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In the past 15 years, major progresses have been made in the understanding of the genetic

basis of regulation of gene expression. These new insights have revolutionized our approach to

resolve the genetic variation underlying complex diseases. Gene transcript levels were the first

expression phenotypes that were studied. They are heritable and therefore amenable to

genome-wide association studies. The genetic variants that modulate them are called expres-

sion quantitative trait loci. Their study has been extended to other molecular quantitative trait

loci (molQTLs) that regulate gene expression at the various levels, from chromatin state to cel-

lular responses. Altogether, these studies have generated a wealth of basic information on the

genome-wide patterns of gene expression and their inter-individual variation. Most importantly,

molQTLs have become an invaluable asset in the genetic study of complex diseases. Although

the identification of the disease-causing variants on the basis of their overlap with molQTLs

requires caution, molQTLs can help to prioritize the relevant candidate gene(s) in the disease-

associated regions and bring a functional interpretation of the associated variants, therefore,

bridging the gap between genotypes and clinical phenotypes.
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1 | INTRODUCTION

Common diseases are a major public health issue. Their etiology is

complex, with a broad spectrum influenced by environmental and

genetic factors. The arrival of high-throughput technologies together

with the development of the Human Genome Project has promoted

intensive research of the genetic factors by the means of genome-

wide associations studies (GWAS) that can uncover common variants

in large case-control cohorts. The last decade has thus witnessed the

identification of thousands of genetic variants associated with com-

mon traits and diseases,1 revealing an unprecedented polygenicity.2

Nonetheless, these associations have shown small size effects on the

phenotypic variance of these traits leaving a large amount of unex-

plained heritability. In addition, only few causative variants have been

actually identified. So far, for Mendelian diseases, causative variants

have been found to be mostly coding with deleterious impact on

proteins,3,4 whereas in complex traits, the associated variants

predominantly fall in intronic or intergenic regions.1,2,5,6 Unfortu-

nately, the identification of the causative variants is the final step

often missing as it is highly challenging due to polygenicity, linkage

disequilibrium (LD), cost, time and availability of relevant tissues.

Fortunately, while GWAS expanded, progresses in omics technol-

ogies have allowed the study of the human genome at the level of

both its sequence, revealing the genetic diversity across populations,

and of its expression at the various functional levels including the

transcriptome, the proteome or the regulome. Characterizing these

molecular traits has been essential. Studying them in light of genetic

diversity has been a further step. Indeed, applying genetic approaches

to these traits has opened a new era of “genetical genomics,” a con-

cept first coined in 2001.7 In this endeavor, blood has been most

extensively studied for obvious reasons (ease of collection and cul-

ture, wealth of markers), resulting in a bias of current data towards

the hematopoietic and immune system. However, recent collabora-

tive projects have started to investigate large panels of tissues and

Received: 31 August 2017 Revised: 24 November 2017 Accepted: 27 November 2017

DOI: 10.1111/cge.13187

© 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd

520 wileyonlinelibrary.com/journal/cge Clinical Genetics. 2018;93:520–532.

 13990004, 2018, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cge.13187 by Inserm

 D
isc Ist, W

iley O
nline L

ibrary on [13/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://orcid.org/0000-0002-6669-6923
http://wileyonlinelibrary.com/journal/cge


are closing the gap. This review outlines recent developments in the

field along with its history, the methods behind it, and how it is

applied to human genetics with emphasis on complex pathologies.

2 | LINKAGE DISEQUILIBRIUM, THE
CORRELATION OF ALLELES IN A
POPULATION, IS THE BASIS FOR GENETIC
ASSOCIATION STUDIES

Genetic association is a powerful method to relate a genotype to a

phenotype, the primary task of a geneticist. Its principle consists in

correlating alleles or genotypes with a phenotype such as a disease

or a quantitative trait (QT), for example, height or cholesterol level, in

a population. It is based on linkage disequilibrium (LD), a fundamental

relationship between alleles at pairs of genetically linked loci

(Table 1). Association studies use available genetic variants as

markers and rely on the hypothesis that at least one of them is in LD

with the unknown causative allele. Unfortunately, an allele reported

as associated with a trait is very rarely causal. Most likely, it is in LD

with the causative allele and, therefore, the association is indirect.

Another possibility not to forget is the existence of a false positive

result.

On the basis outlined above, the principle of association tests is

simply to assess the impact of marker alleles or genotypes on the

phenotype. For diseases and binary traits, allele frequencies are com-

pared between cases carrying the trait and matched controls using

proportion comparison tests or logistic regression. For a continuous

QT, a linear regression of the QT on the genotype is performed to

identify the locus controlling it, termed QTL (quantitative trait locus)

(Figure 1). Overall, association studies are powered to detect frequent

variants having a small effect size on the trait by using large samples.

Once replicated, the next step is to fine-map association signals to

identify causative variants. While a strong LD facilitates the discovery

of an association, it becomes a major obstacle to identify the causa-

tive variant that cannot be statistically distinguished from the tested

variants, especially when LD extends over several genes. Functional

approaches are then necessary (Figure 2).8,9

3 | GENOME-WIDE GENETIC STUDIES OF
EXPRESSION PHENOTYPES

3.1 | eQTL (expression QTL): the first genomic
endophenotypes

In multifactorial diseases, it is expected that most causative variants

are regulatory, mainly acting through subtle modifications in the

expression of messenger RNAs.2 Two early examples were provided

by the identification of the causative alleles at the INS and CHRNA1

loci, encoding the autoantigens in type 1 diabetes and autoimmune

myasthenia gravis, respectively. They were shown to finely modulate

the mRNA levels of these genes in the thymus, thereby affecting the

central tolerance.10,11 The levels of gene expression can therefore be

TABLE 1 Key concepts of linkage disequilibrium (LD)

Definition

If we consider 2 genetically linked variants, each having 2 alleles, we expect to observe 4 pairwise combinations of these alleles, or haplotypes. If the
alleles were independent or at linkage equilibrium, their frequencies should be the product of each allele frequency in the population. Likewise, for
n biallelic variants, we expect to see 2n haplotypes in the population. In fact, this random association of alleles is rarely observed, especially if the
variants are physically close. We rather observe preferential allelic associations (ie, haplotype frequencies deviate from those expected at linkage
equilibrium). The difference D between the observed and expected frequencies of a haplotype defines the LD of the 2 alleles on this haplotype. If
2 alleles are found together more often than expected, they are positively associated and their LD is positive. Conversely, the alternative
combinations of alleles are less frequent than expected with the same absolute LD value but negative.

There are different measures of LD. The most intuitive one for biallelic variants is their correlation estimated by their coefficient of determination r²
ranging between 0 and 1. The LD is “complete” when at least 1 haplotype is missing and the most extreme case of LD said “perfect” is when only
2 of the 4 haplotypes are observed, with an r² of 1. In the latter case, both variants are redundant such that the genotype at the second variant can
be imputed from the genotype at the first variant for any individual in the population. This has major consequences for genetic association studies
(see main text).

Forces shaping the LD are intimately connected to the history of the population: LD depends on when the variants appeared in the population and how
they evolved across the subsequent generations (see below):

1. Mutations/variations

Initially, when mutation creates a new allele at a locus near an established variant, there are only 3 haplotypes and therefore the LD is complete.

2. Meiotic recombination

Following mutation, the major force shaping the LD is meiotic recombination that creates the fourth haplotypes and therefore dissipates the LD. The
higher the number of generations since the mutation has appeared and the higher the recombination rate between 2 loci, the lower the LD between
their alleles. Thus distant loci are generally in lower LD. However, the recombination activity is not homogeneous along the genome: at a small scale,
hot-spots of recombination shape islands of LD or haplotype blocks where a smaller number of haplotypes than expected are observed in the
population. Their average size is ~20 kb and varies between populations. However, it is important to remind that 2 variants in the same haplotype
block are not always in LD and that, conversely, 2 variants may be in LD without being in the same haplotype block.

3. Demographic and evolutionary forces

By influencing variant allele frequencies, these forces also strongly impact the LD. For example, in a growing population, the LD decreases by
increasing the number of recombinations. On the contrary, the genetic drift can fix some alleles, and thus the corresponding haplotypes, leading to
new LD patterns. Migrations and population admixture also modify allele frequencies and LD. In population genetics, the time of a migration can be
deduced from the LD decay. Recent positive selection can be detected with a higher LD around the selected variants. Epistatic interactions may also
be selected and keep alleles in LD even if they are distant. This explains why LD depends on the considered haplotypes with different patterns for
multi-allelic variants. For example, in the highly polymorphic human Major Histocompatibility Complex (MHC), LD may extend over long distances
for some specific ancestral haplotypes. Finally, as allele frequencies vary substantially worldwide, both the extent and strength of LD also differ
among populations.
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regarded as intermediate phenotypes contributing to the disease

outcome.

A major achievement was the demonstration that the variability

of gene expression is heritable in humans.12 These expression pheno-

types are thus QTs amenable to genetic linkage and association

analyses13,14 leading to coin the term of expression QTL (eQTL)14

(Table 2). When eQTLs are single nucleotide polymorphisms (SNPs),

they are often called eSNPs. To conduct an eQTL mapping, the same

samples are both genotyped genome-wide and characterized for gene

expression. The first human eQTL studies benefited from the well-

genotyped HapMap samples with available lymphoblastoid cell lines

(LCLs).32–34 They revealed the contribution of genetic diversity to the

inter-individual variation of gene expression levels. In this context,

searching for eQTLs has become a considerable endeavor requiring

important resources and large consortia35–43(Table 3).

However, because LCLs are Epstein-Barr-virus (EBV)-transformed

and often oligoclonal, these initial findings raised questions regarding

their relevance to in vivo cells and tissues. Nevertheless, further stud-

ies conducted on primary blood cells largely confirmed the results

obtained with the LCLs44,45 that eventually appeared to be good sur-

rogates for B cells.86 Subsequently, similar studies conducted on

numerous primary tissues including adipose tissue, liver or human cor-

tex, largely confirmed LCL findings and revealed that 30%-80% of

eQTLs were cell- or tissue-specific notably in the brain.35,45–48

A recent study even investigated induced pluripotent stem (iPS) cells.

Comparisons with 44 human tissues revealed that 32% of the eQTLs

were specific to iPS cells.87 It is thus necessary to directly investigate

gene expression in the tissue of interest, which raises complex issues

for the central nervous system. Moreover, tissues are often

heterogeneous and, without enrichment, eQTLs specific for rare cell

types can be masked. A seminal demonstration of cell specificity was

made in a study conducted in monocytes and B cells of 288 healthy

volunteers88 showing that the majority of eQTLs were cell-specific

and that 6% of the eSNPs regulated the expression of a different gene

in each cell type. Conversely, different eSNPs could affect the expres-

sion of the same gene in each cell type. Opposing effects of the same

eSNP could also be observed, for example, rs2223286*C allele

decreased expression of SELL in monocytes but increased it in B cells.

An important kind of eQTLs, called response eQTLs (reQTLs),

occurs following exposure to an external signal (Table 2), in particular

in the immune system in response to infectious agents and to various

stimuli.49,54,55 Other environmental factors, including hormones,

drugs, diet, metals or pollutants, can also be the source of reQTLs.56

Sex and age effects have also been identified.57 One can anticipate

that development-stage-specific eQTLs also exist in humans, as it has

been reported in Drosophila.58

Altogether, these studies revealed important recurrent features

of the thousands of eQTLs found in different tissues. Thus, almost

60%-80% of genes have at least one eQTL,64 mostly cis-acting usu-

ally within 1 Mb of the transcription start site (TSS).89 Distant eQTLs

or even eQTLs lying on a different chromosome are less frequent,

although a bias due to a lack of statistical power to detect them can-

not be excluded.90 A general rule is that the more distant the eQTLs,

the more cell- and context-specific and the lower their effect sizes.

These distant eQTLs may be cis-eQTLs of a transcription factor

(TF) that in turn controls distant targets.91 Besides, a given trans-

eQTL may control several genes and thus operate as a master regula-

tor like in the Major Histocompatibility Complex (MHC).88

⋍ 0
locus B is not a molQTL

Y = 0 + X+
H0: ⋍ 0
H1: ≠ 0

≠ 0
locus A is a molQTL

FIGURE 1 Genetic association of a quantitative trait (QT). The association between a molecular QT (Y) and 2 loci A and B is being tested. Each

panel shows the distribution of the QT depending on the genotype (X) as either density curves or boxplots. For locus A the regression slope βG
significantly differs from 0, indicating that A is a QTL for the trait
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So far, eQTL variants were essentially eSNPs genotyped with

microarrays while the contribution of copy number variants was eval-

uated at 17.7%.92 The advent of next-generation sequencing might

change the rules. The first study using a low-coverage whole-exome

sequencing (WES) and RNASeq on the same 462 samples from the

1000 genomes project showed a significant enrichment for insertion/

deletions (indels) among the top eQTLs.36 More recently, using WES

with higher coverage and RNASeq data from 13 tissues of the GTEx

Consortium (Table 3), up to 6.8% of cis-eQTLs were found to be

driven by structural variants, including large deletions, duplications,

inversions, mobile-element insertions and copy-number variants, with

effects several-fold larger than those of SNPs and short indels.93

Most notably, rare structural variants contributed a large fraction of

gene expression variation.

In the above studies, the considered parameter of the gene

expression distribution was the mean. However, the variance of QTs

may also depend on the genotype, as shown with an FTO polymor-

phism on body mass index (BMI).85 When impacting on the variance

of gene expression, these variance QTLs (vQTLs) are called evQTLs or

veQTLs. The few studies conducted so far in LCLs, skin and fat cells,

have revealed a non-negligible number of veQTLs, with a large propor-

tion being trans-acting51,52 and a parent-of-origin effect for 12.6% of

genes.53

3.2 | Extension to other “omics” expression
phenotypes

Gene expression is complex and diverse. Most of the above studies

considered protein-coding genes. However, the idea of expression

phenotypes can be extended to non-coding genes, to post-

transcriptional RNA modifications and to the post-translational level,

introducing the general concept of molecular QTLs (molQTLs,

Table 2).

According to the last release of GENCODE (version 27, https://

www.gencodegenes.org/releases/current.html),94 there are currently

twice as many non-coding RNAs genes as there are protein-coding

genes, with a plethora of sizes, abundances and functions, amenable

to fine characterization with next-generation sequencing. The most

diverse are the long intergenic non-coding RNA (lincRNA) with about

7500 genes. They are implicated in both transcriptional and post-

transcriptional regulation of gene expression and are generally less

expressed than protein-coding transcripts. A first study mapped and

replicated ~50 local lincRNA eQTLs.68 Interestingly, 25% altered the

expression of the neighboring protein-coding gene. Moreover, for

half of them the expression levels of the lincRNAs and the protein-

coding genes were negatively correlated, suggesting a negative regu-

lation of the protein-coding gene by its lincRNA neighbor (Figure 3).

LTA TNF

genes

common variants

+252
A>G

-308
G>A

associated variants
in LD

associated variants
in LD

+368
G>C

+80
C>A

-293
G>Afunctional

assays

allele - specific
expression

+252
G

A

-308
A

G

+80

C

A

luciferase relative  activity

luciferase

luciferase

reporter gene assay

EMSA

1 Kb

FIGURE 2 The two main challenges in fine-mapping GWAS hits: identifying the modulated genes and the causative variant. The minor allele

rs1800629*A, alias TNF-308*A (red triangle), in the TNF gene promoter had been associated with numerous autoimmune and infectious
diseases but consensus lacked on its regulatory role. Using the variant rs909253 (LTA+252, black) in LD with it, allele-specific expression assay
revealed that the risk haplotype (alleles in brown) rather affects the expression of the neighbor LTA gene.8 Fine-mapping shortlisted 3 other
variants in LD. Using functional assays, the causative variant rs2239074 was identified in 50UTR of LTA+80 (green), with its A allele binding the
ABF1 transcriptional repressor.9 For each SNP, the major allele is named first

VANDIEDONCK 523

 13990004, 2018, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cge.13187 by Inserm

 D
isc Ist, W

iley O
nline L

ibrary on [13/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



The lincRNA eQTLs were mostly tissue-specific as the lincRNAs

themselves. A more powered study highlighted some properties of

lincRNAs eQTLs compared to those of protein-coding genes: cis-

eQTLs are more prevalent, 2.5-4.5 times closer to the TSS and have

larger effect sizes, suggesting a relaxed purifying selection.69 It also

confirmed that lincRNA cis-eQTL often modulate expression of the

nearby protein-coding genes. It is worth noting that the Functional

ANnoTation Of the Mammalian (FANTOM) genome collaborative

project characterized an atlas of human long non-coding RNAs

(lncRNAs) and found that expression of the lncRNAs overlapping an

eQTL for protein-coding genes positively correlates with expression

of these protein-coding genes, reflecting a general mode of co-

regulation of neighbor loci.95 A smaller group of non-coding RNAs

are microRNAs (miRNAs) with 1881 genes and short transcripts

involved in post-transcriptional regulation of presumably a third of

mRNAs genes. A first category of eQTLs associated to miRNAs are

TABLE 2 Glossary of expression QTLs (eQTLs) and other molecular quantitative trait loci (molQTLs)

Cascade Omic layer Molecular quantitative trait

molQTLs

Publications
Recommended
short name Alternate names

Regulation Any Regulatory quantitative trait regQTL regulatory QTL 15

Epigenome Epigenomic mark epiQTL This review

DNA methylation meQT metQTL, mQTLa 15–22

DNAse I hypersensitivity/
chromatin accessibility

dsQTL caQTL 15,23–27

Altered chromatin state chromQTL cQTLb, chrQTL,
chromatine QTL

15,27–29

Histone modification hQTL hmQTL 15,20,21,24–27,29

Histone acetylation haQTL 15,30

Transcription factor binding bQTL bindingQTL, tfQTL 27,29,31

Variable chromatin module vcmQTL cQTLb 29

Gene expression Epigenome + transcriptome Expression + DNA
methylation

eQTM expression QT
methylationc

19

Transcriptome Expression eQTL eSNP if the variant
is a SNP

15,23,32–50

Variance expression evQTL veQTL 51–53

Response expression reQTL response eQTL 49,54–59

Alternative splicing sQTL asQTL 15,21,60–63

Transcript ratio trQTL 21,36,62–64

Alternative polyadenylation poly(A) ratio
QTL

42

MicroRNA binding mirQTL miRNA-binding
QTLs

65,66

MicroRNA expression miR-eQTL mirQTLd 36,66,67

LincRNA expression lincRNA eQTL 36,68,69

Repeat element repeat eQTL Retrotransposon-
derived

36

RNA decay rdQTL 15,70

Ribosome occupancy rQTL roQTL 15,50,71

Module expression QTL emodQTL mQTLa 72

Proteome Protein pQTL 15,50,71,73,74

Cytokine cQTLs 75

Immunoglobulin IgQTL 76,77

Higher-level
intermediate
phenotypes

Metabolome Metabolite quantitative trait mQTL GIM 72,78,79

Metagenome Microbiota mbQTL 80–82

Blood Blood cell parameters hemaQTL Hematological QTL 41,83,84

Any Variance of a trait vQTL 51–53,85

Module of traits modQTL 29,72

a Not recommended as it refers also to metabolite QTL.
b Also refers to cytokine QTL.
c With correlated eQTL and meQTL.
d Also refers to miRNA-binding QTLs.
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the miRNA-binding QTLs (mirQTLs) located on their target transcript

explaining up to 25% of eQTLs in 30 untranslated regions (UTRs) in

LCLs and blood cells.65,66 A second category is called miR-eQTLs.

They directly regulate miRNA levels and are mostly located outside

of the genomic region defined by the mature miRNA. Remarkably,

20%-33% of these were also associated to a variation of expression

of their targets in immune cells.36,66,67 Whether miR-eQTLs also

affect protein levels remains to be explored.

Alternative splicing is a major mechanism driving transcriptome

diversity, affecting 50%-74% of pre-mRNAs96 and having a heritable

pattern.97,98 It is more prevalent in the MHC than in other genomic

regions, thus adding to the huge polymorphism of this region.99 The

genetic variants modulating exon usage have first been mapped as

spliceQTLs (sQTL or asQTL) in different tissues.15,60,61 With more

accurate isoform quantification using RNASeq, it has become possible

to map eQTLs for transcript ratios (trQTLs)36,64 and even for “com-

posite” transcript ratios reflecting the equilibrium of all isoforms.62,63

Overall, the sQTLs are 4 to 6 times less frequent than eQTLs and act

independently of them, although they are uncommon in the absence

of global gene-level variation. sQTLs usually are intronic, falling at

binding sites for the splicing machinery. They are also enriched in

alternative exons. Alternative poly-adenylation (poly(A)) is another

mechanism of transcript diversification generating 5% of isoforms. By

modifying the 30 end of mRNAs, it alters their sensitivity to miRNAs

and modulates their stability. About 2300 genes have a SNP that

influences their poly(A) usage (poly(A) ratio QTLs) in whole-blood.42

Finally, the aforementioned studies considered the steady-state tran-

script levels, without distinguishing mRNA production and decay

rates. It is estimated that 19% of eQTLs could result from RNA decay.

Thus, 195 loci affecting the mRNA decay rates (rdQTLs) have been

found in 70 LCLs.70

Expression of proteins, the ultimate gene products in many cases,

is also genetically regulated as showed by a study of 42 serum pro-

teins in 1200 individuals that detected 8 cis protein QTLs (pQTLs)

with large effect sizes.73 Subsequently, the proteome of 95 HapMap

LCLs was characterized by mass spectrometry.74 The most variable

proteins were immune-related. This study confirmed a marked inter-

individual variability with 5.7% of proteins having at least a 1.5-fold

variation in half of the sample pairs. However, only 77 cis-pQTLs

were identified. Altogether, these pQTLs mapped preferentially in the

TABLE 3 Some large-scale molecular quantitative trait loci (molQTLs) consortia

Acronym Full name Samples Webportal Publications

MuTHER Multiple Tissue Human
Expression Resource

LCLs, skin, fat, ~60 subjects
belonging to twin-pairs

http://www.muther.ac.uk/ Nica et al35

GEUVADIS Genetic European Variation in
Health and Disease

LCLs, 462 subjects from
5 populations of the 1000
genome project

http://www.geuvadis.org/ Lappalainen et al36

GTEx Genotype-Tissue Expression 11 688 samples, 714 individuals
for 53 tissues, all major organs
of the body were included plus
detailed subregions of the
brain obtained post-mortem

https://www.gtexportal.org/ The GTEx
Consortium37;
Stranger et al43

STARNET Stockholm-Tartu Atherosclerosis
Reverse Networks Engineering
Task

Blood, cardiovascular and
metabolic tissues from
600 coronary artery disease
patients

https://www.ncbi.nlm.nih.gov/
projects/gap/cgi-bin/study.cgi?
study_id=phs001203.v1.p1

Franzén et al 38

BLUEPRINT Blueprint epigenome Primary cells of the
hematopoietic system (blood,
tonsils, bone marrow),
50 healthy and 50 neoplasms

http://www.blueprint-epigenome.
eu

Martens and
Stunnenberg 40

IHEC International Human Epigenome
Consortium

Key cellular stages relevant to
health, diseases and
senescence, 1000 epigenomes

http://ihec-epigenomes.org/ Astle et al 41

CMC CommonMind 600 prefrontal cortex from
291 healthy subjects,
275 schizophrenia and
47 bipolar disorder

http://commonmind.org Fromer et al39

BIOS Dutch Biobank-Based Integrative
Omics Study

Peripheral-blood cells in 2116
healthy individuals

http://genenetwork.nl/
biosqtlbrowser

Zhernakova et al42

lincRNA

lincRNA

protein coding gene

protein coding gene

lincRNA QTLs

FIGURE 3 Example of complex gene

regulation by a molQTL. A molQTL
controls the expression level of a lincRNA
gene that, in turn, negatively modulates the
expression of a neighbor target protein-
coding gene
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exonic parts and were enriched for missense SNPs.15,50,74 Strikingly,

only half of pQTLs were also eQTLs suggesting different genetic

mechanisms regulating transcript and protein expression. When they

were the same, the effect sizes of pQTLs were lower than those of

eQTLs, indicating buffering at the protein level. However, small sam-

ple sizes, the different technologies used and their lack of sensitivity

could also explain these findings and the difficulty to replicate pQTLs.

To better understand the genetic mechanisms at the interplay

between transcripts and proteins, two studies combined RNASeq and

mass spectrometry data and measured the translational activity by

RiboSeq in LCLs.50,71 The ribosome occupancy QTLs (rQTLs or

roQTLs) overlapped with eQTLs with similar effect sizes, suggesting

that specific pQTLs likely affect the post-translational stages. Finally,

a landmark paper assessed the contribution of all molQTLs in LCLs,

from the transcriptional rate, measured by 4sU-labeled RNAseq, to

the protein abundance.15 Effect sizes correlated across molQTLs, only

being lower for the final pQTLs. In total, 85% of molQTLs were

shared from one stage to the next into the regulatory cascade, with

73% of molQTLs that affect transcription rates also affecting protein

expression.

3.3 | Extension to intermediate molecular
phenotypes that are relevant to diseases

Besides proteins, cellular metabolites such as carbohydrates, amino

acids or fatty acids provide a readout of the physiological status and

cellular activity. Metabolite QTLs (mQTLs) were mapped in different

tissues and body fluids.78,79 Groups of mQTLs define genetically

influenced metabotypes (GIMs). They usually have larger effect size

than the clinical phenotype and are located close to the genes encod-

ing, for instance, the transporters or the enzymes important for the

homeostasis of the metabolites.

Cytokines and immunoglobulins (Ig) are proteins highly character-

istic of the immune response. Seventeen cytokine QTLs (cQTLs) were

identified in response to viral, bacterial or fungal stimuli.75 They

mapped to pathways including pattern recognition receptors, cyto-

kines, complement inhibitors and kallikrein. They were enriched in

SNPs previously associated with immune-mediated diseases. Regard-

ing immunoglobulins, IgQTLs were characterized first for IgE plasma

levels in relation to asthma.76 A recent study explored IgA, IgM, IgG

in a cohort of more than 20 000 healthy subjects.77 A total of

43 IgQTLs were mapped explaining 4.3%-8.7% of the variance. They

overlapped with variants influencing lymphoid malignancies, autoim-

mune diseases or immunodeficiencies. All associations were isotype-

specific. Of interest, 10 IgQTLs had an impact on blood cell frequen-

cies, including the B cell lineage.

Hematological blood traits, including counts of erythrocytes,

leukocytes, platelets and related laboratory parameters, are tightly

regulated with narrow normal physiological ranges and are important

markers of medical conditions. Large-scale studies of thousands of

samples have been performed worldwide.41,83,84 The recent record-

breaking study that was conducted on 36 hematological traits

measured in 173 480 British individuals with 29.5 million imputed

variants, brought the number of blood QTLs to 2706.41 All but 5 were

cell-specific. The associated variants were mostly frequent, with small

effect sizes, and predominantly mapped to non-coding regions

enriched for enhancers.

Another kind of molecular phenotype is the microbiome compo-

sition, that is, the collective genome of the microbiota that colonizes

human gut, skin and mucosal surfaces. It substantially varies between

individuals and can be altered in pathological conditions. It is influ-

enced by genetic factors as showed by statistically powered twin

studies.100,101 QTs include microbiota diversity, abundance of taxa

and of taxonomy groups and functional pathways. Three large GWAS

identified up to 58 microbiote QTLs (mbQTLs).80–82 Although there

was little overlap between studies, the Vitamin D receptor gene was

recurrently associated and variants lied in genes involved in host

defense and immunity, cell adhesion and tissue barrier integrity.

4 | GENOME-WIDE GENETIC STUDIES OF
EPIGENOMIC PHENOTYPES

Gene expression is primarily governed by chromatin structure, which

determines DNA accessibility to regulatory transcriptional complexes.

Major epigenomic marks include DNA methylation, histone modifica-

tions, chromatin accessibility or nucleosome occupancy and chromo-

somal conformation.102 Binding of TFs to DNA also belongs to the

epigenetic framework.28 Altogether, they define the epigenome. The

Encyclopedia of DNA Elements (ENCODE) has been the first major

project to characterize it in-depth in a large panel of cell lines, provid-

ing the first genome-wide catalogue of functional regulatory ele-

ments.103 Subsequently, international projects aiming at profiling

epigenetic patterns in primary cells and tissues have relied on large

consortia such as the NIH Roadmap Epigenomics Program, the Inter-

national Human Epigenome Consortium or the BLUEPRINT

project.104

Epigenomic marks can be themselves considered as QTs. In this

review, we call the associated variants epigenomic QTLs (epiQTL,

Table 2). Because DNA is usually available and its methylation can be

easily quantified, 5-methylcytosine methylation at CpG islands has

been the most studied epiQTL. The corresponding methylation QTLs

(meQTLs)16 remain consistent across the lifespan in blood.17 They

mostly act in cis within 10 kb of the relevant CpG. Remarkably, about

10% of cis-meQTLs are also cis-eQTLs, thereby called expression

quantitative trait methylation (eQTM), 30% of them surprisingly being

correlated with an increased gene expression. They are also enriched

for CCCTC-binding factor (CTCF)- and TF-binding sites as shown in

brain, purified neurons, glia, T cells and placenta.18 trans-meQTLs are

less frequent (3%-7%) but may target hundreds of CpGs and several

of them appear to be eQTLs in cis for CTCF or TFs.19 Similarly, chro-

matin accessibility can be studied by mapping DNAse I hypersensitiv-

ity sites. The corresponding dsQTL are often (39%) associated with

gene expression variation in LCLs.23 Conversely, 55% of eQTLs are

also dsQTLs. These functional dsQTLs are enriched in allele-specific

TF-binding sites. Further studies performed jointly on several chro-

matin marks in LCLs identified extensive allele-dependent variation

defining histone QTLs (hQTL).20,24–26 Histone marks at enhancers

were the most variable ones. Enrichment of hQTLs in dsQTLs, eQTLs

and meQTLs was observed. Of note, epiQTLs also correlated with
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sQTLs, albeit to a lesser extent than with eQTLs.15 These studies

pointed to the disruption of TF-binding sites as the key mechanism

driving these coordinated changes of epigenomic marks. Overall, 15%

of the hQTLs can act both locally and distally. They define regions

with coordinated chromatin state changes that are embedded within

topologically associated domains (TADs).27,29 In this context, TF-

binding QTLs (bQTL) were shown to also influence long-range chro-

mosomal contacts.31 These findings could be extended to primary

blood cell subsets and highlighted the cell specificity of this chroma-

tin coordination.21

Altogether, current studies of eQTLs and other molQTLs, mostly

bearing on immune cells, cast unprecedented light on the regulatory

elements underlying gene expression, their spatial distribution across

the genome and how they are correlated in the regulatory cascades,

with half of the transcription variation explained by chromatin marks

jointly with genetic variation.15,21

5 | TOWARDS THE IDENTIFICATION OF
DISEASE-CAUSING VARIANTS

5.1 | Clear advantages of using molQTLs

In an effort to pinpoint the causative variants among the GWAS vari-

ants, the overlap with ENCODE elements provided interesting hints.

Thus, 13.1% of GWAS hits were found to map directly to an

ENCODE element, while 59% were in LD with a SNP mapping to an

ENCODE element.103,105 Similarly, in primary cells of the Epigenome

Roadmap, 60% of GWAS variants for immune-mediated diseases

mapped to “immune” enhancers and 10%-20% to TF-binding motifs.6

However, connecting the associated alleles to phenotypes has been

less straightforward because ENCODE and Epigenome Roadmap

samples have a limited genetic diversity.

Catalogues of molQTLs thus provide invaluable tools to bridge

the gap between genotypes and clinical phenotypes.14,43 The ratio-

nale is to prioritize the most credible candidate variants by intersect-

ing the list of GWAS SNPs with that of molQTLs (Figure 4A), using

for example, webportals like RegulomeDB106 or HaploReg.107 Follow-

ing a first success in asthma,108 this approach has become “classical.”

Importantly, mapping eQTLs in healthy individuals is assumed to be

equally informative, the only difference being the frequency of

disease-risk alleles. Besides, tissues not available from patients can be

studied, even post-mortem for the brain and other vital organs.43

Finally, variation of gene expression is not biased by confounding fac-

tors due to the disease or its treatment. On this basis, wealth of stud-

ies have highlighted eQTLs at GWAS hits.90,109 Overall, there is a

significant enrichment for all types of molQTLs in GWAS hits and

reciprocally.110 A classic example is the dissection of the 1p13 locus

encompassing 7 genes and associated with myocardial infarction and

high LDL cholesterolemia. The causative variant was fine-mapped to

the 30UTR of CELSR2 but it affected expression of SORT1 at 40 kb by

creating a binding site for CCAAT-enhancer-binding proteins

(C/EBPs).111 A more complete story is provided by the FTO gene that

was consistently associated to type 2 diabetes (T2D) and obesity but

lacked functional support. Two studies identified long-distance

chromatin interactions with 7 genes.112,113 An eQTL mapping analysis

in adipose tissue shortlisted two of them, IRX3 and IRX5 whose

expression was affected by the risk haplotype. The lead SNP in FTO

disrupted a binding site for ARID5B repressor factor. Its impact on

IRX3 and IRX5 transcripts was confirmed by CRISPR-Cas9 genome

editing in adipocyte progenitors and for IRX3 by germline disruption

in mice. Other molQTLs can be useful for fine-mapping of disease

variants. For example, open chromatin regions, histone 3 (H3) lysine

modification and CTCF-binding in pancreatic islets were confronted

to top T2D-associated SNPs and this led to identify new regulatory

variants at TCF7L2 and WFS1 with allele-dependent enhancer

activity.114,115

A “reverse” approach (Figure 4B) starts from the molecular trait

showing difference between patients and controls, then identifies

genetic variants controlling this difference and checks that the

molQTLs are indeed associated with the clinical trait. Thus, the HDL-

cholesterol plasma level could be correlated with 67 transcripts regu-

lated by a cis-eSNP. VNN1 was the best correlated transcript and

showed 4 eSNPs in its promoter that were also associated with HDL-

cholesterol concentrations.44 In systemic lupus erythematosus (SLE),

both classical and reverse approaches were used. According to the

classical one, the causative variant on chromosome 7 was found to

act in cis on IKZF1. According to the reverse approach, this eQTL also

explained in trans the previously known differential expression in SLE

of the complement C1QB gene and 5 type I interferon response

genes.116 In this case, no new genetic variant was associated with

the disease, but we propose that this reverse approach starting from

gene expression may be used to rescue variants missed by GWAS.

Epigenomic traits, including DNA methylation and histone acetyla-

tion, have been also searched for differential effects by Epigenome-

Wide Association Studies (EWAS) or by Histone Acetylome-Wide

Association Study (HAWAS).30,117 In complement of these studies,

mapping of epiQTLs can help to discriminate the differential epige-

nomic marks due to the influence of the environment from those

having a genetic basis, provided analyses are conducted in the same

cell-context with careful experimental design.28,118

A third usage of molQTL in clinical genetics can be envisioned in

the context of Mendelian traits (Figure 4C). Non-coding variants

affecting gene expression can act as modifiers of the main disease-

causing locus by affecting its penetrance or expressivity.119–121

MolQTLs in relevant tissues are a mine to search for these modifiers.

5.2 | Caution and limitations in using molQTLs

The fact that the molQTLs and the GWAS hits colocalize or are in

strong LD does not imply that the disease association and the molec-

ular trait are explained by the same variant. MolQTLs are many and

widespread across the genome. Moreover, databases of molQTLs

report all associated SNPs regardless of LD, and not only the lead

molSNP, thus considerably increasing the probability of wrongly

assigning a GWAS hit to a molQTL. The difficulty is amplified by the

fact that the samples used to generate the molQTL databases and

the GWAS are rarely the same, although there are excep-

tions.108,122,123 They may come from populations with different LD

patterns. Even if the population is the same, sampling fluctuation may
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affect LD estimates. To address this issue of causality inference,

sophisticated statistical methods are being developed.22,124–132 Such

a method applied to 7 autoimmune diseases in 180 000 patients

revealed that only 25% of the lead GWAS SNPs were eQTLs, 75% of

them being cell-specific.132 A similar proportion was obtained in

inflammatory bowel disease (IBD) after fine-mapping the disease vari-

ants with high confidence.133 These surprising results, which remain

to be confirmed in other diseases, are at odds with the previously

established idea that the majority of GWAS hits are molQTLs. That

being said, even before these two studies, it was not possible to assign

a molQTL to every GWAS hit. One possibility is that a fraction of the

non-coding GWAS hits is actually not explained by a molQTL. Alterna-

tively, the molQTLs explaining the GWAS hits have not been found

yet. There are several reasons for that which are discussed below.

Strikingly, most of these studies have a blind spot, the MHC,

despite the fact that this region is the most prominent one in terms

of GWAS associations.134 Indeed, the MHC holds a special sta-

tus.135 It is characterized by a strong LD over megabases that com-

plicates its fine-scale analysis. In addition, its extreme polymorphism

impairs the interpretation of molQTLs for molecular traits assessed

by solely using the reference sequence, arguing for dedicated

approaches.99

A second set of explanations pertains to the current incomplete-

ness of molQTLs databases. Indeed, molQTLs studies are often

underpowered, especially for molQTLs other than eQTLs and for

trans-molQTLs whose effects are more often tissue-specific. In addi-

tion, quantification methodologies for a given molecular trait are het-

erogeneous and genome-wide significance thresholds vary between

molQTL studies. This may explain, for instance, the limited overlap

between 4 eQTL resources for blood pressure associations.136 A final

point is the frequent lack of the appropriate biological context in the

molQTL databases. We have previously emphasized the importance

of the tissue or cell type for molQTLs. The importance of the relevant

context in fine-mapping of disease-causing variants has been under-

scored by the robust colocalization of hits from 57 GWAS with

eQTLs from 24 different cells and tissues.137 Likewise, GWAS hits

are more enriched for reQTLs than for constitutive QTLs.59 Ulti-

mately, a first eQTL mapping recently performed on single cells from

whole blood has strengthened this argument of cell specificity by

identifying a significant proportion of cell-specific eQTLs undetected

in bulk RNA.138 Along this line, a method has been proposed to infer

cell types to relevant complex diseases using single-cell eQTLs.139

The complex inheritance of molQTLs resulting from allelic

heterogeneity,140,141 pleiotropy22,88 and epistasis142,143 further

(A)

GWAS hits

common variants

genes

molQTLs

(B)

differential molecular quantitative traits

patients

controls

psi d

cyl

hp

wt

carb

drat

gear

am

mpg

vs

qsec

Fold
change

common variants

genes

molQTLs

Case-control association

(C)

mutant

x
x

x x x

wildtype

mutant

x
x

wildtype

molQTLs

FIGURE 4 Strategies for identification of the disease causative variants using molQTLs. (A) The most credible GWAS variants are prioritized by

statistical methods of colocalization with molQTLs. Here, the candidate causative variant (blue box) modulates a distant gene. (B) Differential
molecular traits are filtered by the presence of molQTLs regulating them. Here, the boxed gene is upregulated in patients and has 2 molQTLs
(closed triangles) further tested for disease association. (C) Modulation of a Mendelian trait by a molQTL. Two scenarios are depicted. On the
left, the molQTL is in cis with the disease-causing mutation and upregulates the mutant transcript, potentially exacerbating the disease. Note
that if the mutation results in reduced function, it may instead rescue the phenotype. On the right, the molQTL upregulates the wild-type
transcript, potentially attenuating the disease severity
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impacts on their interpretation and the causality inference to complex

diseases. It is sometimes difficult to tease apart these effects. For

instance, epistasis between two eSNPs without pairwise LD could be

explained by a third eSNP in low LD with them.144 Related to epista-

sis is the notion of context-dependency whereby an eQTL is influ-

enced by the expression of another gene detected by interaction

modeling. For example, expression of NOD2 in whole blood is

explained by an eQTL whose effect is substantially increased when

STX3A, a neutrophils marker, is highly expressed.42 Locus pleiotropy

is illustrated by the SLC16A11 haplotype, a major risk for T2D in

Mexico that contains regulatory variants decreasing its transcript

level in liver. But, in addition, coding variants act at the post-

translational level by impairing binding to its chaperone, resulting in a

decreased surface expression.145 And similarly to complex traits,

there is missing heritability with, for instance, current estimates of

69% for expression phenotypes in whole blood.146

A final difficulty stems from the interplay between the different

molQTLs. There is no one-to-one relationship in their “percolation”

cascade. This lack of linearity is exemplified by the non-independence

of molecular traits. In fact, molecular traits show covariance both

within and between each omic layer. To tackle this, trans-molQTLs

are a first step forward to infer module networks. New methods are

developed to integrate multiple molecular phenotypes.29,72,91,147

Human quantitative genetics is thus leaping into the area of systems

biology.148

6 | CONCLUSION/PERSPECTIVES

Studying the genetic basis of genomic and epigenomic traits has first

yielded a wealth of basic information on the regulation of gene

expression, on the dynamic structure of chromatin and the projection

of regulatory variants onto cellular phenotypes. It also provides a

wonderful tool to elucidate the genetic bases of complex diseases by

reducing the list of disease-associated variants. Nonetheless, colocali-

zation of GWAS hits and molQTLs is a complex process requiring

sophisticated statistical methods. Strikingly, this approach could pin-

point the relevant gene, often at distance of the disease-associated

variant. The next challenge is to better integrate the different molec-

ular traits in gene and cellular networks to uncover the functional

pathways modulated by the genetic component of common dis-

eases.2 This complexity emphasizes the absolute necessity to conduct

functional studies to validate genetic findings. In this endeavor, the

emergence of high-throughput genomics methods to edit the genome

and to investigate the phenotypic impact of candidate variants will be

essential to dissect the huge number of GWAS hits.149,150
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