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A forgotten theorem on Z* x R™-action germs
and related questions

Marc Chaperon*

- Qu’as tu fait de ta vie, pitance de roi ?

- J’ai vu 'homme.

Je n’ai pas vu 'homme comme la mouette, vague au ventre, qui file rapide sur la mer
indéfinie.

J’ai vu ’homme a la torche faible, ployé et qui cherchait. Il avait le sérieux de la puce
qui saute, mais son saut était rare et réglementé.

Sa cathédrale avait la fleche molle. Il était préoccupé.

Henri Michaux

How I met Alain Chenciner and what I did under his supervision

In my first year at the Ecole Normale Supérieure, I was disappointed by math-
ematicians, who got excited about futile problems instead of sticking to mean-
ingful ones'. Hence, I studied computer programming during the second year
and mathematical economics during the third. The ensuing boredom? took me
back to mathematics, which after all I loved or at least loved doing.

Then, René Thom’s Stabilité structurelle et morphogénése appeared. Even
though I did not understand half of it3, I felt strong affinities with the underlying
vision of the world and chose to go that way.

After one year of very well paid purgatory as the mathematics teacher of a
classe préparatoire*, I got—thanks to Thom—a temporary research position at
the Centre de mathématiques de I’Ecole Polytechnique, directed by its founder
Laurent Schwartz. There, in a nice stimulating atmosphere, I met other mem-
bers of my mathematical family: Michael R. Herman, who had not yet proven
the Arnold conjecture [16, 25], Francois Laudenbach, Bernard Teissier and Alain

Chenciner; closest to Thom, Alain was to become my doctoral supervisor®.

*Institut de Mathématiques de Jussieu, Université Paris 7

L Les problémes qui se posent, as opposed to les problémes qu’on se pose (Poincaré).
2With the notable exception of beautiful lectures by Ivar Ekeland on game theory.

3Not an isolated case, I gathered.

4Where selected pupils train for the competitions leading to the notorious grandes écoles.
5For my thése d’Etat, a kind of habilitation thesis.



Thom having advised me to start with a thesis in pure mathematics (“much
easier than applied mathematics”), my first work was to study, complete and
extend his wonderful little paper [24] on implicit differential equations, outstand-
ing propaganda for contact geometry and singularity theory. My contribution
concerned the singularities of the 1-dimensional characteristic foliation of the
submanifold defined by the equation in 1-jet space®. Most of it remained unpub-
lished” due to work by Takens on constrained systems [23], not the same question
but quite the same structure. However, thanks to Herman, I had learned much
about the analytic or smooth local classification of dynamical systems, widely
ignored at the time because of Thom’s structural stability program.

A more permanent position at the CNRS enabled me, after an excursion in
partial differential equations [3, 4], to work on a conjecture of Camacho, Kuiper
and Palis [1] on the topological classification of the singular 1-dimensional com-
plex foliations defined by holomorphic vector fields near their zeros.

Dumortier and Roussarie had just proven it to be “almost always” true®
as a consequence of their smooth simultaneous linearisation result for pairs of
commuting smooth vector fields near a common zero [15]. Since this was close
to my brand new competence domain, my program was to simplify their proof,
extend it from formally linearisable germs of R2?-actions to more general germs
of Z* x R™-actions” and use the extension to prove the conjecture.

Two years later, I had fulfilled this program and defended my thesis [7].
Alain’s help had been unvaluable: though not a specialist, he could understand
very quickly what I was doing and give amazingly good advice.

After the excitement of discovery came the much duller task of making my
work known. This took me nearly five years'® and resulted in two publications:

e the book [10], which contains much background material, many unpub-
lished novelties (probably ignored up to now) and my generalisation of the
Dumortier-Roussarie linearisation theorem to germs of Z* x R™-actions

e the article [12], where—among other things—the Camacho-Kuiper-Palis
conjecture is proven.

One of the main results of [7] was not included!!, hence the present article. As
the chief reason for publishing it lies in current work on complete integrability,
theorems on first integrals are stated in the end and their proofs are sketched.

6The projected leaves in O-jet space contain the graphs of solutions but have singularities.

7 Apart from [2], written under Alain’s supervision.

8Which already resulted from Siegel’s holomorphic linearisation theorem [20].

9A problem that no one cared about in such generality. Things are a bit different today.

10Partly because in the meantime I contributed to the birth of symplectic topology [8, 9].

n the late eighties, I thought I should publish it but Alain told me: “Everyone knows
you have proven it”—an optimistic statement, obviously not true today.



1 Statement of the main theorem

1.1 Germs of ZF x R™-actions and their linear part

Given a finite dimensional smooth manifold M and a € M, a smooth germ at a
of ZF x R™-action on M is defined by the datum of k smooth diffeomorphism
germs ¢1,...,9x : (M,a) = (M,a) and m germs Xi,...,X,, at a of smooth
(i.e. C*°) vector fields vanishing at a, each of which commutes with the others
in the sense that

giog;=g;og; forl<i<j<k,
g X; =X, forl1<i<kand1<j<m, (1)
(X, X;]=0 for 1 <i<j<m.

Setting r = k + m and denoting by g,tcﬂ the flow of X, this defines the ho-
momorphism g : t — ¢* of ZF x R™ into the group of smooth diffeomorphism
germs (M, a) — (M, a) given by

gt:g’i1 o---oglrfort=(t1,...,t,) € ZF x R™.
The endomorphisms L; = dg;(a) and A; = dX;(a) of the tangent space
E=T,M

all commute; they define the linear part of the action germ. Setting L ; = eS|

this linear part can be viewed as the linear representation L : t — Lt of Z*¥ x R™
on E defined by

L'=LY"o.- oLl for t = (t1,...,t,) € ZF¥ x R™.
The following proposition will be made precise in subsection 2.1:

Proposition 1.1 There exist continuous group homomorphisms ai,...,a, of
Z* x R™ into C* and a decomposition of E as the direct sum of subspaces
Ey, ..., E,, the characteristic subspaces of L, with the following properties:

i) For 1 </ <mn, all the automorphisms Lt preserve E; and

— either ay 1s real-valued, in which case each L' induces an automor-
phism of E; having ae(t) as its single eigenvalue,

— or ay is not real, and then each L' induces an automorphism of E,
with the sole eigenvalues ag(t), ap(t) (which can be real for some t’s).

ii) One has {ag,ch} * {ag/,aT/} for1 <tL</t <n.
The set {E1,...,E,} is determined by L in a unique way.

Note. If (61,...,06,) denotes the canonical basis of R", then:
e for 1 < j <k, the numbers as(d;), ae(d;) are the eigenvalues of Lj;

o for k < j <r, one has as(sd;) = e*¢3° for all s € R, where the numbers
oy j, Qg ; are the eigenvalues of Aj;_j.



1.2 Hyperbolicity, conjugacy, the main theorem

Under the same hypotheses and with the same notation, the group homomor-
phisms ¢ + In|as(t)| of Z*¥ x R™ into R, intrinsically associated to L, can be
extended to linear forms cy,...,c, on R = R**™; following [5, 6], we call the
linear action L (and the action germ g)

o weakly hyperbolic if, for 1 < s <r and £y,...,¢; € {1,...,n}, the convex
hull conv{ey,,...,cq, } does not contain the origin;

o hyperbolic if, for 1 < s <rand1<¥¢ <--- < /ls <n, the linear forms
ey .-, cp, are linearly independent;

o strongly hyperbolic if it is hyperbolic and, moreover, the a,’s are simple in
the sense that Ey is a line when ay is real, a 2-plane otherwise.

Still denoting by (1, ...,d,) the canonical basis of R", the numbers ¢,(d;) are
the logarithms of the moduli of the eigenvalues of L; for 1 < j < k, the real
parts of the eigenvalues of A;_j for k < j <r.

Ezamples. For r = 1, weak hyperbolicity is just hyperbolicity in the usual
sense: if (k,m) = (1,0) (resp. (0,1)) the automorphism L; (resp. the endomor-
phism A;) has no eigenvalue on the unit circle (resp. the imaginary axis).

A holomorphic vector field germ vanishing at a defines a holomorphic C-
action germ, which is the R2-action germ defined by X; = X and Xy = iX
viewed as real vector fields; if Ai,..., )\, are the eigenvalues of the complex
endomorphism L = dX (a), then Ey,..., E, are the characteristic subspaces of
L and the isomorphism A\ — ((tl,tg) — Re Aty + itg)) of C onto L(R? R)
identifies the A;’s to the ¢,’s; hence, weak hyperbolicity means that no segment
[A¢, Aer] contains the origin, whereas hyperbolicity means that the eigenvalues
A¢ are two by two R-independent.

Conjugacy. Smooth Z* x R™-action germs g at a € M and ¢’ at o’ € M’,
defined by ¢1,..., 9k, X1,..., Xy, and ¢f,..., 9, X1,..., X, respectively, are
C%-conjugate, 0 < a < oo, when there exists a C¢ diffeomorphism germ
h : (M,a) = (M’,a’) such that g; = h*gj :== h™'ogioh for 1 < j <k
and X; = h* X} for 1 < j <m (if r = 0, the relation X; = h*X] means that,
for suitable representatives, h maps the integral curves of X; to those of X ]’)
Hence h*gt = (¢')! for all t € ZF x RY.

The two action germs are formally conjugate when there exists a smooth
diffeomorphism germ h : (M,a) — (M',a’) such that g; and h*g have infinite
contact at a for 1 < j < k and so have X; and h*X]‘ for 1 < j < m. In other
words, h*g! and (g')! have infinite contact at a for all t € Z* x R

Theorem 1.2 Two weakly hyperbolic smooth ZF xR -action germs are smoothly
(i.e. C°°-) conjugate if and only if they are formally conjugate.

If r = 1, this is the Sternberg-Chen theorem [22, 14]. When L is not weakly
hyperbolic, g can be formally but not C%-conjugate to L ([10], 6.3, Théoreéme).



2 Proof of Theorem 1.2

The “only if” is obvious. To establish the “if”, we can fortunately rely on
[10, 12].

Hypotheses and notation Same as in section 1. Weak hyperbolicity is not
assumed in 2.1 and 2.2, extracted from [10] (to which we refer for details).

2.1 Algebraic part of the proof: normal forms
The following result is not so widely known even for one endomorphism:
Proposition 2.1 ([10], 4.3.1, Proposition 5) There exist positive integers

n, di,..., d,, a nonnegative integer ¢ < n and an isomorphism of real vec-
tor spaces

xr = (331, e ,,:Ijn) = ((xl,p)lﬁpgdp ey (xn,p)lgpgdn) ) — H CdZX H Rdz

1</<c c<tl<n

such that, for every t € ZF x R™, the real automorphism x,Lt = xo Lt ox™! of
[Tici<. C x [eci<n R is given by a block-diagonal matriz

i) o0 .- 0
0 .
: . " 0
0 e 00 TR(b)

and the following properties are satisfied:

i) Each diagonal block Ty(t) is a lower triangular dy X dy matriz, with coef-
ficients in C for £ < ¢, in R otherwise.

i) For 1 < ¢ <mn andt € Z*¥ x R™, the diagonal elements of T,(t) all equal
the same number a,(t) € C*.

i) The continuous group homomorphisms ag : Z¥ x R™ — C* so defined take
their values in R* only for £ > c.

iv) For 1 <0< { <mn, one has a; # ap # ay.

v) For 1 <{ <n, one has Tp(t) = as(t) expee(t), where €; is a linear map of
R” into the space of lower triangular d; x dg; nilpotent complex matrices,
with real coefficients for £ > c.

In particular, Proposition 1.1 holds with E, = ﬂ ker xy:.
040



A proof. Setting A; = Lj for 1 < j < cand A; = Aj_ for ¢ < j < r, the complex
vector space EG := L(E,C) is the direct sum of the characteristic subspaces Fi ¢ of
the C-linear map A] : u — u o A, each of which is stable under every A} because
AjA, = A1Aj; hence, each Fi is the direct sum of the characteristic spaces of the
endomorphism induced by A3, yielding a decomposition of E¢& as the direct sum of
Aj-invariant subspaces F3 ¢ on which the endomorphisms induced by A7 and A3 have
a single eigenvalue. Iterating this procedure, one gets a decomposition of E& as the
direct sum of Aj-invariant subspaces F; = F,.; on which the endomorphism B,
induced by every A} has a single eigenvalue A; ¢ and, moreover, to each £ corresponds
a different (co)vector (Ai,e,...,Are).

For each ¢, if d; = dim Fy, the commuting endomorphisms Bj;, have a common
eigenvector x¢,1, which (replacing it by its real or imaginary part) can be chosen real
(i.e. in E* := L(E,R)) when every \;  is real. For d¢ > 1 the same argument, applied
in F;/Cuxy,1, shows that there exists x¢o € Fy, real if every ;. is, such that each
(A] — Aje)ze2 lies in Cxy 1, and in Rae: if every Xj, is real, etc. This standard

triangulation procedure yields Proposition 2.1, except assertion (v), as follows:

e number the Fy’s so that every Aj, is real for ¢ < ¢ < n and Aj¢ = Aj nye, hence
Fg:Fn+e,fOI‘1§£§C

e notice that one can take Zn1¢p =Tgp for 1 <€ <c

e remark that z = ((wl,p)lgpgd“...,(:Bn,p)lgpgdn) must be an isomorphism
since ker z = {0} and dimc Eé =dimr F =2 Zl<c de + Zc<2<n dy.

Finally, Proposition 2.1 v) follows from the fact ([10], 4.3.1, Lemme 2) that for each
real vector space F', the map v — —Id + expv is a bijection of the set of nilpotent
endomorphisms of F onto itself, whose inverse map is N — In(Id 4+ N). O

Comments. What is not so widely known is the complex part of the normal
form, for which one has to choose one element in each pair (as, ay).

The notation e, indicates that this is the “small” part of L: indeed, one can
make it arbitrarily small by multiplying the z,,’s by positive constants.

Notation. Recall that each L has a unique Jordan decomposition as the sum of
a semi-simple endomorphism S? (meaning that the complexified endomorphism
is diagonalisable) and a nilpotent one, commuting with each other. Proposi-
tion 2.1 states in particular that the semi-simple parts S! commute with each
other and that the isomorphism z diagonalizes them simultaneously. This is the
viewpoint we now adopt on normal forms, first in a somewhat cryptic way:

Proposition 2.2 ([10], 4.3.2, Théoréme 4) The action germ g can be put
formally into normal form in the following sense: there exists a smooth diffeo-
morphism germ h : (M,a) — (E,0), tangent to the identity at a, such that, for
all t',t € ZF x R™, the map germs S* o (h.g') and (h.g') o S* have infinite
contact at 0.

Idea of the proof. To each smooth diffeomorphism germ g : (M, a) — (M, a) is associ-
ated the automorphism g. : f — fog™! of the algebra of smooth germs f : (M, a) — R.
The map g — ¢« induces for every positive integer s an isomorphism § — §. of



the group D° of s** order jets (Taylor expansions) at 0 of diffeomorphism germs
(M,a) = (M,a) onto the group of automorphisms of the real algebra £° of st or-
der jets at 0 of germs (M,a) — R. Elementary arguments ([10], 4.3.2, proof of
Theoréme 3) or the Jordan-Chevalley theorem [17] show that, for each g € D, the
semi-simple part of the automorphism §. is itself an automorphism of the algebra £°
and therefore of the form &. for a unique & € D?, the semi-simple part of §. Now,
the very definition of a semi-simple automorphism of £° implies almost immediately
([10], 4.3.2, Théoreme 2) that there exists a germ h : (M, a) — (E,0), tangent to the
identity at a, whose s-jet h linearises &: denoting by S the (semi-simple) differential
(1-jet) of & at a, identified to its s-jet, one has that k.6 = S.

As the semi-simple parts of commuting endomorphisms commute, so do the semi-
simple parts &° of the s-jets §' at a of the germs g'; hence, as in Proposition 2.1, one
can take the same h for all ¢, so that h.5' = S? (identified to its s-jet) for all ¢.

This passes to the projective limit when s — oo and yields (via the Borel extension
theorem) the required diffeomorphism germ h: indeed, the infinite jets at 0 satisfy
h.e" =S¥ for all ', hence S* o (hvg') = (6" 0§') = hu(§t 0 5") = (hug') 0 S*. O

We can now see what this means in the coordinate system x of Proposition 2.1:

Corollary 2.3 ([10], 4.3.2, Corollaire 3) With the notation of Propositions
2.1 and 2.2, if we set

Unye = Gg:t—=ap(t), 1<0<c, 1<p<dy=:dnys
LTnte,p = Tup, 1<t < c, 1< p< dy =: dnJrl
Qnte L Qg _ _ d
& = x(lll . ..anrt = Hxé,pp » = (az) - ((azvp)lgpgdf)lﬁﬁﬁn—i-c = HN ‘
4,p 0

and, for 1 < ¢ <n,

II,
P,

{BeN":ar=a i=al" - i, B+ 4 Bose 2 2}
{ac H N (@) := (Jagl)i<e<nie i= (Zaé,p)gegnﬂ €I},

1<t<n+c P

then, for 1 < £ < n, 1 <p <dy andt € Z* x R™, the Taylor series of
Tppo ST oh.gt at 0 is of the form

Tep t § : et,p,q(t)Teq + E :ff,p,a(t)gca
1<q<p a€EP,
where the egp q’s and frpa’s are polynomial functions on R".

Proof. As h is tangent to the identity, the differential of h.g" at 0 is L*, whose semi-
simple part is S*; hence, the linear terms z¢,, + > g<p €lpa(t)Teq come from expey(t)
and are of the required form. The rest of the Taylor series reads ) fe,p,o(t)z with

@€ icocnse N% and Y |as|1 > 2; for every t' € ZF xR™, as 2ep0S" = as(t) e p,

the fact that 7, 0 S* 0 S 0 h.g' and 2/, 0 S~ 0 h.g' 0 S* have infinite contact at

0 writes
ar(t')> " fopa®)z® =D frpat)a® ()2,



hence frp.a(t)(ae — a*®) = 0 for all o, proving that f; .o (t) = 0 for a ¢ P;.

Finally, every f¢ p,o is polynomial for the following reason: for each positive integer
s, as S* is the semi-simple part of the s-jet h.g' of h.g' at 0 for all ¢, the automor-
phism (S™* o h.g'). of the algebra F* of s-jets of germs (E,0) — R. is of the form
exp v(t), where v is a linear map of R” into the set of nilpotent derivations of F* ([10],
Théoreme 4 (iii)); in particular, the coefficients of the polynomial (S~* 0 h.gt).ae,p of
the variables x® are polynomial functions of . O

Remarks. For a dense open set of linear representations L, the multiplicities
dyg all equal 1, hence IT, = P,; moreover, P, = () for almost every L (not an open
condition in general) and then what we get is a formal linearisation result.

The Jordan decomposition is not the only way to obtain normal forms, but
it is probably the most understandable for r > 1.

Proposition 2.4 ([10], 4.3.2, Corollaire 4) Let
o == {B e N"t* {0} :a” = 1};

then, if N"t¢ is endowed with the ordering “8 < B if and only if Be < 3} for
all £ 7, one has the following:

i) For 0 < £ < n, the set minIly of minimal elements of Il is finite and
every element of 11y is comparable to an element of minIl,.

ii) Hence, for each 8 € Iy, either B lies in minIly, or it is the sum of an
element of minIl; and an element of 1l.

iii) Thus, if LIy = 0 (which means that L has no mon-constant formal first
integral), the subset II; = minIl, is finite for 1 < £ < n. In that case,
with the notation of Corollary 2.3, the formulae

Tepou’ =z, + Z €t,p.q(t)Te,q + Z fepa()z®, teR" (2)

1<qg<p a€EP,

define an algebraic action u of R™ on E satisfying u' o S* = S o ul for
allt € R” and t' € ZF x R™, and Corollary 2.3 states that the action
germ g is formally conjugate to the (germ at O of the) analytic action go
of ZF x R™ on E defined by

gh:=S"ou =ut oS ie. xpp0gh=ap(t)xpy,oul (3)

Unfortunately, for r > 1 and Iy # @, formal normal forms do not define
model action germs in such an obvious way. However, they do provide something
interesting along germs at 0 of special submanifolds of E, to which we now turn.



2.2 Strongly invariant manifolds. A preparation lemma

A strongly invariant manifold [6] (abbreviated SIM in the sequel) of the action
germ g is a germ W at a of C' submanifold which is the (strong) unstable
manifold of g* for some t € Z* x R™. Now, this unstable manifold W is
smooth, its tangent space T, W is the unstable subspace @Cz(t)>0 E; of Lt, and
W is the only g'-invariant submanifold germ having this tangent space.

It follows that every SIM of g is invariant by all the germs ¢* and that the
SIM’s of g form a finite set of smooth submanifold germs.

The Poincaré domain. The following two properties, expressed by saying that
L (or g) is in the Poincaré domain, are equivalent:

a) the germ at a of the ambient manifold M is a SIM of ¢

b) the convex hull conv{cy,...,¢,} in R™ does not contain the origin (in
particular, g is weakly hyperbolic).

Indeed, (b) means that there exists t € R" such that every c,(¢) is positive and, as Q"
is dense in R", one can take t € Z".

Theorem 2.5 ([10], 4.4.2b, Théoréme 2) If g is in the Poincaré domain
then, with the notation of Proposition 2.4, the set Iy is empty and g is smoothly
conjugate to the analytic action germ gq.

Idea of the proof. For a € N™ ¢\ {0}, the relation a® = 1 expressing that « lies in IIo
yields > o (a; + antj)e; + 32, . ojc; = 0 and therefore 0 € conv{ey, ..., cn}, hence
ITo = @ in the Poincaré domain. The rest follows from fixed point arguments:
e if E is the unstable subspace of L' then there exists an integer go determined
by L' such that, for every integer ¢ > qo, the map f +— h.g' o f o gy " has a
unique fixed point h; in the space of C? germs f : (E,0) — (E,0) having ¢¢"
order contact with the identity at O; this h1 is smooth, has infinite contact with
the identity at 0 and clearly satisfies (h7! o h).g" = gi°;
e for all t € Z* x R™, the two germs (h7* o h).g" and g} have infinite contact at
0 and commute with g{°; hence, they coincide, for the germ (h7" o h).g' o g5*
is the unique fixed point of the map f — géo ofo ggto in the previous space,
namely the germ of the identity;

e similarly, for 1 < k < m, the germ (h] *oh). X; and the germ at 0 of %g?’“’j =0

have infinite contact at 0 and are gé“—invariant; hence, they coincide.
This shows that h;l o h is a conjugacy between g and go. O
As two formally conjugate action germs have the same normal form, this yields

Corollary 2.6 Theorem 1.2 is true in the Poincaré domain.

Corollary 2.7 If g is hyperbolic and satisfies n < r, then it is C°°-linearisable:
there exists a C*°-conjugacy between g and the germ of L at 0.

Proof. The linear forms ci,..., ¢, are independent, hence 0 ¢ conv{cy,...,c,} and
P=-..=P, =0. 0



Notes. The idea of this proof of Theorem 2.5 is essentially due to Sternberg
[21]. A key point is that infinite contact between h.g® and g§ can be replaced
by g¢" order contact; for holomorphic germs of vector fields, this h can be taken
holomorphic, hence h;y is, yielding the holomorphic linearisation theorem in
Poincaré’s thesis. The same fact, applied to the complexified maps of h..g* and g§
with h analytic, implies that the conjugacy in Theorem 2.5 and Corollaries 2.6-
2.7 is analytic when g is. The method also provides a C'? conjugacy between g
and go when g is C? with ¢ > ¢¢. All this follows at once from a very simple
invariant manifold theorem obtained later [13].

We refer to [5] for a rather explicit proof of the following more difficult result:

Corollary 2.8 If g is in the Poincaré domain and strongly hyperbolic, it is
CO-linearisable: there exists a C°-conjugacy between g and the germ of L at 0.

Hypothesis. From now on, L is assumed to be in the Siegel domain,
i.e. not in the Poincaré domain'?.

If Ty = 0, Corollary 2.3 states that formulae (2) and (3) define respectively an
algebraic action v of R" and an analytic action gy of Z¥ x R™ on E. Otherwise,
they define formal actions, i.e. homomorphisms R” 3 ¢ — u! and Z*¥ x R™ 3
t — g} into the group of infinite jets at 0 of diffeomorphisms (E,0) — (E,0).

Proposition 2.9 ([10], 4.4.2b, Proposition 1) For each strongly invariant
manifold W of L, the formal actions u and gy define formal actions uy and gy
of Z* x R™ along W leaving W invariant, i.e. homomorphisms R" > t uly,
and Z*¥ x R™ > t + g}, into the group of infinite jets at W of diffeomorphisms
(E,W) = (E,W), as follows:

i) The subspace W of E is the unstable subspace of L' for some to; hence,
W =80 Ee: if W = D.,to)<0 Ee, then E =W & W2W xW so

we can write the elements of E under the form (y,z) € W x w.

ii) For all s € N, the s** partial derivative d3ut(y,0) is a polynomial function
of (t,y) € R" x W, hence'3

1 S S 1 S S
ut = Z gﬁzut(y,O)z and gb =S Z Eﬁzut(y,())z
seN seN
do define infinite jets along W.

it1) The W -component of ut(y, 0) is zero for all (t,y) € R" x W, implying the
rest of our statement since every St preserves W and W.

Proof. ii) If Iy is empty, this is obvious. Otherwise,

12The terminology, due to Arnold, refers to Poincaré’s holomorphic linearisation theorem
and its analogue in the Siegel domain [20], a celebrated triumph over “small denominators”.
13With the usual convention z° = (z,..., z) repeated s times.
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o for s =0, as 0 ¢ conv{ce : ce(to) > 0}, every 2 with o € Py vanishes on W;
hence, by Proposition 2.4 i)-ii), every xy, o u® coincides with the polynomial
Tep + Z1§q<p etp,q(t)Teq + Zu(a)emin I, fepa(t)z® on W.

e for arbitrary s, again by Proposition 2.4 i)-ii), for 1 < £ < n and o € Py, one
has that u(a) = B+ ~v1 + -+ + v with € minIl; and ~1,...,vs € minIlp
(this decomposition is not unique in general but there are finitely many of them
and we can choose s’ maximal); it follows that d;z® = 0 on W for s’ > s, which
agains leaves only a finite number of multi-indices o € P, with dyz® # 0.

iii) For ce(to) <0, € Prand 8 = p(a), as ce = 3o (Ber +Bnter )eor +3 - cpray, Bercers
some £ with ¢ (to) < 0 must satisfy (8¢ + Bnier) > 0 or By > 0, hence z%|w = 0; as
the x¢,q’s also vanish on W for ¢ (to) < 0, this proves what we wanted. O

Preparation Lemma 2.10 ([10], 4.4.2b, Théoréme 1) The action germ g
can be put into normal form along the union V of the SIM’s of L: there exists a
smooth diffeomorphism germ ho : (E,0) = (F,0) having infinite contact with
the identity at 0 such that, for every SIM W of L, the infinite jet of (htoh).g
along W is the germ at 0 of g4, for all t € Z* x R™; it follows that the infinite
jet of (hl o h).X; along W is the germ at 0 of %g%‘i’ﬂ-a‘ lt=o for 1 <k <m.

In particular, the SIM’s of (h3loh).g are the germs at 0 of the SIM’s of L.

Idea of the proof. If W is the unstable subspace of L, let g:f‘} :(E,W) = (E,W) be
a smooth extension of géﬂ (its only role is to simplify notation). For every integer s,
e taking representatives, the sequence of jets (js ((h*gtﬂ)p o (gég)*ﬂ) ‘W)peN con-
verges in the C* sense near 0 to the s-jet along W of a local diffeomorphism
hs,w @ (E,0) — (E,0), obviously such that js(h;év o h).g™ = j°gi% along W:
this follows from [10], 4.2.2, Théoréme 1 (see the proof of Corollary 2.12);
e for all t € Z* x R™, the two local maps (7°(hgqy o h)«g") lw and (5°Giv)|w
coincide near 0 and so do, for 1 < k < m, the germ (js(h;‘l,v o h).X;) |w and
the germ at 0 of (js(%géf,k“ |t=0))|w: this follows from [10], 4.2.2, Théoréme 2.
When s — oo, the definition domain of (j°hs,w)|w does not shrink, hence in the limit
the infinite jet along W of a smooth local diffeomorphism he,w : (E,0) — (E,0),
which has infinite contact with the identity at 0.

One can take the same hoo,w = hoo for every SIM W of L: indeed, the jets
(jhoo,w)|w corresponding to the various SIM’s W of L coincide on their intersections
because the previous argument applies when W is the intersection of two SIM’s; hence,
a mild version of Whitney’s extension theorem yields our result. O

Notes. For finite s and fixed W, this proof is essentially that of Theorem 2.5
and [13] could be used. In [11] we show that, for finite s, an analytic action germ
can be put into normal form to order s along V by an analytic diffeomorphism
germ (this simplifies the exposition in [12]). Of course, infinite contact is where
the analytic and C°° theories split apart completely. If » = 1, the result is
essentially Sternberg’s [22]; the case r > 1 was a novelty with respect to [15].
The technology of 2.3.2-2.3.3 hereafter makes it possible to obtain normal forms
that are the product of S and an action germ commuting with it as in [14], but
they are not strikingly good in general for r > 1 and Py # ().
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2.3 End of the proof
Hypothesis We now assume g weakly hyperbolic, still in the Siegel domain.

2.3.1 An extension lemma. Proof of Theorem 1.2 for Z-action germs

Extension lemma 2.11 ([10], 4.2.3, théoréme 2)!* Let N be a compact
manifold without boundary, E*,E~ two nontrivial Euclidean spaces, and let
W+, W~,% be the submanifolds of Q := N x ET x E~ defined by

WHt=NxEtx{0},W  =Nx{0}x E,2: =W nW~ =N x {(0,0)}.

Writing (zo, x4, 2_) the points of Q := N x ET x E~, assume that the smooth
diffeomorphism germ ¢ = (po, p+,p—) : (Q,X) — (Q, %) leaves invariant the
germs of WT and W~ at ¥ and satisfies the weak normal hyperbolicity condition

bet

If ¢ : (Q,%) — (Q,X) has infinite contact with ¢ along W+ U W™, then every
smooth germ'® h : (Q ~ W™ ,%) — Q ~ W~ having infinite contact with the
identity along W \X and conjugating ¥|o w- to ¢|lo w- extends to a smooth
germ (Q,Y) — (Q,X) having infinite contact with the identity along W U W~
and conjugating ¥ to .

aﬁ(x)

max
8.’13+

T zER

o
5 L)

max 4 max
TEXD

Corollary 2.12 ([10], 4.2.3, théoréme 2) If ¢ is as in the extension lemma
then, for every smooth germ @1 : (Q,%) — (Q,X) having infinite contact with
p along X,

i) there exists a smooth conjugacy H : (Q,X) — (Q,X) of v1 to ¢ having
infinite contact with the identity along

ii) for each smooth diffeomorphism germ Hy : (Q,X) — (Q, %), if Hyop and
@ o Hy have infinite contact along X, then the smooth germs
H : (Q,X) — (Q,X) conjugating ¢1 to ¢ and having infinite contact
with Hy along ¥ form an infinite dimensional space—in particular, so do
the conjugacies H in (1).

Proof. i) There exists a smooth diffeomorphism germ h; : (Q,X) — (Q,X%) having
infinite contact with the identity along 3 and such that 1) := hj¢ satisfies the hy-
potheses of the extension lemma: taking representatives of our germs, the jet ji7+h1
is the limit when p — +o0 of jiga (1" o ¢P) ([10], 4.2.2, théoréme 1).

Let us find h as in the extension lemma: taking representatives, we may assume
©, 1 defined for some n > 0 on B :={z € Q : max{|z|, |z—|} < n} and such that

sup max{lw(w)l |¢+(w)\}<1< inf min{\sof(fv)l’ld)f(w)l}:: L@

BW- lz+] 7 |z Bawt lz—| " Ja-|

14We state only the C'™ version of this key result, of which two proofs are given in [10].

5A germ (Q~W™,%) = Q~ W™ is an equivalence class for the relation “there is an open
subset U D ¥ in UpNUj such that fo = f1 on UNW™ ” between maps f; : U; W™ — QW™
with U; D ¥ open in Q.
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taking a smaller n, we may assume that ¢, 1) are embeddings and define h by a “Cauchy
problem”!%  i.e. by its restriction ho to the closure Do of Dy := B~ ¢(B), which must
have infinite contact with the identity along W \ (W) and have infinite contact
with 9 o hg o ! along the inner boundary @07 B) N B, where 01 B is the outer
boundary {z € B : |z+| = n}; thus, if we look for an ho having infinite contact with
the identity along 0 B, it must have infinite contact with 1 o ™' along ¢(0"B) N B;
this defines a Whitney-extendable jet along " BU (W' \ o(W™)) U (¢(07B) N B),
which is indeed the jet of a smooth map ho : Do — Q.

We now extend ho to a smooth conjugacy h of 1 to ¢ defined in B\W " N{|z_| < p}
for some small enough positive p < n:

e by (4), the sets Do, D := BN p(Dy), Dz := BN(Dy),... form a partition of
B~ W7, and so do the corresponding sets Ag, A1, ... for ¥;

o if Dy, :=DnpN{|z—| < p}, the map hn := h|p,, , should satisfy

ha(e) = $"oFoop"(x)
= Yohn_10@ z) for n > 0;

()

e we claim that this does define the required h for small enough p.

Indeed, if we equip N with a riemannian metric and B with the product metric, given
a>1 suchthat ¢*Lipy <1,

the number ~
R:= sup |z_|"%d(ho(z),x)
z€EBo~Wt

is finite since ho has infinite contact with the identity along W™ ; similarly, as =", ="

have infinite contact along W™, the number

b= sup oo | (o7 @) 0 (@)

o<|z_|<p

tends to 0 when p — 0. Hence, for small enough p < 7, the map 710|D0p is an
embedding and one has the following:

c+Rep™t <1 (6)
(c*+ R7'b,)Lipy < 1 (7)
p+Rp* < . (8)

If all this holds, let us prove that each h, is a well-defined map of D,,, into A, and
sup lz—|"%d (hn(x),z) < R: 9)

TEDp Wt
e this is the case if n = 0: indeed, (9) follows from the definition of R; moreover,

ho preserves the outer boundary 8% B and maps the inner boundary ¢(0" B)N B
onto (8T B) N o p ' (B); now, (8) and the definition of R yield

[ho(@)-| < [ho(z)- — @[+ ]o—| < Rla—|* +]a-| < Rp* +p <1

for all 2 € Do ,; hence, the embedding 710|D0,p takes its values in |z_| < 7@
and maps (0YBU (8" B)) N {|lz_| < p} into 0B U (8" B) N B, yielding
hO(DO,p) - AO;

16See the proof of Corollary 2.14 and the subsequent notes.
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let us now prove the same for n > 1, assuming it true for n — 1,
e h, is well-defined by (5) since (4), (6) and (9) for n — 1 yield, for € Dy ,,

1067 @)-] £ Jhnci o9 (@) — 97 (@) | + o™ @)

< Rle™ (@)-|" + o7 (@)-] < Re™|z—|* + clz|
< R p™+cp=p(Rp* " +c)<p<m
e it does satisfy (9) since (4), (6) and (9) for n — 1 yield, for z € D, ,,

e d (hn(2),2) = |z—|""d(Yohn-10¢ ' (2),d 0y (z))

< 2R (b 0w @07 @)

< PR esT @07 @) (e @07 @)
< (Rlz-|"|¢~ " (2)-|* +b,) Lipy < R (c” + R™'b,) Lip )
< F;

o it does map Dy, into Ay: indeed, as this is assumed true for n — 1, it takes its
values in ¢¥(A,_1) by (5), and (8)-(9) yield
lha(@)—| < [hn(2)- — 2|+ |o-| < Rle_|* + -] < Rp® +p<1n
for all © € D, ,, hence our result since A,, = (A,_1) N B.
As the definition of hy implies that each h, has infinite contact with the identity along
D, "W and that h,_1 and h,, fit together smoothly along the common boundary of
Dy—1,, and Dy, ,, this does define the required h.

ii) Since the germs along W™ of the solutions ho of our extension procedure form
an infinite dimensional space, the result is true when Hj is the germ of the identity.
Otherwise, notice that H conjugates @1 to ¢ if and only if HO_1 o H conjugates 1 to
Hy' oo Hy and apply (i) with ¢ := Hy* o @ o Hy. O

Notes. The ingredients of this proof are extracted from that of 4.2.2, Théoreme 1
in [10], where the result is not proven (nor used) in such generality. It contrasts
sharply with the analytic case: if ¢, @1, Hy are analytic, then Hy is the only
analytic H in our infinite dimensional space: the problem is whether it exists.

Corollary 2.13 (Sternberg-Chen) Theorem 1.2 is true for Z-action germs.

Proof. With the notation of the preparation lemma 2.10, identifying each ¢,
to ¢¢(1) as usual, we can apply Corollary 2.12 to ¢ := (hZ! o h).g; with
¥ = {0} and E* = @D, 0 Ee, equipped with the Euclidean norm | - [ :=
> tepc0 2op 0P| p|*: indeed, ¢ satisfies the hypothesis of the extension lemma
for small enough § > 0 since

(’9907(,0_(0)_1’6} = max e 1®l < 1;

;i_r):% max { |9, ¢4 (0)];, 1<<n

thus, if the action germ ¢’ is formally conjugate to g, then ¢} is smoothly
conjugate to a germ ¢; : (F,0) — (E,0) to which Corollary 2.12 applies. O

The case of flows, though accessible to this local approach, will now be treated
in a somewhat different spirit.
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2.3.2 The Lyapunov map

Let
F:= %(cl|z1\2 + -+ Cn|:cn|2) B — R™,

where |z4|? ;= Zs.,|? and the coordinates z, , are as in Proposition 2.1.
p 1 Tlp P p

The case of real flows If (k,m) = (0,1) then F is a real-valued Lyapunov

function for the linear flow S?, as'”
1
FoSt= 3 (crziPe® ™ + -+ e |z |*e*) (10)
and therefore $F oS, = cllei[* + -+ ¢2|an|?

Weak hyperbolicity means that none of the ¢;’s is zero, hence the only critical
point of F'is the origin. As S is in the Siegel domain, the ¢;’s do not all have
the same sign; therefore, (10) shows that, along every orbit of the flow, F' tends
to 400 (resp. —oo) when t — 400 (resp. —o0), except when the orbit lies in
the stable (resp. unstable) manifold E* := @, o Er (resp. E~ := @, Er)
of the flow S at 0, in which case the limit of F' is 0.

Thus, if b is a regular value of F (i.e. b# 0) and Qp := F~1(b), then

e cither b is positive and @ is a quotient by the flow S of the invariant
open subset E, := E ~ ET, meaning that every orbit of S contained in Ej
intersects @y transversally and exactly once,

e or b is negative and @ is a quotient by S of the invariant open subset
Ey, =E~FE".

If p is another smooth R-action on F leaving Fj invariant and for which @ is a
quotient of Ej, the two flows on Ej induced by p and S are smoothly conjugate.

Indeed, there is a unique smooth conjugacy H : E, — Ej of p to S equal to the iden-
tity on Qp: if the smooth functions 7, 7 : £, — R are defined by S’_T(P)(P) € Qp and
p TN (P) € Qu, then H(P) = p"P(S7T(P)) and H~'(P) = 7 (p77)(P)),
since ToS'=t+T and Top' =t+ 7 in Ey.

In general, this conjugacy H between S and p does not extend continuously
to the missing invariant subspace E* = E \ E, (dramatic example: pt = S~t),
but the same idea and the extension lemma yield

Corollary 2.14 (Sternberg-Chen) Theorem 1.2 is true for R-action germs.

Proof. Tf we replace each x¢,, by 6* 'z, with § > 0 small enough, F is a Lyapounov
function for the linear flow L and not only for S.

Given an R-action germ g’ formally conjugate to g, it is formally conjugate to
the same normal form go as g and therefore, by the preparation lemma, smoothly
conjugate to an action germ on E whose infinitesimal generator Y1 has infinite contact
with the infinitesimal generator Yy of (hs' o h).g along ET U E~. Denote again by

17When all the eigenvalues of dX71(0) are real, St is the gradient flow of F with respect to
the standard Euclidean metric dm% .
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Y;, 7 = 0,1, a smooth local vector field with that germ at 0, by A the infinitesimal
generator of L and by 6 : E — [0, 1] a compactly supported smooth function equal to
1 near 0. For small enough positive n, the formulae

7. (y) = { Aw) +00y) (Y (w) ~ AWw)) for n'y € suppo
A(y) otherwise

define two smooth vector fields Yy, Yi on E with the following properties:
o they have infinite contact along BT U E~;
o their flows @, ¢t have ET, E~ as stable and unstable manifolds at 0;
e the function F' is a Lyapunov function for both.

For negative b, it follows as before that there is exactly one smooth conjugacy H :
Ey,=FE~E — Ej of 571 to f’o equal to the identity on Qp; as it has infinite contact
with the identity along E™ \ {0}, the extension lemma applies to the germs h, ¢, % of
H, @, 1 respectively at 0 since ¢ has the required properties, hence our corollary. [

Notes. Via the conjugacy relation, this local extension can then be globalised,
a remark that will prove useful in the sequel.

If b is negative enough, then @ (y) = @4 (y) = Li(y) for all y € Q, and ¢t < 0,
implying that the extended H is the limit of g} o ;" when t — 400 (of course,
t can be restricted to the integers): this is Nelson’s approach [19].

Off W, the Lyapunov function F' and the “curved” hypersurface @, can
be replaced respectively by z + |z |? and by the cylinder {|z,| = 1}.

Basic facts about the R"-action S when k£ =0

Notation. As in [10], for y € E, we let J(y) := {€ : x¢(y) # 0} and, for

Icf{1,....n}, Er =P Ey, Vi =3, Reeand Cr := 3, Rycy.
Lel

Proposition 2.15 For I C {1,...,n}, a point y € Er is a critical point of
F|g, if and only if it is a critical point of F'; hence, every critical value of F|g,
is a critical value of F, and every regular value of F' is a reqular value of F|g,.

Proof. An occasion to recall definitions. A critical point of ' is an y € E such that
DF(y) : E — R"™ is onto. As DF(y)v = Y_ cexe(y) - z¢(v) (scalar product) for all
y,v € E, it is clear that DF(y)E = DF(y)E; = D(F|g,)(y)Er for y € Er, implying
the first assertion. The rest is pure terminology: if y is a critical point of F, then F'(y)
is called a critical value of F', hence the second assertion. A regular value is a point
in the target space which is not a critical value, hence the last assertion. O

Formula (10) still holds for » > 1 and has about the same consequences as
before:

Proposition 2.16 The map F is a “Lyapunov map” for S: for each y € F,

16



i) the map ¥, : t — F o S'(y) of R" into R™ is the derivative of the
real function fy it — 53, |we(y)|2€**!, which is convex since its second
derivative D? f,(t) = Y, |ze(y)|?€****ce @ ¢ is nonnegative for all t;

ii) the bilinear form D?f,(t) is positive definite for all t if and only if y does
not belong to the S-invariant set

CritF={yeFE: VJ(y) #R™},
which is indeed the critical set of F since DF(y)R" = Vj(,);

iii) for y & Crit F, it follows that ¥, = Df, is a diffeomorphism of R" onto
an open subset of R™, which turns out to be the interior Cj, of the
closed convex cone Cjy);

iv) either y lies in the union V of the SIM’s of S (which contains Crit F'), or
v, is a diffeomorphism of R" onto R™;

v) the restriction of F' to each SIM of S and therefore to V is a proper map.

Proof. 1) is obvious.

ii) The nonnegative bilinear form D?f,(t) is degenerate if and only if there exists
s € R"~{0} such that D?f,(t)s*> = 0, i.e. c¢(s) = 0 for z¢(y) # 0; this does mean that
the ¢,’s with z,(y) # 0 belong to the hyperplane {c € R"" : ¢(s) = 0} for some nonzero
s € R7, i.e. that they do not span R"™". To see that DF(y) : oy — >, xe(y) - xe(y)ce
maps R" onto V), notice that DF(y)R" C Vj(,) and that every linear combination
>teg(y) Aece is of the form DF(y)dy with x¢(dy) = Xewe(y)/|ze(y)|? for £ € J(y).

iii) The first assertion is classical and the inclusion ¥, (R") C CO’J(y) clear; for the
whole, see [10], 5.1, proof of Théoréme 1.

iv) One shoud prove that y € V if and only if CQ‘J(y) # R"™. The “only if” is clear:
if y is in the unstable manifold of S, then either ¢t = 0, yielding y = 0 and CO’J(y) =0,
or one has cg(t) > 0 for all £ € J(y), hence C(, is contained in {c : ¢(t) > 0}; to
prove the “if”, notice that éj(y) is then contained in the half-space {c: ¢(t) > 0} for
some nonzero t; now, by weak hyperbolicity, the convex hull of the ¢,’s lying in the
hyperplane {c: ¢(t) = 0} does not contain the origin, hence ¢ can be changed a bit so
that they satisfy c¢(t) > 0, which will in particular be the case for all £ € J(y).

v) If W is the unstable manifold of S*, then W > y +— F(y)t is a positive definite
quadratic form. 0

Notes. Proposition 2.16 holds in the Poincaré domain. In the Siegel domain,
(iv) implies that F' is onto, hence every regular value of F' is a value of F.

By weak hyperbolicity, the orbits of S contained in V are precisely those
adherent to 0, called the Poincaré leaves of the singular foliation defined by S.

Proposition 2.17 Let b€ R"™.
i) It is a critical value of F' if and only if it lies in some Cy with dim V; < r.

ii) Otherwise, the union Yy of the SIM’s of S on which F does not take the
value b consists of all y € E with b ¢ C ;) and therefore contains Crit F'.
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i) Still assuming that b is a reqular value of F, the submanifold Qp := F~1(b)
is a quotient by S of the dense S-invariant open subset By := E ~ Vs in
the same sense as for flows; in other words, the map vy : Qp X R™ — E}
defined by op(y,t) := S(y) is a dzﬁeomorphzsmlg

Proof. i) If y € F~1(b) is a critical point of F, one can take I = J(y) since VJ<y> #R
and b= F(y) € Cy(y). If b € Cr with V7 # R"™, there clearly exists y € F'~'(b)
J(y) C I, hence y € Crit F.

ii) Given I C {1,...,n}, one clearly has F(E;) C Cr hence, by (i), b ¢ F(Er) for
dim Vi < r; if now VI R, then either b ¢ F(Er), or

Itye Vs then of course b does not lie in Wy (R") which, by Proposition 2.16 ii)-iii),
equals CJ<y) unless C’J ) = 0; conversely, if b ¢ C'J(y> then b ¢ Cj(,) by (i), hence
there exists ¢ € R" such that bt < 0 and c¢t > 0 for all £ € J(y), implying that F' does
not take the value b on W := $Czt>0 Ey; now W contains y and is a SIM of S since,
by weak hyperbolicity, the inequalities c,¢t > 0 can be made strict.

with

iii) By (ii), one has y € E if and only if b lies in é’J(y), which is the image of the
diffeomorphism ¥, by Proposition 2.16 iii). O

2.3.3 Untangling the R"-action S when k£ =0

Notation. For 0 < j < r, we identify R/ to the subgroup R’/ x {0} of R" and
denote by 7; : R™ — RJ* the restriction map ¢ — ¢|rs. The canonical basis of
R’ is still denoted by (d1,...,4,).

Proposition 2.18 ([10], 5.2, Propositions 1 and 2) Replacing St by S4*
for a suitable automorphism A of R", one may assume that, for all j € {0,...,r}
and I C {1,...,n}, the restricted projection m;|y, has mazimal rank, which im-
plies the following:

i) For 0 < j < r the action S; := S|rixg ts weakly hyperbolic and the
previous properties of S, F' hold for S; and F; :=mjo F.
i) For 0 < j <, if I belongs to
Ki={Ic{l,...,n}:dimVi=jandc, e Vi =€},

(when S is hyperbolic, I € IC; if and only if I has j elements), then there
exists one g € R? such that

T4 Vi = {c € R7T 2 ¢(6;41 — gr) = 0}

i) For almost all b € R”, every F; admits b; := m;(b) as a regular value.
Hence, if fibj denotes the union of those SIM’s of S; on which F; does not
take the value bj, the submanifold Qyp,; := Fj_l(bj) is a quotient by S; of
the dense Sj-invariant open subset Ep, = E\f)bj ; in other words, the map
@b, 1 Qu, X R7 = By, defined by oy, (y,t) := Sk(y) is a diffeomorphism.

Idea of the proof. This relies on simple general position arguments: see [10], where the
subgroups H; = AR are considered rather than A itself. 0

18When S is a linear holomorphic C*-action in the Poincaré domain, this provides examples
of compact holomorphic manifolds with no real symplectic structure [18].
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Hypothesis and notation We assume that S and b have the properties stated
in Proposition 2.18. As in [10], for 0 < j < r, we let

I, ={I €K;: Qy, NEr #0}.

We denote by £ : R" — L(FE, E) the homomorphism of Lie algebras which to
u € R" associates the infinitesimal generator of the linear flow (t,y) — S%y.

Proposition 2.19 ([10], 5.2, Proposition 3) For 0 < j < r, the action
Sj+1|Ebj><Rj+1 reads as follows wvia the diffeomorphism py;: for all y € Qu,,

s,s €R’ and t € R,

t
i, S5 . = (0,054 5+ [ s, 0 87, ) ar),
0

where @i]_ 1 Qu; = Qv and gy, 1 Qv — R/ are defined in the following way:

. <I>f)j is the flow of the vector field on Qy; whose value at y € Qy; is the

image of £(8;41)y by the projection of E onto T,Qy, along the tangent
space E(R7)y of the orbit of y by S;;

e this vector field is of the form y — &(8;41 — 8, (y))y with g, (y) € RI,
which defines gy, .

It follows that the flow @ij is complete and that its orbits are the intersections
of Qv with the orbits of Sji1.

Proof. Natural. 0

‘We now describe the structure of the flow CIJZJ_:

Proposition 2.20 ([10], 5.2, Théorémes 1-2) For 0 < j < r, the real func-
tion fy, :y — F(y)dj+1 on Qp, and the flow (I>}§j have the following properties:

i) The critical set of fy; is Xy, = {y € Qp, : dim V) = j}, disjoint union
of the compact <I>Zj -invariant submanifolds ¥y, 1 = Qp, NEr with I € Iy,

which satisfy gy, (Xv;,1) = {&r} and fi,(3e;,1) = {b;(g1)}-
ii) The restriction of fy, to Qp, Xy, is a Lyapunov function for @ij |Qb7 N2,
iii) For each y € Qu,;, the function 1y, : t — fp, o <I>Zj (y) is bounded from

above (resp. below) if and only if y belongs to the stable (resp. unstable)
manifold Wl;[ (resp. VVb;J)19 of Xp;.1 for some I €Ty,

19ij; ; is the set of all y € ij such that the distance of CDZt)j (y) to ;.1 tends to 0 when
t — *o0.
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iv) For each I € Ty,, the <I>Zj -invariant subset Wbij_j equals ij NEy, 1N EIOi ,
where Ey; 1 is the S-invariant open subset

Eij = {y S bj S WjCJ(y)QI}
and EIOi is the SIM of S;11 defined by

Iy =={te{1,...,n}: +er(8;41 —g1) <0}

v) The set UIGI by [UWb 1 s the intersection of Qu; with the union Vji1
of the SIM’s of Sj+1; hence, it is closed and contains Qp; NV;. Moreover,
fbj ‘ij NVjt1 is proper,

Qp; N vbjﬂ = ( U W;,I) U ( U Wb?,]) (11)

b(6;+1—g1)>0 b(d;4+1—81)<0

and Qy,,, is a quotient of Qp; Vo, by the flow <I>gj,

i+1
vi) The set of those y € Qy; for which 1py : t — fp, o <I>ij (y) is bounded
(bounded orbits of the flow) is Qu; N V;; it is compact, contains ¥y, and

min fi,, (Qs;, NV;) = Ifél%l] b(gr) , max fu, (Qn, NV5) = }2%5: b(gr)

Proof. i) As b; is a regular value of Fj, every y € Qp, satisfies dim(7;V(,)) = j, and
the critical set of fy, is Qp; N Crit Fj41 = {y € Qu; : dim(mj+1Vy(y) < j}; by the
general position hypothesis stated in Proposition 2.18, this is ,. Of course, every
y € Xy, lies in only one Xy, 1, defined by I = {£: ce € Vj(y)}; in that case, the formula

DF(y) (((uw)y) = > |ze(y)*ce(u)ce, u € R, (12)
LeJ(y)

shows that DF(y) (£(d;+1 — g1)y) = 0, hence £(d;+1 — g1) € ker DF;(y) = T,Qp; and
therefore gb; (Zb,,l) ={gr}. Fory € va,I, one does have

Z lze(y)]"ce(8541) Z |ze(y)*ee(gr) = Fy(y)er = bj(gr)-
ZEI éel
Finally, each X, s is a submanifold since b; is a regular value of Fj|g, by Proposi-
tions 2.15 and 2.18; it is compact because it lies in Qp; N V;, see the proof of (vi).
ii) For y € Qs,, the relation & (6;11 — g, (y)) y € TyQs,; and (12) yield

0 = DFj(y)(¢ (5j+1 — g, (¥) v) 8, (v)
= Z lze(y (8541 — 8, (y)ee) ce (g6, (¥))
LeJ(y)

hence, again by (12),

Dfo;(y) (€ (0541 — o, @) y) = D lwe@)Pee (65401 — &, () ce(dj41)
LeJ(y)
= Z e (y)[ee (8541 — &, )
LeJ(y)
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this is positive unless ;+1ce vanishes on d;+1 — g, (y) for all £ € J(y), in which case
dim(7;+1Vy()) < J, that is, y € Qp; N Crit Fjyp1 = Ty,

iii) The “only if” being clear, we prove the “if”. If 1, (t) = fi; o 'i‘f,j (y) is bounded
from above (resp. below) then, by Proposition 2.19, the map R?*™! 5 s — F;11(S%y)
is not onto (it does not take every value ¢ € R/™'* with ¢|g; = b;) and therefore
Y € Qp; NVj41 by Proposition 2.16 iv). As Fji1|y,,, is proper by Proposition 2.16 v),
s0 is fi, |ij AV, 415 hence, there exists a real sequence (t,) tending to 400 (resp. —oo)

such that @i’f (y) tends to a limit z € Qp;. We now use the following obvious result:
J p
. +
Lemma 2.21 One has Ey,, = UIerj Ey, 1. Forall I € Iy, if I+ .= Iy 1,

i) a quotient of the S-invariant subset Ey, 1 by S; is the submanifold Qy,
that reads Xy, 1 X Er+ X Er— in the identification of E = E1 ® Er+ © Er-
to B X E[+ X E[—,’

i) the image 0f<I>ltjj \ijmEij by the diffeomorphism Cy, 1 : Qu,NEy; 1 — Qu; .1
obtained by following the orbits of Sj is
(I)i 1= St(5j+1_g1)|ij,I;

K

iit) In the identification (i), the flow @ZjJ splits:

o (Yo, yi,y-) = (‘Pij (yo), S"Os+1 =8y, St(‘s"“‘g”yf) :

and the linear endomorphism yy — S*'0+1—8y, of Frx is a strict con-
traction for +t > 0; in particular, the stable and unstable manifolds YI;I

and Y, of Xy, 1 for the flow @ ; are
+ .
Y;)]‘,I T ij7[ N EI(:Jt

and the germ of (IDij’I at Yy, 1 salisfies the hypotheses of the extension
lemma 2.11. ]

Back to the proof of Proposition 2.20 #i). The first assertion of the lemma shows that
z € Eyp;1 for some I € Tp;, hence ‘I’zt;j (y) € Qv; N Ey, 1 for large enough p and in fact
Yy € Qv; N Ey; 15 as Cp;,1 0 @Z’]’ (y) = <I>Z’;J 0 Cy;,1(y) tends to Cy; 1(z), the form of the
flow <I>Zj71 implies Cp,,1(y) € ij]-:,l and Cp; 1(2) € %, 1, hence y € ij;J and z € M, 1.
iv) What we have just done shows that be ;= Cb_jll(Ybe) =Qp; NEp; 1 NE+.
, , jo : : d
v) We have just proven the inclusion UIer W,jj' IUWb; 1 € Qv;NVj41; to establish
; , ,
equality, remember that if y € Qp, belongs to some v.fi. of S;t1, then the interior
of mj11C () differs from R by Proposition 2.16 iv). If this interior is empty, i.e.
dim 711V < j, theny € 3y,. Otherwise, as Fj(y) = b; and y ¢ Crit F, the interior
of m;C () contains b;, hence one of the j-dimensional faces ;1 1Ck, K C J(y), of
the closed convex cone m;11C () must satisfy b; € 7;Ck; if I is the element of 7y,
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such that Vi = Vi then, as m;11C () lies in one of the closed half-spaces bounded by
7j+1V1, we have y € Qp; N Ep; .1 N Efoi = Wbiﬂ.

The function fp, \ij AV, 41 is proper because Fji1|y, , is. Finally, for y € Qy,, it

41
follows from Proposition 2.19 that y € f/bj 41 if and only if ¢ — fp, 0 <I>f,j (y) does not
take the value b;41(d;4+1) = b(d;j41); now, by (iii), this means that either y € W;Jr_,l
for some I such that the value b;(gr) = b(gr) of fp, on %y, 1 is less than b(d;+1), or
y € W,_ ; for some I with b(gr) > b(dj+1), hence (11).

vi) As Fj|v; is proper, Qp; NV; is compact; since V; is S-invariant, this compact
subset is invariant by the flow 'i'lt,j and therefore contained in the set of y € Q, for
which v, is bounded. Conversely, given such an y, it follows from (iii) that it belongs
to Wb;,] N le_;v‘] for uniquely determined I,J € Ty, which, by (i)-(ii), satify either
I =J, or b(gr) < b(gs); in the second case, by (iv), one has y € EI(; N EJO+, ie.
(0541 —87) <0< ce(d41 —gr) for all £ € J(y), implying that y belongs to the SIM
@cz(gj_gl)zo of S;; in the first case I = J, one has y € Ebj,I and therefore the ¢;’s
with £ € J(y) lie in the j-dimensional subspace V; where, by weak hyperbolicity, they
are contained in an open half-space H with 0 € 9H; as m;|v, has maximal rank, every
mjce with £ € J(y) lies in the open half-space ;H of R?*, proving that y € V;. The
bounds of fy, (Qs; N'V;) follow at once from (iii). O

2.3.4 Proof of Theorem 1.2 for R"-action germs

Even though we could remain at the local level as in [12] or in the proof of
Corollary 2.12, it will be more comfortable to extend our action germs into
genuine actions with properties very close to those of \S; the required conjugacy
will then be the solution of a Cauchy problem as in the proof of Corollary 2.14.

Hypothesis and notation. We still assume that S and b have the properties
stated in Proposition 2.18. For 0 < 5 < r, we let

m; :=min {b(6;41), min b(gr)} and M, :=max {b(0;11), max b(gs)},
Iely,; 1€,

hence Qp; N'V; C f, *([m;, M;]) by Proposition 2.20 vi).

Lemma 2.22 Given a smooth function 0, : Qp. = Qp — [0,1] with compact
support, equal to 1 mear Qp NV, one defines inductively a compactly supported
smooth function § = 0y : E — [0,1] as follows:

i) Its restriction to Qp, 1 0.

ii) For 0 < j < r, its restriction 0; to Qy, is determined from 0;,1 by the
formula

Yy € Qp41 VEER 0, (‘I)E]- (y)) = Kj (fbj (@, (y)))9j+1(y)

where rk; € C*(R,[0,1]) has compact, connected support and equals 1 on
a compact interval K; containing [m;, M;] in its interior.
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For 0 < j <, the function 0; is equal to 1 in a neighbourhood of Qy, N'V;; in
particular, 6 = 1 near 0.

Proof. We use the following

Fact For 0 < j <, if N is a compact neighbourhood of Qv;,, NVjt1 in Qu,,, and
K a compact interval with bj11 € K, then the closure fb_jl(K) N (Ut <I>’,§j (N)u Vbj+1)
of fb;l(K) N U, <I>,§j (N) is a compact neighbourhood of szl(K') N Vjt1 in Qp, for

every compact interval K' C i'(,- in particular, for [mj, M;] C f{, it s a compact
neighbourhood in Qp; of Qv; NV;.

This fact implies our lemma: indeed, for N = supp ;41 and K = supp &;, it shows

that supp 6; is compact; for N = 9]-_4_11(1) and supp k; C K, it shows that 6; is smooth,

being equal to ;o fp; near the only litigious part, namely Vj11 N Qy,; for N = 9;:1(1)
and K’ = K, one gets that 6; = 1 near Qy, N V;.

contain any critical value of f,;, but it remains true otherwise because <I>f,j is (normally)
hyperbolic at each X, 1 (see step 3 in the proof of the globalisation lemma 2.24). O

Notation

e We fix 0 as in Lemma 2.22 and let B be a bounded open subset of E
containing supp 6, hence 0 € B.

e With the notation of the preparation lemma 2.10, we let Y7,...,Y, be
commuting smooth vector fields on an open neighbourhood of 0 in F,
whose germs at 0 are (hz! o h).Xy,..., (h3! o h).X,; if £ is as in the

oo oo

previous paragraph, the semi-simple part of A; = DY;(0) is &; := £(J;).
e For n > 0, we define the weighted zooming map ¢, : £ — F by

Zop Oy = np_zd_lxg)p, where d := max dy.

Lemma 2.23 When n tends to 0, the vector fields ;. Y; — & tend uniformly to
0 on B and so do their derivatives at all orders.
Proof. Since (y«&; = & and Y; = A; + R; with j'R;(0) = 0, it is enough to check that
a) (y«R; and its derivatives tend uniformly to 0 on B and
b) each linear vector field (,«(A; — &;) tends to 0 in L(E, E).

As Aj — & is in triangular form @ep 0 (Aj — &) = 3212 ELpaTelq

—2d—1 -
TepoGyo (N —&)=n" Z ELp,qle,q = Z n" " e0,p,qTe,q © G,

1<qg<p 1<qg<p

) — p—q ;
hence @4, 0 (e (A — &) = §:1§q<p n’"ee,p,qTe,q, Proving b).
, .
By Taylor’s formula, R; = magm’ g’ TmagTm/ g/ m,q,m/,q' near 0 € E with a,,,q,m/,¢’
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smooth, hence

Topo Ry (y) = P DT M () T (U) gt (G (W)

! gl
m,q,m’,q

= Z Pttt Tm,g (Y) Tm’ g (Y) Gm,g,m ¢/ (Cn_l(y)) )

! gl
m,q,m",q

which tends uniformly to 0 on B as well as its derivatives, since ¢, '(y) does and
q+q —p<dmn+dy —0<2d, in other words 2d +1+p—q—q > 1. O

The following result shows in particular that every weakly hyperbolic smooth
R"-action germ on F is the germ of a smooth R"-action.

Globalisation lemma 2.24 For small enough n > 0, the formulae

eQ, , Vi) = {ZEZ; HOWGYs = &)) Sory Eswpd

define the generators Yj ™5 |,—o of a unique smooth action § of R" on
E, whose germ at 0 is (¢, o hoo o h).g: for each j, the germ onj at 0 is the
germ (G, o hod o h). X, of (,xY;. This action possesses (for our fixed b and
small enough 7)) all the properties of S stated in Propositions 2.18 iii), 2.19 and
2.20—which will be detailed in the proof.

Proof. For small enough 7, every vector field (.Y} is well-defined on B, hence (13)
does define a vector field Y; on E over Qp,_,

»

The expression “For small enough n > 0 and 0 < j < r,” is implicit at each of the

following steps.

Step 1 One defines a smooth vector field Zy, on Qv,; as follows: each Zy,(y) is the
projection of 17]~+1(y) in TyQy,; along ®1<i<j Rﬁ(y). The flow \Ilij of Zy; is complete
and preserves the intersection of Qs; with every SIM W of S.

Indeed, with the notation of Lemma 2.22, recall that supp; := Q»; N supp0;
for y € Qp; ~ suppdj;, one has Yi(y) = &(y) for 1 < i < j+ 1, hence Zy, (y) =
€ (541 — &b, (y)); on supp 6;, every Y; with 1 <4 < j converges uniformly to & when
n — 0; now, as Qp; is a quotient of Ep; by S;, the vectors fields & with 1 <7 < j are
linearly independent at every point of supp 6;, hence so are, for small enough 7, the
vectors fields Y; with 1 < 4 < j, implying that Zp; is well-defined and smooth. The
flow \I/b , having the same generator as the Complete flow @} off the compact subset
supp 037 is complete. It preserves Qp, N W for each SIM W of S because every &; and
every Cn«Yilsuppo; with @ < j+1 is tangent to W.

Step 2 The restriction of fy, to the \Ifij -invariant subset Qp; ~\ Xp; s a Lyapunov
function for the flow \I/f,j |ij By, -

Indeed, by Step 1, every ¥y, 1 = Qp, N E+ N E,— with I € Ty, is \I!Zj-invariant
0 0
since B+, E;— are SIM’s of 5. We should verify that Lz, fp, (v) = dfv,; (y)Zv,; (y)
0 0
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is positive off X,. By Proposition 2.20 ii), this is true in Q; \ supp6;, where Z,
generates @Zj; by Lemma 2.23 and Proposition 2.20 ii), for every open subset V' O %y,
of Qv , the function L:ij fb; is positive on supp 6; \ V' for small enough 7; hence, the
problem is to find an open subset V' D X, of Qu; such that Ezbj fv; is positive on
V. Ebj for small enough 7. This follows essentially from the fact that each Eb].J s a
critical submanifold of Ezbj fo; along which the Hessian of ﬁzbj Jv; is positive definite
in the normal direction E;+ & E;— for small enough n.
Let us prove this: for y € Qs,, since Fj(y) = b; and c¢(d;+1 —gr) =0 for £ € I,

fo; () = bi(&1) — Fi(y)gr + fo, (y) = b;(gr) + % > e(@i —gn)lwe()? (14)
¢l

hence, denoting the standard Euclidean scalar product by a dot,

Lz, fo;(y) =Y ce(Sin —gr) xe(y) -z (2o, (y)) -

0¢1

For y € X, .1, as Zs, (y) is tangent to ¥y, 1, every x¢ (Zy; (y)) (and of course z¢(y))
with ¢ ¢ I vanishes, yielding

ALz, fo;(y) = D ce(Gi1 — g1) (we(dy) - we (Zo; () + wely) - d (e 0 Zy;) (y) = 0
g1

and implying that the Hessian Dz(l:zbj Jo;)(y) is the quadratic form

V= 226@(5]'4,.1 —gr)xe(v)-d (xz o ij) (y)v;
g1

when 1 — 0, this quadratic form tends uniformly on ¥,,,; to its analogue for the
flow 'i‘f,j, namely v — 2375, ce(dj+1 — gr)? |z¢(v)|?; as this is positive definite on
E+ ® E,—, sois D? (,Czbj Jo;)(y) for all y € 3, 1 when 7 is small enough.

To conclude, writing the points of Ep, ; under the form (y,z) with y € ¥, 1
and z € E;+ @ E;- and remembering that £ij fbj vanishes to order 1 along Ebj,[,
Taylor’s formula writes ij,j*ﬁzbj Jo; (Y, 2) = Xy,2(2) where Xy, is the quadratic form
fol(l - t)DQijJ*ﬁzbj Jo; (y,tz)dt; when n — 0, this quadratic form tends uniformly
near X, 1 to its analogue for S, which is positive definite if the neighbourhood is small
enough since, by what we have just done, it is positive definite on Xy, 1.

Step 3 With the notation of Lemma 2.21, the germ of ij,l*\llf,]_ at ;.1 satisfies the
hypotheses of the extension lemma 2.11 for all I € Ip; and t # 0, with Wt = ij[

and W~ = ijjFJ for &t > 0. Hence, a neighbourhood basis of ;.1 in Qp; consists of
the compact subsets

By = (fi, (blen) — &, b(er) + =) 0 Jwh, (V) U (£, (1b(en), blen) + ) Wi )

with € > 0 small and V' a small compact neighbourhood of W;J'_J N fb_j1 (b(gr) —¢) in
fb—jl (b(g1) —€). Fory € Be,v, the function t — fy, o \Ilf,j (y) takes the value b(gr) ¢
if and only if y ¢ ijl.
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Indeed, since \Ilij preserves the intersections of Qp,; with the SIM’s E + of S, the

h 0
germs at ij,f of their images by ij,j are preserved by Cb].J* \Iff,j . Hence, as \If};j tends
in the C! sense to <I>f,j near Ebj7l when n — 0, the first part of our statement follows

from the analogous fact for <I>f,j (last assertion of Lemma 2.21).
‘We now deduce the second part in a more or less standard way: the boxes

By = s ({we Quurmax { & . 3 et} <7}

Lelt Lel—

with p > 0 small enough form a neighbourhood basis of ¥5,,1 in Qp; and, for all
y € B,, the orbit \IIZJ_ (y) leaves B, for some t with +¢ > 0 through

(9in = {y €B,: Z |ze oij,I(y)‘Q = p2}

LelF

unless y € Wbﬁ;J, in which case \I/éj (y) remains in B, for +¢t > 0 and tends to %y, 7.
Moreover, the closures C,(N) of the subsets B,N|J, \Ilf,], (N) with N a neighbourhood
ofafB,,ﬂWbt,I in 0~ B, form a neighbourhood basis of (W;;’IUWb;I)ﬁB,, in B,; thus,
when N is small enough, one has max fy,(N) < b(gr) < min fi, (C,(N)N"B,),
since max fp, (Wb': N0~ B,) < b(gr) < min fbj(Wb; NoOTB,) by, e.g., (14); it follows
that, for max f,,, (N) < b(gr) — e < b(gr) + & < min fy, (C,(N)N 0T B,) the subset
Co(N)N fb_jl([b(gf) —¢,b(gr) +¢]) of B, is a neighbourhood of X, 1 of the form B. v
with V = C,(N) N f@l(b(g,) —e).

Step 4 For each y € Qu;, the function xy : t — fp, o \I/Z]. (y) is bounded from above
(resp. below) if and only if y belongs to the stable (resp. unstable) manifold of \Illt,j at
;1 for some I € Ip;. These global stable and unstable manifolds are the same as for
<I>f,_7., namely W;;J = ij ﬂEij al Elg. and Wb;l = ij n Eij N EIO_. Hence, Qy

by the flow \Ilgj.

1
is a quotient of Qv; ~ Vo,

Indeed, if x, is bounded, say, from above, then \Ilz(; (y) € supp 0, for some to since,
otherwise, \I/Zj (y) = @ij (y) could not tend to any X, r, which lies inside supp 6;,
yielding the contradiction x,(¢t) — +oo by Proposition 2.20 iii); we claim that \I/,t,j (y)
remains in suppf; for all ¢t > to: it cannot escape through the “lateral” part of
the boundary of supp6; that consists of segments of orbits of <I>f,7. coming from the

boundary of supp 6;_1, which are segments of orbits of \I/Zj because there 0 = 0; the
only remaining escape, through the part of the boundary where fp; is maximal, is also
excluded because \Ilij (y) would never come back and therefore x,(t) — 400 as before.

Now x3,(¢) = Ezbj fo; (\Ilf7J (y)) accumulates for t > to to 0 hence, by Proposi-
tion 2.20 i), \Iff,j (y) accumulates to X, ; and therefore lim:— oo Xy(t) = b(gr) for
some I € 1p,; it does follow that \I/f,j (y) € W;;’I for all large enough ¢, since it must

enter some neighbourhood B,y as in Step 3 and x,(t) cannot take the value b(gr) +e.

As \Ilf,j (y) € Wbt 1 for large ¢ and Wbt 7 is included in the ‘Ilf,j -invariant manifold

E, + NQs;, we have y € E 1+ N Qp,;and there remains to show that y € Ep;,r; now, by
0 0

20See for example [12], (2.2), Isolating Block Lemma (iii).
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Proposition 2.20 v), the closed subset EI+ N Qb;‘ ~ Ebi,l = EI+ n Qb;’ ~ Wb': ; equals
o ; ; o ; ,
B 0 (User Wih0) U (Us Wey s~ W) )5 as it is closed, this yields

+
EIS_ N Qw, \ij,l 7EIS. N <(91ij mEJS—) U (LJJij ﬂEJO_))

(since Wb"; s is dense in Qy; N £+ and Wb; 7N Wbt ; dense in Qp; N E,— for all
, Jg , , 5

J € Ip,), implying that EIO+ N Qp; Wb?] is \I/,t,j -invariant and therefore y € Wbtl

Step 5 For smalln, if N, is a compact neighbourhood of QpNV in Qy (which we choose
to be a submanifold with boundary), one defines inductively a compact neighbourhood
Nj of Qu; NVj in Qu; for 0 < j <1, which is a submanifolds with corners, as follows:
Nj is the closure fb_jl(Kj)ﬂ(Ut \Il'f,j(NjH) U f/ij) ofszl(Kj)ﬁU \I/Zj (Nj41). When
n and N, are small enough, the compact neighbourhood No of 0 in E is contained in
071 (1) and therefore so is Nj = No N Qp; for0<j <.

Indeed, the first part of the statement is the analogue for W} of the fact used in
the proof of Lemma 2.22 and its proof is the same. The second part follows from the
fact that every Nj tends to its analogue for <I>£J_ when n — 0.

Hypothesis. We fix 1, N- as in step 5 so that No C #~'(1) and conclude by induction:

Step 6 For 1 < j < r, the vector fields Y; defined by (13) on Qp,_, for 1 <i <3
extend in a unique fashion to commuting smooth vector fields on E, whose germs at 0
are (Cy o hag 0 h)uX1,...,(Cy 0o hst oh)«X;. More precisely, Y; = Cn+Yi on No.

The vector fields Y1, . .. ,f/j define a smooth action §; of R on E preserving every
SIM of S and possessing (for our fixed b) all the properties of S; stated in Proposi-
tions 2.18 iii), 2.19 and 2.20. In particular, the map p; : Qp; X R’ — E defined by
o, (y,1) = 3i(y) is a diffeomorphism onto Ey,.

This is obvious if j = 1, as (13) defines a vector field Zy, := Y1 on Qy, = E equal
to yxY1 on 671(1) D Ny and for which we have just proven our statement.

Assuming the result established for some j < r, let us prove it for j+ 1. The action
Gj+1 must read as follows via ¢, for all y € Qy;, 5,5’ € R’ and t € R,

t
v 3, ) = (w s+ + [ s, 0%5,0) dT) (15)
0

where ‘Iléj is the flow of Zp, and sy;(y) is the element (o1,...0;) of R/ such that
Zy;(y) = Yis1(y) = Xy<i<; 0:Yi(y). The formula (15) defines an action ;41 of R/
on the dense open subset Ej; (its extension to R’ x E will therefore be unique),

whose generators are Yi,... f/} (already extended to E) and the vector field YjH on
= (Zv; (), s, (1)), Le.

Ebj given by ¢Z_jyj+1(y» S/)
Yy € Q, Vs R 3V (y) = Vi (y). (16)
we should show that it extends smoothly to E so that Y]'H = (p«Yj4+1 on No. We claim

that (16) defines a vector field 1~/j+1 on Ey; equal to (;«Yj1 on NoN Ep, = No ~ f)bj;
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this will prove our result since Yjﬂ will extend by density to a smooth vector field
Yj+1 equal to (,+Yj41 on No, which will extend smoothly to the rest of V,, because it
is invariant by g;. ~

To establish our claim, first recall that Y11 = (;«Yj41 on 9;1(1) D N; by (13)
with j := j + 1. Now, by definition of No, the subset No N Ejp; consists of points
Yo, each of which is obtained from a unique y; € N; by concatenating the paths
[0,t:] 3 ¢t — Wi _ (i) € Ni from y; € N; to yi1 := \I’Z,l(yi) € Ni—yforj>i2>1;
as (15) with j := ¢ — 1 yields

t
(= Jo'sb; 105, (ya)dr,t)

\piif1(yi) =9; yi),

it follows that yo is the endpoint of a path t — §7® (y;) in Ny with ~ : [0,7] — R/

continuous, piecewise smooth and (0) = 0; now, if v = (y1,...,7;),
d () CHRS
~ * g - * ’ ~ ~
29 Vi = GYin) () = §f [Z%(t)Yi s Yip — Cn*Yj-H] (y5)
i=1

i
= > viwg"” [Yu Yji1— Cn*Yj-H] )
=1

= DoAY (1% Vil = G Yir Y] ) ()
= 0

since }7; and (,+Y; coincide on the submanifold with corners Ny and therefore have the
same 1-jet at g](t)(yj) for 1 <i < jand 0 <t <T; hence,

§;<0)*(5~/J‘+1 — Y1) (W5) = (Yier — G Vi) (y))
0

g;‘Y(T)*(Y/JHLl = oY1) (y5)

ie. Yji1(yo) = CpeYir1(yo), as claimed. O

End of the proof

Hypotheses and notation. Given an R"-action germ ¢’ formally conjugate to g,
it is formally conjugate to the same normal form gg as g and therefore, by the
preparation lemma, smoothly conjugate to an action germ on F whose infinites-
imal generators possess representatives Y7, ..., Y, having infinite contact with
Y1,...,Y,. along V. If we apply to them the globalisation lemma 2.24 with the
same n and 0 as for Y7, ..., Y, (which is possible if 7 is chosen small enough), we
get an R"-action p on E with the same properties as g, having infinite contact
with g along R"™ x V.

Lemma 2.25 There exists a unique smooth conjugacy h : E — E of g to p
equal to Idg on Qp, and it has infinite contact with the identity along V. In
particular, Theorem 1.2 is true for R"-action germs.

Proof. The last assertion is clear since h*Y] =Y near 0 for 1 < j <.
If the diffeomorphisms s, x» : Q» X R™ — E, are given by ¢5(y,t) = §'(y) and
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xov(y,t) = p'(y), the conjugacy relation ho §*(y) = p' o h(y) reads ho §'(y) = p'(y) for
y € Qs, i.e. h oy = X, hence h|g, = xp 0 w;l. As for flows, this defines a smooth
diffeomorphism of Ej onto itself, conjugating §|r~ x5, to p|r~xE,. Moreover, as § and
p have infinite contact along R" x V), the diffeomorphism h|g, has infinite contact with
the identity along V N Ey. Since Ep is dense, uniqueness follows and all we have to
show is that the bijection h : E — E defined by

ot fory e E
hiy) = {Xb Uy ' (y) fory € By
y fory e W

is smooth and has infinite contact with the identity along V. We will prove inductively
that h\Ebj is smooth, maps Ej; onto itself and has infinite contact with the identity

along VN Ey; =V N f/bj for 0 < j <, hence Lemma 2.25 for j =0, as Ey, = E.

By what we have just done, the result is true if j = r; given j < r, we now prove
it for j assuming it true for j + 1. First note that, as h is a bijection equal to the
identity on ) ]>bj, we do have h(Ebj) = Ep;.

Let o, xp; * Qp; X R/ — By, be the diffeomorphisms given by ¥, (y,t) = ' (y)
and X, (y,t) = p'(y). If we set

hy; == X;jl oh oy,

and, for y € Qp;,
(h°(9),h' () = hs,(y,0) = x5, © h(y),
then for s € R7 the relation h o §°(y) = p* o h(y) reads

hv; (y,8) = (h°(y), s + h' (1)) (17)
and, for t € R, the relation h o 59 (y) = p* o h(y) writes
hy; o 05,3 (y,0) = X3, 0" 0 hy, (y,0).

By (15), ¢5,3" (y,0) = ¢,6*" (y, 5); similarly, xi p? (v, s') = x5, 00 (v, s+ )
hence, by (17), x5, © hy,; (y,0) = x3,p "% © hy; (y, ); setting

U =g and E =g 0"
it follows that the relation h o §<S’f>|Eb_ = p(s’t) o h|g, . is equivalent to
J J
hy; 0 Wy =34 o hy,. (18)
Now, by (15),
t
), .9) = (98, 05+ [ s, 007, () ar ) (19)
0

and similarly, if Eij ,0p; denote the analogues of \I/Zj ,sp; for p,

t
2 (y,5) = (: (wos + [ o, 0 9E,0) df). (20)

0
By (17)-(19)-(20), both hy, and the flows \ilij,éij commute with the action of Z7 on

Qp; % R by translation on the second factor; hence, they induce a bijection Ebj of
@b, x T7 onto itself and two flows \i!f,j , Ef,j on Qy; x T7.
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Our induction hypothesis is that h is smooth on Ej, , and has infinite contact
with the identity along V ~ f)le, i.e. that hbj is smooth on

wb;l (Ebj+1) = (ij N Ebj+1) xR’ = (ij N f)b]url) x R’
and has infinite contact with the identity along
Vo, (VN Vo 1) = (@, NV N\ Vo) X RY;

we wish to show that hy; is smooth and has infinite contact with the identity along
(Qv, ﬂf/bﬁl) x R7. Using the extension lemma 2.11, we will now prove that Ebj, which
is smooth on (Qb]. ~ f}bjﬂ) X Tj, is smooth on the whole of ij x T and has infinite

contact with the identity along (QbJ N f/ij) x T7; this will imply what we want.
The flows \Ilij,Ef,j have all the properties of \Ilf,j stated in the proof of the glob-

alisation lemma 2.24 if ij,Ebj,I,Wg‘;’I are replaced respectively by their cartesian
products ij,ibjyj,wa,l with T/ and fi, by fo, : (y,8) — fs,(y). By (11),

(Qb; N Voyy) x TV = ( U W”J;’I) N < U Wb;”>;
b( 0

b(6j41—81)>0 Sjr1—81)<

let us explain how to “fill in the gap” along Ub< 5 Wb; ; by showing that there,

- j+1—81)<0
hp; is smooth and has infinite contact with the identity:

o if b(d;+1) is larger than b(gr) for all I € Zp,, there is no gap to fill;

e otherwise, there is a smallest b(gr) > b(J;+1); if we call it v1 then, for every?!
I € T; with b(gr) = v1, the hypotheses of the extension lemma 2.11 are satisfied
for positive ¢ by the germs at ¥, ;1 of \Ilgj,EIt,j and hp; ‘Qb]‘\Wb;,I; hence, the
latter extends to a smooth germ having infinite contact with the identity along
the germ of Wb;)l, which of course is the germ of hy, at 3y, 1;

e now, (18) yields ﬁbj o \I/f,j = Ef,j o Ebj for all positive t; as \Tlf,j and Eij have
infinite contact along their common unstable manifold Wb;, 7 at Zb]., 1, it follows
that hy, is smooth and has infinite contact with the identity along Wb; ; for all
I € T,; with b(gr) = vi;

o if there is no I € 7; with b(gr) > w1, the gap is filled;

e otherwise, if va denotes the smallest b(gr) > wv1 then, for all I € Ty, with
b(gr) = w2, as every possible gap along W;g_ 1 has just been filled, the same
argument shows that hp; is smooth and has infinite contact with the identity
along ij IS

e iterating this procedure, the gap is filled.

The gap along Ub(6j+1*gl)>0 V_V;]TJ is filled in the same way by considering first the
largest b(gr) < b(d;+1) (if any), calling it v_1, applying the extension lemma for some
negative t to the germs at Ebj,z of \Iff,j,Eij and hbj‘ij\V_be,z for all I € ij with
b(gr) = v—1, concluding that i_Lb]. is smooth and has inﬁﬁite céntact with the identity
along Uyg,)=0_, Wb_f,,l, passing to the largest b(gr) < v—1 (if any), etc. O

210ne could add to Proposition 2.18 the general position hypothesis that b(gr) # b(gy) for
I # J but, for j > 1, this strict ordering of ij would not mean much dynamically.
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2.3.5 Idea of the proof of Theorem 1.2 for £ > 0

In that case, the dispensable analogue of the globalisation lemma, 2.24 [7] is lengthy?2.

The linear action S|yzkwrm)x  is the restriction of a linear action o of R™ on £
with @, 00" = ue(t)ce(t)xe,p, |ue(t)| = 1 ([10], 6.1.1, Proposition 1), possessing all the
properties described in 2.3.2. Moreover, the automorphism A in Proposition 2.18 can
be obtained from an automorphism A of Z* x R™ ([10], 6.1.1, Proposition 2, where
this is expressed in terms of subgroups), so that ¢ has all the properties stated in 2.3.3
once the action germs composed with A, for every b as in Proposition 2.18.

We now explain how to prove that two weakly hyperbolic formally conjugate
smooth Z?-action germs g, g’ are C*°-conjugate: after applying the preparation lemma,
we get two pairs g1, g2 and g1, g5 of commuting local diffeomorphisms (E,0) — (E,0)
defining the same formal normal form along V; by our general position hypothesis, g1
and g] are hyperbolic and therefore conjugate by Corollary 2.13; moreover, this con-
jugacy can be chosen with the same infinite jet as the identity along V: just impose
this as part of the Whitney extension problem in the proof of Corollary 2.12 1).

Assuming therefore g; = g1, we should now construct a smooth local conjugacy
(E,0) — (E,0) of g2 to gp preserving g1. With the notation of 2.3.4,

o we fix b € R?* with b1 < 0 and b(d2) < minrez,, b(gr) (hence [mo, Mo] = [b1,0],
Vo, = W, 4 and [ma, Mi] = [b(62), maxrez,, b(gr)]);
e denoting by <I>lt,1 the flow on @, defined by o as in 2.3.3, we choose a number
p2 > max fi, o ®p (V N fbjl(maxIezbl b(g;))) and set K1 := [b(d2), pal;
e we choose a positive number p1 so that $*°* (VN f{ll(Kl)) C fb;l([bl,,uﬂ), and
set KU = [b1,/L1];
e we fix a bounded open neighbourhood B 5 0 in E of the compact subset
= (T 0 U o™ (0 £, (50) ) 0 £ (o)
t>0
(which contains Vi N f{ol(Ko) and VN fljll(Kl)).

When 1 — 0, the map (,.g1 tends in the C°° sense to S°' on B and (y«g2, Cyxgh, to
5%, It follows that, for small enough 7,
e on B~ {0}, the function fy, = F1 is “Lyapunov” for (y«g1, i.e. Fi0Cyegr > Fu;

e the compact set K admits a relatively open neighbourhood A/ C B in f;ol(Ko)
which is (,+g1-saturated, meaning that y € N satisfies (pg1(y) & N (resp.
Coegy H(y) ¢ N) if and only if fo, (Creg1(y)) > p1 (vesp. foo (Coegy ' (y)) < bi;

e hence, N'\ f/bl =N~ Wy is the disjoint union of the sequence D), of nonempty
subsets defined by Do := N \ (g1 (NV) and Dpyy = fljol(Kg) N g1 (Dp);

e one has sup fi, (Do) < p1 (thanks to the choice of p1);

e thus, the boundary of Dy consists of DoNQp, = NN Qv, and its image by (p«g1;
if one identifies the two by (;.g1, one gets a manifold N (which can be assumed

diffeomorphic to a circle bundle over the open subset Do N Qy, of Qp,, as it is a
small deformation of the corresponding object for S°1).

22This is why Theorem 1.2 in the Siegel domain was proven in [10] only for linearisations.
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On the “quotient” N of A~ Vbl by (y+g1, the two embeddings ;g2 and (,+gs induce
(partially defined) embeddings g» and gj; if we can construct a conjugacy h of ga to gb
defined near the quotient V; of V1 N Dy and having infinite contact with the identity
along it then, by the extension lemma 2.11, it will extend to a local diffeomorphism h
preserving (;«g1 and having infinite contact with the identity along Vi near 0, which
will conjugate (g2 to (y«gs, hence our result.

To obtain h, we solve the same kind of Cauchy problem as in the proof of Corol-
lary 2.12: using a reasonable presentation of A as a circle bundle (for which the
quotient W of W N Dy is a union of fibres for every SIM W of S), we extend f, to the
function f,, on A constant on the fibres. Denoting by V the quotient of VNDy, we then
choose h to have infinite contact with the identity along a compact neighbourhood N
of VN {fs, = b(d2)} in {fs, = b(32)}, to have the corresponding jet along g2 (NN) and to
have the same jet as the identity in between along V; the Whitney extension theorem
then yields a “fattened” version of the Cauchy problem in the proof of Lemma 2.25,
which can be solved by the same repeated use of the extension lemma.

2.4 Consequences and variants

Corollary 2.26 With the notation of Proposition 2.4, if g is weakly hyperbolic
and ITy empty, then g is smoothly conjugate to the analytic action germ gq.

Proof. In the Poincaré domain, this is Theorem 2.5. Otherwise, as g and go are formally
conjugate, they are smoothly conjugate by Theorem 1.2. O

Theorem 2.27 Under the hypotheses of Corollary 2.26, if g is strongly hyper-
bolic, then it is C°-linearisable, i.e. C°-conjugate to S.

Idea of the proof. Similar to that of Theorem 3.1 hereafter but much easier analytically,
as the action u of Proposition 2.4 is algebraic. The additional fact needed (because of
the commutation relation) is that one can define an ordering on {1,...,n} as follows:
i is strictly less than j if and only if there exists p € P; with p; # 0; this enables one
to “kill” first the monomials z” with p € P; and ¢ maximal, etc. O

Theorem 2.28 If g is weakly hyperbolic, in the Siegel domain and formally
conjugate to a smooth ZF x R™-action germ ¢ at o' € M', meaning that there
exists a smooth diffeomorphism germ ho : (M,a) — (M',a’) such that hig' and
g have infinite contact at a, then, for each such hg, the smooth conjugacies of
g to ¢’ having infinite contact with hg at a form an infinite dimensional space.

Idea of the proof. As in the proof of Corollary 2.13, we may assume ho = Idg.

If k = 0, the result follows from the fact that, in Lemma 2.25, the Cauchy problem
h|g, can be any C*-small enough perturbation of Idz|o, , equal to Idz|q, off a compact
subset and having infinite contact with Idg|g, along V N Q. The germs at V N Qs
of such perturbations obviously form an infinite dimensional space and identify to the
conjugacies between the action germs ¢g and g'.

For k > 0, the result is more obvious since the solutions of our Whitney extension
problem form an infinite dimensional space, as in the proof of Corollary 2.13 ii). O
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Theorem 2.29 All the previous results remain true if Z* x R™ is replaced by
an elementary Abelian group, i.e. a Lie group G isomorphic to Gy x Z*F x R™,

where Gy is the product of a finite Abelian group and a torus®.

Idea of the proof [7, 10]. By a theorem of Bochner ([10], 3.1.4, théoréme), the action

germ restricted to the maximal compact subgroup Go of G can be linearised smoothly
and then all the proofs can be made invariant by this linear Go-action. O

Remark. This might be helpful in the study of smooth completely integrable
systems via Nguyen Tien Zung’s moto: “Always look for the torus action”.

3 Related results and questions

3.1 Germs of holomorphic vector fields

Theorem 3.1 ([12], Theorem 2) Let X be a germ at a € M of holomorphic
vector field with X (a) = 0, generating a weakly hyperbolic C-action germ g, and
let o be the semi-simple part of the endomorphism dX(a) of the complex vector
space E = T, M. For every positive integer k, the action germ g is C*-conjugate
to the holomorphic C-action germ generated by a polynomial normal form, i.e.
a complex polynomial vector field o +v on E with dv(0) nilpotent and [o,v] = 0.

Proof. In this case, the algebraic part of the proof of Theorem 1.2 reads as follows:
for every integer s, there exists a holomorphic conjugacy (M,a) — (E,0) of X to
a holomorphic vector field germ having s'™ order contact at 0 with a polynomial
normal form o + v, of degree s; passing to the projective limit, one gets a smooth
diffeomorphism germ h : (M, a) — (E,0) such that h.g has st order contact at 0 with
the C-action generated o + v, for all s; hence, for every integer g, the smooth action
germ (h' © h)«g of the preparation lemma 2.10 has ¢'" order contact along V with
the C-action germ ¢(? generated by a polynomial normal form o + vs . globalising
(hz' o h)«g and g(q) as in lemma 2.24, one gets two RZ-actions having ¢'" order
contact along V. For large enough ¢, the C? version of the extension lemma 2.11, used
repeatedly as in the proof of lemma 2.25, yields a C* conjugacy between them. O

Notes. The proof in [12] is much the same but remains holomorphic as long as
possible: by [11], for every integer g, there exists a holomorphic conjugacy of X to a
holomorphic vector field germ having ¢ order contact along V with o + v, . the end
of the proof is restricted to something like Ny instead of globalising the actions.

In the Poincaré domain, it has been known since Poincaré and Dulac that X
is holomorphically conjugate to a polynomial normal form. Theorem 3.1 shows
that in the weakly hyperbolic case small denominators have no C* meaning for
any k. Finding the best (least) possible degree for v seems very difficult.

23(Weak) hyperbolicity is that of the action germ restricted to Z*¥ x R™, a notion indepen-
dent of the isomorphism chosen [10].
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For general smooth Z* x R™-action germs with k +m > 1, I do not see
how to get nice normal forms like o + v; this prevented me from obtaining the
general version of the following result:

Theorem 3.2 ([12], Theorem 1) Under the hypotheses of Theorem 3.1, if g

is strongly hyperbolic, it is CO-conjugate to the germ of the linear C-action et”.
Idea of the proof. By Theorem 3.1, it is enough to C°-conjugate the complex flow
generated by the normal form o + v to . This is done by solving the same Cauchy
problem as before, but several times and with much more care: using a first b, one
can C°-conjugate the complex flow of o + v to that of the vector field obtained from
o + v by killing the monomials of v which vanish on f)b; one can then kill successively
the other monomials by using different b’s. The key remark is that the formal flow
defined by a normal form converges in a domain large enough to define its complex
flow where needed for the proof. 0

Notes. This explicit method yields conjugacies that are Holder continuous of
every exponent less than 1 (but not Lipschitzian in general). Despite superficial
analogy, Theorem 3.2 is much more difficult than the Grobman-Hartman theo-
rem, as it is shown in [1] that there are moduli already for topological equivalence
between germs of complex linear vector fields. The Camacho-Kuiper-Palis con-
jecture was the weaker version of Theorem 3.2 where C°-conjugacy is replaced
by topological equivalence. It seems that no simpler proof has been found.

3.2 First integrals

Hypotheses, notation and definition. We go back to the hypotheses and nota-
tion of section 1. A first integral of g is a smooth function germ J : (M,a) - R
such that Jog; = J for 1 < j < k and Lx,;J = 0 for 1 < j < m, hence
Jogt =7 forallt € Z¥ xR™. A formal first integral of ¢ is a smooth function
germ Jo : (M, a) — R such that Jyog* and Jy have infinite contact at a for all
teZF x R™.

Here again, the contrast between the Poincaré and Siegel domains is striking:

Theorem 3.3 If g is in the Poincaré domain, its only first integrals are the
germs at a of constant functions.

If g is in the Siegel domain and weakly hyperbolic, it possesses the following
property: for every formal first integral Jy of g, the first integrals of g having
infinite contact with Jy at a form an infinite dimensional space.

Idea of the proof. When g is in the Poincaré domain, taking representatives, some g°
satisfies lim,,— o0 g"*(x) = a for every z close enough to a; if J is a first integral of g,
as J(x) = J o g™ (z) for all n € N, it follows that J is the constant J(a) (note that
this holds assuming only that J is continuous at a).

In the Siegel domain, with the notation of the preparation lemma 2.10, the germ
(hzs' oh)«Jo defines a formal integral Jy of (hoy oh).g along V, whose jet along the un-
stable manifold W of S* is (taking representatives) nan;O(j“ (hx o h)u(Toog™ ™)) |-
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One can then conclude as in the proof of Theorem 1.2: the infinite jet of Jy along V
yields a unique jet along the whole of V of first integral of §; then, if for example & = 0,
every smooth function J, : @Q» — R having the induced jet along @, NV extends to
a unique first integral J of g, having the same jet as the extended Jy along V: this
follows from the analogue for first integrals of the extension lemma 2.11 ([10], 4.2.4,
Théoréme 2). The case k # 0 is similar. O

Notes. “In general” Il = (), hence the only formal first integrals of g are the
smooth function germs 7y having infinite contact with a constant at a. However,
this proof shows that, in the C'*° sense, every weakly hyperbolic R"-action germ
g in the Siegel domain is more or less completely integrable, as it is possible to
find dim(M) — r first integrals functionally independent off V.

Theorem 3.3 remains true for elementary Abelian group action germs.

The same methods apply to various problems, for example the solution of
“(co)homological equations”, all of which (including the conjugacy problem and
the problem of first integrals) are particular cases of invariant manifold problems
[13], as I plan to show in a forthcoming book. In the Poincaré domain, every
formal solution yields a unique smooth solution whereas, in the Siegel domain,
there is a huge amount of flexibility.
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Qs quotient F~1(b) of Ey by S, 15

Qv;.1, 21

Qv,; quotient Fj_l(bj) of Ey; by S, 18

S semi-simple part of L, 6

S; restriction of S to R/ x E, 18

Vi, 16

Wb': W1 stable and unstable manifolds
of E;,j’z for <I>§j, 19

X; infinitesimal generators of g, 3

Y;, 23

Zy; infinitesimal generator of ‘IJEJ_, 24

wu;, 18

A; infinitesimal generators dX;(a) of L, 3

q)f,j flow on Qp; induced by Sj41, 19

I, Py resonance subsets, 7

Wy, flow on Qs induced by gj1, 24

Yp,,1 compact invariant manifold of @Ej7
19

Ebj critical set of fbj, union of the Ebj,I’s,
19

d; vectors of the canonical basis of R", 3

]}b union of the SIM’s of S on which F'
does not take the value b, 17

f/bj union of the SIM’s of S; on which Fj
does not take the value b;, 18

Ry, 22

gr, 18

gbj, 19

Sbj7 27

Cb]-y[, 21

T;, 19

Kj, 18

V union of the SIM’s of 5, 11

V; union of the SIM’s of S;, 20

w, 7

Yo, 27

0,05, 22

Y;, 24

9,95, 24

£, 19

€5, 23

¢y weighted zooming map, 23

a¢ characters defined by L, 3

c¢ “Lyapunov exponents” of L and S, 4
dg¢ real or complex dimension of Ey, 5

fv; Lyapunov function of <I>£j, 19

g,g smooth germs of Z* x R™-actions, 3
go normal form of g, 8

gw, 10

gi generators of g, 3

h formal conjugacy of g to a normal form,

6

h! conjugacy of h.g to a normal form
along V, 11

myj, Mj, 22

u formal action of R" on F, 8
x isomorphism triangulating L, 5
T¢, Xe,p components of x, 5
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