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Basic aspects of differential geometry

Marc Chaperon

This is a very partial description of differential geometry as elaborated by Élie Cartan and expressed
in a suitable language by Charles Ehresmann. I am entirely responsable for the selection of materials
and for the mistakes, if any.

The framework is that of smooth1 (finite dimensional) manifolds and maps, whose definition is
taken for granted—most of the notions we consider “pass” without any problem to the real analytic
and (replacing R by C) complex and/or Banach categories. The kth derivative of a map f is denoted
by Dkf as in [10]. Paths are defined on intervals.

Jets

Introduced by Ehresmann [14], curiously almost absent from [11, 12], they are at the very beginning of
modern differential geometry, as they generalize Taylor expansions to maps between manifolds. Recall
the Faà di Bruno formula giving the kth derivative of the composed map of two Ck maps between
open subsets of Banach spaces:
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where x lies in the definition domain of g ◦f , the vector v in the ambient Banach space, vk := (
k times︷ ︸︸ ︷
v, ..., v)

and the sum is on all p = (p1, . . . , pk) ∈ Nk with
∑
j pj = k, setting |p| =

∑
pj .

This formula is obtained by “composition of kth order Taylor expansions” [8]. Its author, born in Alessandria in
1825, was an officer in the Italian Royal Army before studying mathematics in Paris under the supervision of Cauchy
and Le Verrier and taking up the position of Professor of Mathematics at the university of Turin. He was beatified in
1988, one century after his death, for his work as a social reformer, most notably the foundation of the Minim Sisters of
St. Zita. Also a musician, he had been ordained in 1876.

For each integer k, two Ck maps f and g, defined in the neighbourhood of a point a in a manifold
M , taking their values in a manifold N , have the same kth order jet at a, denoted jkaf = jkag, when
they take the same value b at a and there exist local charts ϕ : (M,a)→ Rn and ψ : (N, b)→ Rp such
that ψ ◦ f ◦ϕ−1 and ψ ◦ g ◦ϕ−1 have the same kth order Taylor expansion at ϕ(a); fortunately for this
definition, the Faà di Bruno formula implies that such is then the case for all local charts ϕ and ψ at
a and b respectively.

Let Jk(M,N) be the set of kth order jets jkaf of maps of M into N . If M,N are open subsets U, V
of Rn,Rp respectively, Jk(U, V ) identifies to the open subset U ×V ×Jk(n, p) of the finite dimensional
vector space

Jk(Rn,Rp) = Rn × Rp × Jk(n, p) := Rn ×
k∏
j=0

Ljs(Rn,Rp),

where Ljs(Rn,Rp) is the space of symmetric j-linear maps of (Rn)j into Rp and L0
s(Rn,Rp) := Rp;

indeed, jkaf is then naturally identified to
(
a, (Djf(a))0≤j≤k

)
, and this identification is bijective since

every (a, b0, . . . , bk) ∈ U × V × Jk(n, p) is of the form jkaf for f(x) =
∑k

0
1
j!bj(x− a)j .

In the general case, it follows from the Faà di Bruno formula that Jk(M,N) is endowed with a
smooth manifold structure by the natural charts Φk

ϕ,ψ associated to pairs of local charts ϕ of M and
ψ of N as follows:

1That is C∞ or “smooth enough”, the word being implicit when nothing is specified
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• the definition domain dom Φk
ϕ,ψ of Φk

ϕ,ψ is the set of jkaf with a ∈ domϕ and f(a) ∈ domψ

• the chart Φk
ϕ,ψ is given by the formula

Φk
ϕ,ψ(jkaf) := jkϕ(a)(ψ ◦ f ◦ ϕ

−1)

implying that the transition maps are Φk
ϕ1,ψ1

◦ (Φk
ϕ,ψ)−1 = Φϕ1◦ϕ−1,ψ1◦ψ−1

• its range im Φk
ϕ,ψ therefore is Jk(imϕ, imψ).

Examples and “derived products” The manifold J0(M,N) is of course identified to M ×N by
the diffeomorphism j0

af 7→ (a, f(a)).
The set of all j1

0f ∈ J1(R, N) is a submanifold, the tangent bundle TN of N : each natural chart
Φ1

idR,ψ
is an adapted chart for TN and restricts to the chart Tψ : j1

0γ 7→ (ψ◦γ(0), (ψ◦γ)′(0)); moreover,
J1(R, N) is identified to R × TN by the map j1

t γ 7→ (t, j1
0(γ ◦ τ−t)), where τ−t(x) = x + t. One calls

j1
0(γ ◦ τ−t) the velocity γ̇(t) of the path γ at time t (the knowledge of this velocity includes that of the

position γ(t), but not that of the time t).
Symmetrically, the set of all j1

af ∈ J1(M,R) with f(a) = 0 is a submanifold, the cotangent
bundle T ∗M of M : each natural chart Φ1

ϕ,idR
is an adapted chart for T ∗M and restricts to the chart

T ∗ϕ : j1
af 7→

(
ϕ(a), D(f ◦ ϕ−1)(ϕ(a))

)
; moreover, J1(M,R) is identified to T ∗M × R by the map

j1
af 7→ (j1

a(τf(a) ◦ f), f(a)). One calls j1
a(τf(a) ◦ f) the differential daf of f at a (its knowledge includes

that of a, but not of f(a)).
The natural charts endow Jk(M,N) with much more than just a manifold structure, since the

projections jkaf 7→ a (“source projection”), jkaf 7→ f(a) (“target projection”) and jkaf 7→ j`af , 0 ≤ ` < k,
are fibrations, as we shall now see.

Submersions and fibrations

A map
E
↓ π
B

between manifolds is a submersion when “it is locally in E the projection onto the first

factor of a product”: for every a ∈ E, there exist an open subset U of Rn, an open subset V of Rr,
a local chart ϕ̃ of E at a and a local chart ϕ of B at π(a) such that im ϕ̃ = U × V , imϕ = U and
ϕ ◦ π = pr1 ◦ ϕ̃, where pr1 : U × V → U denotes the projection onto the first factor. One then calls ϕ̃
a fibred chart of the submersion over ϕ.

Similarly, π is a locally trivial fibration when “it is locally in B the projection onto the first factor of
a product”: for every b ∈ B, there exist a local chart ϕ of B at b, a manifold F and a diffeomorphism
ϕ̃ of π−1(domϕ) onto imϕ × F such that ϕ ◦ π = pr1 ◦ ϕ̃, where pr1 : imϕ × F → imϕ is the
projection onto the first factor.

One can avoid the use of ϕ via an equivalent definition: for every b ∈ B, there exist an open subset Ω 3 b of B and
a diffeomorphism h of π−1(Ω) onto Ω× F such that π|π−1(Ω) is the first component of the local trivialisation h of π.

Clearly (taking local charts of F ) a fibration is a submersion and (by the very definition of a
submanifold) the fibres π−1(b) of a submersion are submanifolds. When π is a fibration, one calls E
(the total space of) a fibre bundle over B (called its base space) with projection π.

When F is an open subset of Rr, the diffeomorphism ϕ̃ in the definition of a fibre bundle (which
determines ϕ) is a chart of E. A vector bundle is defined by an atlas of such charts ϕ̃ with F = Rr
(or a vector space), such that the transition maps ϕ̃1 ◦ ϕ̃−1 are linear with respect to F (“atlas of
vector bundle”). Il follows that the fibres Eb = π−1(b) are endowed with a structure of vector space
isomorphic to F . Replacing “linear” and “vector” by “affine”, on gets the notion of an affine bundle,
whose fibres are affine spaces.
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Sections With the previous notation, a smooth section of the submersion π over the open subset U
of B is a smooth map σ of U into π−1(U) such that π ◦ σ = idU ; if U = B, it is called a section of
π. In the same way as a map is determined by its graph, a section is determined by its image σ(U),
that is a submanifold (it appears as a graph in the fibred charts ϕ̃). It is therefore natural—hence
the terminology—to consider that a smooth section of π over U is a submanifold meeting each fibre
of π|π−1(U) at a unique point and transversally (see the sequel).

The case of jets Il is immediate that the projections π`k : Jk(M,N)→ J `(M,N) defined for ` ≤ k
by π`k(jkaf) = j`af are fibrations, whose typical fibre F is the vector space

∏
`<j≤k L

j
s(Rn,Rp): just take

ϕ̃ = Φk
ϕ,ψ and ϕ := Φ`

ϕ,ψ in the definition. Similarly, taking ϕ̃ = Φk
ϕ,ψ and ϕ = ϕ (resp. ϕ := ψ) in the

definition of a submersion, one sees that the source projection sk : jkaf → a and the target projection
bk : jkaf → f(a) are submersions. By the Faà di Bruno formula,

• this defines on J1(M,N) a vector bundle structure with base space J0(M,N) = M ×N , projec-
tion π0

1 and typical fibre L(Rn,Rp)

• thus the tangent bundle TN is a vector bundle over N with typical fibre Rp = L(R,Rp), and
the cotangent bundle T ∗M a vector bundle over M with typical fibre Rn∗ = L(Rn,R)

• for k > 1, the fibre bundle Jk(M,N) is an affine bundle with typical fibre Lks(Rn,Rp) over
Jk−1(M,N)

• for ` < k ≤ 2` + 1, the space Jk(M,N) is endowed by the charts Φk
ϕ,ψ with an affine bundle

structure over J `(M,N)

• such is not the case for k > 2`+ 1, the transition maps between natural charts being polynomial
of degree at least 2 with respect to the typical fibre, but

• if N is a vector space, Jk(M,N) is endowed for 0 ≤ ` < k with a structure of affine bundle over
J `(M,N) (vector bundle if ` = 0) by the charts Φk

ϕ,idN .

The fibre TaM of TM over a ∈M is the tangent space of M at a.
Though it is a vector space, it should be pictured genuinely tangent to M at a when M is a submanifold of Rd:

indeed, TaM is obtained by looking at M through a microscope centred at a, taken as the origin of the affine space Rd.
The fibre T ∗aM of T ∗M identifies naturally to the dual space (TaM)∗, the duality form being

(γ̇(a), daf) 7→ (f ◦ γ)′(a).
The source projection sk : jkaf → a and the target projection bk : jkaf → f(a) are in fact fibrations,

whose typical fibres are respectively the set Jk0 (Rn, N) of all jk0f ∈ Jk(Rn, N) and the set Jk(M,Rp)0
of all jkaf ∈ Jk(M,Rp) with f(a) = 0.

The proof is the same as for the tangent and cotangent bundles: to each chart ϕ of M one can associate the diffeomor-
phism ϕ̃ of s−1

k (domϕ) onto imϕ×Jk0 (Rn, N) mapping jkaf to
(
ϕ(a), jk0 (f ◦ ϕ−1 ◦ τ−ϕ(a))

)
; similarly, to each chart ψ ofN

is associated the diffeomorphism ψ̃ of b−1
k (domψ) onto imψ×Jk(M,Rp)0 mapping jkaf to

(
ψ ◦ f(a), jka(τψ◦f(a) ◦ ψ ◦ f)

)
.

Examples of sections For every smooth map f of an open subset U of a manifold M into a manifold
N , the map a 7→ jkaf is a section jkf of the source projection Jk(M,N) → M over U , the kth order
jet of f , clearly a section of the source projection Jk(U,N)→ U ; such sections are called holonomic.

A section of the tangent bundle TM →M over U is called a vector field on U (at every point a of
U one grows a vector Xa ∈ TaU = TaM).

For every smooth real function f on an open subset U of M , the map df : a 7→ daf is a section of the
cotangent bundle T ∗M →M over U or, equivalently, a section of the cotangent bundle T ∗U ⊂ T ∗M ;
a section of the cotangent bundle T ∗U → U is called a “field of covectors” or Pfaffian form (or
differential form of degree 1, or differential 1-form, or 1–form) on U .
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More generally to each smooth map f : M → N is associated the map Tf of TM in TN defined
by Tf(γ̇(a)) = ˙f ◦ γ(a); its restriction Taf to each fibre TaM is a linear map into Tf(a)M (“linear
map tangent to f at a”): this is expressed by calling Tf a homomorphism of vector bundles.

Of course, Taf is identified to j1
af . In the seventies, some authors [11, 12] would replace for example

j2f by T (Tf), but the ensuing inflation of dimensions and redondance are unreasonable.

Infinitesimal characterisation of submersions, vertical and horizontal spaces and sections

It follows easily from the inverse mapping theorem that a smooth map
E
↓ π
B

between manifolds is a

submersion in the neighbourhood of a ∈ E if and only if the tangent linear map Taπ is onto; therefore,
π is a submersion if and only if Taπ is onto for every a ∈ E.

For each a ∈ E, setting b = π(a), the tangent space at a to the fibre π−1(b) of the submersion
π is the kernel kerTaπ; it is called the vertical space Va of π at a; in the case of a vector bundle, it
therefore identifies to the vector space Eb; for an affine bundle, it is identified to the underlying vector
space ~Eb of the fibre.

We can now characterise the smooth sections σ of the submersion π over an open subset U of B
as submanifolds: they are the submanifolds W of π−1(U) that meet each fibre π−1(b) with b ∈ U at
a unique point a, such that the tangent space TaW is horizontal, i. e., a complement in TaE of the
vertical space Va; in other words, π|W is a diffeomorphism of W onto U and the corresponding section
σ is the composed map of (π|W )−1 and the inclusion W ↪→ π−1(U).
Remarks In the case of the tangent bundle, one should therefore imagine the fibres TaM as vertical, transversal to M
(identified to the zero section). This somewhat contradicts the geometric intuition of submanifolds in Rd, for which TaM
lies along M , but one must understand that by identifying each TaM to the affine subspace so obtained, one gets a very
bad representation of TM : in the case where M is a curve in R3, for example, the surface of R3 so obtained admits M
as a cuspidal line at points where the curve is “truly spatial”, i. e., with nonegative curvature and torsion, even though
these are the least singular points of the surface lying in M .

Similarly, the geodesics of a surface S in Euclidean space R3 are the parametrised curves γ with values in S whose
acceleration γ′′(t) is normal to the surface for every t, whereas the second derivative γ̈(t) is horizontal for the Levi-Civita
connection (see the sequel). One has to get used to it. . .

Worse: the rank of a fibre bundle is the dimension of its fibre, i. e., the corank of its projection.

More fibre bundles The datum of a basis (“reference frame”) (e1, . . . , en) of a real vector space E
is equivalent to that of the isomorphism (x1, . . . , xn) 7→ x1e1 + · · ·+ xnen of Rn onto E. An essential
object, introduced (in a different language) by Élie Cartan, is the frame bundle of a manifold M
of dimension n, whose fibre over a ∈ M is the set of (linear) isomorphisms Aa of Rn onto TaM ;
therefore, it is a dense open subset of the vector bundle over M (generalising TM) consisting of all
j1
0f ∈ J1(Rn,M), and obviously a fibre bundle whose typical fibre is the linear group GLn(R) (Ln in

Ehresmann’s notation): this can be seen by restricting the natural charts ΦidRn ,ϕ of J1(Rn,M).
This frame bundle, denoted by Isom(M × Rn, TM) in [12] (this is a little misleading, as it might

make one believe that the sphere of dimension 2 is parallelisable in the sense given hereafter), is
naturally endowed with the action (B,Aa) 7→ Aa ◦B−1 of GLn(R), which is free and transitive in each
fibre: this is expressed by calling it a principal bundle with structural group GLn(R).

Ehresmann’s “regular infinitesimal structures” are “principal subbundles of the frame bundle”.
For example, the datum of a Riemannian metric on M (i. e., a scalar product in each tangent

space TaM , depending smoothly on a in the sense that the real function which to v ∈ TM associates
its scalar square is smooth) is equivalent to the datum of the subbundle of the frame bundle consisting
of those Aa which map the canonical basis of Rn to an orthonormal basis for the scalar product in
TaM . This is a principal bundle whose structural group is the orthogonal group On, the orthonormal
frame bundle of the Riemannian manifold. The scalar product on TaM is the image of the standard
Euclidean scalar product on Rn by any of of those “orthonormal frames” Aa.

Similarly, given a closed subgroup H of GLn(R), the datum of a principal subbundle of the frame
bundle, with structural group H, is equivalent to the datum, for each a ∈M , of one of the frames Aa,
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the others being determined by the action of H. The “structure” preserved (or defined) by H is then
tranferred to TaM by any of the Aa’s.

If one wishes frames Aa to depend smoothly on a, one must stay at the local level: otherwise, one would get an
isomorphism of the trivial vector bundle M × Rn onto TM , an isomorphism that does not exist [24] in the case of
manifolds as respectable as the sphere of dimension 2: they are not parallelisable.

For each Aa, the n components of A−1
a (coordinate functions in the frame Aa) are linear forms on

TaM ; they constitute the “coframe” mentioned by Élie Cartan and Ehresmann; given a section of the
frame bundle under study over the open U of M , i. e., for each a ∈ U , the choice of one frame Aa in
the fibre, the components of a 7→ A−1

a are therefore Pfaffian forms on U .

Pfaffian systems and systems of partial differential (in)equations

The space Jk(M,N) is not only a fibre bundle in many ways: for k > 0, it is also endowed with a
canonical Pfaffian system, easy to understand when M = Rn and N = Rp.

A section σ of the source projection of Jk(Rn,Rp) = Rn ×
∏k

0 L
j
s(Rn,Rp) over an open subset U

of Rn is a map of U into Jk(Rn,Rp) that writes σ(x) = (x, y0(x), . . . , yk(x)); clearly, it is holonomic
(i. e. of the form jkf) if and only if, modulo the canonical identification of L

(
Rn, Lj(Rn,Rp)

)
to

Lj+1(Rn,Rp) familiar in differential calculus, Dyj(x) = yj+1(x) for 0 ≤ j < k for all x ∈ U .
Let us express this viewing σ as the submanifold W = σ(U): if one writes z = (x, y0, . . . , yk) the

points of Jk := Jk(Rn,Rp), the section is holonomic if and only if, at every point z of W , the tangent
space TzW (in other words, the image of Dσ(x)) is contained in the subspace Kkz = Kkz (Rn,Rp) of
TzJ

k ' Jk defined by the equations

dyj = yj+1 dx pour 0 ≤ j < k, (1)

i. e. consisting of those vectors δz = (δx, δy0, . . . , δyk) such that, modulo the canonical identification
just mentioned, δyj = yj+1 δx for 0 ≤ j < k; here, yj+1 δx is the interior product (“contraction”) of
yj+1 by δx, i. e., the symmetric j–linear map (δx1, . . . , δxj) 7→ yj+1(δx, δx1, . . . , δxj).

One calls (1) the canonical Pfaffian system or Cartan system (or canonical contact structure) of
Jk(Rn,Rp); equivalently, one can give the same name to the field of vector subspaces (“plane field”)
z 7→ Kkz , that can be seen geometrically as the sub-vector bundle Kk = Kk(Rn,Rp) of TJk ' Jk × Jk
union of the subsets {z} × Kkz .

One can see that, for each z ∈ Jk, the “plane” Kkz is the closure2 of the union of all TzW when
W varies among the holonomic sections through z; using the natural charts, this yields the following
fact: given now two manifolds M and N , one defines a Pfaffian system Kk(M,N) on Jk(M,N), i. e.
a sub-vector bundle of the tangent bundle TJk(M,N), by the fact that its fibre over z ∈ Jk(M,N)
is the closure in TzJk(M,N) of the union of the tangent spaces at z to holonomic sections through z.
Naturally,

• it is called the canonical Pfaffian system or Cartan system (or canonical contact structure) of
Jk(M,N)

• one has TzΦ(Kz(M,N)) = KΦ(z)(Rn,Rp) for every natural chart Φ of Jk(M,N) and every jet
z ∈ dom Φ, implying that Kk(M,N) is indeed a sub-vector bundle of TJk(M,N).

The reader has understood that a Pfaffian system on a manifold V can be defined as a sub-vector
bundle P of the tangent bundle TV .

In “real life”, we are going to see that the notion can be more complicated: the manifold V may have singular points,
the dimension of the fibre Pz may vary at some points z ∈ V , etc.

An integral manifold of P is a submanifold W of V verifying TzW ⊂ Pz for every z ∈ W ; in
this langage, a section of the source projection of Jk(M,N) is holonomic if and only if, seen as a
submanifold, it is an integral manifold of the Cartan system—which admits other integral manifolds,
for example the fibres of the projection onto Jk−1(M,N).

2One has to “catch” also the vertical vectors for the projection onto Jk−1.
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Example If dimN = 1, the Cartan system K1(M,N) is a field of hyperplanes, authentic contact
structure in today’s restrictive sense, and its integral manifolds of dimension n are called Legendre
submanifolds, a terminology due to V.I. Arnold. In particular, (1) consists of one equation, and the
Pfaffian form α = dy0−y1 dx on J1(Rn,R) is a contact form, meaning that dαz induces a nondegenerate
bilinear form on K1

z = kerαz; according to a theorem of Darboux [8], up to diffeomorphism, all contact
forms in dimension 2n+ 1 are locally equal to α.

Systems of partial differential equations A system of q partial differential equations of degree
k in p unknown functions of n variables writes in a condensed way F (jkxy) = 0, where F is a map of an
open subset of Jk(Rn,Rp) into Rq, the variable is x ∈ Rn and the unknown function y (with values in
Rp). A solution f of the system defined in an open subset of Rn is identified to jkf , i. e. to a holonomic
section of the source projection Jk(Rn,Rp) → Rn over U that takes its values in E = F−1(0) or, in
other words, to an integral manifold of the canonical contact structure contained in E and projecting
diffeomorphically onto U .

A system of partial differential equations therefore identifies to a Pfaffian system, provided the
name is given to the pair consisting of (1) and of the equation F (z) = 0. To use our first definition,
one should take as a manifold V the smooth part of E (when F is analytic, this makes sense) and as
a Pfaffian system Pz := Kz ∩ TzV , a “fibre bundle” whose rank may have an unfortunate propension
to jump (for example, if k = n = p = q = 1, it may well happen that Kz = TzV at some points, which
should be excluded from V if one is looking for a genuine sub-vector bundle).

Of course, all this extends to the case where E is a submanifold of codimension q of Jk(M,N),
not necessarily defined globally by q real equations.

For k = p = q = 1, it is fruitful to first forget the projection J1 → J0 and consider the “geometric
solutions” of the equation, i. e. the Legendre submanifolds contained in E, whether they are or not
sections of the source projection. They sometimes have a physical meaning: for example, caustics are
the projections into J0 of such geometric solutions. This case, whose local theory goes back to the
nineteenth century, still gives rise to new global developments.

Systems of partial differential inequations The spaces of jets also serve as the framework of
the homotopy principle or h–principle [18], introduced by Gromov (following Thom [25]) in his thesis
as an astounding abstraction of Smale’s classification of immersions. The idea is dual to what has just
been done: in the case of immersions of a manifold M into a manifold N , one considers in J1(M,N)
the open subset Ω consisting of jets of immersions, i. e. j1

af such that Taf is injective. Given two
immersions f0, f1 of M into N , the question is whether they are regularly homotopic, i. e. whether
there exists a smooth path [0, 1] 3 t 7→ ft joining them in the space of immersions; in other words,
one wonders whether there exists a path of holonomic sections j1ft of J1(M,N)→M joining j1f0 to
j1f1 and such that all these sections take their values in Ω. Naturally, the same problem can be posed
for various subsets Ω of various Jk(M,N)’s; the homotopy principle (when it is true) states that the
question admits a positive answer if and only if this is the case forgetting the contact structure but not
the source projection, meaning that one can join the two holonomic sections by a path in the set of
not necessarily holonomic sections with values in Ω. With time, this has become astonishingly simple
[15], back to Thom in fact (see Laudenbach’s comment of [25] in [26]).

Connections

Here again, Ehresmann did a good job. The problem is that a submersion
E
↓ π
B

does not allow even

locally the unique lifting of paths, except when it is a local diffeomorphism at every point (in which
case, if it is a fibration, one calls it a covering): if ϕ̃ is a fibred chart of π, with image U × V , over
a chart ϕ of B, then, for every path γ with values in domϕ, any path γ̃ with values in dom ϕ̃ of
the form γ̃(t) = ϕ̃−1(ϕ ◦ γ(t), f(t)) with dom γ̃ = dom γ is a lift(ing) of γ, meaning that π ◦ γ̃ = γ;
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therefore, even if one imposes to γ̃ a given value a ∈ π−1(γ(t0)) for t = t0, there are many possible
choices f , none of which is a priori better than the others. The datum of a connection suppresses this
indeterminacy and provides (at least locally) a unique lifting γ̃ of γ such that γ̃(t0) = a.

For example, if E is the frame bundle of B (or a principal subbundle), a connection allows one to
obtain along γ a moving frame γ̃(t), well determined by its value at t0. If the connection is better
than the others, so will be this moving frame.

Definition A connection on the submersion π is a field of horizontal spaces, i. e., a Pfaffian system
H on E such that Ha is, for every a ∈ E, a complementary subspace in TaE of the vertical space
Va = kerTaπ = Ta

(
π−1(a)

)
; in other words, Taπ|Ha is an isomorphism onto Tπ(a)B.

The datum of Ha is equivalent to that of the projection of TaE onto Va parallel to Ha, chosen by
Dieudonné [12] to define a connection; it can be denoted v 7→ vV (vertical component of the tangent
vector v). The unique lifting (“horizontal lifting”) γ̃ announced will be defined by the initial condition
and by the fact that the derivative ˙̃γ(t) is horizontal for every t, which writes (notation of [23])

Dγ̃

dt
:= ˙̃γ(t)V = 0. (2)

Indeed, the connection H “reads” as follows in a fibred chart ϕ̃ of E over ϕ, with image the open U×V
of Rn × Rr: for every a ∈ dom ϕ̃, if ϕ̃(a) = (x, y), the image of Ha by Taϕ̃ is the graph of a linear
map −Γ(x, y) of Rn into Rr: one defines in that way the Christoffel map Γ : U × V → L(Rn,Rr) of
the connection H in the fibred chart ϕ̃, and it is smooth because H is; the equation vV = 0 expressing
that v ∈ TE is horizontal therefore writes δy+Γ(x, y)δx = 0, where ((x, y), (δx, δy)) = T ϕ̃(v). Hence,
if γ is a path in domϕ and x(t) := ϕ ◦ γ(t), a lifting γ̃(t) = ϕ̃−1(x(t), y(t)) of γ with values in dom ϕ̃
is horizontal if and only if the path t 7→ y(t) verifies the differential equation

y′(t) + Γ(x(t), y(t))x′(t) = 0

expressing (2); this enables one to use Cauchy’s theorem on differential equations to obtain the local
existence and uniqueness of the lifting γ̃ taking a given value at time t0.

Its global existence is ensured for example when π is proper, i. e., when π−1(K) is compact for
every compact K of B: indeed, in that case, the solution γ̃ of (2) can not “go to infinity” at time
t ∈ dom γ. Let us deduce from this a fundamental result in differential topology:

Theorem (Ehresmann) If the submersion π is proper, then it is a fibration.
Proof For every b ∈ B, there exist an open subset Ω 3 b of B and a connection H on π|π−1(Ω): to see it, cover the
compact manifold π−1(b) by the domains of finitely many fibred charts ϕ̃j and take Ω =

⋂
domϕj , where the ϕj ’s are

the charts of B defined by the ϕ̃j ’s; restricting the ϕ̃j ’s, we may assume domϕj = Ω for every j, so that the dom ϕ̃j ’s
form a finite cover of π−1(Ω) and that there exists [11] a smooth partition of unity θj subordinate to this cover; for each
j, there is a connection Hj on π|dom ϕ̃j , for example that whose Christoffel map in the fibred chart ϕ̃j is identically zero;
denoting by v 7→ vj,V the corresponding projection, one can then take the connection H whose projection TaE → Va is
defined by vV :=

∑
j
θj(a)vj,V for each a ∈ π−1(Ω) (as usual, the sum is on those j’s such that a ∈ dom ϕ̃j).

Restricting Ω, one may assume that there exists a chart ϕ of B with domϕ = Ω such that ϕ(Ω) is an open ball
of centre 0 = ϕ(b) in Rn. For each y ∈ Ω, one therefore defines a path γy : [0, 1] → Ω joining y to b by γy(t) :=
ϕ−1((1 − t)ϕ(y)

)
; for all x ∈ π−1(y), the path γy admits a unique horizontal lift γ̃x : [0, 1] → E such that γ̃x(0) = x,

and the map x 7→ γ̃x(1) of π−1(y) in π−1(b), called parallel transport from time 0 to time 1 along the path γy for the
connection H, is obviously bijective (its inverse is obtained by lifting t 7→ γy(1− t)); as solutions of differential equations
depend smoothy on initial conditions and parameters, the map x 7→ γ̃x(1) is a diffeomorphism, and so is the map h of
π−1(Ω) onto Ω× π−1(b) given by h(x) :=

(
π(x), γ̃x(1)

)
, that is the required local trivialisation.

Remarks Conversely, a fibration with compact fibres is obviously proper. As in the definition of a fibration, if one
wants the typical fibre to be unique up to diffeomorphism, B must be assumed connected.

This very robust theorem holds, with the same proof, in the Banach framework. Proceeding as in the first part of
the proof, one can see that a submersion defined on a paracompact manifold (as in real life) admits a connection, which
can be used in the second part of the proof, Ω being the domain of any chart ϕ vanishing at b whose image is a ball.
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An example The contact structure K1(M,R) is a connection for the fibration π : j1
af 7→ daf of

J1(M,R) onto T ∗M . We shall go back to it in the section on curvature.

Integral of differential forms, pullbacks, exterior derivative

Direct images of paths, curvilinear integral, pullback of functions and 1-forms Let g be
a smooth map of a manifold M into a manifold N .

The (direct) image under g of a path γ in M is the path g∗γ := g ◦ γ in N ; similarly, the inverse
image (or pullback) by g of a real function f on N is the real function g∗f := f ◦ g on M .

When γ is defined on a segment [t0, t1] (γ is then called an arc), the (curvilinear) integral along γ
of a Pfaffian form α on M is by definition∫

γ
α :=

∫ t1

t0
αγ(t)(γ̇(t)) dt,

where αγ(t) ∈ T ∗γ(t)M = (Tγ(t)M)∗ denotes the value of α at γ(t). This integral is invariant under
parameter changes : if ϕ : [s0, s1] → [t0, t1] verifies ϕ(sj) = tj , then

∫
γ◦ϕ α =

∫
γ α; when α is the

differential df of a real function f on M , since dfγ(t)(γ̇(t)) = (f ◦ γ)′(t),∫
γ
df = f(γ(t1))− f(γ(t0)) (mean value formula). (3)

A Pfaffian form α is determined by the integrals
∫
γ α.

Indeed, for every x ∈ M and every v ∈ TxM , there exists an arc γ : [0, 1] → M such that γ̇(0) = v (take
a chart ϕ of M such that ϕ(a) = 0 and a path of the form ϕ ◦ γ(t) = θ(t ϕ∗v) t ϕ∗v, where ϕ∗v = Txϕ(v) and
θ : imϕ → [0, 1] is C∞ with compact support, equal to 1 near 0). If γε : [0, 1] → M is given by γε(t) := γ(εt), then
lim
ε→0

ε−1 ∫
γε
α = lim

ε→0

∫ 1
0 αγ(εt)

(
γ̇(εt)

)
dt = αγ(0)

(
γ̇(0)

)
= αxv.

The pullback by g of a Pfaffian form β on N is the Pfaffian form g∗β on M such that
∫
γ g
∗β =

∫
g∗γ

β
for every arc γ in M ; it is given by the formula

(g∗β)x = βg(x) ◦ Txg.

For f : M → R, the chain rule, in intrinsic terms

T (f ◦ g) = (Tf) ◦ Tg,

therefore writes g∗df = d(g∗f).

Differential forms, their integral on parametrised rectangles and their pullbacks A dif-
ferential form of degree k or differential k-form, or k-form α on a manifold M is a field of alternate
k-linear forms αx : (TxM)k → R, i. e., a smooth section of the vector bundle

∧k T ∗M over M whose
fibre over x ∈M is the space Lkalt(TxM,R) of alternate k-linear forms on TxM ; an atlas of this vector
bundle consists (naturally) of the natural charts

∧k T ∗ϕ : αx 7→ (ϕ(x), (Txϕ)∗ αx) ∈ imϕ×Lkalt(Rn,R),
where ϕ is a chart of M with values in Rn (the linear tangent map Txϕ therefore maps TxM onto
Tϕ(x)Rn = Rn), αx ∈ Lkalt(TxM,R) and (Txϕ)∗ αx(v1, . . . ,vk) := αx

(
(Txϕ)−1v1, . . . , (Txϕ)−1vk

)
for

v1, . . . ,vk ∈ Rn.
For every smooth map ρ : [0, 1]k → M , the integral of α along the parametrised rectangle ρ of

dimension k is by definition ∫
ρ
α :=

∫
[0,1]k

αρ(t)(∂1ρ(t), . . . , ∂kρ(t)) dt

(integral with respect to Lebesgue measure), where ∂jρ(t) ∈ Tρ(t)M is the partial derivative of ρ with
respect to the jth factor and αρ(t) ∈ Lkalt(Tρ(t)M,R) denotes the value of α at ρ(t).

A k-form α is determined by the integrals
∫
ρ α.

Indeed, for x ∈ M and v1, . . . ,vk ∈ TxM , there exists (same proof as for k = 1, replacing tϕ∗v by
∑

tjϕ∗vj) a
parametrised rectangle ρ : [0, 1]k → M such that ∂jρ(0) = vj for every j; if ρε : [0, 1]k → M is given for 0 < ε ≤ 1 by
ρε(t) := ρ(εt), then lim

ε→0
ε−k

∫
ρε
α = αx(v1, . . . ,vk) as for k = 1.
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Given a smooth map g : M → N between manifolds, the pullback by g of a k-form β on N is the
k-form g∗β on M such that

∫
ρ g
∗β =

∫
g∗ρ

β for every parametrised rectangle ρ of dimension k in M ,
using the notation g∗ρ := g ◦ ρ; it is given by the formula

(g∗β)x = βg(x) ◦ (Txg)k,

where (Txg)k(v1, . . . ,vk) := (Txg(v1), . . . , Txg(vk)) for v1, . . . ,vk ∈ TxM .

The exterior derivative That of a Pfaffian form α on M is the 2-form dα on M such that∫
ρ
dα =

∫
∂ρ
α (4)

for every C2 parametrised rectangle ρ : [0, 1]2 → M , where ∂ρ denotes the oriented boundary of ρ,
obtained by concatenation of the paths [0, 1] 3 s 7→ ρ(s, 0), [0, 1] 3 s 7→ ρ(1, s), [0, 1] 3 s 7→ ρ(1− s, 1)
and [0, 1] 3 s 7→ ρ(0, 1− s); it is given par

dαρ(t)(∂1ρ(t), ∂2ρ(t)) = ∂1(αρ(t)∂2ρ(t))− ∂2(αρ(t)∂1ρ(t)). (5)

More generally, for each k ≥ 1, the exterior derivative of a k-form α on M is the (k + 1)-form dα on
M verifying (4) for every parametrised rectangle ρ of dimension k + 1, setting

∫
∂ρ
α :=

k+1∑
i=1

(−1)i+1
( ∫

∂ρ1
i

α−
∫
∂ρ0
i

α
)
,

where the “faces” ∂ρji of ρ are the parametrised rectangles of dimension k defined by

∂ρji (s) := ρ((s`)`<i, j, (s`)`≥i), s = (s1, . . . , sk) ∈ [0, 1]k, j = 0, 1;

the identity (5) is the particular case k = 1 of the formula

dαρ(t)(∂1ρ(t), . . . , ∂k+1ρ(t)) =
k+1∑
i=1

(−1)i+1∂i
(
αρ(t)

(
(∂`ρ(t))`<i, (∂`ρ(t))`>i

))
, (6)

valid when ρ is a C2 map with values in M defined on an open subset or an “open subset with corners”
of Rk, for example [0, 1]k.

This formula follows from (4), the mean value formula and the Fubini theorem. indeed, if one alleviates notation by
setting for example α

(
∂1ρ(t), . . . , ∂kρ(t)

)
:= αρ(t)

(
∂1ρ(t), . . . , ∂kρ(t)

)
, then∫

∂ρ1
i

α−
∫
∂ρ0

i

α =
∫

[0,1]k

(
α
(
∂sjρ

(
(s`)`<i, 1, (s`)`≥i

))
1≤j≤k

− α
(
∂sjρ

(
(s`)`<i, 0, (s`)`≥i

))
1≤j≤k

)
ds

=
∫

[0,1]k

∫ 1

0
∂τα
(
∂sjρ

(
(s`)`<i, τ, (s`)`≥i

))
1≤j≤k

dτ ds

=
∫

[0,1]k+1
∂iα
((
∂`ρ(t)

)
`<i
,
(
∂`ρ(t)

)
`>i

)
dt

where t :=
(
(s`)`<i, τ, (s`)`≥i

)
. Naturally, the “miracle” is that the right-hand side of (6) depends only on the ∂jρ(t)’s:

this can be checked in a chart, which reduces the problem to the case where M is an open subset U of Rn, and using
the fact that, then, ∂i∂`ρ = ∂`∂iρ. Indeed, in that case, α is identified to a map of U into Lkalt(Rn,R) (its second
component) and dα : U → Lk+1

alt (Rn,R) is given by dα(x)(v1, . . . ,vk+1) =
∑k+1

i=1 (−1)i+1Dα(x)(vi)
(
(v`)`<i, (v`)`>i

)
,

x ∈ U , v1, . . . ,vk+1 ∈ Rn.

This definition of the exterior derivative is not too intrinsic, but it shows that a k-form is meant
to be integrated on objects of dimension k, exterior derivation appearing as the dual (“coboundary”)
of the “oriented boundary” ∂ via the Stokes formula (4)—which generalises (3) and yields easily the
other “Stokes formulae”. Whitney even constructed the theory of differential forms out of it [29].
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It follows at once from the definitions of the pullback and the exterior derivative that

d(g∗β) = g∗dβ (7)

for every smooth map g : M → N between manifolds and every differential form β on N .
Moreover, for every differential k-form α on M ,

ddα = 0. (8)

Indeed, the integral of ddα on every parametrised rectangle ρ : [0, 1]k+2 → M is zero since by definition
∫
ρ

ddα =

k+2∑
i=1

(−1)i+1
(∫

∂ρ1
i

dα−
∫
∂ρ0

i

dα
)

=
k+2∑
i=1

(−1)i+1
(∫

∂∂ρ1
i

α−
∫
∂∂ρ0

i

α
)

, in other words

∫
ρ

ddα =
k+2∑
i=1

(−1)i+1
k+1∑
j=1

(−1)j+1
(∫

∂(∂ρ1
i
)1

j

α−
∫
∂(∂ρ1

i
)0

j

α−
∫
∂(∂ρ0

i
)1

j

α+
∫
∂(∂ρ0

i
)0

j

α
)
,

a sum where “each face of dimension k of ρ appears twice and with opposite signs ” as

∂(∂ρ`i)mj = ∂(∂ρmj )`i−1, 1 ≤ j < i ≤ k + 2, `,m ∈ {0, 1}.

If k = 1, these faces correspond to the edges of the cube [0, 1]3.

A differential form β is closed when dβ = 0; it is exact when it is the exterior derivative β = dα
of a differential form, called a primitive of β and obviously unique up to the addition of a closed form
(when one adds two sections α and β of a vector bundle E, it is of course fibrewise addition, i. e.,
(α+ β)(x) = α(x) + β(x) in Ex); the formula (8) therefore means that every exact form is closed.

Flows, Lie derivative and Lie bracket

Flows and Lie derivative To every smooth vector field X on the manifold M is associated its flow
or one-parameter (pseudo)group gtX , defined as follows: for every a ∈ M , the map t 7→ gtX(a) is the
path in M that is the maximal solution of the differential equation ẋ = X(x) (“integral curve of X ”)
passing through a at time t = 0. Here, maximal means “defined on an interval as large as possible.”
Note As the integral curves are parametrised, they are not merely one-dimensional integral manifolds.

By the theory of differential equations, the definition domain of gX : (t, a) 7→ gtX(a) is an open
subset of R ×M and gX is as smooth as X; clearly, gsX(gtX(a)) = gs+tX (a) when the left-hand side
makes sense or, equivalently, for a ∈ dom(gtX)∩dom(gs+tX ); in particular, since g0

X = idM , each gtX is
a diffeomorphism of the open subset dom gtX ⊂M onto the open subset dom g−tX , and (gtX)−1 = g−tX .

If X has compact support, the solutions of ẋ = X(x) cannot “go to infinity in finite time”; therefore,
dom gX = R ×M and gX is a smooth action of the additive group R on M , meaning that t 7→ gtX
is a homomorphism of R into the group of diffeomorphisms of M onto itself; in that case, X (or its
flow) is said to be complete.

The Lie derivative of a tensor field τ on M (here, a differential form of degree k or, as a little
further, a vector field) with respect to X is by definition

LXτ := d

dt
gt ∗X τ

∣∣∣
t=0

, (9)

that is a tensor field of the same nature as τ ; for example, the Lie derivative of a real function f on
M is the real function on M which is the (interior) product or contraction df(X) of df by X:

LXf = df(X) : x 7→ dxf(Xx).

For k > 0, the Lie derivative of a differential k-form α on M verifies the Cartan formula

LXα = d(αX) + (dα)X, (10)

where αX and (dα)X denote the interior products (or contractions) x 7→ αxXx and x 7→ (dαx)Xx of
α and dα by X, a notation introduced when we wrote the Cartan system of Jk(Rn,Rp).
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Though Élie undoubtfully knew and used the Cartan formula [4], it took some time for the Lie derivative—as for
many primitive notions—to be recognised as such and it is Henri who wrote (10) under this form. One can, if one really
wants to, take it as an intrinsic but incomprehensible definition of the exterior derivative.

Its proof is very easy: for all x ∈ M and (v1, . . . ,vk) ∈ TxM , there exists ρ1 : (Rk, 0) → (M,x) such that
vj = ∂jρ1(0), and one can take ρ(t) := gt1X ◦ ρ1(t2, . . . , tk+1) and t = 0 in (6). Here is an important application:

Poincaré lemma Every closed differential form α of degree k ≥ 1 on M is locally exact: each
a ∈M has an open neighbourhood Ω such that α|Ω is exact.

Indeed, if Ω is the domain of a chart ϕ vanishing at a whose image is a ball B of Rn, let X be the vector field on Ω
that is the pullback by ϕ of the radial field Yy := y on B; for every x ∈ Ω, the points gtX(x) = ϕ−1(etϕ(x)

)
with t ≤ 0

are well defined and, by (10), since dα = 0,

αx = (g0 ∗
X α)x = (g0 ∗

X α)x − lim
t→−∞

(gt ∗X α)x =
∫ 0

−∞

d

dt
(gt ∗X α)x dt =

∫ 0

−∞
(gt ∗X LXα)x dt

=
∫ 0

−∞

(
gt ∗X d(αX)

)
x
dt =

∫ 0

−∞
d
(
gt ∗X (αX)

)
x
dt =

(
d

∫ 0

−∞
gt ∗X (αX) dt

)
x
,

where the last integral is in each fibre (one can find it more secure to work in the chart ϕ and take as variable s = et).

The de Rham cohomology For k > 0, the quotient of the vector space of closed forms of degree k
on M by the vector space of exact forms of degree k is the kth de Rham cohomology space Hk(M,R); as
every alternate k-linear form on a space of dimension < k is zero, Hk(M,R) = {0} for k > dimM ; one
denotes by H0(M,R) the space of locally constant functions on M and H•(M,R) :=

⊕
k≥0

Hk(M,R).

Pullback of vector fields, Lie brackets Given a smooth map h : M → N between manifolds, a
pullback of a vector field Y on N by h, if it exists, is a vector field X on M such that h “maps the
integral curves of X onto those of Y ”, meaning that h◦gtX = gtY ◦h; as this relation holds for t = 0, it
is equivalent to the one obtained by derivating it with respect to time, which writes Txh(Xx) = Yh(x)
for every x ∈ X; one therefore sees that if h is etale, i. e., if all the Txh’s are isomorphisms, then Y
has a unique pullback by h, denoted by h∗Y and given by the formula

(h∗Y )x = (Txh)−1Yh(x).

The formula (9) therefore has a meaning when τ is a vector field Y on M , and

LXY = [X,Y ]

is the Lie bracket of the vector fields X and Y , such that

L[X,Y ]f = LXLY f − LY LXf

for every real function f on M (“derivation of a product”: LXLY f = LLXY f + LY LXf).
The Jacobi identity [[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0 follows, making the C∞ vector fields

on M an archetypical Lie algebra.
By the formula for the derivation of a product and (9), for every choice of the function f , the

tensor field τ , the vector fields X,Y and the differential form α of degree k > 0 on M , one has

LX(fτ) = (LXf)τ + fLXτ
LX(αY ) = (LXα)Y + αLXY

= d(αX)Y + (dα)XY + α[X,Y ].
(11)

If ϕ is a chart of M with values in Rn, setting Xϕ(x) := Txϕ(Xϕ−1(x)) ∈ TxRn = Rn for every vector
field X on M and every x ∈ imϕ, one has

[X,Y ]ϕ(x) = DYϕ(x)Xϕ(x)−DXϕ(x)Yϕ(x). (12)
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Some applications of the Cartan formula

Infinitesimal contact transformations Let α be a contact form on a manifold V—recall that
this means that TxM = kerαx ⊕ ker dαx for every x ∈ V ; let K be the associated contact structure
Kx := kerαx. An infinitesimal contact transformation or Lie field for K is a vector field X on V
whose flow gt := gtX preserves K, meaning that Txgt(Kx) = Kgt(x) for every (t, x) ∈ dom gX : this is
expressed by calling the maps gt contact transformations or (local) automorphisms of K.
Theorem (Libermann) Under these hypotheses, a Lie field X is determined by its Hamiltonian
−αX with respect to α, and every C2 real function F on V is the Hamiltonian of a C1 Lie field XF .
In particular, if α is C∞, the map F 7→ XF is an isomorphism of C∞(V,R) onto the space of C∞ Lie
fields for K, an isomorphism whose inverse is X 7→ −αX.
Indeed, X is a Lie field if and only if its flow gt verifies (gt∗α)x = µt(x)αx for every x ∈ dom gt, which (after derivation
with respect to t) writes LXα = λα, where λ is a real function on V ; by (10), the relations between X and F := −αX
are therefore expressed for each x ∈ V by the two equations

−αxXx = F (x) (13)
−dxF + dαxXx = λ(x)αx; (14)

if Xx = Yx + Zx in the decomposition TxV = Kx ⊕ ker dαx, (13) determines Zx knowing F (x) and vice versa since
αx|ker dαx is an isomorphism; as for (14), it writes

−dxF |ker dαx = λ(x)αx|ker dαx

dxF |Kx = (dαx Yx)|Kx ;

the first equation determines λ(x) knowing dxF |ker dαx and vice versa, and the second yields Yx knowing dxF |Kx and
vice versa, as the nondegenerate bilinear form dαx|(Kx)2 induces the isomorphism v 7→ (dαxv)|Kx of Kx onto its dual.

Having always [9] attributed this result to Sophus Lie, I nearly asked who was that Bermann the
first time it was rightly [20] credited to Paulette Libermann in my presence. It implies that the group
of automorphisms of K is huge, the vector fields XF with F compactly supported being complete.
Application: local theory of first order partial differential equations Under these hypotheses,
given F : V → R, let E := F−1(0). Two preliminary observations:

i) as there is no nondegenerate alternate bilinear form on a space of odd dimension, V is of odd
dimension 2n+ 1

ii) an integral manifold W of K is of dimension at most n; indeed, if ι : W ↪→ V is the inclusion, the
relation ι∗α = 0 expressing that W is integral implies that ι∗dα = d(ι∗α) = 0, i. e., that each tan-
gent space TxW is included in its orthogonal for the nondegenerate bilinear form dαx|(Kx)2 , hence
dimTxW ≤ 2n− dimTxW ; the integral manifolds of dimension n are the Legendre manifolds of
K.

For every x ∈ E,

iii) the previous proof shows that X = XF vanishes at x if dxF = 0, since then Yx = Zx = 0

iv) it follows from (13)–(14) and from the antisymmetry of dαx that dxF (Xx) = 0; hence, XF is
tangent at x to E for dxF 6= 0 (F is a submersion in an open neighbourhood U of x, therefore
U ∩ E is a submanifold of codimension 1 with tangent space ker dxF at x)

v) it follows from (13) that Xx belongs to Kx.

Assertions (iii)–(iv) imply that one has gtX(E ∩dom gtX) ⊂ E for every t; assertion (v), together with
the fact that the maps gtX preserve K, therefore yields the following facts:

vi) for every integral manifold W0 ⊂ E of K and every a ∈ W0 with Xa 6∈ TaW0, there exists an
open subset Ω 3 (0, a) of R×W0 such that the map j : Ω→ E defined by j(t, x) := gtX(x) is a
diffeomorphism onto an integral manifold W of K, which therefore verifies dimW = dimW0 + 1

vii) this imposes dimW0 < n by (ii); hence, a geometric solution of the generalised partial differential
equation E, i. e., a Legendre manifold L contained in E, verifies Xx ∈ TxL for every x ∈ L
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viii) if dimW0 = n− 1 (one then calls (E,W0) a generalised Cauchy problem, well-posed at a), then
W is a geometric solution of E

ix) conversely, by (vii), every geometric solution W of E is obtained in this fashion in the neigh-
bourhood of each a ∈ W where Xa is nonzero (just take for W0 a hypersurface of W passing
through a with Xa /∈ TaW0); this proves the local existence and uniqueness of the solution of a
generalised Cauchy problem.

If V = J1(Rn,R), K = K1(Rn,R) and, denoting by (t, x) ∈ R × Rn−1 the points of Rn, the equation
E is of the form ∂ty = g(t, x, y, ∂xy), a well-posed classical Cauchy problem is the datum of the
value y0(x) of the unknown function for t = 0; this does determine the generalised Cauchy datum
W0 =

{(
0, x, y0(x), g(0, j1

xy0), Dy0(x)
)}
⊂ E, which defines at each of its points a well-posed problem

whose local generalised solutions W are holonomic sections of the source projection J1(Rn,R) → Rn
contained in E, jets order 1 of the local solutions of the Cauchy problem.
Hamiltonian vector fields on a symplectic manifold Paulette Libermann is not foreign [20] to
their intrinsic definition. A symplectic manifold is the pair consisting of a manifold V and a symplectic
form on V , i. e., a closed 2-form ω such that every ωx ∈ L2

alt(TxV,R) is nondegenerate (the dimension
of V must therefore be even). A vector field X on V is symplectic when its flow gt = gtX preserves ω,
meaning that gt ∗ω = ω in dom gt for every t (the maps gt are therefore symplectic tranformations of
ω). As this relation is verified if t = 0, this amounts to saying that 0 = d

dtg
t ∗ω = gt∗LXω for every

t, i. e., that LXω = 0; since ω is closed, it follows from (10) that this is the case if and only if the
Pfaffian form ωX is closed.

When it is exact, ωX = dH, one says that X is Hamiltonian and that the function H is a
Hamiltonian of X; il determines X, and each real function H on V is the Hamiltonian of a unique
Hamiltonian vector field XH : indeed, for each x ∈ V , the equation ωxv = dxH has a unique solution
v ∈ TxV since ωx is nondegenerate. The group of (global) symplectic transformations of ω therefore
is huge too, since it contains the maps gtXH with H compactly supported.

As LXHH = dH(XH) = ω(XH , XH) = 0, the flow of X = XH preserves H, meaning that
H(gtX(x)) = H(x) for every (t, x) ∈ dom gX (“conservation of energy”); one also calls H a first
integral of XH . Since LXHK = dK(XH) = ω(XK , XH) = −LXKH for all real functions H and K
on V , the Poisson bracket {H,K} := LXHK (“Poisson parentheses”) is antisymmetric; this yields the
(trivial but quite useful) Hamiltonian version of a theorem by Emmy Noether: if “XK is an infinitesimal
symmetry of H ”, meaning that H is a first integral of XK , then K is a first integral of XH . The
Poisson bracket lifts to functions the Lie bracket of vector fields in the sense that X{H,K} = [XH , XK ];
it (therefore) satisfies the Jacobi identity, endowing C∞(V,R) with a Lie algebra structure if ω is C∞.

Similarly, if α is a contact form, the Lie bracket of Lie fields can be lifted to real functions by (the inverse of) the
isomorphism X 7→ αX, the bracket so obtained being called the Lagrange bracket, it seems.

In the “concrete” case studied since Lagrange at least [21], V is the cotangent bundle (“phase
space”) T ∗M of a manifold (“configuration space”) M , endowed with its canonical symplectic structure
ωM , unique 2-form on T ∗M whose pullback by the projection J1(M,R) → T ∗M is the exterior
derivative of the canonical contact form dy0 − y1 dx defining K1(M,R).

Curvature

Curvature of a connection If H is a connection on a submersion
E
↓ π
B

, every vector field X

on an open subset U ⊂ B lifts to a unique horizontal vector field X̃ on π−1(U), given by X̃a =
(Taπ|Ha)−1Xπ(a). A remarkable fact of Nature is that, if Y is another vector field on U , the vertical
component ([X̃, Ỹ ]a)V of the Lie bracket [X̃, Ỹ ], at each point a ∈ π(U), depends only on X̃a, Ỹa ∈ Ha,
i. e., on Xπ(a), Yπ(a) ∈ Tπ(a)B; hence one defines an alternate bilinear map Ra : Tπ(a)B×Tπ(a)B → Va,
the curvature tensor of H at a, by the formula

Ra(Xπ(a), Yπ(a)) := ([X̃, Ỹ ]a)V . (15)
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If Γ is the Christoffel map of H in a fibred chart ϕ̃ of π over the chart ϕ of B, it follows from (12)
that

Ra(v1,v2) = DΓ(z)(x2,−Γ(z)x2)x1 −DΓ(z)(x1,−Γ(z)x1)x2 , where
{
z := ϕ̃(a)
xj := Tπ(a)ϕ(vj),

(16)

which proves our “fact of Nature” (see the next paragraph for a nicer argument).
When E is a vector bundle over B, the identification of Va to the fibre Eπ(a) makes Ra into an

element of L2
alt(Tπ(a)B,Eπ(a)); in particular, if E = TB, one is in the perhaps more familiar situation

where Ra takes its values in Tπ(a)B.
For a general vector bundle, when H is linear, i. e., when the parallel transport from one time to

another along any path is (which amounts to saying that the Christoffel maps Γ(x, y) in the charts of
the vector bundle are linear in y), it follows from (16) that the curvatureRa depends linearly of a viewed
as an element of Eπ(a); setting b = π(a), Ra(v,w) therefore is the value at (a,v,w) ∈ Eb×TbB×TbB
of a trilinear map Rb with values in Eb; if E = TB, the familiar monster of Riemannian geometry [23]
is the quadrilinear form (TbB)4 3 (a,v,w,h) 7→ Rb(a,v,w) · h (scalar product).

If E is an affine bundle, Ra takes its values in the vector space ~Eπ(a) underlying the fibre. More
generally, when E is a principal bundle with structural group G, the datum of a enables one to identify
Eπ(a) to G by the inverse of the bijection G 3 g 7→ ga, and therefore identify Va to the Lie algebra
of G (the tangent space g := T1G of G at 1) by the inverse of the differential at 1 of the previous
bijection; in this identification, one therefore has Ra ∈ L2

alt(Tπ(a)B, g).

“Curvature” of a Pfaffian system If P is a Pfaffian system on a manifold V (that is, a sub-vector
bundle of the tangent bundle TV , the stupid cases of TV and its zero section being excluded), one
can replace in the previous construction the “concrete” vertical space Va by its “abstract” version

νPa := TaV/Pa

(which defines a vector bundle νP over V , the normal bundle of P) and denote by v 7→ vν the
canonical projection TaV → νPa. The previous fact of Nature generalises: one defines the “curvature
tensor” Ra ∈ L2

alt(Pa, νPa) of the Pfaffian system P at a ∈ V by the formula

Ra(Xa, Ya) := ([X,Y ]a)ν , (17)

where X,Y vary among the sections of the vector bundle P over open subsets U 3 a of V (vector
fields on U verifying Xx, Yx ∈ Px or, equivalently, (Xx)ν = (Yx)ν = 0 for every x).

To prove our “fact of Nature”, one can consider locally P as a connection (see the proof of the
Frobenius theorem hereafter) and use (16) or, in a more elegant way, remark that if one multiplies for
example Y by a real function f defined near a, (11) yields [X, fY ]a = f(a)[X,Y ]a + Lxf(a)Ya and
therefore ([X, fY ]a)ν = f(a)([X,Y ]a)ν since (Ya)ν = 0, hence ([X, fY ]a)ν = ([X,Y ]a)ν if f(a) = 1.

Proposition For every integral manifold W of P, the curvature tensor Ra is identically zero on
TaW × TaW for all a ∈W .
Indeed, if X,Y are vector fields on a neighbourhood of a in W , it is easy to extend them locally to sections X̄, Ȳ of P
defined in the neighbourhood of a in V ; by definition, X̄a = Xa, Ȳa = Ya and, moreover, [X̄, Ȳ ]a = [X,Y ]a ∈ TaW ⊂ Pa
since, near a, the flow of X̄ coincides on W with that of X. It follows that Ra(Xa, Ya) = Ra(X̄a, Ȳa) = ([X̄, Ȳ ]a)ν =
([X,Y ]a)ν = 0, hence the proposition since (Xa, Ya) can be any pair of vectors tangent to W at a.

Definition An integral element of P at a ∈ V is a plausible candidate to be the tangent space at a
of an integral manifold of P, i. e., a vector subspace Ia of Pa such that Ra|Ia×Ia = 0.

The Cartan-Kähler theorem for Pfaffian systems [7, 12, 1, 22] asserts that, in the analytic case, every
“generic” integral element Ia of P is indeed of the form Ia = TaW for at least one (analytic) integral
manifold W of P. This statement is more Cartan than Kähler [2]; it is astounding that Élie Cartan,
from three examples, could have the idea of so general a result and see how to “corner” the required
integral manifold. Here are two extreme examples where this general result is not needed.
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Example 1. Completely integrable Pfaffian systems They are those Pfaffian system P such
that Ra = 0 for every a ∈ V (in other words, Pa is an integral element). For example, the Pfaffian
system V defined by the vertical spaces of a submersion is completely integrable (and completely
integrated, the fibres being integral manifolds). A completely integrable connection is sometimes said
to be flat since its curvature is everywhere zero.
Frobenius theorem If a Pfaffian system P on V is completely integrable, there does exist, for every
a ∈ V , an integral manifold W of P such that TaW = Pa (hence, for dimensional reasons, TxW = Px
for every x ∈W if W is connected); moreover, this integral manifold is locally unique: if W ′ is another
one, there exists an open neighbourhood U of a in V such that W ∩ U = W ′ ∩ U (in words, W and
W ′ have the same germ3 at a).

Hence, the relation “there exists a connected integral manifold of P containing a and a′ ” between
points a, a′ of V is an equivalence relation, whose equivalence classes are called the leaves of the foliation
of V defined by P; they inherit from their definition a structure of connected manifold (injectively
immersed) of the same dimension as the Pa’s, but they are not (embedded) submanifolds in general.
Even for dimPa = 1 (“line field”, always completely integrable since the Ra’s are alternate), the
global study of foliations is a very difficult subject to which, after Ehresmann and Reeb, contributed
Haefliger, Bott, Novikov, Thurston among others and, in the case of line fields, all the great names
of dynamical systems since Poincaré. Indeed, the theory includes the study of the orbits of a vector
field X on V (considering the line field x 7→ RXx on the open subset of V where X does not vanish),
which are the images of its integral curves.
Local structure of the foliation defined by a completely integrable Pfaffian system For every a ∈ V ,
there exist open subsets U ⊂ Rn, U ′ ⊂ Rp and a chart (“plaque family”) ψ of V with a ∈ domψ
and imψ = U × U ′ such that the leaves of the foliation of domψ defined by P are the subsets
ψ−1(U × {y0}) with y0 ∈ U ′; each of these local leaves (“plaques”) is obviously contained in one of
the leaves of the global foliation, but this global leaf can come back and cut domψ following other
plaques, whose union can even be dense in domψ: for example, if α is an irrationnal number, all the
orbits of the constant vector field Xx := (1, α) ∈ R2 = TxT2 on the torus T2 = R2/Z2 are dense.
Proof à la Dieudonné [10] of the Frobenius theorem and of the existence of plaque families Let ϕ be an arbitrary chart
of V at a; composing it with a translation and a permutation of coordinates, one can assume that it takes its values
in Rn × Rp, that ϕ(a) = 0 and that Taϕ(Pa) is horizontal, i. e., complementary of the vertical space {0} × Rp of the
projection π : (x, y) 7→ x. Restricting domϕ, it follows that all the spaces Hϕ(z) := Tzϕ(Pz) are horizontal; therefore,
there exists a Christoffel map Γ : imϕ → L(Rn,Rp), such that H(x,y) is the graph of −Γ(x, y) for every (x, y) ∈ imϕ.
The integral manifolds of maximal dimension of P in domϕ are the images by ϕ−1 of those of the connection H so
defined, which integral manifolds are locally the graphs of solutions y = f(x) of the “total differential equation”

dy

dx
+ Γ(x, y) = 0; (18)

if such a solution f takes the value y0 at 0, then, for every x ∈ Rn such that the segment [0, x] is contained in dom f , it
follows that f(tx) is for 0 ≤ t ≤ 1 the value Rt(x, y0) at time t of the solution of the differential equation dy

dt
+Γ(tx, y)x = 0

equal to y0 at t = 0. As Rt(x, y0) exists for every t if x = 0, the theory of differential equations [8] tells us that there
are open balls U ⊂ Rn and U ′ ⊂ Rp centred at 0 such that, for x ∈ U , the map y0 7→ R1(x, y0) is a diffeomorphism of
U ′ onto an open subset of Rp; in other words, h : (x, y0) 7→

(
x,R1(x, y0)

)
is a diffeomorphism of U × U ′ onto an open

subset of U × Rp.
We now just have to check that, for every y0 ∈ U ′, the unique candidate f : x 7→ R1(x, y0) to be in U the solution

of (18) equal to y0 for x = 0 is indeed a solution of (18): one will get the plaque family ψ := h−1 ◦ ϕ and, for y0 = 0,
the Frobenius theorem. Now, derivating with respect to x the identity ∂

∂t
f(tx) + Γ

(
tx, f(tx)

)
x = 0 and using (16), one

can see that t 7→ tDf(tx) and t 7→ −tΓ
(
tx, f(tx)

)
verify the same differential equation on [0, 1] and take the same value

0 ∈ L(Rn,Rp) at t = 0; therefore, they are equal, hence the required result for t = 1.

Remarks For line fields, this is just the theory of “time dependent” differential equations. The
construction performed in general (before the final verification, which uses curvature) is a local version
of the proof of Ehresmann’s theorem. The vanishing of curvature is imposed by the symmetry of the
second derivative of solutions of (18). Dieudonné’s proof works in infinite dimensions.

3In the beginning, Ehresmann used the word jet, little recommendable in this case except in the analytic framework.
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Example 2. Fields of hyperplanes and contact structures If α is a nowhere vanishing Pfaffian
form on V and Kz := kerαz, the curvature at z of the Pfaffian system K identifies to −dαz|Kz by the
isomorphism of νKz = TzV/Kz onto R induced by αz.

Indeed, for all local sections X,Y of the vector bundle K in the neighbourhood of z, one has
αX = αY = 0, and therefore αz[Xz, Yz] = −dαz(Xz, Yz) by (11).

A contact structure therefore is “completely non integrable”, its curvature being at every point a
nondegenerate bilinear form.

The canonical contact structure K = K1(M,R) of J1(M,R) is a connection on the trivial fibre
bundle J1(M,R) = T ∗M ×R over T ∗M ; therefore, it has an intrinsic “Christoffel map”: denoting the
points of T ∗M by x = (q, p) (p ∈ T ∗qM), as in mechanics, and by z = (q, p, y) those of J1(M,R), each
Kz is defined by the equation dy = p dq; hence, it is the graph of the linear form p dq on Tx(T ∗M);
the Pfaffian form λ = λM on T ∗M given by λx = p dq is called the Liouville form of T ∗M .
The curvature of the connection K1(M,R) on the trivial fibre bundle J1(M,R) = T ∗M × R over
T ∗M identifies therefore to the 2-form dλM on T ∗M : one obtains again the canonical symplectic form
ωM = −dλM of T ∗M .
Remarks To obtain Hamilton’s equations under their historical form, one has the choice between our sign conventions
and those of [21], according to which ωM = dλM and ωMXH = −dH.

Every etale map g between open subsets of M lifts to the map T ∗g of T ∗ dom g onto T ∗ im g given by T ∗g(q, p) :=(
g(q), p◦ (Tqg)−1), which is obviously symplectic (it preserves the Liouville form); if X is a vector field on M , each T ∗gtX

is the time t of the flow of the Hamiltonian vector field with Hamiltonian K(q, p) = pXq; the first integrals of classical
mechanics obtained by applying the “Hamiltonian Noether theorem” are in general such K’s.

Given a Pfaffian system P on V , let P⊥ be the sub-vector bundle of T ∗V whose fibre over x consists of those
ξ ∈ T ∗xV which vanish on Px. For each a ∈ V , there exist r sections α1, . . . , αr of P⊥ over an open subset U 3 a such
that α(x) :=

(
α1(x), . . . , αr(x)

)
is a basis of P⊥x for every x ∈ U ; in other words, α(x) induces an isomorphism of νPx

onto Rr that, as for r = 1, identifies Rx to −dα(x)|P2
x

= −
(
dα1(x), . . . , dαr(x)

)
|P2

x
∈ Lalt(Px,Rr).

It follows from Thom’s transversality lemma that “almost every” Pfaffian form on a manifold of odd dimension is a
contact form off a smooth hypersurface, see for example [9]; likewise, the exterior derivative of “almost every” Pfaffian
form on a manifold M of even dimension is symplectic off a hypersurface, necessarily nonempty if M is compact without
boundary.

In contrast, it is clear that, apart from those defined by a submersion and line fields, completely integrable Pfaffian
systems almost never occur. Why devote so many efforts to such improbable objects? An answer is that they appear
in a rather robust way (despite a certain loss of regularity under perturbations) in the case of the stable and unstable
foliations of an Anosov diffeomorphism—hence, it seems, Novikov’s initial interest in the subject; another answer, very
present in Élie Cartan’s work, is that the most symmetric objects often are the most beautiful and the most useful; here
is an illustration, assuming some knowledge of de Rham cohomology:

The “Gauss-Manin” connection associated to a proper submersion, and monodromy One

can associate to every proper submersion
E
↓ π
B

the vector bundle H•E over B on K = R or C whose

fibre over b is the cohomology space H•(Eb,K). To see that it is indeed a vector bundle endowed with
a canonical flat linear connection H, we are going to construct (assuming E paracompact. . . ) a vector
bundle atlas {ϕ̃}ϕ∈Φ such that, denoting by Hϕ the linear flat connection on dom ϕ̃ whose Christoffel
map in the chart ϕ̃ is4 Γ = 0, the connections Hϕ and Hψ, coincide on dom ψ̃ ∩ dom ϕ̃ for ϕ,ψ ∈ Φ;
therefore, the local connections Hϕ do define a global flat linear connection H on H•E.

In this construction, Φ is the atlas of B consisting of those charts whose image is an open ball centred at 0 in Rn. A
connection on π being chosen, the proof of Ehresmann’s theorem shows that there exists for each ϕ ∈ Φ a trivialisation
hϕ : π−1(domϕ) → domϕ × Fϕ of π over domϕ; for b ∈ domϕ, the canonical injection ib : Eb ↪→ π−1(domϕ)
induces an isomorphism i∗b of H•(π−1(domϕ),K) onto H•(Eb,K), which “reads” modulo hϕ as the isomorphism j∗b
of H•(domϕ × Fϕ,K) onto H•({b} × Fϕ,K

)
associated to the inclusion jb : {b} × Fϕ ↪→ domϕ × Fϕ [the inverse

isomorphism is p∗b , where pb(x, y) := (b, y), as every closed differential form α on domϕ × Fϕ such that j∗bα = 0 is

4More simply, ϕ̃ is a plaque family of the foliation defined by Hϕ, which therefore is born “integrated”; by the way,
Élie Cartan named infinitesimal connection what we call a connection; the problem is to “connect” two nearby fibres
Eb, Eb′—for (infinitesimal) connections with nonzero curvature, however, the result depends, even locally, on the arc
from b to b′ along which parallel transport is taken.
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exact: to see it, just apply our proof of Poincaré’s lemma to the vector field X on domϕ×Fϕ whose image by ϕ× idFϕ

admits the flow (x, y) 7→
(
b + et(x − b), y

)
]. One can therefore associate to ϕ the chart ϕ̃ of H•E over ϕ, with image

imϕ×H•(π−1(domϕ),K), given by ϕ̃(b, c) :=
(
ϕ(b), (i∗b)−1c

)
, c ∈ H•(Eb,K). Il is easy to check that one gets in this

fashion the required vector bundle atlas and flat connection.
A subtle feature of the construction is that the fibre bundle H•E and the connection are K–analytic when π is,

whereas the local trivialisations hϕ are not—they are obtained using partitions of unity.
For b ∈ B, parallel transport along each loop γ in B, with base point b, defines an automorphism of

H•Eb since the connection is linear; as it is flat, this automorphism depends only on the homotopy class
of γ; this defines a homomorphism of the fundamental group π1(B, b) into the group of automorphisms
of H•Eb, called monodromy.

Torsion, Levi-Civita connection and variants The torsion τa ∈ Lalt(TaM,TaM) at a ∈M of a
linear connection on a manifold M (i. e., on its tangent bundle) can be defined quickly as follows: for
every parametrised surface σ : (R2, 0) → (M,a), one has τa(∂1σ(0), ∂2σ(0)) = D2∂1σ(0) −D1∂2σ(0),
where D1∂2σ(s, t) := D

∂s
∂
∂tσ(s, t) and D2∂1σ(s, t) := D

∂t
∂
∂sσ(s, t). For each Riemannian metric on M ,

there exists a unique linear connection without torsion (“symmetric”) on M that is Riemannian, i. e.,
such that the parallel transport from time s at time t along any path γ in M is an isometry of Tγ(s)M
onto Tγ(t)M : it is called the Levi-Civita connection. Its absence of torsion allows for example an
intrinsic proof of the fact that the critical points of the action functional 1

2
∫ 1

0 ‖γ̇(t)‖2 dt on the space
of paths γ with fixed endpoints γ(0), γ(1) in M are the geodesics, solutions of the equation D

dt γ̇(t) = 0.
Since parallel transport for the Levi-Civita connection preserves the scalar product, it induces a

parallel transport of orthonormal frames of the tangent spaces of M , which is the parallel transport of
a connection on the bundle of orthonormal frames; this connection is principal, meaning that parallel
transport preserves the action of the structural group.

As a conclusion

Of course, I have barely touched the subject, my only ambition being to provide some access to
the ideas of Ehresmann and his master Élie Cartan. The work of the latter is not yet finished, as
each generation tries to cast some light on it. A first rate contribution in that respect was Charles
Ehresmann’s introduction of fibre bundles, jets and connections, but also pseudogroups and groupoids,
now again very popular [27, 28, 17] in spite of their ugly name (to say nothing of the horrible algebroids,
direct from a bad science fiction film).
Typical examples The diffeomorphisms between open subsets of a manifold M form a pseudogroup, and even a
groupoid if it is forbidden to compose two of them when the domain of the second is not exactly the image of the
first; the germs at points of M of such local diffeomorphisms form a groupoid (one can compose a germ f at a and a
germ g at b only if b = f(a)), and so do their jets of order k. When M is endowed with an additional structure, for
example a Riemannian metric or a symplectic form or a contact structure, the (jets or germs of) local diffeomorphisms
preserving this structure form a sub-pseudogroup or a sub-groupoid of the previous one. The Riemannian example of an
otherwise round sphere with a bump in the neighbourhood of a point shows that this pseudogroup or groupoid can be
rather irregular, well apt to detect local symmetries ignored by the group of global isometries of our sphere onto itself,
in general trivial. A fundamental object in foliation theory is the holonomy groupoid generalising monodromy.

In the works of Lie or Élie Cartan, “groups” were quite often pseudogroups—which appear already
when one considers the flow of a non-complete vector field (similarly, what plays the role of a one-
parameter group for time-dependent vector fields is a “groupoid with two parameters”, which shows
that many scientists manipulate groupoids without being aware of it!). The emphasis on abstract
groups, which, according to the dogma, act only on themselves until they are represented, partially
rejected into darkness Lie’s original groups, i. e., pseudogroups of transformations that cannot always
be abstracted from the space on which they act [3, 5].

To Élie Cartan, as I said, one goes back all the time: for example, the algorithmic “equivalence
method” in [16] is a recent avatar of his “equivalence problem” [6, 19].
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The equivalence problem is to find criteria for two structures to be locally equivalent up to local coordinate changes;
of course, the langage of manifolds, used throughout this article, is coordinate-free, so that “coordinate change” means
“diffeomorphism” (true problems cannot depend on the choice of coordinates).

Similarly, his theory of involution goes on inspiring Malgrange [22] after Kuranishi and many
others [12, 1], such as Ehresmann, whose jets allow an intrinsic formulation of the prolongations of a
differential system.

It should also be time to go back to Ehresmann before his beautifully concise texts become in-
accessible; thus, my proof of his most famous theorem is the original one [13], so elliptic that many
people replaced it by arguments far less elegant and natural. Science progresses to a large extent
because its actors do not really understand the work of their predecessors and make it into something
else, sometimes more interesting than the original, but there are limits. . .
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Norm. Sup., 3e série, 16 (1901), 241–311

[3] ——, Sur la structure des groupes infinis de tranformations, Ann. Sci. Ec. Norm. Sup. 21 (1904),
153–206
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