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Significance Statement 

Genes and environmental factors, such as childhood adversity, influence our cognitive 

abilities via the brain. Our results show that genetic and environmental effects on intelligence 

are mediated to some extent by neuroanatomical properties. However, we find that global 

brain measures (e.g., total brain volume) are the largest mediators and that regional volumes, 

surfaces, and mean thicknesses only mediated a fraction of a person’s genetic predisposition 

to intelligence and childhood adversity’s effect on intelligence. This suggests that genetic and 

environmental effects on general intelligence are to a large extent mediated by other kinds of 

brain structural properties. 
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Abstract  

Although genetic and environmental factors influence general intelligence (g-factor), 

few studies examined the neuroanatomical measures mediating environmental and genetic 

effects on intelligence. Therefore, we investigate the brain volumes, cortical mean 

thicknesses, and cortical surface areas mediating the effects of the g-factor polygenic score 

(gPGS) and childhood adversity on the g-factor in the UK Biobank.  

We first identified the global and regional brain measures for the mediation models 

that contribute to the g-factor independently of global brain size and regional associations. 

Most regions contributed to the g-factor through global brain size. Parieto-Frontal Integration 

Theory (P-FIT) regions were not more associated with the g-factor than non-PFIT regions. 

Adjusting for global brain size and regional associations, only a few regions, such as the right 

olfactory sulcus and the right mediodorsal thalamic nuclei volumes, the right orbital inferior 

frontal gyrus surface area, and the anterior cingulate gyrus mean thicknesses, predicted 

intelligence and were included in the mediation analyses.  

We conducted mediation analyses on global measures, regional volumes, mean 

thicknesses, and surface areas, separately. Total brain volume mediated 7.04% of the gPGS’ 

effect on the g-factor and 2.50% of childhood adversity’s effect on the g-factor. In 

comparison, the fraction of the gPGS and childhood adversity’s effects mediated by 

individual regional volumes, surfaces, and mean thicknesses was 10-15 times smaller. Our 

findings suggest that genetic and environmental effects on general intelligence must be 

mediated to a larger extent by other structural brain properties. 
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1. Introduction  

The positive correlation in performance across cognitive tests can be reduced to a 

single dimension: the general intelligence factor (g-factor), which reflects a person’s general 

cognitive performance. Although several studies examined the genetic and neurological basis 

of intelligence separately, there are relatively few studies investigating how genetic, 

environmental, and neurological factors simultaneously influence intelligence due to the lack 

of sufficiently rich and large datasets (for review Deary et al., 2021). Thus, this paper aims to 

capitalize on the richness of the UK Biobank – a large-scale prospective study with neural, 

genetic, environmental, and behavioral data - and identify the neuroanatomical measures 

(e.g., brain volumes) mediating the effect of genetic and environmental factors on 

intelligence.  

Intelligence is heritable, with genetic differences accounting for about 50% of the 

differences in intelligence (Haworth et al., 2010; Polderman et al., 2015). Genome-Wide 

Association Studies (GWASs) identify genetic differences linked to variations in intelligence 

by pinpointing the Single-Nucleotide Polymorphisms (SNPs) that contribute to differences in 

intelligence. SNPs that vary with intelligence scores are typically associated with brain-

expressed genes (Johnson et al., 2016; Lee et al., 2018) that are linked to a range of neuronal 

classes and processes, such as synaptic and neuron differentiation (Hill et al., 2019). SNP 

variations are therefore thought to be associated with differences at the macroscopic cerebral 

level.  

SNP variations related to a trait can be summarized into a single score: a polygenic 

score (PGS), which reflects an individual’s genetic predisposition to a given phenotype. A 

PGS is derived from the sum of the effect allele at each SNP that is weighted by the SNP’s 

effect on a trait (estimated in a GWAS). The PGS of Cognitive Performance (i.e., measured 

by a verbal numerical score in the UK Biobank and a g-factor in Cognitive Genomics and 

Cohorts for Heart and Aging Research in Genomic Epidemiology consortiums) predicted up 

to 10.6% of the variance in cognitive performance in an independent sample (Lee et al., 

2018). Although PGSs do not currently explain enough variance in intelligence to accurately 

predict individual intelligence scores (Morris et al., 2020), PGSs are valuable measures of 

genetic factors at the population level. Educational attainment and cognitive performance 

PGSs are increasingly used to disentangle environmental from genetic effects on educational 

and life outcomes (e.g., Bates et al., 2018; Rimfeld et al., 2018; Saarentaus et al., 2021; 

Stumm et al., 2020).  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 10, 2022. ; https://doi.org/10.1101/2022.09.08.507068doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.08.507068
http://creativecommons.org/licenses/by/4.0/


CC-BY 4.0  7 

Since genetic and environmental effects act on intelligence via the brain, numerous 

studies investigated the neural correlates of intelligence. The most well-replicated association 

is the positive correlation of Total Brain Volume (TBV) with intelligence scores, ranging 

from r = 0.24 to 0.31 (Cox et al., 2019; Gignac & Bates, 2017; Pietschnig et al., 2015). 

Beyond overall brain size, the Parieto-Frontal Integration Theory (P-FIT; Jung & Haier, 

2007) is the most supported theory on the regional correlates of intelligence. Although studies 

report additional regions than those predicted by the P-FIT, structural (grey and white matter 

volumes), diffusion, and functional studies find that intelligence scores are associated with 

the lateral and medial frontal, parietal, lateral temporal, and lateral occipital cortex, and their 

underlying white matter connectivity (e.g., arcuate fasciculus; e.g., Cox et al., 2019; Deary et 

al., 2021; Gur et al., 2021).  

Previous UK Biobank studies examined the brain correlates of intelligence (Cox et al., 

2016, 2019). The authors reported consistent associations with the P-FIT theory, such as 

stronger associations in the frontal pole, and the paracingulate, as well as less consistent 

associations with the P-FIT theory, such as weak associations in inferior frontal and superior 

parietal areas. They also found associations in the insula and precuneus/posterior cingulate 

volumes (Cox et al., 2019), which were more recently implicated in general intelligence 

(Basten et al., 2015). As for subcortical volumes, the UK Biobank study found that the 

thalamic volumes were the most associated with verbal numerical reasoning (β= 0.23). 

Finally, the authors reported that many of these regions still predicted intelligence when 

adjusting for TBV, suggesting that some regions make a unique contribution to intelligence 

that goes beyond TBV.  

Although genetic and brain correlates of general intelligence (g-factor) have largely 

been studied, only two studies, to our knowledge, examined the extent to which neural 

measures mediate the effect of the g-factor polygenic score (gPGS) on the phenotypic g-

factor. One study using vertex-wise mediation analyses of cortical thickness and cortical 

surface areas reported that the association between the gPGS and the phenotypic g-factor was 

mediated by the cortical thicknesses and surface areas of the anterior cingulate cortex, the 

prefrontal cortex, the insula, the medial temporal cortex, and inferior parietal cortex up to 

0.75% in IMAGEN (N= 1,651) and 0.77% in IntegraMooDS (N= 742; Lett et al., 2020). In 

other words, these regions explained 20-40% of the variance explained by the gPGS on the g-

factor (3-5%). A preprint on 550 adults, which used the same summary statistics of 

intelligence (Savage et al., 2018) as the above study to create their gPGSs, found that two 

intraparietal areas and the posterior temporal cortex surface areas mediated the effect of the 
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gPGS on the g-factor (Genç et al., 2022). These mediation studies suggest that specific 

cortical regions mediate the effect of the gPGS on the phenotypic g-factor.  

However, the extent to which additional regions, such as subcortical and cerebellar 

volumes, mediate the effect of the gPGS on intelligence has yet to be investigated. Moreover, 

the associations between cortical regions, genetics, and intelligence warrant further support 

and have not been investigated using the finer-grained segmentations of the Destrieux atlas. 

Therefore, our first aim was to examine whether subcortical volumes, cerebellar volumes, 

cortical volumes, cortical thicknesses, and cortical surface areas mediate the effects of the 

gPGS and the phenotypic g-factor with a more predictive gPGS in the UK Biobank.  

Since early adversity is associated with a decrease in intelligence and cognitive 

function later in life (Enlow et al., 2012; McGuire & Jackson, 2020) and may have lasting 

biological and cerebral effects changes in childhood and adulthood (Dye, 2018; Lupien et al., 

2009), our second aim was to examine whether the regions that mediate the gPGS’ effect on 

the g-factor also mediate childhood adversity’s effect on the g-factor. Taken together, this 

paper contributes to our understanding of the neuroanatomical measures mediating genetic 

(gPGS) and early environmental (childhood adversity) effects on intelligence (g-factor).  
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2. Methods  

Analyses were run on R (R Core Team, 2022) and preregistered here: 

https://osf.io/ec97u/?view_only=4b366bd7ed2442a1a9f64bfcc2fe0946 

2.1. Participants  

The UK Biobank is a large prospective study with phenotypic, genotypic, and 

neuroimaging data from more than 500,000 participants. Participants were recruited between 

2006 and 2010, from the vicinity of 22 assessment centers in England, Wales, and Scotland, 

with an age range for inclusion of 40–69 years. Data collection continues up to date.  

All participants provided informed consent (“Resources tab” at 

https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=200). The UK Biobank received ethical 

approval from the Research Ethics Committee (reference 11/NW/0382) and the present study 

was conducted based on application 46007.  

We included participants whose combination of cognitive tests allowed for a 

correlation with the complete g-factor of 0.70 or higher (N= 261,701; Williams et al., 2022). 

This threshold was used to maximize the robustness of the factor and the number of 

participants with a g-factor.  

In a previous paper, we analyzed the Image-Derived Phenotypes from the first 

Magnetic Imaging Resonance (MRI) visit generated by an image-processing pipeline 

developed and run by the UK Biobank Imaging team (Alfaro-Almagro et al., 2018; Miller et 

al., 2016) and reported 40,028 individuals with sex, age at MRI, and TBV data after 

excluding outliers (Williams et al., 2021). From here on, age at the first MRI visit will be 

referred to as age. From the 40,028 individuals with neuroimaging data, there were 39,131 

participants with a g-factor of good quality (Table 1).  
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Table 1. Descriptive Statistics of the Variables included in Each Analysis 

Analyses Max N Variable Mean SD Median 

Regressions 39,131 
Age (years) 64.05 7.52 64.50 

g-factor 0.00 1.00 -0.01 

Mediation Models with  

g-factor PGS 
28,917 

Age (years) 64.04 7.46 64.50 

g-factor PGS 0.00 1.00 0.00 

g-factor 0.20 1.05 0.18 

Mediation Models with  

g-factor PGS & Childhood 

Adversity 

19,956 

Age (years) 64.08 7.42 64.58 

g-factor PGS 0.03 0.99 0.02 

g-factor 0.27 1.03 0.26 

Childhood Adversity -0.03 1.39 -0.50 

N.B. g-factor: general intelligence score. G-factor is scaled for the regressions. PGS: 

Polygenic Score. PGS is scaled before being residualized for birth year and the 1st 40 

principal components of the genotyped data. Childhood Adversity was scaled on the sample 

(N about 150,000) from which it was created. Max N: maximum number of participants 

included in the analyses. Corresponds to N for TBV but will be reduced when including other 

brain measures when data for a region is missing.  

 

2.3. Imaged derived Phenotypes 

We used the 10 global and 620 regional imaging phenotypes previously examined by 

Williams and colleagues (2021). The global phenotypes include TBV, total Mean Cortical 

Thickness (MCT), Total Surface Area (TSA), subcortical Grey Matter Volume (GMV), 

cortical GMV, cerebral White Matter Volume (WMV), cerebellar GMV, cerebellar WMV, 

the brainstem volume, and cerebral spinal fluid (CSF), whereas the regional phenotypes 

include: 444 cortical regions (148 volumes, 148 surface areas, and 148 cortical thicknesses) 

from the Freesurfer a2009s segmentations (Destrieux Atlas, data-field 197), 116 whole 

segmentations and subsegmentations of the amygdala, hippocampus, and thalamus and 

subsegmentations of the brainstem (Freesurfer subsegmentations, data-field 191), 28 

cerebellum GMV segmentations from the FAST segmentations (data-field 1101), and 32 

subcortical, white matter, and ventricle volumes from the Freesurfer ASEG segmentations 

(data-field 190). Freesurfer subcortical segmentations for the caudate, putamen, accumbens, 

and pallidum were used instead of the preregistered FIRST volumes, for segmentation 
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consistency with the other subcortical and cortical volumes which were segmented from 

Freesurfer. 

Although we did not preregister that we would examine the effects of the left and 

right measure of the whole thalamus, hippocampus, and amygdala because we focused the 

association of their subsegmentations with the g-factor, we ran these exploratory analyses to 

facilitate result comparison with previous studies and examine whether associations at the 

subcortical sub-segmentation level manifested at the global level.   

2.4. Childhood Adversity Score  

A childhood adversity score was created from questions in the UK Biobank on childhood 

abuse and social stressors. Childhood abuse was measured with data fields 20488 "When I 

was growing up... People in my family hit me so hard that it left me with bruises or marks") 

and 20490 (“When I was growing up... Someone molested me (sexually)“) and childhood 

stressors were measured with data fields 20487 ("When I was growing up... I felt that 

someone in my family hated me"), 20489 ("When I was growing up... I felt loved"), and 

20491 ("When I was growing up... There was someone to take me to the doctor if I needed 

it"). All questions are rated from 0 (Never True) to 4 (Very Often True). So that all indicators 

are in the same direction, we subtracted data field 20489 and data field 20491 responses from 

4 (reverse coding). We conducted a PCA on the scores from these questions and extracted the 

first principal component (PC1) as our measure of childhood adversity, which captured 42% 

of the variance across questions (Table 2).  

 

Table 2. Principal Component (PC) Loadings of Childhood Abuse and Stressor 

Variables 

Variable PC1 PC2 PC3 PC4 PC5 

Felt hated by a family member as a child 0.528 -0.070 0.328 -0.114 0.772 

Felt loved as a child 0.511 0.228 0.081 -0.682 -0.464 

Someone to take to the doctor when needed as a child 0.351 0.620 -0.616 0.313 0.124 

Physically abused by family as a child 0.491 -0.141 0.383 0.648 -0.416 

Sexually molested as a child 0.310 -0.734 -0.600 -0.062 -0.033 

Cumulative Proportion of Explained Variance 0.419 0.599 0.772 0.896 1.000 
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2.5. Statistical Analyses 

We refer to the phenotypic g-factor as the g-factor and the g-factor PGS as the gPGS. 

A residualized gPGS was created by adjusting the gPGS for birth year and the first 40 

principal components of the genotyped data and is referred to as the gPGS from here on out. 

All continuous variables were mean-centered and divided by 1SD. Females were coded 0.5 

and Males – 0.5 in the regression analyses.  

2.5.1. What global measures predict the phenotypic g-factor?   

We first estimated the effect of TBV and the CSF on the phenotypic g-factor, while 

adjusting for Sex, Age (quadratic and linear), their interactions, and Scanner Site (Equation 1, 

where i refers to an individual).  

 

Equation 1  

g-factori = Intercept + TBVi + CSFi + Sexi + Agei + Age2
i+ Age*Sexi + Age2*Sexi + e 

 

To identify the global measures driving the predictive effect of TBV on the g-factor, we 

simultaneously estimated the effect of total MCT, TSA, subcortical GMV cortical GMV, 

cerebral WMV, cerebellar GMV, cerebellar WMV, the brainstem volume, and CSF on the 

phenotypic g-factor, while adjusting for Sex, Age (quadratic and linear), their interactions, 

and Scanner Site (Equation 2, where i refers to an individual).   

 

Equation 2 

g-factori = Intercept + Total Mean Cortical Thicknessi + Total Surface Areai + Cerebral 

WMVi + Cerebellar GMVi + Cerebellar WMVi + Subcortical Volumesi + Brainstemi + CSFi 

+ Sexi + Agei + Age2
i+ Age*Sexi + Age2*Sexi + e 

 

We considered that a regional measure significantly predicts the g-factor when p < 

0.05/N, N: the number of coefficients of interest, which was 2 for equation 1 and 8 for 

equation 2.  

 

2.5.2. What global measures mediate the g-PGS’ effects on the g-factor? 

We ran two mediation models using the sem function in the lavaan package (Rosseel, 

2012): one with the significant predictors of the g-factor from equation 1 and one with those 
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from equation 2. The gPGS was the exposure, global volume(s) the mediator(s), and the g-

factor served as the outcome.  

For all mediation models described in the present study, indirect effects were 

calculated using the product method. We estimated direct paths (exposure to an outcome) and 

indirect paths (exposure to mediators to outcomes) and adjusted the mediators and outcome 

for age (linear and quadratic), sex, and their interactions in the lavaan framework.  

We set a lenient p-value threshold to 0.05 and a stricter one to p < 0.05/N (N: the 

number of regional and global measures included in the model of interest). Good fit was 

established with a CFI > 0.95, a RMSEA < 0.06 and a SRMR < 0.08 (Hu & Bentler, 1999). 

2.5.3. Do global measures mediate the g-PGS’ and Childhood Adversity’s effects on the 

g-factor? 

We applied the same mediation models as in section 2.5.2. except that we added 

Childhood Adversity as additional exposure and estimated its direct and indirect paths 

through the global measure(s) to the g-factor. Lavaan considers correlations between 

predictors without estimating them.  

2.5.4. What regional measures predict the g-factor?  

The aim was to identify the regions that contribute more to the g-factor than what is 

predicted given their size: this includes (1) regions that significantly predict the g-factor after 

adjusting for brain size and are positive with or without adjusting for global brain size and (2) 

regions that significantly predict the g-factor after adjusting for brain size and are negative 

with or without adjusting for global brain size.  

To do so, we ran equations 3 and 4 (i refers to an individual, the regional measure N 

corresponds to a regional volume, thickness, or surface, and the global measure to TBV for 

volumes, Total MCT for mean thicknesses, and TSA for surface areas). The significance 

threshold was set to p < 0.05/N (N: the number of coefficients of interest, which was 148 for 

surfaces, 148 for thicknesses, and 311 for volumes).  

 

Equation 3  

g-factori = Intercept + Regional MeasureN
i + Sexi + Agei + Age2

i+ Age*Sexi + 

Age2*Sexi + e 

 

Equation 4  

g-factori = Intercept + Regional MeasureN
i + Global MeasureN

i + Sexi + Agei + Age2
i+ 

Age*Sexi + Age2*Sexi + e 
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Although this was not preregistered, we tested whether the P-FIT theory accurately 

predicted the neuroanatomical measures most associated with the g factor. We mapped 

Brodmann’s Areas from the P-FIT (Colom et al., 2010; Haier & Jung, 2018; Jung & Haier, 

2007) to the regions of the Destrieux Atlas based on the region names and the description of 

their location. The 14 Brodmann Areas that predict g according to the P-FIT were mapped to 

62 of the 148 Destrieux segmentations. Several Destrieux regions were matched to the same 

Brodmann Area and several Brodmann Areas were matched to a single Destrieux region. 

Therefore, 12 Destrieux regions were matched twice to the Brodmann Areas, yielding 74 P-

FIT Destrieux regions out of 160 Destrieux regions (Supplemental Table F1).  

We then examined (1) whether P-FIT regions had a larger effect on the g-factor than non-

P-FIT regions, by comparing the distribution of effect sizes of the two sets of regions with a 

t-test; and (2) whether P-FIT regions were overrepresented amongst the top 20 or 30 regions 

with the largest associations with the g-factor, using a chi-square test. We ran these analyses 

twice, for raw regional volumes, surfaces, and thicknesses, and for those adjusted on global 

brain measures. For the analysis of unadjusted regional volumes and surface areas, given that 

they were all significantly associated with the g factor, we restricted the analysis to the 

regions showing the top N associations. 

 

2.5.5. Do the Regional Measures that predict the g-factor independently from brain 

size still predict the g-factor when entered in the same model? 

Based on equations 3 and 4, we selected the regions that still significantly and positively 

or negatively predicted the g-factor after adjusting for brain size. Because brain regions are 

correlated, their effect on the g-factor may be shared across regions even if they are 

independent of global brain size. Therefore, to avoid redundancy, we examined whether these 

regions still predicted the g-factor when simultaneously entered into a regression model 

predicting the g-factor (Equation 5, where N refers to a region, i to an individual, and the 

global measure to TBV for volumes, Total MCT for mean thicknesses, and TSA for surface 

areas). The significance threshold was set to p < 0.05/N (N: the number of regional measures 

included in the model of interest). 

 

Equation 5  

g-factori = Intercept + Regional Measure1
i  

           + Regional Measure2
i  
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   …. 

           + Regional MeasureN
i  

           + Global MeasureN
i + Sexi + Agei + Age2

i+ Age*Sexi + Age2*Sexi + e 

 

2.5.6. Do Regional Measures mediate the g-PGS’ effects on the g-factor? 

For volumes, thicknesses, and surface areas separately, we examined the simultaneous 

mediation of the global measure and the significant regional measures from equation 5 with 

the sem function from the lavaan package (Rosseel, 2012). The gPGS was the exposure, 

global and regional measures were the mediators, and the g-factor served as the outcome.  

2.5.7. Do Regional Measures mediate the g-PGS’ and Childhood Adversity’s effects on 

the g-factor? 

We applied the same mediation models as in section 2.5.6. except that we added 

Childhood Adversity as additional exposure and estimated its direct and indirect paths 

through regional and global measures to g-factor.   
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3. Results  

3.1. What global measures predict the phenotypic g-factor?   

Greater TBV was associated with a greater g-factor (β = 0.24, SE = 0.006, p = 6.99e-

297) and CSF did not predict the g-factor (Supplemental Table B1). When dividing TBV into 

its subcomponents, we found that greater TSA (β = 0.14, SE=0.012, p= 2.96e-31), Total 

MCT (β = 0.04, SE = 0.006, p = 7.11e-12), Cerebellar GMV (β = 0.08, SE = 0.008, p = 

2.38e-26), and Cerebral WMV (β = 0.05, SE = 0.013, p = 1.03e-04) were associated with an 

increase in the g-factor (Figure 1; Supplemental Table B2). TBV explained 3.4% of the 

variance in the g-factor, whereas the global measures explained 3.6% of the variance in the g-

factor 

3.2. What global measures mediate the gPGS’ effect on the g-factor?   

In the mediation model with TBV as the sole global mediator, TBV mediated 5.70% 

of the gPGS’ effect on the g-factor (Supplemental Table D1).  

In the mediation model with several global measures as mediators, TSA mediates 

3.32%, Cerebellar GMV 1.01%, and Cerebral WMV 1.28% of the gPGS’ effect on the g-

factor (Figure 1; Supplemental Table D2). 

3.3. What global measures mediate the gPGS and Childhood Adversity’s effect on the g-

factor?   

In the mediation model with TBV as the sole global mediator, TBV mediated 7.03% 

of the gPGS’ effect on the g-factor and mediated 2.49% of Childhood Adversity’s effect on 

the g-factor (Supplemental Table E1).  

In the mediation model with several global measures as mediators, TSA mediates 

3.68%, Cerebellar GMV 1.88% and Cerebral WMV 1.47% of the gPGS’ effect on the g-

factor and TSA mediates 1.19%, Cerebellar GMV 0.56%, and Cerebral WMV 0.96% of 

Childhood Adversity’s effect on the g-factor (Figure 1; Supplemental Table E2). 
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Figure 1. Meditating effect of global cerebral measures on the g-factor PGS’s effect on the g-

factor with and without including Childhood Adversity. g-factor: general intelligence factor. 

PGS: polygenetic scores. Coefficients correspond to direct effects. Fit of TBV Models: CFI = 

1.00, SRMR= 0.00, RMSEA = 0.00. Fit of Global Measures Model: CFI = 1.00, SRMR= 

0.01, RMSEA = 0.03. The PGS is adjusted for birth year and the 1st 40 principal components 

of the genotyped data. Cerebral measures and the g-factor are adjusted for sex, age, age2, age 

by sex, age2 by sex, and scanner site. 
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3.4.What regional measures predict the g-factor?  

Regression results are available in Supplemental Tables B (full models) and C (regional 

estimates). Figure 2 shows the g-factor estimate by volume, surface area, or thickness 

estimate when including or excluding the global measure in the regression model. Figures of 

the estimate by region for each type of possible change in significance or estimate (Table 3) 

are available in Files S1-3.  

 

Table 3. Number of Volumes, Surface Areas, and Mean Thicknesses by Types of 

Change in Significance and Estimate between Models without and with Global Brain 

Size 

 
Volumes Surface Areas Mean Thicknesses 

Type of Change between Models N % N % N % 

No Longer Significant 242 77.81 130 87.84 6 4.05 

Still Significant Positive 40 12.86 12 8.11 21 14.19 

Still Significant Negative 2 0.64 0 0.00 7 4.73 

Still Not Significant 5 1.61 0 0.00 104 70.27 

Still Significant, Positive to Negative 18 5.79 6 4.05 0 0.00 

Becomes Significant & Negative 4 1.29 0 0.00 10 6.76 

Total 311 100.00 148 100.00 148 100.00 

N.B. Global Brain size: Total Brain Volume for Volumes, Total Mean Cortical Thickness for 

thicknesses, and Total Surface Areas for surface areas 
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Figure 2. Standardized Estimate (Std Beta) of a Region’s association with the g-factor with (pink) and without (blue) adjusting for a Global 

Measure. Each point corresponds to a region. Region names are not shown for clarity. Global Measure: Total Brain Volume for volumes. Total 

Surface Area for surface areas. Total Mean Cortical Thickness for thicknesses.  
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There were 242 out of 311 volumes, 130 out of 148 surface areas, and 6 out of 148 mean 

thicknesses, that were no longer significant after adjusting for global brain size (Table 3; 

Supplemental B3-4 & C1-3; Files S1-3). We found that the size of volumes and surface areas 

was significantly and positively correlated with the magnitude of its association with the g-

factor without adjusting for global measures and that this association was no longer 

significant after adjusting for global brain size (File S4). Therefore, regional volumes and 

surfaces mainly contributed to the g-factor through global brain size.  

There were 40 volumes (mainly cerebellar GMVs, subcortical thalamic and hippocampal 

nuclei, and a few cortical volumes), 12 cortical surface areas (mostly frontal), and 21 cortical 

mean thicknesses (mostly temporal; Table 3; Supplemental B5-6 & C1-3; Files S1-3) that 

were significant and had positive estimates after adjusting for brain size, suggesting that they 

contribute more (positively) to the g-factor than what is expected given their size. 

There were 2 ventricular volumes and 7 cortical mean thicknesses (the left and right 

pericallosal sulci, the left and right anterior cingulate gyri and sulci, right occipital pole, left 

suborbital sulcus, and the right frontal marginal gyrus and sulcus; Table 3; Supplemental B5-

6 & C1-3; Files S1-3) that were significant and had negative estimates after adjusting for 

brain size, suggesting that they contribute more (negative) to the g-factor than what is 

expected given their size. 

There were 18 volumes and 6 surface areas that were still significant but had their 

estimates switch from positive to negative, suggesting that they contribute less to the g-factor 

than what is expected given their contribution to global brain size. For volumes, these regions 

included the right and left caudate, the right and left lingual gyrus, left and right pericallosal 

sulci, the right posterior-ventral part of the cingulate gyrus (isthmus), the right occipital pole, 

the right superior parietal gyrus, the hippocampal tail, and several subthalamic nuclei. As for 

surfaces, these regions included the left and right postcentral sulci, the left paracentral gyrus 

and sulcus, the middle anterior cingulate gyrus sand sulcus, the left lingual gyrus, and the left 

posterior-ventral part of the cingulate gyrus (isthmus). 

Finally, there were 10 mean thicknesses, 3 ventricular volumes, and 1 subthalamic 

nucleus volume that became significant and negative after adjusting for brain size, suggesting 

that they contribute less to the g-factor than what is expected given their size. For mean 

thicknesses, regions include left and right transverse frontopolar gyri and sulci, the right 

lingual gyrus, right suborbital sulcus, the right superior frontal gyrus, the right cuneus gyrus, 

the right occipital superior gyrus, the right posterior-ventral part of the cingulate gyrus 

(isthmus), and left occipital pole and left posterior transverse collateral sulcus. 
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Across adjusted and unadjusted volumes, surface areas and thicknesses, and the different 

variants of our analyses, P-FIT regions were never overrepresented amongst the 20 or 30 

regions that were the most associated with g (Files S5-6) and they did not show larger 

associations with g than non-PFIT regions overall (File S7).  

3.5.Do the Regional Measures that predict the g-factor independently from brain size 

still predict the g-factor when entered in the same model? 

We then examined whether regions that significantly and positively or negatively 

predicted the g-factor after adjusting for brain size do so independently from each other. We 

found that there were 4 Volumes, 3 Surface Areas, and 12 Mean Thicknesses that still 

significantly predicted the g-factor independently from each other and global brain size 

(Supplemental B9-11). 

3.6. Do Regional Measures mediate the g-PGS’ effects on the g-factor? 

3.6.1. Volumes 

Based on the previous analyses in section 3.5, we included the right olfactory bulb, the 

left subcallosal gyrus, and the Right Mediodorsal Medial Magnocellular Thalamic Nuclei 

volumes in the regional and global volumetric mediation model. We did not include the 3rd 

ventricle volume even if it was significant because we do not expect ventricular volumes to 

mediate genetic effects on intelligence.  

The indirect path from the gPGS to the g-factor was significant for TBV and the right 

olfactory bulb volume after multiple comparison corrections and for the left subcallosal gyrus 

volume at the p < 0.05 threshold. TBV mediated 5.07% of the gPGS’ effect on the g-factor, 

whereas the right olfactory bulb volume mediated 0.46% and left subcallosal gyrus volume 

0.31% of the gPGS’ effect on the g-factor (Figure 3; Supplemental Table D3). 

3.6.2. Surface Areas 

Based on the previous analyses in section 3.5, we included TSA, the right orbital part 

of the inferior frontal gyrus surface area, the left subcallosal gyrus surface area, and the Left 

Anterior Transverse Collateral Sulcus surface area in the regional and global surface area 

mediation model.  

Total Surface Area mediated 3.99%, the Left Anterior Transverse Collateral Sulcus 

surface area 0.41%, the left subcallosal gyrus 0.30%, and the Right Orbital Part of the 

Inferior Frontal Gyrus surface area 0.35% of the effect of the gPGS on the g-factor at the p < 

0.05/4 threshold (Figure 3; Supplemental Table D4). 
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3.6.3. Mean Thicknesses 

Based on the previous analyses in section 3.5, we included Total MCT, the Right 

anterior part of the cingulate gyrus and sulcus, the left anterior part of the cingulate gyrus and 

sulcus, the left planum polare of the superior temporal gyrus, the left inferior segment of 

the circular sulcus of the insula, the right Pericallosal sulcus, the left Short Insular gyrus, the 

Right Postcentral Sulcus, the Right Superior Segment of Circular Insula Sulcus, the Right 

Superior Temporal Sulcus, the Right Precentral Gyrus, the Left Subcallosal Gyrus, and the 

Left Pericallosal sulcus mean thicknesses in the regional and global mean thickness 

mediation model.  

Total MCT did not mediate the effects of the gPGS or Childhood Adversity on the g-

factor. The right anterior part of the cingulate gyrus and sulcus mean thickness mediated 

0.27% of the effect of the gPGS on the g-factor at p < 0.05. The left anterior part of the 

cingulate gyrus mediated 0.14%, the left short insular gyrus mean thickness 0.18%, the left 

planum polare of the superior temporal gyrus mean thickness 0.16%, the right pericallosal 

sulcus mean thickness mediated 0.12%, the left inferior segment of the circular sulcus of the 

insula mean thickness mediated 0.18%, and the right pericallosal sulcus mediated 0.27% of 

the effect of the gPGS on the g-factor at p < 0.05 (Figure 3; Supplemental Table D5). 

3.7. Do Regional Measures mediate the g-PGS’ and Childhood Adversity’s effects on the 

g-factor? 

3.7.1. Volumes 

In the volumetric mediation models, TBV mediated 4.15% of the gPGS’ effect on the g-

factor and the right olfactory bulb volume mediated 0.37% of the gPGS’ effect on the g-

factor at p < 0.05/4, whereas the right mediodorsal medial magnocellular thalamic nuclei 

volume meditated 0.32% of the gPGS’ effect on the g-factor at p < 0.05. Therefore, the left 

subcallosal gyrus volume was no longer significant when adding Childhood Adversity in the 

mediation model and the indirect path through the Right Mediodorsal Medial Magnocellular 

Thalamic Nuclei became significant at p < 0.05. TBV mediated 1.41% of Childhood 

Adversity’s effect on the g-factor, whereas the right olfactory bulb volume mediated 0.14% 

of Childhood Adversity’s effect on the g-factor at p < 0.05 (Figure 3; Supplemental Table 

E3). 

3.7.2. Surface Areas 

Total Surface Area mediated 3.37%, the left anterior transverse Collateral Sulcus 

0.34%, and the Right Orbital Part of the Inferior Frontal Gyrus surface area 0.29% of the 

effect of the gPGS on the g-factor at the p < 0.05/4 threshold (Supplemental Table D4). Total 
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Surface Area mediated 1.11% and the Left Anterior Transverse Collateral Sulcus surface area 

0.16% of Childhood Adversity’s effect on the g-factor (Figure 3; Supplemental Table E4). 

3.7.3. Mean Thicknesses  

Total MCT did not mediate the effects of the gPGS or Childhood Adversity on the g-

factor. The right anterior part of the cingulate gyrus and sulcus mean thickness still mediated 

0.27% of the effect of the gPGS on the g-factor at p < 0.05. The right pericallosal sulcus 

mean thickness mediated 0.12%, the left short insular gyrus mean thickness 13%, and the left 

planum polare of the superior temporal gyrus mean thickness 0.15% of the effect of the gPGS 

on the g-factor at p < 0.05. However, the left inferior segment of the circular sulcus of the 

insula mean thickness and the left anterior part of the cingulate gyrus and sulcus mean 

thickness no longer mediated the gPGS’ effect on the g-factor. Instead, a new region 

mediated the gPGS’ effect on the g-factor: the left subcallosal gyrus mean thickness (0.17%), 

which also mediated the effect of Childhood Adversity’s effect on the g-factor (0.10%; 

Figure 3; Supplemental Table C5).

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 10, 2022. ; https://doi.org/10.1101/2022.09.08.507068doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.08.507068
http://creativecommons.org/licenses/by/4.0/


CC-BY 4.0  24 

Figure 3. Meditating effect of regional cerebral measures on the g-factor PGS’s effect on the g-factor with and without including 

Adversity. g-factor: general intelligence factor. PGS: polygenetic scores. Coefficients correspond to direct effects. Fit of volume and su

models: CFI = 1.00, SRMR= 0.00, RMSEA = 0.00. Fit of mean thickness model without Childhood Adversity: CFI = 0.95, SRM

RMSEA = 0.15, and with CFI = 0.95, SRMR= 0.05, RMSEA = 0.14. The PGS is adjusted for birth year and the 1st 40 principal com

the genotyped data. Cerebral measures and the g-factor are adjusted for sex, age, age2, age by sex, age2 by sex, and scanner site. 
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Discussion  

This paper capitalized on the richness of the UK Biobank to examine the extent to 

which neuroanatomical measures (e.g., brain volumes) mediate the effect of genetic and 

environmental factors on intelligence. We first examined the association between the g-factor 

and neuroanatomical measures in the UK Biobank on about 30,000 individuals with and 

without adjusting for global brain size and the remaining associations between regional 

measures. We then examined if global measures and regions that uniquely contribute to the g-

factor mediate the gPGS’ effect on the g-factor and whether the same cerebral measures 

mediated childhood adversity’s effect on the g-factor. Although volumetric and surface area 

global measures were the main mediators of the gPGS’ effect on the g-factor, global 

measures mediated less than 10% of the gPGS’ effect on the g-factor and less than 3% of 

Childhood Adversity’s effect on the g-factor. Mediation by neuroanatomical measures, 

therefore, only explained a small fraction of the total effect of the gPGS and Childhood 

Adversity on the g-factor.  

 Most associations between the g-factor and volumes (78%) or surface areas (88%) 

disappeared after adjusting for global brain size, suggesting that the majority of volumes and 

surfaces contribute to intelligence through global cerebral effects. In contrast, only 4% of 

mean thicknesses were no longer significant after adjusting for global brain size and 26% of 

mean thicknesses still predicted the g-factor after adjusting for Total MCT. Therefore, mean 

thicknesses appear to influence the g-factor through region-specific effects rather than global 

effects. This can be explained by the small associations between regional mean thicknesses 

and Total MCT (mean β = 0.03) compared to those of regional volumes with TBV (mean β = 

0.30) as well as the small association between Total MCT and the g-factor (β = 0.04). 

Adjusting for Total MCT thus captures little variance between regional mean cortical 

thicknesses and the g-factor.  

Regions that contributed the most to the g-factor not only corresponded to regions that 

significantly predicted the g-factor after adjusting for brain size but also maintained the 

direction of their effect with and without adjusting for global measures. We found that 

cerebellar volumes, subcortical nuclei volumes, a few cortical volumes, frontal surface areas, 

and temporal mean thicknesses contributed more positively to the g-factor than what was 

expected given their size. In contrast, a few distributed mean thicknesses and ventricular 

volumes contributed more negatively to the g-factor than what was expected given their size. 

Negative and positive associations between cortical thickness and intelligence have been 
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reported across the cortex (Karama et al., 2014) and are thought to depend on the measure of 

the intelligence (Goriounova & Mansvelder, 2019): Greater crystallized intelligence is 

associated with cortical thinning whereas fluid intelligence does not appear to be related with 

cortical thickness (Tadayon et al., 2020). Studies looking at age-related changes in 

performance on the cognitive tests of the UK Biobank found that performance on the verbal 

numerical UK Biobank test (also known as the fluid intelligence test) does not decrease as 

expected with age (Hagenaars et al., 2016). Instead, the performance stagnates as would be 

expected with crystallized intelligence (Cavanaugh & Blanchard-Fields, 2018). Therefore, 

our g-factor measure, on which the fluid intelligence test loads highly (0.62), likely captures 

both crystallized and fluid intelligence and may explain why we find distributed positive and 

negative associations between mean thicknesses and intelligence. Future studies should 

explore the associations between brain regions and subdomains of intelligence to obtain a 

better understanding of the associations between general intelligence, cognitive abilities, and 

the cortex (Jung & Haier, 2007). 

When approximately matching the Destrieux segmentations to the P-FIT Brodmann 

Areas, the proportion of P-FIT and non-P-FIT regions associated with the g-factor was 

generally similar across cortical volumes, surface areas, and mean thicknesses and the 

magnitude of the association was not larger for P-FIT regions. Therefore, although we report 

associations with frontal and temporal-parietal regions that are concordant with the P-FIT, 

our findings do not support this theory with regard to volumes, thicknesses, and surface areas. 

However, the P-FIT may nonetheless accurately predict functional brain activations 

associated with general intelligence (Gur et al., 2021b; Haier & Jung, 2018).  

Concerning other regions of interest, we did not replicate the significant associations 

between the g-factor and the whole hippocampal or thalamic volumes after adjusting for 

brain size previously reported by a UK Biobank study (Cox et al., 2019). Instead, we report 

associations between the g-factor and subcortical subsegmentations as well as cerebellar 

subsegmentations. For instance, we find a positive association between the g-factor and the 

right mediodorsal thalamic nucleus volume, a region known to critically contribute to 

cognitive functions (Ouhaz et al., 2018), and positive associations between the g-factor and 

most of the crus lobules of the cerebellum, which are functionally connected to regions of the 

default mode network (Buckner et al., 2011), a network of higher-level cognition (Smallwood 

et al., 2021). 

 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 10, 2022. ; https://doi.org/10.1101/2022.09.08.507068doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.08.507068
http://creativecommons.org/licenses/by/4.0/


CC-BY 4.0  27 

We find that regional measures independently explained a small portion of the effect 

of the gPGS on the g-factor and that the gPGS’ effect on the g-factor is mediated by several 

cortical surface areas, volumes, and mean thickness. Although we used different 

segmentations and samples from Lett and colleagues (2020), we similarly find that the gPGS’ 

effect on the g-factor is mediated by the anterior cingulate cortex, prefrontal, insular, medial 

temporal, and inferior parietal mean thicknesses and surface areas. However, we find that our 

regional measures mediate a smaller percentage of the gPGS’ effect on the g-factor (around 

0.30% instead of 0.75%), which may be due to the difference in age between cohorts or to 

their larger segmentations. We additionally report volumes that mediate the gPGS’ effect, and 

most notably the Right Mediodorsal Medial Magnocellular Thalamic Nuclei, a region thought 

to be implicated in executive functions (e.g., cognitive control and decision-making; Ouhaz et 

al., 2018). 

 When adding childhood adversity to the model, the percentage mediated by regional 

and global effects decreased to various extents across regions. For instance, adding childhood 

adversity to the mediation models did not impact the percentage mediated by the mean 

thickness of the right anterior part of the cingulate gyrus and sulcus. However, the surface 

area and volume of the left subcallosal gyrus and the mean thicknesses of the left inferior 

segment of the circular sulcus of the insula and the left anterior part of the cingulate gyrus 

and sulcus no longer mediated the gPGS’ effect on the g-factor when adding childhood 

adversity to the model. Considering that childhood adversity significantly and negatively 

predicted these regions, the association between these non-longer mediating regions may be 

due to the correlation between childhood adversity and the gPGS: Part of the variance 

previously attributed to the g-PGS may have shifted from the gPGS to childhood adversity. 

Finally, when adding childhood adversity to the mean thickness mediation model, a new 

region mediated both the gPGS effect and childhood adversity’s effect on the g-factor: the 

left subcallosal gyrus mean thickness. The latter highlights the importance of including 

environmental measures to better understand the complex relationship between 

environmental and genetic effects on general intelligence.  

Although we find that specific regions mediate the g-factor and Childhood 

Adversity’s effects independently from global brain size and regional associations, the 

mediation of global brain size was 10-20 times larger than the mediation of specific regions 

when examining volumes and surface areas. TBV explained 2.3% and the regional volumes 

included in the mediation models explained 0.3% of the variance in the g-factor, whereas 

TSA explained 1.8% and the regional surface areas included in the mediation models 
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explained 0.2% of the variance in the g-factor. These findings are consistent with previous 

studies suggesting that general intelligence may be more related to global than region-specific 

differences in the grey matter volume (Hilger et al., 2020) and that adding regional effects on 

the g-factor does not substantially predict more variance in the g-factor than TBV alone (Cox 

et al., 2019). However, TBV only mediated 7.04% of the gPGS’ effect on the g-factor and 

2.50% of Childhood Adversity’s effect on the g-factor, leaving 93% of the gPGS’ effect on 

the g-factor, and 97.5% of Childhood Adversity’s effect on the g-factor to be explained by 

other cerebral measures. Therefore, future research should include additional cerebral 

measures,  such as microstructural properties, white matter measures, dynamic connectivity, 

or resting-state or task-based functional activation, to better understand the extent to which 

cerebral measures mediate the environmental and genetic factors on the g-factor.  

The present study is limited in its ability to generalize to all UK Biobank participants: 

Individuals with neuroimaging data are different from UK Biobank participants without 

neuroimaging data (Lyall et al., 2022) and the UK population (Fry et al., 2017). Moreover, 

our analyses were restrained to individuals of British ancestry, suggesting that further 

research is needed to examine whether genetic factors on intelligence are mediated by the 

same cerebral regions and to the same degree across ancestries. The polygenic score also only 

predicted 7.9% of the variance in the g-factor, suggesting that additional regions may be 

found when using a more predictive polygenic score. Finally, not including the most 

important environmental predictor of intelligence, parental or childhood socioeconomic status 

(SES; Flensborg-Madsen et al., 2020; Flensborg-Madsen & Mortensen, 2017), is a major 

limitation of our study. Since childhood SES was not available in the UK Biobank, we 

focused on childhood adversity, which is strongly associated with intelligence (but less so 

than parental SES; McGuire & Jackson, 2020). Although we could have used adult SES, as 

done by previous studies (e.g., Kweon et al., 2022) to serve as a proxy of childhood SES, the 

bidirectional influences between adult SES and intelligence would have compromised the 

interpretation of the mediation model.  

The present paper provides the first large-scale study examining the neuroanatomical 

measures mediating genetic (gPGS) and early environmental (childhood adversity) effects on 

intelligence (g-factor). We replicate and extend previous findings and highlight the 

importance of adding environmental data to better understand the mechanisms by which 

genetic and environmental factors influence general intelligence. In light of the strong 

evidence for genetic and environmental factors contributing to individual differences in 

intelligence (for review Deary et al., 2021; Harden, 2021), we urge future studies to 
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simultaneously investigate the genetic, environmental, and cerebral effects on intelligence by 

examining a variety of cerebral properties, from the macro to the micro, to understand 

discrepancies in intelligence (for review Deary et al., 2021), and, in turn, later health, 

educational, and social outcomes (Calvin et al., 2017; Schmidt & Hunter, 2004; Strenze, 

2007; Twig et al., 2018). 
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