y′) − (x∗, y∗)∥∞ ≤ 1

2nb ≤
1
4 |x

∗
2i−1 − x∗

2i| and hence |(x′
2i−1 − x′

2i) − (x∗
2i−1 − x∗

2i)| ≤
1
2 |x

∗
2i−1 − x∗

2i| which means that sign(x′
2i − x′

2i−1) = sign(x∗
2i−1 − x∗

2i) = ai. ◀

▶ Theorem 2.10. There exists a constant C > 0 such that any matrix scaling algorithm that,
with probability ≥ 3

2 exp(−n/100), finds scalings for n×n-matrices with ℓ2-error C/(n2
√

ln n)
must make at least Ω(n2) queries to the matrix. This even holds for uniform targets and
entrywise-positive matrices with smallest entry Ω(1/n2).

Proof. We construct a set of hard instances as in Section 2.1. Let n ≥ 4 be even. Let
k = n/2 and let z1, . . . , zk ∈ {±1}n have Hamming weight |zi| = |{j : zi

j = 1}| = n/2 + ai for
ai ∈ {±1}. By Theorem 2.1, finding at least 99% of the ai’s with probability ≥ exp(−n/100)
takes Ω(n2)-queries to the zi

j . One can recover the ai’s with probability ≥ 2/3 as follows.
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First, sample the σ1, . . . , σn/2 uniformly from Sn. A single query to Aσ takes a single query to
some wi, which takes a single query to zi. Using Corollary 2.9, there exists a constant C > 0
such that, with probability ≥ 2/3, any scaling of Aσ with ℓ2-error C/(n2

√
ln n) recovers

all ai’s. Therefore any matrix scaling algorithm finding such a scaling with probability
≥ exp(−n/100) allows us to find all ai’s with probability ≥ exp(−n/100). ◀

▶ Corollary 2.11. There exist constants C0, C1 > 0 such that every matrix scaling algorithm
that, with probability ≥ exp(−C0n/ ln(n)), finds scalings for n× n-matrices with at most m

non-zero entries and ℓ2-error C1/(m
√

ln(m/n)) must make at least Ω̃(m) queries. This even
holds for uniform targets and matrices with smallest non-zero entry Ω(1/m).

2.5 Lower bound for computing the row marginals

In Theorem 2.12 we show that computing an ε-ℓ1-approximation of the row (or column
marginals) of an entrywise-positive n × n matrix takes Ω(n/ε) queries to its entries (for
ε = Ω(1/n)). As a consequence, the same holds for computing an approximation of the
gradient of common (convex) potential functions used for matrix scaling – among which is the
potential we use in Section 3 – takes as many queries. Although the bound does not imply
that testing whether a matrix is ε-ℓ1-scaled takes at least Ω(n/ε) queries, it gives reasonable
evidence that this should be the case. The proof can be found in the full version [17].

▶ Theorem 2.12. Let τ ∈ [1/n, 1/2]. Suppose we have a quantum algorithm that, given
query access to a positive n× n matrix A with row-sums r = (r1, . . . , rn) and column-sums
c = (1/n, . . . , 1/n), outputs (with probability ≥ exp(−n/100)) a vector r̃ ∈ Rn

+ such that
∥r̃− r∥1 < τ/100. Then this algorithm uses Ω(n/τ) queries.

3 Quantum box-constrained Newton method for matrix scaling

In this section, we show how to obtain a quantum speedup based on the box-constrained
Newton method for matrix scaling from [12], with the main result being Theorem 3.13,
and its consequences for matrix scaling given in Corollaries 3.14 and 3.15. We first recall
some of the concepts that are used in the algorithm, including the definition of second-order
robust convex functions, the notion of a k-oracle, and a theorem regarding efficient (classical)
implementation of a k-oracle for the class of symmetric diagonally-dominant matrices with
non-positive off-diagonal entries. We then show that for a second-order robust function
g : Rn → R and a given x ∈ Rn such that the sublevel set {x′ : g(x′) ≤ g(x)} is bounded,
one can use a k-oracle and approximations to the gradient and Hessian of g to find a vector
x′ such that the potential gap g(x′) − g(x∗) is smaller than g(x) − g(x∗) where x∗ is a
minimizer of g. This result extends [12, Thm. 3.4] to a setting where one can only obtain
rough approximations of the gradient and Hessian of g. We then show that this applies to a
regularized version f̃ of the potential f discussed in the introduction; to approximate the
Hessian of f̃ , we use a quantum algorithm for graph sparsification, whereas we approximate
the gradient of f̃ using quantum approximate summing. One challenge is that the quality
of the gradient approximation is directly related to the 1-norm of the matrix A(x, y), so
we must control this throughout the algorithm, which we achieve by manually shifting x
when the norm becomes too large, and showing that this does not increase the regularized
potential under suitable circumstances.
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3.1 Minimizing second-order robust convex functions
In what follows we will minimize a convex function (potential) that satisfies a certain
regularity condition: its Hessian can be approximated well on an infinity-norm ball.

▶ Definition 3.1 ([12, Def. 3.1]). A convex function g : Rn → R is called second-order robust
with respect to ℓ∞ if for any x, y ∈ Rn with ∥x−y∥∞ ≤ 1, 1

e2∇2g(x) ⪯ ∇2g(y) ⪯ e2∇2g(x).

This implies that the local quadratic approximation to g has a good quality on a small
ℓ∞-norm ball. It is therefore natural to consider the problem of minimizing a convex quadratic
function over an ℓ∞-norm ball. We will use the following notion.

▶ Definition 3.2 (k-oracle). An algorithm A is called a k-oracle for a class of matrices
M⊆ Rn×n if for input (H, b) with H ∈ M, b ∈ Rn, it returns a vector x ∈ Rn such that
∥x∥∞ ≤ k and 1

2 xT Hx + ⟨b, x⟩ ≤ 1
2 ·min∥z∥∞≤1( 1

2 zT Hz + ⟨b, z⟩).

▶ Definition 3.3 (SDD matrix). A matrix A ∈ Rn×n is called symmetric diagonally-dominant
if it is symmetric, and for every i ∈ [n], one has Aii ≥

∑
j ̸=i|Aij |.

In [12] it is shown how to efficiently implement an O (log(n))-oracle for the class of SDD
matrices H whose off-diagonal entries are non-positive. Their algorithm uses an efficient
construction of a vertex sparsifier chain of H due to [27, 24].

▶ Theorem 3.4 ([12, Thm. 5.11]). Given a classical description of an SDD matrix H ∈ Rn×n

with Õ(m) non-zero entries, such that Hi,j ≤ 0 for i ≠ j, and a classical vector b ∈ Rn, we
can find in time Õ(m) a vector x ∈ Rn such that ∥x∥∞ = O(log n) and

1
2xT Hx + ⟨b, x⟩ ≤ 1

2 · min
∥z∥∞≤1

(1
2zT Hz + ⟨b, z⟩).

A k-oracle A gives rise to an iterative method for minimizing a second-order robust
function g: starting from x0 ∈ Rn, we define a sequence x(0), x(1), x(2), . . . by

x(i+1) = x(i) + 1
k

∆i, ∆i = A
(

e2

k2 Hi,
1
k

bi

)
where Hi is an approximate Hessian at x(i), and bi is an approximate gradient at x(i). The
following theorem, which is an adaptation of [12, Thm. 3.4], upper bounds the progress made
in each iteration. We defer its proof to Appendix B.

▶ Theorem 3.5. Let g : Rn → R be a second-order robust function with respect to ℓ∞, let
x ∈ Rn be a starting point, and suppose x∗ is a minimizer of g. Assume that we are given
1. a vector b ∈ Rn such that ∥b−∇g(x)∥1 ≤ δ,
2. two SDD matrices Hm and Ha with non-positive off-diagonal entries, such that there

exists δa ≥ 0 and symmetric H′
m and H′

a satisfying ∇2g(x) = H′
m + H′

a and 2
3 Hm ⪯

H′
m ⪯ 4

3 Hm, ∥Ha −H′
a∥1 ≤ δa.

Let k = O (log n) be such that there exists a k-oracle A for the class of SDD-matrices
with non-positive off-diagonal entries (cf. Theorem 3.4). Then for H = Hm + Ha and
∆ = A

(
4e2

3k2 H, 1
k b
)

, the vector x′ = x + 1
k ∆ satisfies

g(x′)− g(x∗) ≤
(

1− 1
4e4 max(kR∞, 1)

)
(g(x)− g(x∗)) + e2δa

k2 + 3
2δ,

where R∞ is the ℓ∞-radius of the sublevel set {x′ : g(x′) ≤ g(x)} about x.
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3.2 A second-order robust potential for matrix scaling and its properties
Given a sparse matrix A ∈ Rn×n

≥0 , a desired error ε > 0, and some number B > 0, we consider
the regularized potential function f̃(x, y) given by

f̃(x, y) = f(x, y) + ε2

neB

∑
i

(exi + e−xi) +
∑

j

(eyj + e−yj )

 ,

where f is the commonly-used potential function from Equation (1.2). In [12], the same
regularization term is used, but with a different weight (since they aim for ℓ2-scaling and we
aim for ℓ1-scaling). The following is an adaptation of [12, Lem. 4.10], see Appendix B.2.

▶ Lemma 3.6. Assume A is asymptotically scalable, with ∥A∥1 ≤ 1, and µ > 0 its smallest
non-zero entry. Let B > 0 and ε > 0 be given. Then the regularized potential f̃ satisfies the
following properties:
1. f̃ is second-order robust with respect to ℓ∞, and its Hessian is SDD;
2. we have f(z) ≤ f̃(z) for any z = (x, y),
3. for all z such that f̃(z) ≤ f̃(0), we have ∥z∥∞ ≤ B + ln(4n + (n ln(1/µ)/ε2)), and
4. for any zε such that f(zε) ≤ f∗ + ε2 and ∥zε∥∞ ≤ B, one has f̃(zε) ≤ f∗ + 5ε2. In

particular, if such a zε exists, then |f∗ − f̃∗| ≤ 5ε2.

In order to use Theorem 3.5 to minimize f , we need to show how to approximate both
the gradient and Hessian of f̃ . We first consider the Hessian of f̃ , which can be written as
the sum of the Hessian of f and the Hessian of the regularizer f̃ − f . We have

∇2f(x, y) =
[

diag(r(A(x, y))) A(x, y)
A(x, y)T diag(c(A(x, y)))

]
,

∇2(f̃ − f)(x, y) = ε2

neB

[
diag(ex + e−x) 0

0 diag(ey + e−y)

]
. (3.1)

Note that computing ∇2f̃(x, y) up to high precision can be done using Õ(m) classical
queries to A, x, and y. Below we show how to obtain a sparse approximation of ∇2f̃(x, y)
using only Õ(

√
mn) quantum queries. We will do so in the sense of condition (2) of

Theorem 3.5 where we take H′
m to be a (high-precision) additive approximation of ∇2f(x, y),

and H′
a = ∇2f̃(x, y)−H′

m.
We first obtain a multiplicative spectral approximation of (a high-precision additive

approximation of) ∇2f(x, y). In order to do so we use its structure: it is similar to a
Laplacian matrix. This allows us to use the recent quantum Laplacian sparsifier of Apers
and de Wolf [6]. For a full proof, carefully keeping track of the bit-complexity, we refer to
the full version [17].

▶ Lemma 3.7. Given quantum query access to x, y and sparse quantum query access to
A, such that ∥A(x, y)∥1 ≤ C, we can compute an SDD matrix Hm with Õ(n) non-zero
entries, each off-diagonal entry non-negative, such that there exist symmetric H′

m and H′
a,f

satisfying H′
m + H′

a,f = ∇2f(x, y), and 0.9Hm ⪯ H′
m ⪯ 1.1Hm, ∥H′

a,f∥1 ≤ δa, in time
Õ(
√

mn polylog(C/δa)).

Similarly, we can efficiently compute an additive approximation of the Hessian of the
regularization term f̃ − f as long as x and y have ℓ∞-norm not much larger than B, using
the expression given in Equation (3.1).
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▶ Lemma 3.8. Given quantum query access to x, y with ∥x∥∞, ∥y∥∞ ≤ B + ln(4n +
(n ln(1/µ)/ε2)), we can compute a non-negative diagonal matrix Ha,f̃ that satisfies ∥Ha,f̃ −
∇2(f̃ − f)(x, y)∥1 ≤ δa, in time Õ(n log(1/δaµ) polylog(ε)).

▶ Theorem 3.9. Given quantum query access to x, y with ∥x∥∞, ∥y∥∞ ≤ B + ln(4n +
(n ln(1/µ)/ε2)), and sparse quantum query access to A, if ∥A(x, y)∥1 ≤ C, then we can
compute (classical descriptions of) an SDD matrix Hm with Õ(n) non-zero entries, with all
of the off-diagonal entries non-negative, and a non-negative diagonal matrix Ha such that
there exist symmetric H′

m, H′
a with H′

m + H′
a = ∇2f̃(x, y) and

0.9Hm ⪯ H′
m ⪯ 1.1Hm, ∥Ha −H′

a∥1 ≤ δa

in quantum time Õ(
√

mn polylog(C/µδa)).

Proof. Let Hm be the matrix obtained from Lemma 3.7, and let Ha be the matrix Ha,f̃

obtained from Lemma 3.8. Then H satisfies the desired properties, with H′
m as in Lemma 3.7,

and H′
a = H′

a,f +∇2(f̃ − f)(x, y) with H′
a,f as in Lemma 3.7. ◀

In order to obtain a good approximation of the gradient of f̃ , which is given by

∇f̃(x, y) =
[

r(A(x, y))− r
c(A(x, y))− c

]
+ ε2

neB

[
ex − e−x

ey − e−y

]
,

we can use similar techniques as the prior work on quantum algorithms for matrix scaling [5].
For computing the i-th row marginal, these are based on a careful implementation of amplitude
estimation on the unitary that prepares states that are approximately of the form∑

j

|0⟩
√

Aijexi+yj |j⟩+ |1⟩
√

1−Aijexi+yj |j⟩ ,

assuming that the i-th row of A(x, y) is properly normalized. The output is an estimate of
the i-th row marginal with multiplicative error 1± δ, which translates into additive error
δ · ri(A(x, y)); we refer to [5, Thm. 4.5 (arXiv)] for a more precise statement. The part of
the gradient coming from the regularization term is dealt with similarly as in Lemma 3.8.

▶ Lemma 3.10. Given quantum query access to x, y and sparse quantum query access to
A, if ∥A(x, y)∥1 ≤ C, we can find a classical description of a vector b ∈ Rn such that
∥b−∇f̃(x, y)∥1 ≤ δ · C in quantum time Õ(

√
mn/δ · polylog(C/µ)).

The following lemma and corollary help us ensure that throughout the algorithm,
∥A(x, y)∥1 is bounded above by a constant; if ∥A(x, y)∥1 is too large, we can change
the overall scaling of the matrix and decrease the regularized potential (so in particular, we
stay in the sublevel set of the regularized potential).

▶ Lemma 3.11. Let x, y be such that f̃(x, y) ≤ f̃(0, 0), and assume ∥A(x, y)∥1 ≥ C ′

where C ′ > 1. Let x′ = x − ln(γ)1 where 1 ≤ γ ≤ C ′. Then f̃(x′, y) − f̃(x, y) ≤
( 1

γ − 1)C ′ + ln(γ) + (γ − 1)
(

ln(1/µ) + 4ε2

eB

)
.

Proof. We have

f̃(x′, y)− f̃(x, y)

=
(

1
γ
− 1
)
∥A(x, y)∥1 + ln(γ) + ε2

neB

(
1
γ
− 1
)(∑

i

exi

)
+ ε2

neB
(γ − 1)(

∑
i

e−xi)
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≤
(

1
γ
− 1
)
∥A(x, y)∥1 + ln(γ) + 0 + ε2

neB
(γ − 1)(

∑
i

e−xi)

≤
(

1
γ
− 1
)

C ′ + ln(γ) + (γ − 1)
(

ln(1/µ) + 4ε2

eB

)
where for the last inequality we use ∥A(x, y)∥1 ≥ C ′ for the first term and Equation (B.5)
for the last term. ◀

An appropriate choice of C ′ and γ makes the bound in the above lemma non-positive.

▶ Corollary 3.12. Let ε ≤ 1 and µ ≤ 1, set γ = 2 and C ′ = 2(ln(2/µ) + 4ε2/eB). Then, if
∥A(x, y)∥1 ≥ C ′ and f̃(x, y) ≤ f̃(0, 0), we have f̃(x′, y) ≤ f̃(x, y).

3.3 Quantum box-constrained scaling

Combining the above leads to a quantum algorithm for matrix scaling that is based on
classical box-constrained Newton methods. See Algorithm 1 for its formal definition. In
Theorem 3.13 we analyze its output.

Algorithm 1 Quantum box-constrained Newton method for matrix scaling.

Input: Oracle access to A ∈ [µ, 1]n×n with ∥A∥1 ≤ 1 and µ > 0, error ε > 0, targets
r, c ∈ Rn

>0 with ∥r∥1 = 1 = ∥c∥1, diameter bound B ≥ 1, classical k-oracle A
for SDD matrices with non-negative off-diagonal entries

Output: Vectors x, y ∈ Rn with ∥(x, y)∥∞ ≤ B + ln(4n + (n ln(1/µ)/ε2))
1 set T = ⌈4e4 max(kB + ln(4n + (n ln(1/µ)/ε2)), 1) · ln

(
ln(1/µ)+2ε2/eB

ε2/2

)
⌉;

2 set C ′ = 2⌈ln(2/µ) + 8ε2/eB⌉;
3 set ε′ = ⌊ε2/8e4 max(k(B + ln(4n + (n ln(1/µ)/ε2))), 1)⌋;
4 store x(0), y(0) = 0 ∈ Rn in QCRAM;
5 for i = 0, . . . , T − 1 do
6 compute Hm, Ha s.t. Hm + Ha ≈ ∇2f̃(x(i), y(i)) as in Theorem 3.9 with

δa = ε′k2/2e2;
7 compute b ≈ ∇f̃(x(i), y(i)) as in Lemma 3.10 at x(i), y(i) with δ = ε′/3;
8 compute ∆ = A( 4e2

3k2 · (Hm + Ha), b
k );

9 compute (x(i+1), y(i+1)) = (x(i), y(i)) + 1
k ∆ and store in QCRAM;

10 set flag = true;
11 while flag do
12 Compute C ′/2-additive approximation γ of ∥A(x(i+1), y(i+1))∥1;
13 if γ ≤ 3C ′/2 then
14 set flag = false;
15 else
16 update x(i+1) ← x(i+1) − ln(2)1 in QCRAM;
17 end if
18 end while
19 end for
20 return (x, y) = (x(T ), y(T ));
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▶ Theorem 3.13. Let A ∈ [0, 1]n×n with m non-zero entries, r, c ∈ Rn
>0 such that ∥r∥1 =

1 = ∥c∥, and assume A is asymptotically (r, c)-scalable. Let ε > 0, let B ≥ 1, and assume
there exist (xε, yε) such that ∥(xε, yε)∥∞ ≤ B and f(xε, yε)− f∗ ≤ ε2. Furthermore, let A
be the O (log(n))-oracle of Theorem 3.4. Then Algorithm 1 with these parameters outputs,
with probability ≥ 2/3, vectors x, y such that f(x, y)− f∗ ≤ 6ε2 and runs in quantum time
Õ
(
B2√mn/ε2).

Proof. In every iteration, the matrices Hm, Ha and the vector b are such that they satisfy
the requirements of Theorem 3.5, hence

f̃(x(i+1), y(i+1))− f̃∗ ≤
(

1− 1
4e4 max(kR∞, 1)

)
(f̃(x(i), y(i))− f̃∗) + e2δa

k2 + 3δ

2

where R∞ ≤ B + ln(4n + (n ln(1/µ)/ε2))) is the ℓ∞-radius of the sublevel set {(x, y) :
f̃(x, y) ≤ f̃(0, 0)} about (0, 0), whose upper bound follows from Lemma 3.6. From here
on, we write M = 4e4 max(kR∞, 1). The choice of δa and δ in the algorithm is such that
e2δa/k2 + 3δ/2 ≤ ε2

2M , hence we can also bound the progress by

f̃(x(i+1), y(i+1))− f̃∗ ≤
(

1− 1
M

)
(f̃(x(i), y(i))− f̃∗) + ε2

2M
.

Corollary 3.12 shows that if ∥A(x(i+1), y(i+1))∥1 is larger than C ′, then we can shift x by
− ln(2)1, this halves ∥A(x(i+1), y(i+1))∥1 and does not increase the regularized potential. Re-
peating this roughly log2(∥A(x(i+1), y(i+1))∥1/C ′) many times2 reduces ∥A(x(i+1), y(i+1))∥1
to at most C = 2C ′. Determining when to stop this process requires a procedure to distinguish
between the cases ∥A(x(i+1), y(i+1))∥1 ≤ C ′ and ∥A(x(i+1), y(i+1))∥1 ≥ 2C ′ (if in between
C ′ and 2C ′ either continuing or stopping is fine). Such a procedure can be implemented
by computing a C ′/2-additive approximation of ∥A(x(i+1), y(i+1))∥1, which can be done
using Õ(

√
mn polylog(C ′/µ)) quantum queries, see (the proof of) [5, Lemma 4.6 (arXiv)].

Therefore, throughout the algorithm we may assume that ∥A(x(i+1), y(i+1))∥1 ≤ 2C ′ = C.
It remains to show that f̃(x(T ), y(T ))− f̃∗ ≤ ε2 for our choice of T . Note that we have

f̃(x(T ), y(T ))− f̃∗ ≤
(

1− 1
M

)T

(f̃(0, 0)− f̃∗) +
T −1∑
i=0

(
1− 1

M

)T −i−1
· ε2

2M

≤
(

1− 1
M

)T (
f̃(0, 0)− f̃∗)+

(
1− (1− 1

M
)T

)
· ε2

2

≤
(

1− 1
M

)T (
f(0, 0)− f∗ + 2ε2

eB

)
+ ε2

2

≤
(

1− 1
M

)T (
ln(1/µ) + 2ε2

eB

)
+ ε2

2 ≤ ε2

where in the third inequality we use Lemma 3.6, and in the last inequality we use

T =
⌈

4e4 max(kB + ln(4n + (n ln(1/µ)/ε2)), 1) · ln
(

ln(1/µ) + 2ε2/eB

ε2/2

)⌉
≥
⌈

M · ln
(

ln(1/µ) + 2ε2/eB

ε2/2

)⌉
≥ 1

ln(1− 1
M )
· ln
(

ε2/2
ln(1/µ) + 2ε2

eB

)
.

2 Which is an almost constant number of times: in a single update of the box-constrained method, we
take steps of size at most 1 in ℓ∞-norm, so individual entries can only grow by a factor e2 in a single
iteration, and the holds same for ∥A(x, y)∥1.
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This implies that f(x(T ), y(T ))− f∗ ≤ f̃(x(T ), y(T ))− f̃∗ + 5ε2 ≤ 6ε2, where we crucially use
the last point of Lemma 3.6 and the assumption that there exist (xε, yε) with ∥(xε, yε)∥∞ ≤ B

which ε2-minimize f .
Finally we bound the time complexity of Algorithm 1. For each of the quoted results, we

use the choice C = 2C ′ = Õ
(
ln(n) + ε2). In each of the T iterations we compute:

1. approximations Hm, Ha of ∇2f̃(x(i), x(i)) in time Õ(
√

mn polylog(1/ε)) (using that C,
1/µ are at most poly(n)),

2. an ε′/3-ℓ1-approximation of ∇f̃(x(i), y(i)) in time Õ(
√

mn/ε′) = Õ
(
B
√

mn/ε2),
3. an update ∆ in time Õ(n) using one call to the k = O (log(n))-oracle on SDD-matrices

with Õ(n) non-zero entries from Theorem 3.4,
4. at most O (1) many times (using the fact that in Algorithm 1 the 1-norm changes by at

most a constant factor since ∥ 1
k ∆∥∞ ≤ 1) an O

(
ln(1/µ) + ε2)-additive approximation of

∥A(x(i), y(i))∥1 in time Õ(
√

mn).
Note that the second contribution dominates the others, resulting in an overall time complexity
of Õ

(
B2√mn/ε2). ◀

The above proof relies on Theorem 3.5 to show that the (regularized) potential decreases in
each iteration. This decrease depends on the precision used for the marginal estimation in
that iteration and one can show that the choice of precision in Algorithm 1 is asymptotically
optimal, see the full version [17].

Algorithm 1 takes as (part of the) input a bound B on the ℓ∞-norm of an ε2-minimizer
of f . For the purpose of matrix scaling, one can avoid knowing such a bound in advance, by
running the algorithm for successive powers of 2 (i.e., B = 1, B = 2, B = 4,. . .) and testing
whether the output yields an ε-scaling or not. Verifying whether given x, y yield an ε-scaling
of A can be done in time Õ

(√
mn/ε2). Note that this gives an algorithm for ε-scaling whose

complexity depends on a diameter bound for ε2-minimizers of f , rather than a diameter
bound for ε-scaling vectors. Furthermore, such an approach does not work for the task of
finding an ε2-minimizer of f , as we do not know how to test this property efficiently.

▶ Corollary 3.14. For asymptotically-scalable matrices A ∈ Rn×n
≥0 with m non-zero entries,

one can find O(ε)-ℓ1-scaling vectors (x, y) of A to target marginals r, c ∈ Rn
>0 with ∥r∥1 =

1 = ∥c∥1 in time Õ
(
R2

∞
√

mn/ε2), where R∞ is such that there exists an ε2-approximate
minimizer (xε, yε) of f with R∞ = ∥(xε, yε)∥∞ + ln(4n + (n ln(1/µ)/ε2)).

For the general case mentioned above, we do not have good (i.e., polylogarithmic) bounds on
the parameter R∞. We do have such bounds when A is entrywise positive: it is well-known
that such an A can be exactly scaled to uniform marginals with scaling vectors (x, y) such that
∥(x, y)∥∞ = O(log(∥A∥1/µ)) (cf. [22, Lem. 1], [12, Lem. 4.11]). In particular, this implies
that there exists a minimizer (x∗, y∗) of f with ∥(x∗, y∗)∥∞ = O(log(∥A∥1/µ)) = Õ(1) and
therefore we have the following corollary.

▶ Corollary 3.15. For entrywise-positive matrices A, one can find an ε-ℓ1-scaling of A to
uniform marginals in time Õ

(
n1.5/ε2).
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A Missing proofs for Section 2

A.1 Strong convexity properties of the potential
Lemma 2.8 shows that a vector (x, y) ∈ V for which ∥∇f(x, y)∥2 is small, is close to
the minimizer of f . Here we prove this lemma (see Corollary A.6) using strong convexity
properties of f . In Lemma A.1 we show that the Hessian of f restricted to V has smallest
eigenvalue at least n · µ(x, y) where µ(x, y) is the smallest entry appearing in (Aijexi+yj )i,j .
In Lemma A.3 we show that µ(x∗, y∗) = Θ(1/n2). This implies that µ(x, y) = Θ(1/n2) for
all (x, y) that are a constant distance away from (x∗, y∗) in the ℓ∞-norm, in other words, f

is Θ(1/n)-strongly convex around its minimizer. Lemma A.5 summarizes these lemmas: it
gives a quantitative bound on the distance to a minimizer, in terms of the gradient.

▶ Lemma A.1. Let A be an entrywise non-negative n×n matrix and let f : V ⊂ Rn×Rn → R
be the potential for this matrix as given in (1.2), where V is the orthogonal complement of
(1n,−1n). Then ∇2f(x, y) ⪰ µ(x, y) · n ·PV where PV is the projection onto V and µ(x, y)
is the smallest entry appearing in A(x, y). In particular, f is strictly convex on V .

Proof. The Hessian of the potential f(x, y) =
∑n

i,j=1 Aijexi+yj − ⟨r, x⟩ − ⟨c, y⟩ is given by

∇2f(x, y) =
[
diag(r(A(x, y)) A(x, y)

A(x, y)T diag(c(A(x, y)))

]
.
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We give a lower bound on the non-zero eigenvalues of the Hessian as follows. Conjugating the
Hessian with the 2n× 2n matrix diag(I,−I) preserves the spectrum, i.e., changing the signs
of the off-diagonal A(x, y) blocks yields a matrix which one can recognize as the weighted
Laplacian of a complete bipartite graph. We denote by µ(x, y) the smallest entry of A(x, y)
and we use J for the n× n all-ones matrix. Then[

diag(r(A(x, y)) −A(x, y)
−A(x, y)T diag(c(A(x, y)))

]
⪰
[

nµ(x, y)I −µ(x, y)J
−µ(x, y)J nµ(x, y)I

]
= µ(x, y)

[
nI −J
−J nI

]
,

where the PSD inequality follows because the difference of the terms is the weighted Laplacian
of the bipartite graph with weighted bipartite adjacency matrix A(x, y)− µ(x, y)J, which

has non-negative entries. Now observe that the last term
[

nI −J
−J nI

]
is the (unweighted)

Laplacian of the complete bipartite graph Kn,n, whose spectrum is 2n, n, 0 with multiplicities
1, 2n− 2 and 1 respectively. The zero eigenvalue corresponds to the all-ones vector of length
2n and it is easy to see that indeed (1,−1) also lies in the kernel of ∇2f(x, y). This
shows that the non-zero eigenvalues of ∇2f(x, y) are at least n · µ(x, y), and that it has
a one-dimensional eigenspace corresponding to 0, spanned by the vector (1,−1). Hence,
∇2f(x, y) ⪰ µ(x, y) · n ·PV . ◀

We now bound the smallest entry of the rescaled matrix. For this we use the following
lemma (cf. [20, Lem. 6.2], [5, Cor. C.3 (arXiv)]) which bounds the variation norm of the
scaling vectors (x∗, y∗) of an exact scaling.

▶ Lemma A.2. Let A ∈ [µ, ν]n×n and let (x∗, y∗) ∈ Rn × Rn be such that A(x∗, y∗) is
exactly (r, c)-scaled. Then

x∗
max − x∗

min ≤ ln ν

µ
+ ln rmax

rmin
and y∗

max − y∗
min ≤ ln ν

µ
+ ln cmax

cmin
.

▶ Lemma A.3. Let A ∈ [µ, ν]n×n be an entrywise-positive matrix with ∥A∥1 = 1 and
let f : V ⊂ Rn × Rn → R be the potential for this matrix as given in (1.2), where V is
the orthogonal complement of (1n,−1n). Let (x∗, y∗) ∈ V be the unique minimizer of
f in V . Then µ(x∗, y∗) ≥ 1

n2

(
µ
ν

)3. Moreover, for every (x, y) ∈ V we have µ(x, y) ≥
µ(x∗, y∗)e−2∥(x,y)−(x∗,y∗)∥∞ .

Proof. By Lemma A.1 f is strictly convex on V . We also know that A is exactly scalable.
Hence f has a unique minimizer (x∗, y∗). By Lemma A.2 we know that the variation norm
of x∗ and y∗ are bounded by ln(ν/µ). Hence, for every i, i′, j, j′ ∈ [n] we have∣∣∣∣∣ln

(
ex∗

i +y∗
j

e
x∗

i′ +y∗
j′

)∣∣∣∣∣ ≤ |x∗
i − x∗

i′ |+ |y∗
j − y∗

j′ | = 2 ln(ν/µ).

Therefore, the ratio between entries of A(x∗, y∗) is bounded:∣∣∣∣ A(x∗, y∗)ij

A(x∗, y∗)i′j′

∣∣∣∣ ≤ ∣∣∣∣ Aij

Ai′j′

∣∣∣∣
∣∣∣∣∣
(

ex∗
i +y∗

j

e
x∗

i′ +y∗
j′

)∣∣∣∣∣ ≤ ν

µ
e2 ln(ν/µ) =

(
ν

µ

)3
.

Since the sum of the entries of A(x∗, y∗) equals 1, this implies that the smallest entry
of A(x∗, y∗) is at least µ(x∗, y∗) ≥ 1

n2

(
µ
ν

)3. Finally, for (x, y) ∈ V and all i, j ∈ [n] we
have Aijexi+yj ≥ Aijex∗

i +y∗
j −2∥(x,y)−(x∗,y∗)∥∞ , so taking the minimum over all i, j gives

µ(x, y) ≥ µ(x∗, y∗)e−2∥(x,y)−(x∗,y∗)∥∞ . ◀
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Finally, to obtain a diameter bound for the set of points with a small gradient we will use
the following (well-known) lemma.

▶ Lemma A.4. Assume g : Rd → R is a C2 convex function such that ∇g(0) = 0, and
assume that for all x ∈ Rd with ∥x∥∞ ≤ r, we have ∇2g(x) ⪰ λI. Then

∥∇g(x)∥2 ≥ λ∥x∥2 min(1, r/∥x∥∞) ≥ λ min(∥x∥∞, r).

In particular, to guarantee that ∥x∥∞ ≤ C for C ≥ 0, it suffices to show that ∥∇g(x)∥2 <

λ min(C, r) (strict inequality is necessary as it forces min(∥x∥∞, r) = ∥x∥∞).

Proof. Fix x ∈ Rn and consider h : R → R defined by h(t) = g(tx). Then h is convex,
∂t=0h(t) = 0 and ∂2

t=sh(t) ≥ 0 for all s ∈ R. Now assume for s ∈ R that |s|∥x∥∞ ≤ r. Then

∂2
t=sh(t) = ∂t=s(Dg(tx)[x]) = D2g(sx)[x, x] = xT∇2g(sx)x ≥ λ∥x∥2

2.

For s ≥ 0 this yields a lower bound on ⟨∇g(sx), x⟩ of the form

⟨∇g(sx), x⟩ = ∂t=sh(t) =
∫ s

0
∂2

t=τ h(t) dτ ≥
∫ min(s,r/∥x∥∞)

0
∂2

t=τ h(t) dτ

≥
∫ min(s,r/∥x∥∞)

0
λ∥x∥2

2 dτ = λ∥x∥2
2 min(s, r/∥x∥∞),

where the first inequality follows from the convexity of h. Setting s = 1 and using the
Cauchy–Schwarz inequality gives ∥∇g(x)∥2∥x∥2 ≥ λ∥x∥2

2 min(1, r/∥x∥∞) so

∥∇g(x)∥2 ≥ λ∥x∥2 min(1, r/∥x∥∞) ≥ λ∥x∥∞ min(1, r/∥x∥∞) = λ min(∥x∥∞, r). ◀

▶ Lemma A.5. Let A ∈ [µ, ν]n×n be an entrywise non-negative matrix with ∥A∥1 = 1
and let f : V ⊂ Rn × Rn → R be the potential for this matrix as given in (1.2), where V

is the orthogonal complement of (1n,−1n). Let (x∗, y∗) be the unique minimizer of f in
V and let 0 < δ < 1. Let (x, y) ∈ V be such that ∥∇f(x, y)∥2 < δ · 1

n

(
µ
ν

)3
e−2. Then

∥(x, y)− (x∗, y∗)∥∞ ≤ δ.

Proof. Lemma A.1 shows that ∇2f(x, y) ⪰ n · µ(x, y) · PV , where PV is the ortho-
gonal projector on V . Lemma A.3 shows that µ(x, y) ≥ µ(x∗, y∗)e−2∥(x,y)−(x∗,y∗)∥∞ ≥
1

n2

(
µ
ν

)3
e−2∥(x,y)−(x∗,y∗)∥∞ . Hence, for (x, y) with ∥(x, y) − (x∗, y∗)∥∞ ≤ 1, we have

∇2f(x, y) ⪰ 1
n

(
µ
ν

)3
e−2 · PV . It then follows from Lemma A.4 that if ∥∇f(x, y)∥2 <

δ · 1
n

(
µ
ν

)3
e−2, then ∥(x, y)− (x∗, y∗)∥∞ ≤ δ. ◀

Observe that for Aσ the ratio between its largest and smallest entry is b+1
b−1 ≤ 3. This gives

the following corollary, proving Lemma 2.8.

▶ Corollary A.6. Let Aσ be as in Section 2.1 and let f be the associated potential. Let (x∗, y∗)
be the unique exact scaling of Aσ in V . If (x, y) ∈ V is such that ∥∇f(x, y)∥2 < δ

27ne2 , then
∥(x, y)− (x∗, y∗)∥∞ ≤ δ.

B Missing proofs for Section 3

B.1 Minimizing a second-order robust function
Before giving the proof of Theorem 3.5, we introduce the following notation. For a symmetric
matrix H and b, z ∈ Rn, we denote

Q(H, b, z) = ⟨b, z⟩+ 1
2zT Hz.

We will use the following easily-verified properties of Q repeatedly.
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▶ Lemma B.1. For symmetric matrices H, H′ and vectors b, b′, z, we have the following
estimates:

1. If H ⪯ H′, then Q(H, b, z) ≤ Q(H′, b, z).

2. If ∥H−H′∥1 ≤ δa, then
∣∣Q(H, b, z)−Q(H′, b, z)

∣∣ ≤ 1
2 δa∥z∥2

∞.

3. We have
∣∣Q(H, b, z)−Q(H, b′, z)

∣∣ =
∣∣⟨b− b′, z⟩

∣∣ ≤ ∥b− b′∥1∥z∥∞.

Proof of Theorem 3.5. We follow the proof of [12, Thm. 3.4], and use their implementation
of a k-oracle A for k = O (log n), as detailed in Theorem 3.4. That is, A takes as input an
SDD matrix H with Õ(m) non-zero entries (off-diagonal entries ≤ 0) and a vector b, and
outputs a vector z such that ∥z∥∞ ≤ k and

Q(H, b, z) ≤ 1
2 inf

∥z′∥∞≤1
Q(H, b, z′).

Then for x′ = x + 1
k ∆, ∆ = A

(
4e2

3k2 H, 1
k b
)

we have

Q

(
4e2

3 H, b,
1
k

∆
)

= Q

(
4e2

3k2 H,
1
k

b, ∆
)
≤ 1

2 inf
∥z∥∞≤1

Q

(
4e2

3k2 H,
1
k

b, z
)

= 1
2 inf

∥z∥∞≤1
Q

(
4e2

3 H, b, z/k

)
= 1

2 inf
∥z∥∞≤ 1

k

Q

(
4e2

3 H, b, z
)

.

Note that the second-order robustness of g implies that for x̃ ∈ Rn with ∥x− x̃∥∞ ≤ 1, we
have quadratic lower and upper bounds

Q

(
1
e2∇

2g(x),∇g(x), x̃− x
)
≤ g(x̃)− g(x) ≤ Q

(
e2∇2g(x),∇g(x), x̃− x

)
. (B.1)

The remainder of the proof is structured as follows. We first compare quadratics involving
∇2g(x) and ∇g(x) to quadratics involving the approximations H and b in Equations (B.2)
and (B.3). Using these estimates we then obtain a local progress bound over an ℓ∞-ball
of radius 1/k, see Equation (B.4). Finally, we convert this local bound into a more global
estimate.

The properties of the approximate Hessian and gradient guarantee that

Q
(
e2∇2g(x),∇g(x), x̃− x

)
≤ Q

(
e2∇2g(x), b, x̃− x

)
+ δ

= Q
(
e2H′

m, b, x̃− x
)

+ Q
(
e2H′

a, b, x̃− x
)
− ⟨b, x̃− x⟩+ δ

≤ Q

(
4e2

3 Hm, b, x̃− x
)

+ Q
(
e2Ha, b, x̃− x

)
+ e2

2 δa∥x̃− x∥2
∞ − ⟨b, x̃− x⟩+ δ

≤ Q

(
4e2

3 Hm, b, x̃− x
)

+ Q

(
4e2

3 Ha, b, x̃− x
)

+ e2

2 δa∥x̃− x∥2
∞ − ⟨b, x̃− x⟩+ δ

= Q

(
4e2

3 H, b, x̃− x
)

+ e2

2 δa∥x̃− x∥2
∞ + δ. (B.2)
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Furthermore, we also have the upper bound

Q

(
4e2

3 H, b, x̃− x
)

= Q

(
4e2

3 Hm, b, x̃− x
)

+ Q

(
4e2

3 Ha, b, x̃− x
)
− ⟨b, x̃− x⟩

≤ Q
(
2e2H′

m, b, x̃− x
)

+ Q
(
2e2Ha, b, x̃− x

)
− ⟨b, x̃− x⟩

≤ Q
(
2e2H′

m, b, x̃− x
)

+ Q
(
2e2H′

a, b, x̃− x
)

+ e2δa∥x̃− x∥2
∞ − ⟨b, x̃− x⟩

≤ Q
(
2e2H′

m, b, x̃− x
)

+ Q
(
2e2H′

a, b, x̃− x
)

+ e2δa∥x̃− x∥2
∞ − ⟨b, x̃− x⟩

= Q
(
2e2∇2g(x), b, x̃− x

)
+ e2δa∥x̃− x∥2

∞

≤ Q
(
2e2∇2g(x),∇g(x), x̃− x

)
+ e2δa∥x̃− x∥2

∞ + δ. (B.3)

Let vL and vU be the minimizers of quadratics over the ℓ∞-ball of radius 1/k:

vL = argmin
∥v∥∞≤1/k

Q( 1
e2∇

2g(x),∇g(x), v), vU = argmin
∥v∥∞≤1/k

Q(2e2∇2g(x),∇g(x), v).

Then by the guarantees of the k-oracle, we have

Q

(
4e2

3 H, b,
1
k

∆
)
≤ 1

2 inf
∥v∥∞≤1/k

Q

(
4e2

3 H, b, v
)

≤ 1
2 inf

∥v∥∞≤1/k
(Q
(
2e2∇2g(x),∇g(x), v

)
+ e2δa∥v∥2

∞ + δ)

≤ 1
2Q
(
2e2∇2g(x),∇g(x), vU

)
+ e2δa

2k2 + 1
2δ,

where the second inequality uses Equation (B.3), and the norm bounds ∥v∥∞ ≤ 1/k ≤
1 (to apply the inequality). Using the quadratic upper bound from Equation (B.1) on
g(x + 1

k ∆)− g(x) and Equation (B.2), this yields

g(x + 1
k

∆)− g(x) ≤ Q(e2∇2g(x),∇g(x), 1
k

∆) ≤ Q

(
4e2

3 H, b,
1
k

∆
)

+ e2

2 δa + δ

≤ 1
2Q
(
2e2∇2g(x),∇g(x), vU

)
+ e2δa

k2 + 3
2δ,

We can then further upper bound this using

Q
(
2e2∇2g(x), ∇g(x), vU

)
≤ Q

(
2e2∇2g(x), ∇g(x), vL

2e4

)
= 1

2e4 Q
( 1

e2 ∇2g(x), ∇g(x), vL

)
where the inequality uses that vU = argmin∥v∥∞≤1/k Q(2e2∇2g(x),∇g(x), v) and ∥vL∥∞ ≤

1/k. Collecting estimates, we obtain

g(x + 1
k

∆)− g(x) ≤ 1
4e4 Q

(
1
e2∇

2g(x),∇g(x), vL

)
+ e2δa

k2 + 3
2δ. (B.4)

We now convert this to a more global estimate. Let x∗ be a global minimizer of g. Set
y = x + 1

max(kR∞,1) (x∗ − x), so that ∥y− x∥∞ ≤ 1
k . For the lower bound

gL(x̃) = g(x) + Q( 1
e2∇

2g(x),∇g(x), x̃− x)
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on g(x̃) we see that gL(x + vL) ≤ gL(y) ≤ g(y) since x + vL minimizes gL ≤ g over the
ℓ∞-ball of radius 1/k around x. By convexity of g we get

g(y) = g(x + 1
max(kR∞, 1)(x∗ − x)) ≤ (1− 1

max(kR∞, 1))g(x) + 1
max(kR∞, 1)g(x∗)

so

g(x)− gL(x + vL) ≥ g(x)− g(y) ≥ 1
max(kR∞, 1)(g(x)− g(x∗)).

Using this estimate in Equation (B.4), this gives

g(x)− g(x + 1
k

∆) ≥ 1
4e4 max(kR∞, 1)(g(x)− g(x∗))− (e2δa

k2 + 3
2δ),

which after rearranging and rewriting x′ = x + 1
k ∆ reads

g(x′)− g(x∗) ≤
(

1− 1
4e4 max(kR∞, 1)

)
(g(x)− g(x∗)) + e2δa

k2 + 3
2δ. ◀

B.2 Approximating the Hessian of the regularized potential
Proof of Lemma 3.6. The first point is easy to verify, as is the second point (the regulariza-
tion term is always positive). For the third point, suppose we have a z such that f̃(z) ≤ f̃(0).
Then

ε2

neB

∑
i

(exi + e−xi) +
∑

j

(eyj + e−yj )

 ≤ f(0)−f(z)+ ε2

neB
·4n ≤ ln(1/µ)+ 4ε2

eB
. (B.5)

where the last inequality follows from the potential bound f(0) − f∗ ≤ ln(1/µ) (which
depends on ∥A∥1 ≤ 1; in general the upper bound is ∥A∥1 − 1 + ln(1/µ)). Since each of
the regularization terms is positive, we may restrict ourselves to a single term and see that
exi + e−xi ≤ eBn ln(1/µ)

ε2 + 4n, from which we may deduce

|xi| ≤ ln
(

eBn ln(1/µ)
ε2 + 4n

)
= B + ln

(
n ln(1/µ)

ε2 + 4n

eB

)
≤ B + ln

(
n ln(1/µ)

ε2 + 4n

)
,

where the last inequality uses eB ≥ 1 (recall B > 0). The same upper bound holds for |yj |.
For the last point, note that if zε = (x, y), then exi + e−xi ≤ 2eB and similarly for y, so

f̃(zε) ≤ f(zε) + ε2

neB
· 4neB = f(zε) + 4ε2 ≤ f∗ + 5ε2.

If such a zε exists, then f∗ ≤ f̃∗ ≤ f̃(zε) ≤ f∗ + 5ε2. ◀
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