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Simple Summary: Restoring an effective immune response is the key goal of immunotherapy.
One of the major mechanisms of tumor-induced immunosuppression is regulatory T cells (Treg)
accumulation. In this study, using in vitro and in vivo analysis, we assessed the impact of the
HGF/c-Met pathway, involved notably in tumor angiogenesis, on Treg accumulation in patients
with gastric cancer. First, we reported that c-Met is expressed on circulating monocytes of gastric
cancer patients and this expression seems to be associated with the worst outcome. Secondly, during
in vitro cultures, c-Met+ monocytes differentiate into dendritic cells with tolerogenic properties
able to induce the proliferation of Treg. Finally, rilotumumab, an anti-HGF antibody, decreases the
percentage of circulating Treg in gastric cancer patients. Using HGF/c-Met inhibitors to partially
reverse immunosuppression could lead to the development of new treatment associations, for
example with immune checkpoint blockers.

Abstract: Elucidating mechanisms involved in tumor-induced immunosuppression is of great interest
since it could help to improve cancer immunotherapy efficacy. Here we show that Hepatocyte
Growth Factor (HGF), a pro-tumoral and proangiogenic factor, and its receptor c-Met are involved in
regulatory T cells (Treg) accumulation in the peripheral blood of gastric cancer (GC) patients. We
observed that c-Met is expressed on circulating monocytes from GC patients. The elevated expression
on monocytes is associated with clinical parameters linked to an aggressive disease phenotype and
correlates with a worse prognosis. Monocyte-derived dendritic cells from GC patients differentiated
in the presence of HGF adopt a regulatory phenotype with a lower expression of co-stimulatory
molecules, impaired maturation capacities, and an increased ability to produce interleukin-10 and
to induce Treg differentiation in vitro. In the MEGA-ACCORD20-PRODIGE17 trial, GC patients
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received an anti-HGF antibody treatment (rilotumumab), which had been described to have an anti-
angiogenic activity by decreasing proliferation of endothelial cells and tube formation. Rilotumumab
decreased circulating Treg in GC patients. Thus, we identified that HGF indirectly triggers Treg
accumulation via c-Met-expressing monocytes in the peripheral blood of GC patients. Our study
provides arguments for potential alternative use of HGF/c-Met targeted therapies based on their
immunomodulatory properties which could lead to the development of new therapeutic associations
in cancer patients, for example with immune checkpoint inhibitors.

Keywords: hepatocyte growth factor; c-Met; pro-angiogenic factor; regulatory T cells; gastric cancer;
targeted therapies; anti-HGF

1. Introduction

One of the potential obstacles to reducing the efficacy of immunotherapy resides in the
presence of immunosuppressive cells such as regulatory T cells (Treg). Treg are enhanced
in the peripheral blood and abundantly infiltrate tumor tissues in cancer patients. They
hamper an efficient tumor immunity and represent a key mechanism of tumor evasion [1].
Thus, identification of factors influencing Treg accumulation in tumor-bearing hosts is
essential for the understanding of Treg biology and could provide therapeutic targets.

We have previously shown that a pro-angiogenic factor, the vascular endothelial
growth factor-A (VEGF-A) which is highly produced in tumor-bearing hosts, could be
involved in the accumulation of Treg and that anti-angiogenic (AA) molecules targeting the
VEGF-A/VEGFR pathway could decrease Treg in a mouse model of colorectal cancer and
metastatic colorectal cancer patients [2]. However, other pro-angiogenic factors could be
produced by the tumor or by cells from the tumor microenvironment such as Hepatocyte
Growth Factor (HGF) [3]. HGF, which is the ligand of the c-Met receptor, is involved
in the regulation of different cellular properties including cell proliferation, invasion,
angiogenesis, and plays a key role in physiological processes such as embryogenesis,
tissue repair, and regeneration [4]. The HGF/c-Met pathway is aberrantly activated or
overexpressed in epithelial cancers such as gastric, lung, or ovarian cancers [5] and is an
important actionable target in many solid tumors. In two meta-analyses with more than
2000 gastric cancer (GC) patients, c-Met amplification or overexpression is associated with
a poor prognosis [6,7]. C-Met expression is a predictor of invasive growth in GC [8]. High
plasmatic HGF level also correlates with poor overall survival in GC patients [9]. Beyond
these cellular properties, the HGF/c-Met pathway has also been involved in immune
responses [10,11], notably by different works performed in experimental animal models of
inflammatory or autoimmune diseases. In a mouse model of experimental autoimmune
encephalitis, overexpression of HGF in neurons or systemic administration of HGF induce
an increase of Treg and limit neuroinflammation [12,13]. In cancer, HGF is mainly produced
by stromal cells from the tumor microenvironment but also by tumor cells themselves
and peripheral blood mononuclear cells (PBMC) [14,15]. While HGF is associated with
a poor prognosis particularly in patients with GC, the role of HGF in Treg accumulation
in the context of cancer has not been documented. Based on these previous reports, we
hypothesized that the HGF/c-Met pathway could contribute to the increase of Treg in
cancer patients. In this study, we aimed to explore the role of the HGF/c-Met axis and the
impact of an anti-HGF antibody (rilotumumab) on circulating Treg in GC patients.

2. Material and Methods
2.1. Patients
2.1.1. HEGP Cohort

80 patients with histologically proven gastric or esogastric junction adenocarcinoma
treated in the Gastro-intestinal Oncology unit of Georges Pompidou European Hospital (Pr.
J. Taieb) were included from January 2016 to July 2020. The study was approved by the
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local ethics committee (Comité de Protection des Personnes d’Ile-de-France 04/09/2014).
Oral and written information was provided, and each patient signed a written consent
prior to enrolment. For each patient, a blood sample was collected before or throughout
planned treatment. Clinical and pathological data were obtained from medical records.
Patients’ characteristics at the time of blood collection are presented in Table 1. Patients
with autoimmune diseases or receiving targeted therapies or monoclonal antibodies (such
as trastuzumab and ramucirumab) were excluded. Survival was evaluated in 37 patients
who had received a maximum of one cycle of chemotherapy, or no treatment at all, before
blood sample collection.

Table 1. Characteristics of patients from the HEGP cohort.

N = 80 N (%)

Age (years)
median 65

Sex
male 56 (70)

female 24 (30)
Localization

lower esophagus 4 (5)
esogastric junction 17 (21.5)

gastric body 57 (71)
missing data 2 (2.5)

Differentiation
well 8 (10)

moderate 28 (35)
poor 28 (35)

missing data 16 (20)
Linitis

yes 14 (17.5)
no 45 (56)

mixed 11 (14)
missing data 10 (12.5)

Disease status
local/locally advanced 28 (35)

metastatic 52 (65)
Tumor burden

yes 70 (87.5)
no (post-surgery patients) 10 (12.5)

HER2 status
positive 11 (13.75)
negative 61 (76.25)

missing data 8 (10)

2.1.2. PRODIGE 17-ACCORD 20-MEGA Trial

The PRODIGE 17-ACCORD 20-MEGA trial is a randomized three-arm phase II study
that evaluated the association of chemotherapy (FOLFOX) combined with rilotumumab (a
monoclonal antibody targeting HGF) or panitumumab (a monoclonal antibody targeting
EGFR) in comparison with FOLFOX alone in 162 patients with advanced GC. The trial
eligibility criteria and treatments were reported previously [16]. In 123 patients, an ancillary
study has been conducted to assess the evolution of circulating immune cell populations
before and during treatment. The baseline characteristics of patients included in the
ancillary cohort are shown in Table 2. Blood samples were collected before (day 1) and
after two cycles (day 28) of treatment. Peripheral Blood Mononuclear cells (PBMCs) were
isolated from peripheral blood on Ficoll–Hypaque gradients, Treg staining was performed
on fresh PBMCs and analyzed by flow cytometry (see the corresponding paragraph). The
assessment of circulating immune cells was planned in the initial design of the study. The
final analysis presented hereby included 64 patients for whom data on circulating Treg
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were available both on day 1 and day 28. Specific informed consent was required for each
patient. The trial was registered with the US and French health registries (NCT01443065,
EudraCT No. 2009-012797-12). The study protocol has been approved by a French national
ethics committee.

Table 2. Characteristics of patients from the PRODIGE17-ACCORD20-MEGA ancillary cohort.

N = 80 N (%)

Age (years)
median 65

Sex
male 56 (70)

female 24 (30)
Localization

lower esophagus 4 (5)
esogastric junction 17 (21.5)

gastric body 57 (71)
missing data 2 (2.5)

Differentiation
well 8 (10)

moderate 28 (35)
poor 28 (35)

missing data 16 (20)
Linitis/Diffuse type (Lauren’s classification)

yes 14 (17.5)
no 45 (56)

mixed 11 (14)
missing data 10 (12.5)

Disease status
local/locally advanced 28 (35)

metastatic 52 (65)
Tumor burden

yes 70 (87.5)
no (post-surgery patients) 10 (12.5)

HER2 status
positive 11 (13.75)
negative 61 (76.25)

missing data 8 (10)
chemotherapy received by metastatic patients

FOLFOX 25 (48)
FOLFIRI 6 (11.5)

FOLFOX HERCEPTIN 3 (5.8)
OTHER 8 (15.4)
NONE 7 (13.5)

2.1.3. Healthy Controls

Blood samples from healthy controls (HC) were obtained at Etablissement Français
du Sang (European Georges Pompidou Hospital, Paris, convention N◦C CPSL UNT-
N◦13/R/013).

2.2. Monocyte Isolation and Culture

PBMCs were isolated by Pancoll density gradient centrifugation (PANbiotech, Aiden-
bach, Deutschland). CD14+ monocytes were isolated by magnetic labeling followed by neg-
ative magnetic selection (Pan Monocyte Isolation kit; Miltenyi Biotec, Bergisch Gladbach,
Germany). The purity of the obtained monocyte fraction was verified by immunostaining.
Monocytes were then cultured at 37 ◦C in AIMV-Albumax medium (Thermofisher Scien-
tific, Walltam, Massachusetts, USA) at the concentration of 1 × 106 cells/mL, supplemented
with human Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) (1000 UI/mL;
Miltenyi Biotec, Bergisch Gladbach, Germany) and human Interleukin 4 (IL-4) (400 UI/mL;
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Miltenyi Biotec) (=control condition) or GM-CSF, IL-4 and human HGF (=HGF condition)
(20 ng/mL; Miltenyi Biotec). On day 3, the medium was changed, and fresh cytokines were
added at the same concentrations. On day 6, culture supernatants and obtained cells were
collected. Cytokine dosage and cellular immunostaining were then performed (see corre-
sponding paragraphs). In 7 independent experiments, to provide a maturation signal to
DCs, Lipopolysaccharide (LPS) (1 µg/mL; Sigma–Aldrich, Saint-Louis, MI, USA) or control
PBS was added to the culture. After 24 h, culture supernatants and cells were collected.

2.3. Isolation of CD4+ T Cells

PBMCs from HC were isolated by Pancoll density gradient centrifugation. CD4+

cells were then isolated by magnetic labeling followed by negative magnetic selection
(Miltenyi Biotech). The purity of the obtained CD4+ cellular fraction was assessed by
immunostaining.

2.4. Monocyte/Lymphocyte Co-Culture

After 6 days of culture in standard or HGF condition, monocyte-derived DCs gener-
ated from GC patients were collected as previously described. DCs were then co-cultured
with freshly isolated CD4+ T cells at a ratio of 5 lymphocytes for 1 dendritic cell in AIMV-
Albumax medium (Thermofisher, Waltham, MA, USA) at 37 ◦C for 7 days. After 7 days of
co-culture, cells were collected and immunostaining was performed.

2.5. Immunostaining

Cells were first incubated for 15 min with Human True Stain FcX Blocking reagent
(Biolegend, San Diego, California, USA) to prevent unspecific binding of the antibodies to
Fc receptors. Then cells were incubated for 20 min at 4 ◦C with the following fluorochrome-
conjugated antibodies or their corresponding isotype controls: CD14 (clone: 61D3); HLA-
DR (clone: LN3); CD3 (clone: OKT3); CD56 (clone: MEM-188); CD19 (clone: HIB19);
CD80 (clone: 2D10.4); CD83 (clone: HB15e); CD86 (clone: IT2.2); CD25 (clone: BC96);
CD127 (clone: eBioRD); FoxP3 (clone: PCH101) (all purchased at ThermoFisher Scientific,
Waltham, MA, USA); CD11c (clone: 3.9); CD16 (clone: 3G8); HLA-DR (clone: LN3); PD-
L1 (clone: 29E2A3); ILT-3 (clone: ZM4.1); Tim3 (clone: F38-2E2); CD1a (clone: HI149);
CD14 (clone: HCD14); CD209 (clone: 9E9A8); CD40 (clone: HB14); CD64 (clone: 10.1);
CD1c (clone: L161); CD4 (clone: OKT4) (all purchased at Biolegend, USA); Ki-67 (clone:
MOPC-21) purchased at BD Pharmingen (Franklin Lakes, NJ, USA); cMet APC (clone:
95106) purchased at R&D Systems (Minneapolis, MN, USA). Intracellular staining was
performed using Foxp3/transcription factor staining buffer set (ThermoFisher Scientific)
according to manufacturer’s recommendations. Cell viability was assessed using the
LIVE/DEAD fixable dead stain kit (Thermo Fisher Scientific). Samples were run through
a LSRII flow cytometer or Fortessa ×20 (BD Biosciences, Franklin Lakes, NJ, USA) using
DIVA® software (BD Biosciences, Franklin Lakes, NJ, USA). Analysis were performed
using FlowJo® software (Flow Jo, Ashland, OR, USA). Dead cells and doublet cells were
excluded from the analysis. Isotype controls and fluorescence minus one controls were
used as negative controls.

2.6. Analysis of Cytokine Production

IL-10 and TGF-β1 levels in culture supernatants were assessed by enzyme-linked
immunoabsorbent assays (ELISAs) using commercially available kits (respectively pur-
chased at Biolegend and R&D Systems). The limits of detection were 3.9 pg/mL for IL-10
and 31.2 pg/mL for TGF-β1. HGF and IL-10 levels in plasma from GC patients and HC
were assessed by enzyme-linked immunoabsorbent assays (ELISAs) using a commercially
available kit (respectively R&D Systems and Biolegend). The limit of detection for HGF
was 156 pg/mL.
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2.7. Statistical Analyses

Results are presented as mean and Standard Error of the Mean (SEM). All statistical
analyses were performed with GraphPad Prism® software (GraphPad Software, San Diego,
CA, USA). Comparisons were performed with Wilcoxon, Mann Whitney, or Kruskal Wallis
test, as appropriate. Overall survival (OS) was defined as the time from randomization
to death by any cause. OS was estimated by the Kaplan-Meier method. Univariate
analysis was performed using a proportional hazard model to estimate the hazard ratio.
Comparisons were performed using the log-rank test. A p-value < 0.05 was considered
statistically significant. All statistical tests were two-sided.

3. Results
3.1. C-Met Receptor Is Expressed on Peripheral Blood Monocytes in GC Patients

A prospective cohort of GC patients has been set up. Patients’ characteristics are
reported in Table 1. Plasmatic HGF level was increased in GC patients compared to
HC patients (1407 ± 126 pg/mL vs. 658.6 ± 153 pg/mL, p = 0.031; Supplementary
Figure S1A) and was associated with a more advanced disease phenotype since metastatic
patients exhibited higher levels of plasmatic HGF than patients with localized disease
(1726 ± 136.3 pg/mL vs. 1010 ± 152.9 pg/mL, p = 0.0047; Supplementary Figure S1B), as
previously reported [17]. We first analyzed the expression of c-Met in the peripheral blood
of GC patients from our cohort. A marginal expression of c-Met was found on Treg and
conventional T cells (0.55 ± 0.20% on Treg and 0.36 ± 0.13% on Tconv, Figure 1A,B,D) but
c-Met was expressed on circulating monocytes (20.24 ± 2.32%) (Figure 1C,D). In 14 patients,
we assessed c-Met on different monocyte subsets characterized by the expression of CD14
and CD16 [18]. C-Met was present on all monocyte subsets, however its expression level
seemed to be lower in CD14int/CD16hi subset in comparison to CD14high/CD16− popula-
tion (Figure 1E) (respectively 17.10 ± 3.91% and 25.67 ± 4.95%, p = 0.0166). As observed in
Figure 1D, the c-Met expression on monocytes is heterogeneous among the patients and
distributed between 0.38 and 90%. We then sought an association between c-Met expres-
sion on monocytes and clinical features. The c-Met expression did not vary according to
tumor location (Figure 2A). Histological features such as tumor differentiation or linitic
phenotype (including diffuse carcinomas according to Lauren’s classification and signet
ring cell carcinomas according to OMS’ classification [19]) are of importance since they are
associated with different clinical outcomes and different immune infiltrate as we previ-
ously showed [20]. No correlation has been observed between linitic phenotype and c-Met
expression (Figure 2B) but a poor differentiation grade was associated with an enhanced
c-Met expression on monocytes compared to well or moderately differentiated tumors
(27.1 ± 4.6% vs. 17.1 ± 2.9%; p = 0.046) (Figure 2C). Interestingly, the presence of metastases
was linked to a higher c-Met expression on monocytes (metastatic: 23.6 ± 3.2% vs. local-
ized or locally advanced: 15.3 ± 3.2%; p = 0.043) (Figure 2D). Thus, it seemed that c-Met
expression on circulating monocytes was associated with an aggressive disease phenotype.
To further assess the prognostic significance of c-Met expression by peripheral monocytes,
we compared the survival probability of patients harboring a lower c-Met expression on
monocytes (inferior to the observed median value on the global population = 12.2%) with
those harboring a higher c-Met expression (above median value) before any treatment
or after no more than one cycle of treatment (survival population), using a univariate
model. The characteristics of the survival population are presented in Supplemental Table
S1. In our survival population, a higher c-Met expression on circulating monocytes was
associated with poorer survival (median OS: 19.4 vs. 34.9 months) (p = 0.017) (Figure 2E).
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Figure 1. Circulating monocytes but not circulating conventional or regulatory T cells express the c-Met receptor in
GC patients. Freshly isolated PBMCs from GC patients were stained with fluorochrome-conjugated antibodies or their
isotype control and analyzed by flow cytometry. Tconv were defined as CD4+/CD25− cells. Treg were defined as
CD4+/CD25+/Foxp3+/CD127lowcells. Monocytes were defined as CD14+/HLA-DR+/CD3−/CD56−/CD19− cells. (A–C)
Representative c-Met expression by Tconv (A), Treg (B), and monocytes (C) of GC patients. Results are indicated in
percentages of c-Met positive cells. (D) Mean c-Met expression by peripheral Tconv (mean ± SEM: 0.36 ± 0.13%; n = 6), Treg
(mean ± SEM: 0.55 ± 0.20%; n = 6) and monocytes (mean ± SEM: 20.24 ± 2.32%; n = 80) from GC patients. *** indicates a
p-value ≤ 0.001 according the Kruskall-Wallis multiple comparisons test. (E) Mean c-Met expression by the three monocytes
subpopulations from GC patients (n = 14): CD14high/CD16− (mean ± SEM: 25.67 ± 4.95%), CD14highCD16int (mean ± SEM:
20.24 ± 5.26%) and CD14intCD16high (mean ± SD: 17.10 ± 3.914%). * indicates a p-value ≤ 0.05 according the Friedman
multiple comparisons test. Ns: nonsignificant.

Furthermore, the c-Met expression on monocytes was decreased in patients who
underwent tumor resection by gastrectomy (patients with a resected localized tumor)
compared to patients with an active tumor burden (patients with a non-resected localized
tumor or metastatic patients) (5.62 ± 1.24% and 22.33 ± 2.55%, respectively; p = 0.001)
(Figure 2F). These results suggested that the presence of the tumor is involved in the c-Met
expression on monocytes in GC patients. For one patient, we could obtain peripheral
blood before and after tumor resection by gastrectomy. In this patient, c-Met was highly
expressed on monocytes before surgery (66.6%) and dropped after resection of the tumor
(11.9%; Figure 2G). In parallel, HGF plasmatic level was significantly enhanced in the
plasma of patients with more than 5% of monocytes expressing c-Met (Supplementary
Figure S1C).
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Figure 2. The C-Met expression on circulating monocytes is associated with an aggressive disease phenotype in GC patients.
Clinical and pathological characteristics of the GC patients included in our cohort were analyzed (n = 80) (A–D,F). C-Met
expression was assessed by flow cytometry as in Figure 1. Mean c-Met expression on circulating monocytes according to
tumor location (esophagus, gastro–esophagic junction (GEJ), gastric body) (A), linitic status (B), tumor differentiation (C),
presence of metastases (D,) and presence of an evolutive tumor burden (F). * indicates a p-value ≤ 0.05 and ** indicates a
p-value ≤ 0.01 according to the Mann-Whitney test. NS: nonsignificant (E) For 37 patients who had received 1 or 0 cycles of
chemotherapy before assessment of c-Met expression, survival probability has been estimated according to c-Met expression
level on monocytes (high expression > median n = 16 (full line), lower expression < median, n = 21 (dashed line)). The
median was calculated on the global population. (p = 0.017 according the Log-rank test). (G) For one patient with a localized
tumor, the c-Met expression on circulating monocytes was assessed by flow cytometry before and after tumor resection
(gastrectomy). Results are indicated as percentages of c-Met positive cells.

Thus, c-Met is expressed on circulating monocytes and is associated with poor tumor
differentiation, the presence of metastases, and poorer survival in GC patients. Furthermore,
high c-Met expression is linked to the presence of a tumor burden suggesting that a tumor-
derived factor could be involved in the c-Met expression on monocytes.

3.2. HGF Induces the Differentiation of Monocytes into Dendritic Cells with Tolerogenic Properties

We next explored the impact of HGF on monocyte differentiation into DCs. Isolated
CD14+ monocytes from peripheral blood of GC patients were cultured in a DC differentia-
tion medium with or without HGF. After 6 days of culture, DCs were generated expressing
CD11c, HLA-DR, CD209, and CD1c (Figure 3A and Figure S2). The percentage of CD11c+

HLA-DR+ cells was similar in these two conditions (86.6 ± 2.22% and 83.99 ± 2.56%, respec-
tively) (Figure 3A). Then we analyzed the expression of costimulatory molecules on DCs
cultured with or without HGF at day 6. No significant difference was observed for CD80
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or CD83, but CD86 expression was significantly decreased in the presence of HGF (Median
Fluorescence Intensity-MFI: 2.5 ± 0.28 × 104 with HGF vs. 3.7 ± 0.65 × 104 without HGF;
p = 0.0003) (Figure 3B,C). Interestingly, CD86 was not decreased when DC was cultured in
the presence of Epithelial Growth Factor (EGF), another growth factor involved in cancer
development (data not shown). HLA-DR was also lowered in the presence of HGF (MFI:
1.5 ± 0.14 × 104 with HGF vs. 1.8 ± 0.2 × 104 without HGF; p = 0.033) (Figure 3B,C).
HGF did not affect CD40 expression nor the expression of inhibitory receptors such as
PD-L1, Tim-3, or ILT-3 (Supplementary Figure S2). To determine if HGF can impact the
maturation of DCs, we stimulated DCs with LPS to induce their maturation and analyzed
the expression of these different costimulatory molecules 24 h later. Whereas LPS induced
upregulation of CD83, CD86, and HLA-DR on DCs generated without HGF, these matura-
tion markers were not upregulated on DCs cultured in the presence of HGF (Figure 3D).
We next evaluated immunosuppressive cytokines secretion by these DCs cultured in the
presence or absence of HGF. TGF-β was detected in DCs supernatants (Figure 3E) but with
no significant difference between these two culture conditions. HGF-DCs produced higher
amount of IL-10 compared with DCs cultured without HGF (193.3 ± 80.32 pg/mL with
HGF vs. 101.6 ± 54.16 pg/mL without HGF; p < 0.0001) (Figure 3E).

Figure 3. HGF modulates monocyte-derived DC differentiation from GC patients into a regulatory phenotype in vitro.
Freshly isolated peripheral monocytes from GC patients were cultured in the presence of GM-CSF and IL-4 with HGF
(=HGF condition) or without HGF (=control condition) as described in the material and method section. After 6 days,



Cancers 2021, 13, 5562 10 of 17

cell phenotype was assessed by flow cytometry. In both conditions, monocyte-derived cells harbored DC features such as
CD11c and HLA-DR co-expression. (A) CD11c and HLA-DR expression by monocyte-derived DCs without (left panel)
or with HGF (right panel). Results are indicated as percentages of CD11 HLA-DR+ cells. Representative staining out of
45 independent experiments with similar results is shown. (B) Expression of CD80, CD83, HLA-DR, and CD86 in DCs
generated without (black dashed curve) or with HGF (black full curve). Markers were set on their proper isotype control
(light grey curve). A representative staining out of respectively 23, 45 and 29 independent experiments is shown (C) Median
Fluorescence Intensity (MFI) of CD83 (n = 23), HLA-DR (n = 45) and CD86 (n = 29) by DCs generated in control condition or
in HGF condition. * indicates a p-value ≤ 0.05 according to the Wilcoxon test. *** indicates a p-value ≤ 0.001 according to
the Wilcoxon test. NS: non significant. After 6 days of culture, DCs were maturated with LPS 1 µg/mL or control PBS. After
24 h, cells were collected, and their phenotype was studied by flow cytometry. (D) Mean expression (MFI) of CD83 (upper
panel, n = 6), HLA-DR (center panel, n = 6) and CD86 (lower panel, n = 6) by DCs generated in control or HGF condition
with or without LPS. * indicates a p-value ≤ 0.05 according to the Wilcoxon test. Culture supernatants were collected and
cytokine levels were assessed by ELISA. (E) TGF-β levels (upper panel, n = 18) and IL-10 levels (lower panel, n = 26) in
supernatants of control or HGF-generated DCs. **** indicates a p-value ≤ 0.0001 according to the Wilcoxon test.

Thus, HGF does not prevent DCs differentiation but restrains HLA-DR and CD86
expression and full maturation induced by a maturating agent such as LPS. Furthermore,
HGF enhances the production of IL-10, an immunosuppressive cytokine by DCs.

3.3. HGF-Generated DCs Induce the Development of Regulatory T Cells in Gastric
Cancer Patients

Given the higher production of IL-10 by HGF-generated DCs and their impaired
maturation, we hypothesized that HGF-DCs could be involved in Treg accumulation.
To test this hypothesis, we cocultured DCs differentiated from circulating monocytes of
GC patients in the presence or absence of HGF with allogeneic purified CD4+ T cells.
HGF-generated DCs enhanced the proportion of CD25+Foxp3+CD127lo Treg in coculture
compared to control-DCs (p = 0.008) (Figure 4A). Furthermore, we observed an increase of
Ki67 expression in these Treg, suggesting that HGF-generated DCs induced the proliferation
of Treg in culture (p = 0.002) (Figure 4B).

3.4. Rilotumumab, an Anti-HGF Antibody, Reduces Treg Proportion in the Peripheral Blood of
Advanced GC Patients

Next, we took advantage of a clinical trial (Prodige 17-ACCORD20-MEGA) evaluating
the impact of an anti-HGF antibody (rilotumumab) in association with chemotherapy in
advanced GC patients. In this three-arm trial, patients were randomized to receive either
chemotherapy alone (Folfox), chemotherapy associated with rilotumumab, or chemother-
apy associated with an anti-EGFR (panitumumab) (Table 2). We evaluated the percentage
of circulating Treg before and after 2 cycles of treatment. Only patients receiving the
association of chemotherapy and anti-HGF exhibited a decrease of Treg proportion after
2 cycles of treatment compared to baseline (p < 0.0001). On the opposite, no modification
of circulating Treg proportion was observed in patients receiving chemotherapy alone
or chemotherapy associated with anti-EGFR suggesting that Treg decrease was due to
rilotumumab (Figure 4C). Furthermore, for 9 patients from the rilotumumab group, we
had enough cells before treatment to analyze c-Met expression on monocytes. We could
confirm that circulating monocytes express c-Met in this group (Figure 4D).

Thus, inhibition of HGF in advanced GC patients decreased circulating Treg.
Taken together, our findings suggest that the HGF/c-Met pathway is involved in Treg

accumulation in the context of cancer. In advanced GC patients, circulating monocytes
express the c-Met receptor and could differentiate into DCs with tolerogenic properties
in vitro in the presence of HGF. Inhibition of the HGF/c-Met pathway could prevent Treg
increase in cancer patients.
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Figure 4. The proportion of regulatory T cells is enhanced by HGF-DCs in vitro and is decreased by rilotumumab (a
monoclonal antibody targeting HGF) in vivo in gastric cancer patients. (A,B) After 6 days of culture, HGF-DCs or control-
DCs were then co-cultured with freshly isolated CD4+ T cells from HC. After 7 days of co-culture, cells were collected and
their phenotype was assessed by immunostaining and flow cytometry. Treg were defined as CD4+ CD25+ Foxp3+ CD127low

cells. Treg proliferation was assessed by Ki-67 intra-cellular expression. (A) The proportion of Treg amongst CD4+ T cells
after 7 days of co-culture with control-DCs or HGF-DCs is shown (n = 17). (B) Ki67 was assessed in Treg cells after 7 days of
co-culture with control-DCs or HGF-DCs (n = 10). ** indicates a p-value ≤ 0.01 according to the Wilcoxon test. (C,D) The
PRODIGE 17-ACCORD 20-MEGA trial is a randomized three-arm phase II study that evaluated the efficacy of 3 treatment
regimens in patients with advanced GC: chemotherapy (FOLFOX) alone, an association of FOLFOX + panitumumab (an
anti-EGFR monoclonal antibody), or association of FOLFOX + rilotumumab (an anti-HGF monoclonal antibody). PBMCs
were collected before (day 1) and after 2 cycles of treatment (day 28). Immunostaining was then performed and cells
were analyzed by flow cytometry. Treg was defined as CD4+ CD25+ Foxp3+ CD127low cells, monocytes were defined as
CD3−/CD56−/CD19−/CD14+/HLA-DR+ cells as previously described. (C) Proportions of Treg amongst circulating CD4+

cells before and after two cycles of treatment in GC patients treated with FOLFOX (n = 23, left panel), FOLFOX + anti EGFR
(n = 17, middle panel) or FOLFOX + anti HGF (n = 21, right panel) are shown. *** indicates a p-value ≤ 0.005 according to
the Wilcoxon test. (D) Monocytes from PBMC of 9 GC patients included in the PRODIGE17-ACCORD20-MEGA trial were
stained as described in Figure 1 (n = 9). Representative staining out of 9 independent experiments is shown. Results are
indicated as percentages of c-Met positive cells.
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4. Discussion

A link between HGF and Treg has been firstly reported in mouse models of transplan-
tation, autoimmune or inflammatory disease [10–13]. In a swine model of allogeneic kidney
transplantation, administration of HGF in the graft inhibited acute renal rejection and en-
hanced Treg [21]. In mice, HGF overexpression in neurons increased Treg percentage in the
central nervous system and inhibited the development of experimental autoimmune en-
cephalitis. This effect was related to the development of tolerogenic DCs [12]. Furthermore,
in vitro human studies have reported that HGF induced the differentiation of monocytes
from healthy volunteers into DCs with tolerogenic properties [22,23]. The HGF/c-Met
pathway is upregulated in many different cancer types but the influence of this pathway
on Treg development in cancer has to our knowledge not been explored. In this work, we
first observed that circulating CD4+ T cells do not express c-Met on their cell surface. This
is in accordance with previous reports showing no expression of c-Met on naïve T cells, or
on circulating CD4+ T cells from multiple sclerosis patients [24]. Only subsets of highly
autoreactive encephalitogenic CD8+ T cells and of CD4+ memory T cells which preferen-
tially recirculate in the heart have been reported to express c-Met in mice [25,26]. On the
other hand, we found that c-Met was present on circulating monocytes from GC patients.
In healthy volunteers, circulating monocytes have previously been shown to express low
levels of c-Met which can be enhanced during activation by endotoxin [27]. C-Met was also
described on circulating monocytes from multiple sclerosis patients [24]. In hepatocellular
carcinoma, Zhao et al. observed a subset of peritumoral monocytes expressing c-Met [28].
As far as we know, our study is the first to show an expression of c-Met on monocytes in
the peripheral blood of cancer patients. This expression is not restricted to GC since we
also observed the presence of c-Met on circulating monocytes from metastatic colorectal
cancer patients (n = 35; mean: 12.68 ± 2.90%, our unpublished data).

Our study pointed out that c-Met expression on monocytes was associated with
the presence of a tumor since patients after tumor resection exhibit a lower c-Met level
on monocytes compared to patients with a tumor burden (patients with a non-resected
localized tumor or metastatic patients) (Figure 2F). Furthermore, in one patient we observed
a decrease of c-Met after tumor resection. These results suggested that c-Met on monocytes
could be induced or upregulated by a tumor-derived factor. Different works have shown
that in vitro stimulation of tumor cell lines by soluble factors such as IL-1β, TNFα, IL-6 or
TGFβ can enhance c-Met expression [29]. Since these cytokines are produced by tumors
or by cells from the tumor microenvironment, they could also be involved in the c-Met
expression on circulating monocytes from GC patients. On the other hand, HGF is also able
to increase c-Met expression by an autocrine and paracrine manner on epithelial cells and
tumor cell lines in vitro [30]. In this sense, we noticed that patients exhibiting an expression
of c-Met above 5% have a plasmatic HGF level higher than patients with less than 5% of
c-Met (Supplementary Figure S1). However, in preliminary experiments, we were not
able to detect any modification of c-Met expression after HGF stimulation of monocytes
(our unpublished data). Further investigations are needed to determine the mechanism of
upregulation of c-Met on monocytes in GC patients.

In a study performed in 102 colorectal cancer patients, c-Met expression by the tumor
was correlated to TNM status, lymph node, and liver metastases [31]. In our cohort of
GC patients, the c-Met expression on monocytes was also associated with the presence of
metastasis (Figure 2D). However, patients with liver metastasis did not exhibit an elevated
level of c-Met expression compared to patients with other metastasis locations (data not
shown). In two meta-analyses, c-Met amplification or overexpression by the tumor was
related to a poor prognosis [6,7]. In our cohort, we observed that c-Met expression on
monocytes was associated with more aggressive disease and poorer survival in GC patients
in a univariate model (Figure 2C–E). Due to a small number of patients in our survival
cohort, we were not able to perform a multivariate analysis.

Few works have previously reported the influence of HGF on monocytes in vitro.
Stimulation of monocytes from HC with HGF induced the development of cells with DC
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features able to produce IL-10 and to generate the differentiation of Treg from allogeneic
CD4+ T cells [23,32]. Molnarfi et al. have shown that culture of monocytes from HC
in DC differentiating medium in the presence of HGF leads to the development of DC
exhibiting less costimulatory molecules and HLA-DR. In this condition, HGF enhanced
the capacity of DC to stimulate Treg differentiation [22]. However, no study has been
performed on monocytes from cancer patients. Since we observed that in GC patients,
monocytes express c-Met, we purified circulating monocytes from these patients and
cultured them in a DC differentiation medium with or without HGF. In accordance with the
results previously published on monocytes from HC, we observed that HGF induced the
development of DC: (1) expressing less CD86 and HLA-DR molecules; (2) impaired in their
maturating capacity, (3) producing the anti-inflammatory IL-10 cytokine, and (4) facilitating
the accumulation of Treg from allogeneic CD4+ T cells (Figure 3). Interestingly, in our
cohort of patients, the plasmatic level of IL-10 was correlated with the c-Met expression
on monocytes (Supplementary Figure S3), suggesting that this subset could be involved
in IL-10 production in cancer patients. Treg accumulation in cancer could occur through
different mechanisms such as an expansion of pre-existing Treg, conversion of conventional
CD4+ T cells into Treg [33]. Treg accumulation induced by HGF-generated DC was at
least partly due to enhanced proliferation of pre-existing Treg since upregulation of Ki67, a
proliferation marker, was observed. Based on our in vitro results, we hypothesized that
targeting HGF could modulate Treg in tumor-bearing patients. We analyzed peripheral
Treg in GC patients and observed that targeting HGF with rilotumumab decreased Treg
proportion in peripheral blood (Figure 4C).

HGF/c-Met pathway has been firstly described as a proangiogenic factor since it
exhibits a very potent mitogenic activity on endothelial cells. HGF promotes endothelial
motogenesis, tube and capillary blood vessels formation [34]. Early studies of the proan-
giogenic actions of HGF attributed the effects of HGF to the induction of VEGF-A [35].
However, HGF can also stimulate angiogenesis independently of VEGF-A by inducing
different signaling pathways [36]. Furthermore, HGF represents an alternative proan-
giogenic pathway involved in resistance to AA treatments directed against VEGF-A [37].
Targeting the HGF/c-Met pathway, especially using rilotumumab, impacts angiogenesis
as evidenced by a decrease in the proliferation of endothelial cells and tube formation in
pancreatic cancer [38] and glioma [39]. Assessing the impact of rilotumumab on tumor
vessels in our cohort of GC patients would have been of interest but we could not get
tumor specimens before and after treatment since tumors were not resected or sampled
in these metastatic GC patients after rilotumumab treatment. Our work provides a novel
argument supporting the involvement of tumor-derived growth factors firstly described
for their protumoral and/or proangiogenic capacities, in the immune escape observed
in cancer. We and others have previously shown that VEGF-A, a proangiogenic factor,
has an immunomodulatory role since it can elicit the accumulation of Treg and myeloid-
derived suppressor cells, inhibit the maturation of dendritic cells and induce the expression
of immune checkpoints on CD8+ T cells in tumor-bearing hosts [2,40,41]. In this work,
we found that HGF, a protumoral and proangiogenic factor, is involved in Treg increase
in the peripheral blood of cancer patients. Thus, targeting the HGF/c-Met axis has an
immunomodulatory impact. Results from recent phase III studies assessing HGF/c-Met
targeting therapies in GC have been disappointing [16]. However, based on these im-
munomodulatory properties, we could consider alternative uses of HGF/c-Met inhibitors
which could be associated with immunotherapies such as the anti-PD-(L)1 antibody to
unleash the immune system. Notably, cabozantinib, a multikinase inhibitor, targets not
only HGF/c-Met but also the VEGF/VEGFR2 pathway [42], both involved in Treg accumu-
lation in the context of cancer. Different works have recently shown that cabozantinib can
decrease peripheral Treg in the MC38-CEA colorectal cancer model in mice [43] and also in
patients with platinum-refractory metastatic urothelial carcinoma [44]. Considering our
results, Treg drop could be attributable to c-Met/HGF and/or VEGF/VEGFR inhibition
in this context. Associations of cabozantinib with different immunotherapies are being
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evaluated in different clinical trials especially in GC patients (NCT04164979, NCT03539822).
Recently, an association of cabozantinib with nivolumab has been reported to enhance
OS and PFS in advanced renal cancer patients [45] and has been approved as first-line
treatment in advanced renal cancer patients [46].

5. Conclusions

In conclusion, we show that c-Met is expressed on circulating monocytes from GC
patients and that this expression is linked to an aggressive disease (poor differentiation,
metastatic disease) and poorer survival. HGF influences the development of DC with
tolerogenic properties able to induce the development of Treg. Finally, inhibition of HGF
by rilotumumab inhibits the accumulation of Treg in GC patients. Using HGF/c-Met
inhibition for their impact on immunosuppression could lead to the development of new
therapeutic associations for example with immune checkpoint blockers.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13215562/s1, Figure S1: Circulating HGF is correlated to higher c-Met expression by
peripheral monocytes in GC patients, Figure S2: Phenotypic features of DCs generated from mono-
cytes of gastric cancer patients in the presence of HGF, Figure S3: C-met expression on circulating
monocytes is correlated to IL-10 plasmatic levels in GC patients, Table S1: Characteristics of the
survival population.
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