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GENERALIZED AFFINE SIGNAL ANALYSIS
WITH TIME-DELAY THRESHOLDS
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Alex Grossmann *

T. Paul *
ABSTRACT

A class of functions recently introduced by Dash and Paul to describe
signals containing components with various onset-arrival threshold positions
in time is placed within the context of the affine group formalism of
Aslaksen, Klauder, Grossmann, and Morlet generalized to include a time-
translation degree of freedom. Each function or "wavelet” has a causal
structure, being zero before its own threshold time position, and contains
parameters defining a power-law turn-on, ringing, decay, and some possibility
for phase modulation, along with an overall magnitude and phase. Signals are
expanded in rapidly convergent series of these functions. Techniques for
parameter estimation are discussed. Some possibilities for practical

applications are mentioned.
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I. INTRODUCTION

A promising developﬁlent in signal processing and pattern recognition
has been the realization that group-theoretic and Hilbert-space analytic tools
combined with suitable sets of functions or "wavelets” can provide a useful
expansion framework for a large class of signals. Historically, Prony analysis
[1] was the first example of an signal expansion in terms of an overcomplete
set of continuous functions along with a prescription for the expansion using a
discrete number of constraints from a set of measurements in time. The idea
provides a special case of Pade approximants [2], and independent later
developments included applications in high energy physics as Regge pole
theory [3] and in electromagnetic scattering theory as SEM theory [4]. The
formal description in terms of the affine group and related coherent states
was made by Aslaksen and Klauder [5] and independently by Grossmann and
Morlet [6]. In physical terms, each wavelet is zero before a given fixed point
in time (call it t, = 0), and then oscillates with a fixed frequency and decays
in time with an exponential envelope. The affine group parameters of
translation and dilation are, in this case, associated with the frequency of

oscillation and the exponential decay scale.

An extension of Prony analysis which allows an extra degree of
freedom as a time translation was suggested by Dash [7] on the basis of work
incorporating finite scales into Regge theory [8] and by Paul [9]. The class of
functions used was the class of Prony functions discussed above, but
translated by an arbitrary amount in time. The two translations of frequency

and time are thus incorporated as in the usual coherent states related to the



Weyl-Heisenberg group [10] in addition to the dilations of affine coherent
states. This generalization provides an economical description of data from
some situations using only a few terms, but which require an infinite number
of terms in a standard Prony expansion. Ref. [7] also discusses the physical
origin of the time-delays of the wavelets due to causality when measurements
are made at a given point in a spatially extended system which scatters an

incident electromagnetic wave.

The general form for the wavelet of Ref. [7] is

f(Y) = Rc{—LAJiL ®[Y]Y‘e°‘Y}

I'(z+ 1)

Here Y = t - ty is the translated time variable, ®[Y] is the Heaviside
function defined as zero for Y<O0, 1/2 at Y = 0, and 1 for Y > 0. Also,
a = ag + ia; defines the damping parameter ag < 0 and the resonance-
ringing frequency a;. The power take-off parameter z can be complex, but
Re(z)=0 is required. Finally |A|, ¢ are the overall magnitude and phase.

The Fourier transform of f(Y) is

f(w) = } el“t f(Y) dt

_ JA] et el e ¢
= € + ®
2 (—iw - a)®*D (—iw - ™) *D




The time delay parameter t; manifests itself in the phase factor et

which is not present in the Prony analysis, since t; = 0 is assumed there.
Because f(Y) is real, singularities at w = ia , ia" are present. If @ , a; > 0
the dominant term is the second one at @ = ia® . The width of the peak at
o = o for real @ > 0 is given by —2ay, while the falloff at the tail of the
peak is given by z, as required by the usual Fourier transform arguments.
With z = n, poles of order (n+1) are generated; if z is nonintegral the

singularities are branch points.

A remark about overcompleteness is in order. Any function in an
overcomplete set can be expanded in terms of the others. Therefore, no
expansion is unique. An overcomplete set can be reduced in size to a
complete set by suitable discretization, cutting out the "extra” elements.
However, we shall regard overcompleteness as a virtue, allowing reasonably
accurate expansions with only a few terms due to the richness of the set of
functions from which we can draw. While nonunique, such an expansion can
often be distiguished from other expansions by the number of terms needed
for a given accuracy, and we shall use this as one criterion for selecting out a

preferred expansion.

A very interesting case of practical importance to which we think the
formalism we present could be applicable is voiced speech, which consists of
repeated quasi-periodic segments [11]. Applications of the affine formalism to

seismic signal processing using different wavelets are described in Ref. [12].



The set-up of the rest of this paper is as follows. In Section II we
briefly describe the formalism. In Section IIl we give some possible
suggestions for initial parameter estimation. The appendix contains some

technical details.



II. FORMALISM

In this section we give a summary of the formalism contained in Refs.
[xxx]. We denote by G, the affine group of dilations A = -ap and
translations a;. We choose a "fiducial wavelet" fy(t) = ®[t]t’e ~' where now
we require that Re(z) > 0. We will construct all other wavelets from f;, by the
operations of translations and dilations. Define Q,P as the co-ordinate and
momentum operators obeying [Q,P] = i with eigenvalues q and p. The
dilation operator is B = (QP + PQ)/2. We take P as corresponding to
multiplication by t, so Q = i3/dt, and we also take p = t3 , ¢ = a;. Unitary
representations for the affine group G, and the Weyl-Heisenberg group Gyy

are then given by operations on fy(t) , viz
£OA0) = ca [Ua@f]() = cac™® e oMB(1) = 12 e fo(a1)

fO%() = coy [Uwa@l(t) = cwue"9F + POf(t) = e fy(t - o)

Here we have included normalization constants c, ,cyy for

convenience where c;2 = 2nmlifgl?  with 1ifgl1? = [(d=x/x)f(x), and
0

—iatg/2
Cwy — € ot/ .

Evidently the wavelets of Ref. [7] in eq. 1.1 are given by a combination
of the affine and Weyl-Heisenberg operators acting on f;. We will be
expanding signals in a series of such functions. Our strategy for getting each

wavelet will involve choosing an element of the Weyl-Heisenberg group, thus
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specifying t;, along with an element of the affine group specifying a; , A = -
ag. A value for z must also be fixed. The relative contribution to the

expansion of each such term will be given by the formalism.

In general we can call f&(t) a coherent state, and the set of all f&(t) is

an overcomplete set which is dense in the Hilbert space H of square-integrable

¢
functions -oa—the——group- The inner product on H is

Erf)=Fde)fr (g)fr(g). There is a resolution of the identity

1= fdu(g)|f® > < £®|. Specifically this takes the form

Jdu(g) £9() [EPT () = fdu(e) [U@HIE) [Ulg)l'(t') = 8(t-t')

For G,, the (left-invariant) measure is dp(g) = do; dA/A? with oe( -
o o), he(0, ). This equation is easily shown by integrating over a; and

then scaling the A integral by x = At.

We now define overlap integrals for a given function ¢(t),c:4Thcse-give

¥(g) = JIEOT(R) w(t) dt
wwhr G a Satef funumedyged faen W»ﬂ/wm’(

whose-inverse is

W(t) = fdu(g) £B(1) (g)

JEervn e

T W oot of WA sudipnls Pty qunetes Hibboor pace ¥
s il %WC”'W?MMM@WAJMWM

k= [dutg) £2091% )



Suppose now we let (t) = f(87(t) . This defines the function K(g,g"),

K(g.g') = [[f@1 (@) (1) dt

We also define functions e, on the group by

e (8) = K(g.g') = ¢ (g’)

These functions enjoy the following properties,
Jdn(®)K(g.g")K(g',g'") = K(g.g'")

(eg ’ ﬁ) - ﬁ(g)

for any function fi(g) of the form of an overlap integral in eq xx. Thus,
K(g,g’) is a reproducing kernel, and ¢, a reproducing vector on the group.
Note that while e, is not a delta function, it essentially acts like one. The
dilations prevent the delta function from emerging, providing instead the
2.

scaled integral |[if, The above formulae are easily proved using the

resolution of the identity eq. xx.

The specific form of K(g,g') is, fixing t,,



K(g.g')

where A = N\ + N\’ + i(a;’ - o). If two different values for t; are chosen for
the functions in the integrand, K(g,g') is expressible in terms of confluent

hypergeometric functions.

Now the reproducing kernels are used in the following interpolation

function Fiyp(™" defined on the group. Suppose we have N constraints of the

form

tg

AN
ng 'z + 1) [F]

Fnt™(g) = ¢ = ‘I’(gj)

where g; are discrete points on the group manifold, j= 1,...,N. Then

z+ 12

expanding Fint™V in terms of the reproducing vectors

N
Fint™(g) = I b; e, (g)
=1

1

and imposing the constraints, we find that Fiyy™N(g) = ZK(g,gi)(K_lg)i, or
1

1
Fine™(g) = - det(K.,)
‘3

o
5
5

5,

K(q,9) K(4,9,) ---

(Ky)

¢ (W)Y dt £IA( - )] FolA (¢ - tg)] €t~ 20

K(4,4,)
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where K;; = K(g; , g;). Because of the reproducing kernel property, it is easy
to show that IFyp{™1l is minimal. That is, FixtV is the function on the
group of smallest norm that agrees with the N constraints. For, expanding

FintV(g) as above and differentiating the quantity S where

N
S = (Fint™ , Fiege™) - 2 RG{E A; [Fint™(g;) - §i]} where A; are

i=1

Lagrange multipliers produces the solution A; = b; * while the b; = (K~ 1¢),
are determined from the N constraint equations as above. This also means
that if Fpxact is the function of g we want to describe with Fexacr(g) = {;
then E(g) = Fgxacr - Fint'™ has minimal norm on G,, so in a sense E(g)
is orthogonal to the subspace of functions spanned by the N reproducing

vectors e, in the expansion of Fyr™.

The interpolation function is then inserted into the inversion formula to

obtain the approximate form W ,pp!™ (t) of the original signal ¥(t),

Yare™ (1) = fdu(g) [U(@HI(t) Fine™(g)

= S B KNy [ERTE) w(r') di

ij=1
Note as N - @ , §,pp™(t) - §(t) through the formula

> £ KD, fBT@) = b -t)

iL,j=1
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which can formally be verified by multiplying both sides by [£&°]*(t) £ (t")
and integrating in t , t’ over all values to get K;,,. Detailed conditions on the
nature of the lattice in the group parameter space necessary to produce this

result are discussed in the Appendix.

Calling Kj; = <ij> and {; = <jb > where the <> brackets indicate

the integrals over t, and setting N = 2, we obtain the suggestive form

fE[<22> <1y > - <12><2 > ] + fE2[<1I><2y > - <21><1y>]

N (4} —
Yapp' (1) <11><22> - <12><21>

This shows clearly that if in fact (t) = f(gl)(t) " f(gZ)(t) , Or a linear
combination of the two, then the approximation is exact, Wopp™V(t) = ¥(1).

This statement generalizes to N > 2.
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III. PARAMETER ESTIMATION

In this section we give some consideration to the parameter estimation
mentioned above. Questions of numerical accuracy, stability, and speed will
not be addresssed here. The essential idea is that we shall choose t; according
to some procedure along with an estimate of a;, A, the affine group
parameters, for each wavelet. Then, points in the affine-group parameter
space around each a;,A will be taken and used in the interpolation-
approximation formula. Perhaps only a few such points will be needed.

These points will define a little cluster of wavelets around each a; , A.

To some extent the procedure for choosing the t; depends on what we
are after. A fast, even though physically unmotivated, choice would be simply
to take t§™ = t§¥ + ndt at equally spaced intervals of width 5t. A choice of
the various wavelets would be defined in successive time intervals, subtracting
out the contributions from the wavelets in previous intervals. A physically

motivated procedure would be to calculate the partial norms or differential

tz
"energies” Ej, = [dt |W(t)|> and compare E;, for various values of t, for
ty

fixed t; to see if any appreciable new effect enters.

A somewhat more sophisticated idea involves prior wavelet parameter
estimation. Consider the Fourier transform of a wavelet f(w) in eq. xx written
in the form f(w) = elet b(w), where b(w) is the rest of the expression with a
bump at 0 = a; with width —2ai and falloff given by the parameter z.

Rewriting,
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-

ci(z)to = fng
b(w)

If we could estimate b(w) approximately, we could test for et

counting the oscillations in @ in the real or imaginary parts of f(w)/b(w)
around ® = wy = a;. Alternatively writing f(0) = |f(0) |exp[i®(0)] we

have near o < wg,

d _ z+1
D(w) =ty +

d(.l) - OR

"Strong” estimates like these are in practice limited by resolution and
are difficult to carry out with precision. We therefore propose some "weak"
tests with probes designed as projections. We shall describe two ideas, one
involving using the prolate spherical functions as a probe to test for the

iwt, o o N o
'“% over a bandlimited region in

presence of a time delay exponential e
frequency around the peak corresponding to a wavelet, and the other a

modified sort of Fourier transform with an exponential probe.

We recall that the sinc function defined by the integral over a

bandlimited region in frequency

(O] + Q d N . . .
f _(”c -iwt elwto — elmo(to -1) sinc[ﬂ(to . t)]
or- 0 2%
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serves as the kernel for the spherical prolate functions S (t) over the time

band (-T,T) with T an arbitrary but fixed parameter,

} dt’ sinc[Q(ty - t')] Sp(t') = A, S,(to)
—T

where A, is the corresponding eigenvalue. The spherical prolate functions are
the eigenfunctions of an operator given by successive time and frequency

bandlimiting projections. Reviews can be found in Ref. 13.

Consider now the following procedure. Suppose that we have a method
for approximate calculation of the b(w) part of a wavelet component of the
signal through appropriate bandlimiting around the bump in the power
spectrum of the signal [{s(w) |>. Then substituting §(w)/b(w) for &“" as in eq.
xx, we write for some choice of t, which will be our guess at t; and various

values of t’

wg + 0 " - R 2 . R
f do | -l $(@) | diw - w0t -io 5 ot ginc[Q(t' + ty - 28,)]
wo - 0 2’“ b((ﬂ)

Now also,

T
[ dt'sinc[Q(t" + tg - 25)] Su(t') = A,Sa(2ip - to)
-T
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The idea is then to vary t,, numerically matching up the two sides of
the integral equation for S, but with the integral in eq. xx inserted for the sinc

kernel. We then use the resulting t, as our approximation to t.

A slightly simpler method may be to use the formula

(Do"f'ﬂ

cimo(to - fo)sn(to) = fwoto f .g(.”_ei‘”tO(__i)n 2T " N [((}) -~ wg)T/62]
wg - Q 21T ﬂhn ’

again with ¢'“" replaced by §(») / b(w), and varying f,.

This last formula would be useful in the difficult (but sometimes
encountered) case that several different parameters ty; | = 1,2,.. correspond
to the same bump around wy = a;. Physically this can occur in
electromagnetic scattering due to reflections of a wave from a metallic
surface. The procedure follows from using the above formula with t; replaced

by the sum Ey,ei“’t"‘ , which in practice we again replace by Ji(w)/b(w) as
1

before. Now however we consider different values of n and we form the sum

Sn(tor)Sa(fo)

> . = 8(ty; - to) for 0 < ty ,fp=T

n=0

With some cutoff at N, past the "time-frequency bandwidth” QT we

get a numerical approximation to the delta function. This is necessary since
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Ap =1 up to around n={1T and decreases to 0 for n > QT. If the factor /A,
is not included in the above equation, the right hand side is the sinc kernel.

The idea is again to vary t, to isolate the different ty; parameters.

Finally, a different idea for locating the t, parameters would be to form

the quantity

o o]

i oA iesgn(w)
f(é)(t) = f %e—lwt [e_mt"f(m)]

where sgn(w) = =1 is the sign of w and € > 0. A simple calculation reveals

that

fO) = [ ‘2’—‘*’ g 0l {e-iwt [b(w)]e + c.c.}
0 ™

where c.c. means complex conjugate. The dominant € dependence will be in
the exponential in front of the brackets. The idea is then to fix t, and vary e.
If the integral is cut off at some wy,,, € can be varied from large positive to
large negative values. A good approximation t, = t, will result in the integral
being roughly independent of e. This can be generalized to several ty; . The
idea is a little like employing the exponential time decay of a Wick-rotated 2-
point Green function in quantum field theory or statistical mechanics to

obtain the energy of a state [Ref. 14].
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We now briefly discuss some ideas for estimation of the other
parameters. Each prominant bump in the modulus squared (power spectrum)
[l(w)|?> can be used to estimate an «;. The width of the bump around
® = wy = aj approximately gives —2ap. The shape of the tail of the bump
past the width at w = *xap with x > 2, but still away from other bumps,
gives z. Specifically, a given wavelet satisfies the following two equations

which could be used to estimate a,; , Z, with ¥(w) = f(w) near o = «w,,
[fwoan) P =~ [fwo)
(“’o—aR) - 2z + 1) Wp

1n [ [f(wo) [/ [f(wo® xeg) ]

In {1 + xzj

z+1=

Finally it may be profitable to estimate the magnitude of the wavelet,
subtract that out, and then perform the formal analysis on the difference. An
estimate of the magnitude |A| can be given by the maximum value of f(w) at

wq or alternatively the integrated energy in the bump around wg,

|A] = 2[- ag]®* D |f(wg)]

4[ - oag]Z* T (z + 1)
Val(z + 1/2)

AP = S o) Pdo

bump
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The overall phase ¢ estimate can be obtained from g(w) = je ™% f(w)

as

Re[§(wo)]

=0(9) = Tala(eo)]

Finally, partially overlapping wavelets can partially be accounted for by
making a first estimate of parameters for all wavelets, and then redetermining
parameters for a given peak w = wq by first subtracting off a background

defined by evaluating the other wavelets at w = wqy.
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