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Normal Modes and Seismograms in an Anelastic Rotating Earth 

PHILIPPE LOGNONN]• 

Institut de Physique du Globe de Paris, Paris 

In order to account for rotation and anelastic effects in the normal modes of the Earth, a 
structure of the space of normal modes different from those generally used in the elastic self-adjoint 
case is necessary. This can be done with a duality relation between the eigenproblem and the one 
obtained simply by reversing the Earth's rotation. This leads to new biorthonormality relations 
between modes and dual modes. Seismograxns can then be expressed in terms of a normal mode 
expansion. The normal modes of an anelastic rotating Earth can be computed with perturbation 
•neo.'y. In order to '-'-- into account the •' •-e•--'ee -' •;•r•nt coupung ter•T•s ............. dispersion curves, as 
well as between toroidal and spheroidal modes, the perturbations start from an anelastic, non- 
rotating Earth rather than from an elastic one. The secular terms of the perturbation series, due 
to coupling effects between modes of the same multipier, can then be removed. This ensures that 
higher order perturbation theory converges to the anelastic modes with sut•cient accuracy, and 
gives, up to third order, expressions for the eigenmodes and eigenfrequencies. These expressions 
can be used to compute modes and seismograms of an anelastic realistic Earth model, neglecting 
neither rotation, anelasticity, anJsotropy or lateral heterogeneities. 

INTRO DUC TIO N 

The exact formulation of the normal modes of an anelas- 

tic, dispersive, rotating and laterally heterogeneous Earth 
has been one of the "missing" theories in seismology. The 
normal modes and seismograms were always computed by 
neglecting the rotation or the physical dispersion somewhere 
in the theory, and anelasticity was generally treated us- 
ing first-order perturbation theory. Examples of simpli- 
fied theory were presented by Dahlen and Smith [1975] and 
Valctte [1987] in the rotating elastic case, by Dahlen [1981] 
in the nonrotating anelastic and nondispersive case, and in 
the nonrotating, anelastic and dispersive case by Lognon- 
nd [1989]. All these theories were vahd for a spherical or 
laterally heterogeneous Earth, but the two last ones were 
unable to incorporate the effect of the Coriolis operator in 
the biorthogonality relation between modes, which lead to 
singularities in eigenfunction normalization. This was al- 
so the case of the Galerkin theory, proposed by Park and 
Gilbert [1986], where the Coriolis operator was taken into 
account in the eigenequation, but neglected in the biorthog- 
onality relation between modes. This theory was until now 
the most accurate in the computation of realistic Earth nor- 
real modes and seismograms. Unfortunately, this method 
requires large matrix diagonalizations. 

However, normal modes observations have reached a state 
of the art which cannot be satisfied by these simplifications. 
Recent papers show that anelasticity greatly affects modes 
and seismogram observations, either by a direct coupling ef- 
fect between modes, due to lateral variations in the anelas- 
ticity of the Earth [Romanowicz, 1990; Roult et al., 1990], or 
by controlling the strength of coupling due to lateral hetero- 
geneities and rotation, for the spherical averaged anelastic 
structure. This is the case for the coupling effects between 
modes belonging to different dispersion branches, which af- 
fect either the mean frequency of a given multiplet or, on 
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the data, the amplitude of the associated resonant peak. 
Reports of such effects on the mean frequency of modes are 
given, for example, by Masters et al. [1982], Romanowicz 
and Roult, [1986], Smith and Masters [1989], Roult et al. 
[1990], and are relatively well explained by interactions be- 
tween the fundamental spheroidal and toroidal branches, ei- 
ther due to the Coriolis coupling for very long periods [Mas- 
ters et al., 1983] or to the lateral heterogeneities for long pe- 
riods [Lognormal, 1989]. Similarly, fundamental/overtones or 
overtones/overtones coupling effects due to the "roughness" 
[Park, 1989] of the Earth can produce great amplitude vari- 
ations on some weakly excited normal modes, such as radial 
modes [Park, 1990] or core modes [Lognormal and Romanow- 
icz, 1990b]. These coupling effects are strongly controlled 
by the Q ratio of the interacting modes [Woodhouse, 1980; 
Park, 1986]. A theory, which considers the anelasticity as a 
perturbation or neglects rotation, is unable to model these 
effects, and only a complete theory, including rotation, and 
anelasticity with physical dispersion should be used. 

This theory is described in this paper. We start by re- 
calling some properties of the gravito-anelastic operator of 
a laterally heterogeneous Earth. These properties show that 
the dual space is generated by the eigenfunctions of a duM- 
eigenproblem, obtained simply by reversing the Earth rota- 
tion velocity. This simple property comes from the fact that 
the spectrum of the eigenproblem and of its dual are identi- 
cal, which means that the eigenfrequencies of modes do not 
depend on the sense of the Earth's rotation. Using the du- 
al space, it is now possible to define a general biorthogonal 
relation between the modes and their duals, which allows 
expression of the seismograms in the time domain. Later- 
al variations in the elastic and anelastic structure, as well 
as rotation, can now be considered as perturbation. A per- 
turbation procedure starting from a spherical non-rotating 
anelastic and isotropic Earth (SNRAI) is given. In a similar 
way as in the elastic, rotating case, as shown by Lognormal 
and Romanowicz [1990a], it is possible to choose the per- 
turbation path in such a way that the secular terms cancel 
up to second order, which allows us to compute in a very 
fast and accurate way both eigenfrequencies and eigenmodes 
of any realistic Earth model, including artelasticity, physical 
dispersion, rotation and lateral variations. 
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THE SEISMIC EQUATION IN THE ROTATING ANELASTIC 
C.•SE 

Let us first recall the expression of the equation of mo- 
tion of a rotating, elastic Earth, obtained, for example, by 
Woodhouse and Dahlen [1978]: 

Olu(0) -iB&lu(•))+ Alu(•)) = If(•)) , (1) 

where lu(t)) is the displacement field in braket notation, 
If(t)) the equivalent body force for sources and excitation 
terms, A the elasto-dynamic operator and B the Coriolis op- 
erator, both defined in the works by Woodhouse and Dahlen 
[1978] or Valette [1986]. In all relations which follow, as in 
relation (1), all brackets and operator will implicitely de- 
pend on space. The generalization to the anelastic case is, 
for instance, shown by Liu et al. [1976], Dahlen [1981] or 
Tarantola [1988] and leads to a substitution of the relation- 
ship between stress tensor rij and strain e k• by a more gen- 
eral time convolution, which, in the case of local anelazticity, 
can be described using a kernel Cisk•. If the properties of 
the medium do not depend on time, and as the tensor 
should be causal, the stress tensor can be expressed as 

,-,.(t) = c,.•,(•- •') •'(t') •' , (2) 

which means that all products between the strain tensor e 
and the ane]astic tensor Cij• appearing in the expression of 
the operator A have to be rewritten in terms of convolutions. 
Taking the Fourier-Laplace transformation, defined here, in 
bracket notation, as 

f0 lu(•))- ,-'• lu(t)) at, (3) 

where tr = co+ ia is a complex frequency in the upper part of 
the complex plane, we obtain the expression of the seismic 
equation (1) in the complex frequency domain: 

- •=lu(•)> + aBlu(a)> + A(a)lu(a)> = If(a)> . (4) 
This is the general frequency expression of the seismic equa- 
tion of an anelastic, physical dispersive and rotating Earth. 
Here the expression of the operator A is the same as in the 
elastic case, but with a complex and frequency dependent 
stiffness tensor. For example, it is possible to model attenu- 
ation with the isotropic absorption band model of Liu et al. 
[1976], where the elastic moduli /• and • become complex 
and frequency dependent according to the relations 

( [ u(•) = • •+Q2 • 2-z-- -i , 
• coo 

71' coO 

However, it must be noted that the logarithmic branch at 
cr = oe of such a model is not physical. It is generally 
assumed that the intrinsic quality factor Q-• goes to zero as 
1/co and co with the high and low frequencies, respectively 
[Anderson and Minster, 1979; Anderson, 1989]. The high 
frequency limits of the equation (4) is thus simply the elastic, 
nonrotating equation. 

We will assume in what follows that the density and elas- 
tic structure of the Earth is such that no unstable normal 

modes exist, which means that all the eigenfrequencies occur 
in the upper complex tr plane and will address our descrip- 
tion to the seismic normal modes. In this case the eventual 

singularities at the zero frequency in the definition of the 
attenuation can be neglected and the operator A(tr) can be 
defined in the half-upper plane as well as in the half-lower 
plane by analytic continuation. Except for this assumption, 
the model can include laterally heterogeneous anelastic and 
anisotropic structure, as well as lateral variations of den- 
sity. No assumptions are required either on the frequency 
dependence of the real and imaginary parts of the anelastic 
stifness tensor. 

The eigenmodes [u•) and associated eigenfrequencies irk 
will be such that 

- •lu•) + a•nlu•) + A(a•)lu•) = 0. (•) 

This is the problem to be solved, which is not only non self- 
adjoint, as long anelasticity is introduced, but also frequency 
dependent by the introduction of physical dispersion. How- 
ever, even in the general case, some properties of the op- 
erator B and A(cr) remain. Let us now define the bilinear 
forml 

<vlu> -/v • gv u(=) v(=), (c) 
where p is the density. It differs from the usual inner product 
by the fact that the left vector is not complex conjugated. 
It is then easy to show, using the expression of the operator 
B or A [Valette, 1986], more precisely the antisymmetry of 
the curl product for the Coriolis operator, or the symme- 
try of the stiffness and prestress tensor, that B and A are 
antisymmetric and symmetric, respectively, for the bilinear 
form (6), which means that 

<vlBu> = -<nvlu>, (7) 

(vlAu) = (Avlu). (8) 

THE DUAL SPACE AND THE BIOl•THOGONAL RELATIONS 

The normal mode equation (5) is not the only one re- 
quired to solve the associated eigenproblem, especially if 
it is solved by a variational method, i.e., by minimizing a 
Rayleigh quotient. In the same manner, the computation 
of the response lu(•)) to • given external force If(a)) can- 
not be determined with the eigensolutions of (5) only. In 
both cases, we need additional information, given by an as- 
sociated space of adjoint eigenfunctions, if a Hilbert inner 
product can be defined, as in the elastic case, or, more gen- 
erally, by an associated space of dual eigenfunctions with a 
dual relation or a biorthogonal product. In our case in or- 
der to deal with the antisymmetry of the Coriolis operator, 
we will define the dual space as the space mapped by the 
eigenfunctions lye) of the eigenproblem obtained by revers- 
ing the Earth rotation. The eigenfunctions Iv•) and their 
associated eigenfrequencies tr• are thus solution of the spec- 
tral equation 

- - •BIv•) + A(•)lv•) - o. (9) 

As shown in Appendix A, this mapping is possible as the 
spectrum of the two eigenproblems, with or without reversed 
rotation velocity, is the same. Physically, this means that 
the eigenfrequencies of the Earth do not depend on the sense 
of the Earth's rotation. However, for a given eigenfrequen- 
cy, the two dual eigenmodes are different. As no degeneracy 
occurs in the rotating case, each eigenfrequency tr• is as- 
sociated with one and only one eigenmode luk), and also 
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one dual eigenmode Iva). In what follows, we shall note 
the space mapped by all eigenfunctions Ink) U, and its du- 
al, mapped by the dual eigenfunctions Ira), V. Note that 
for each eigenfrequency, a linear form over U or V can be 
defined using the bilinear form (6). 

Another important dual relation between modes is related 
to the fact that the tensor Cigar used in relation (2) is real. 
This relation can be used to show that [Nowick and Berry, 
1972; Dahlen, 1981] 

A* (er)- A(-er*) , (10) 

where the asterisk means the complex conjugation. If we 
use this relation and the fact that the Coriolis operator an- 
ticommutes with complex conjugation, it it easy to show, 
by taking the complex conjugate of relations (5) and (9), 
that for each eigenfrequency era, with the eigenmode and 
dual-eigenmode lua) and Iva), a complex-dual eigenfrequen- 
cy -a• can be associated with the eigenmodes lu*a) and 
Iv*k). Eigenfrequencies with positive real part wa will thus 
be noted with a positive index k, and the ones with a nega- 
tive real part will be with a negative one. There is, however, 
no direct relation between the functions lua) and [va), ex- 
cept in the spherical case, for which, as showed in Appendix 
A, we have 

Iva) -- ISuk) , (11) 

where S is a orthogonal symmetry around a plane contain- 
ing the rotation axis. More generally, we can write, in the 
general case, 

- 4iaao•alu*a) 
- 2iaaB[u*a) 
- [A*(era)- A(erk)] lu*a) . (12) 

For all seismic modes, rotation and anelasticity are pertur- 
bations compared to the elastic structure of the Earth. E- 
quation (12) shows thus that the difference between 
and I u*•) is to first order related to the attenuation, and to 
second order related to the cumulated effect of attenuation 

and rotation. 

Let us now define more precisely the relation between the 
primal space and dual space. For this purpose, let us now 
take two eigenfrequencies era and era', the associated mode 
lua) and the dual mode [va,), solution of 

- 0, (13) 

7-/(aa,)lva,) -- 0, (14) 

where the integro differential operator 7-/(er) is given by 

?-/(er) = -er2I + erB + A(er) , (15) 

and its dual operator was defined as 

•(er) - -era:/:- erB + X(er) . (16) 
Here • is the identity operator and the operators are such 
that 

A 

<vl•(er)u ) = <•(er)viu > . (17) 

Let us now multiply the relations (13) and (14) by the bra 
(va, I and {ual, respectively, make the difference of the two 
obtained relations using relations (7) and (8) and divide the 
result by er}, -er•. We finally get the following biorthogo- 

nality relation: 

1 
<v•, lug> - •[<v•, Inns> 

(va, lA(ak,)ua)- (v•,lA(ak)ua)] 0. 8) + = (1 
er k t -- er k 

The relation (18) defines the general biorthogonality relation 
between the modes associated with two different eigenfre- 
quencies. However, the quantity at the right remains defined 
when era' -• era and its limit is simply 
As rotation and attenuation, as well as differences between 
[va} and [u'a} are typically small perturbations for realis- 
tic Earth model, this limit will not in general be zero for 
the seimic modes, and the pole of (va[7-t(er)ua) for er = era 
will thus be simple. This, however, may not be true for 
secular and subseismic modes, which need a more detailed 
study. We will thus use this limit for the normalization of 
the seismic modes, and we will choose the normalization so 
that 

1 

<valuk)- • [<vaiBua)+<valO•A(erk)ua) ] =1. (19) 
It is noteworthy that in the elastic limit, as shown in Ap- 
pendix A, v --• u*, era '-• •oa so that relations (18) and 
(19) give the orthogonality relation obtained by Dahlen and 
Smith [1975] 

1 
(v*•,lu•)- •(v*•,lnu• ) = •,. (20) 

•va q- 

da.½a the eigenequation (13), the dual one (14) 
and the biorthogonality relations (18) and (19). We can now 
compute the response of the Earth to a generalized body 
force and develop a perturbation theory in order to compute 
the modes of a laterally heterogeneous Earth. 

MODE SUMMATION AND SEISMOGRAMS 

Let us now compute the response of the Earth produced 
by an equivalent body force If(t)). The displacement will be 
obtained by solving the seismic equation in the frequency 
domain, as written in relation (4) 

7-/(er)iu(er)) = If(er)) , (21) 

and by computing the inverse Laplace transformation, de- 
fined as 

1 - lu(er)) e '=' der . (22) 

To express this integral, we need to determine the pole of 
lu(er)). These poles are first the frequencies for which 
is not inversible, by definition the discrete eigenfrequencies 
er•, and eventually those corresponding to the dense or con- 
tinuum spectrum induced by the fluid part of the Earth 
[Valette, 1989a], neglected in what follows. Note that as the 
attenuation is tending to zero when the frequency goes to 
infinity, lu(er)) decreases with the frequency as er-: and no 
singularities occur along the horizontal plane c• - 0. Let us 
now assume that the solution can be expressed in the form 

lu(er)) = • ca,(er)lua,) . (23) 
k t 

In principle, this summation is possible if the space of all 
modes is complete. However, such a completeness has been 
demonstrated only in the elastic and rotating case by Valette 
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[1989b], and we will assume that this is also the case in 
the anelastic case. Theoretically, all eigenfunctions must be 
included in this summation, that is, not only the modes of 
the seismic spectrum (e.g., with a period less than I hour) 
but also the secular modes with zero frequency and the sub- 
seismic modes, with period greater than i hour. However, 
as this paper is focused on the seismic modes, we will neglect 
in what follows the contribution of the secular modes in the 

seismograms and in the computation of the seismic normal 
modes of an aspherical Earth. The summation in relation 
(23) will thus be limited to the seismic modes. 

Let us now insert the expression (23) in the relation (21), 

•(,,) • c•,(,,)lu•,)= If(,,)), (•4) 
k' 

and take an impulsive force, for which If(a)) does not de- 
pend on the kequency and has no poles. For a given eigen- 
frequency ak, and as 

for the eigenmode Ink) only, the relation (24) shows that the 
pole for a• appears only for c•(a), and is simple. We can 
thus, using the Cauchy theorem, express In(t)} as 

[u(t)} = H(t) Ee i%" lim i(a- a•,)c•,(a)[uk,} , (25) 

and have now to express the limits appearing in this relation. 
For this purpose, let us first multiply (24) by {vk I and write 

(v•lf> 

k•k 

Using 
A 

we get from relation (26) 

(•/(a)v• lu•,) . (27) - • c•.(.)(v•l•/(.)u•) -(v•l•/(.•)u•) 
kt.• k 

Using the normalization relation (19), the relation (27) 
shows that the limit in (25) is given by 

lim i(a - •)c•(•) = i(v•lf) (v•lf) (28) 

Ma•ng now the summations over M1 positive and negative 
indices, we obtain the response of the Earth to an impulsive 
equivMent body force: 

In(t)) = H(t) ••e ia•(v•lf)ei•tlu•) . (29) 
k>O 

The response to a tensor moment source, 

If(t)} -- -M(t)VS(r - r•) , (30) 

where rs is the source location, can thus obtained by con- 

volution and gives for t > 0 

(1 / t ß ) • dt'M(t')' Vv•(r•)•"•('-")lu• > . •e 
k>O 

(31) 

If the source function is a Heaviside M(t) = MH(t), we 
finally obtain 

,u(t)}=H(t)•-•e(•M'Vv•(rs) (1-e'•at)luk}) . 
k>O 

(32) 
Let us note that this expression differs from others derived 
previously by Gilbert [1970] or Dahlen [1981]. An initial 
source phase shift due either to the imaginary part of the 
eigenfunctions or to a} appears. Using Appendix A, it 
is easy to show that relation (32) becomes the same as 
Gilbert's in the elastic case, when [v•} -• [u*•). In order 
to use this expression, we need now to compute the normal 
modes and their duals for a laterally heterogeneous Earth. 
We will now show how this can be done by using pertu;ba- 
tion theory. 

PERTURBATION THEORY 

Perturbation theory is a powerful method to compute the 
hybrid normal modes for the range of the lateral hetero- 
geneities of the Earth. In the elastic case, Lognormal and 
Romanowicz [1990a] have shown that perturbation theory 
can be iterated and leads to the solution obtained with more 

timeconsuming methods, such as variational methods [Mor- 
ris et al., 1987]. Let us now start from a spherical non rotat- 
ing anelastic and isotropic Earth (SNRAI) for which eigen- 
frequencies and eigenmodes can be easily computed [Tromp 
and Dahlen, 1990]. The spherical eigenmodes and their as- 

sociated eigenfrequencies will be noted lug. ø)) and a03, the 
index j being associated with this spherical basis. Their 
corresponding displacement can be written in the form 

ß (o) _ •u,(•) YF(O, •)• 
+ •(•) *•(0, •) 
+ •W•(r) e• A ••(•, •) , (33) 

where U, V, W •re complex functions of •he r•dius r which 
depend on n •nd •, ghe radiM •nd •ngular order of ghe 
modes, •m(•, •) is ghe fully normalized spherical h•rmonic- 
s, V• ghe gr•dieng operagot on ghe unig sphere, e• ghe r•diM 
b•sis vector of •he sphericM Cartesian b•sis e•, eo, e•, •nd 
•, • ghe col•figude •nd longigude, respectively. As • con- 
sequence of ghe sphericM symmegries, ghe eigenfrequencies 
a0j will depend o•y on ghe index • •nd n, e•ch eigensp•ce 
being 2• + I degenerate. According go (11), •he sphericM 
•ssoci•ged duM eigenmodes will be g•ken proporfionM go 

•(o) -- S•u © n --gm • tm 

= •,(•)(-•)• h-•(o, •)• 
+ •(•) (-1) • vxYF•(o, o) 

+ •w,(•) (-1) • • • v•Yf•(o. •). (34) 

As there is no rotation in the sphericM c•se, •nd •s shown 
by (18) •nd (19), they will be normMized in such • w•y that 

, (0) )) _ i /v(0)lo•x0(•0•)u•0)) =,,, (35) lu}ø ' 
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where Ao(a) is the sphericM anelastic operator. This or- 
thogonality relation will be verified only for the 2œ + 1 modes 
associated with the eigenfrequency aoj. In the relation (35) 
and in what follows, all dual products will be defined with 
respect to the spherical density and will be given by 

(vlu) = f• po •V u(0.v(0 . (•) 
As a consequence of dispersion, the spherical modes with the 
same œ and rn value and on the same type (e.g., spheroidMs 
or toroidMs) but with different n radial numbers are not or- 
thogonal for the duality product (35). In contrast, spherical 
modes with different œ or rn numbers, or modes of different 
types, will be biorthogonal for the duality relation (35). 

Let us assume now that lateral heterogeneities in both 
density, elastic and anelastic structure are superimposed on 
the spherical Earth structure and that the rotation is now 
taken into account. The difference between the aspherical 
operator A and the one corresponding to the SNRAI model 
Ao is defined as 

<vlSA(•)u ) = <vlA(•)u ) - <vlAo(•)u ) , (•7) 

and thus includes the lateral heterogeneities as well as the 
effect of the aspherical shape of the Earth's surface and dis- 
continuities [Woodhouse and Dahlen, 1978; Valette, 1986]. 

Let us now consider a given eigenmode k, its eigenfrequen- 
cy ak, its associated eigenfunction luk) and and its dual Ivy). 
All these terms can be expanded in terms of a power series 
of a small parameter e, related to the perturbations due to 
the asphericity of the model. We shall thus write 

• = •o•+• +•ak +..., (38) 

lug) = lu? ))+lu? ))+lu(ff ))+..., (39) 
Ivy) = Iv?)> q-Iv?)> + Iv(if)> q-..., (40) 

where a0• is the spherical frequency of mode k, in what fol- 
lows noted a0, and *,a•, lu(ff)), Iv(ff )) are the nth-order 
perturbations in the eigenfrequency, eigenmode and dual 
eigenmode of the singlet k, respectively. We will assume 
that all perturbations in the eigenmode can be expressed 
on the basis of the eigenmodes of the SNRAI model, which 
gives 

ß Igø)). 
$ 

In the same way, we will assume that all corresponding per- 
turbations of dual modes will be expressed as 

Iv?)- v(") ø>) (42) jk ' 

In these summations, 2g + 1 modes are associated with the 
spherical eigenfrequency a0. We will define in what follows 
the subspace S as the subspace mapped by these 2• + 1 
modes, the index k being here also omitted for S. The 
projector onto this subspace •, will thus be defined for the 
modes lu) and dual modes Iv), respectively, as 

= 

1 0,•Ao(ao)] v) (44) lv>- ' 
jEs 

and verify obviously •p2 = •p. The orthogonal of $ is thus 
the image of Z- 7 •. As we will express all dual products 
using the reference spherical density, we first write equation 
(5) a• 

- o-•Klu•> + •,•nlu,•> + A(•)lu•) = 0, (45) 
where the operators K and B are defined as 

K = ---P 
p0 

B = ---p 2iliA, (46) 
p0 

and make some modifications to this equation, in order to 
get simpler expressions for the perturbations. For this pur- 

pose, from (45) we get by using 5•ru = •rk-•r0 the expression 

[(Ao(ao) - a2oKo) + 58• (n - 2aoK) 
2 

+ 5H(a•) - 58• K ]lug> - 0(•7) 
where 

5H(au) = [A(crk) - Ao(ao) + o'oB - 8o25K] , (48) 

5p 
5K -- , (49) 

po 

and where K0 is the identity operator. Let us now express 
A(a•) in terms of a Taylor series around the spherical fre- 
quency do. Substituting the power series in equation (47), 
we end up with the following expression 

[(A0(ao)- a20K0) + 5au (n'- 2a0K') 
+ 5H' -- 5a/½2K / 

+ •A(•) ]lug>=0, (50) 
where 

5H' = [SA(o'o)+aon-o'•oSK] , 
B' - n + O•A(•,o) - •,oO•A(•,o), 

1 2 
K' = Ko + •K- •-0,,A(o'o) , (51) 

•A(•) = •(•'•)"0•A(•,o). (82) 
rt----B 

For common Earth models of anelasticity, the dispersion is 
relatively weak. The third-order term 5aA(ak) can thus be 
neglected, and only the two first derivatives of the oper- 
ator A(a) are significant. In this case one sees that the 
most important effect of the physical dispersion is to change 
slightly the apparent form of the density and Coriolis op- 
erators. Note also that the lateral variation in the elastic 

and anelastic structure appearing in the relation (51) are 
those observed at the spherical frequency a0. If the model 
displays a constant Q(w), the derivatives of A are expressed 
only with the real part of the stiffness tensor, and the op- 
erators B' and K' remain self-adjoint. This is of course not 
the case for a strictly causal anelastic model. 

Lognormal and Romanowicz [1990a] showed that the effi- 
ciency of the perturbation series was related to the inter- 
actions terms between modes of the same multiplet. These 
terms appear in the power series of the two expressions 

1 
<v•, lua) - •[<va, Inns) 

O'k -•' O'kt 

+ <va, lA(•r•:,)ua)- <v•,lA(•r•)u•)] = o, (53) 
O'kt -- O' k 
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- a•<vk, luk) + ak<Vk'lBuk) + <Vk' It(a•)Uk) = 0, (54) 

where (vk, I and luk) are the dual mode and mode of two 
different singlets k and k' of the same multipier. Expanding 
A(•r) in terms of a Taylor expansion around •r0, these two 
relations can be written as 

(55) 

I [(ao (.o) - .o Ko) + - + 
+ 5H'+SakSak,K' 

+ 5•A(.•)] u•)=0, (50) 

where 

(57) 

The zeroth-order terms of the expression (55) gives the con- 
strains on the biorthogonality relations of the zeroth order 
modes In? )) and In?)), •vnich gives 

The other terms will give the projection of perturbations 
within $. However, as soon as a e n term appears in the 
•ow• s•i•s of ta• •a•tio•s (SS) •nd (S½), • s•cu• t•m 
appears in the expression of the nth-order perturbation of 
the mode, and the perturbation series practically stops to 
converge. To avoid this, we shall write the perturbations of 
the operators 5H', B' and K' in the form of a power series: 

5H' = 5•H+52H+...+5, H+..., 
B' = B0 + 5xB + 52B + ... + 5nB + ... , 

K' = K0 q- 5•K q- 52K q- ... q- 5nK q- ... , (59) 

and we shall choose the perturbations of these operators, i.e., 
the perturbation path of the procedure, in such a way that 
the power series of the relations (55) and (56) have the most 
of their first terms which cancel. Note that a zeroth-order 

operator B0 appears in relation (59), even if the Coriolis 
operator is generally seen as a perturbation. Indeed, as we 
choose to keep K0 always equal to the identity, and as shown 
by relation (58), this is the only way if one want to change 
the direction of projection within the subspace S. Let us 
first recall the expressions of the perturbations in the eigen- 
mode and eigenfrequency for perturbations in the operator 
such as (59). We shall describe here only the perturbation 
procedure for the mode Ink) of the space U. However, the 
same procedure must be used in order to determine the dual 
modes Irk) of the space V by substituting to all the oper- 
ators their dual one, obtained by taking the opposite of B. 
With the expansion of the relation (59) we now get 

[(Ao - dKo) + 
+ 5H' - 5ek2K ' 

+ •A(•)]lu•) - • ß (60) 

Since each term of order e" must be equal to zero, all f(•) 
terms must be zero. The zeroth-order term is 

(61) f(o) = [Ao(•o) - •o•Ko]lU?)), 

and shows that the zeroth-order eigenfunctions belong to S, 
which is the kernel of [Ao (o'0) - •ro 2 Ko]. The other terms 
are, lorn>l, 

f<") = [no(•o)- •o2Ko]lu? )) 
+ I• ("-•),u•) - a,•,,•[2,,oKo - Bo]lu?)). (62) 

Here ]r (•-•), u} can be expressed in terms of the eigenfre- 
quencies and eigenmodes perturbations up to order n- 1. 
The first three terms are expressed in Appendix B. These 
higher order terms thus give the following relation 

[no (•0) - •o• Ko]lU? )) + Id "-•), u•) 
-5. o'k[2o'oKo- Bo]lu? )) = 0. (63) 

For n=l, we obtain the first-order perturbation in the fre- 
quency as well as the zeroth-order perturbation of the eigen- 
mode ms a solution of an eigenproblem. This eigenproblem 
is obtained by projecting the first-order residual f(•) on the 
subspace S associated to the SNRAI mu]tiplet whose eigen- 
frequency is equal to ao for the spherical mode], and gives 

5•O'k72 [2o'oKo- Bo] lu(ff )) = P6•Hlu(ff)). (64) 
This equation is the generalization of the isolated multi- 
plet perturbation theory [e.g., Messiah, 1962; Backus and 
Gilbert, 1961; Dahlen, 1968; Madariaga, 1972] in the SNRAI 
c•se. The associated (2g + 1) x (2g + 1) left and right ma- 
trices can be computed by using the basis of S. It must be 
noted, however, that none of these matrices are hermitian 
in the general case and that the associated dual mode Irk) 
must be determined either by solving the associated dual 
eigenproblem (with reversed Earth rotation): 

or by inverting the matrix [2•r0K0 - B0], as the kets lu? )) 
and the dual bra (v?,)[ verify the duality relation (58). We 
can now compute the higher order perturbations. However, 
the relation (63) gives us only the expression of the frequen- 
cy perturbation and one of the projections of the perturba- 
tion on the orthogonal to S. For the first one we obtain, 
multiplying expression (63) by (v?)[, and using the relation 
(5s): 

2•roSn•rk -- <v(ff)lr("-•), uk>. (66) 
For the computation of the orthogonal, let us first multiply 
expression (63) by 27- 7 ). We get 

[Z- P][A0 (•o) - •0•K0]lu? )) + [Z - •,]ld "-•), u•) 
-5no'k[I- 7:'][2o'oKo - Bo]lu? )) = o (67) 

As K0 is the identity and as In? )) belongs to S, the last 
term is zero as soon as the image of S by B0 is included in 
S. We will take this constrain for B0. In this case let us 
remark that 

[27- •P][Ao(ao)- ao•Ko][27 - 7)], (68) 

has a left and right inverse, and let us note its left one A. 
Using this inverse, we can now get the expression of an nth- 
order perturbation on the orthogonal of S, 

[27- 79][u? )) = Air ("-•), uk). (69) 
For the projection of the perturbations within the subspace 
S, we must use the power series expression of the relations 
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(55) and (56). After some algebra developed in Appendix 
B, the projection is found and gives for k y• k', 

<v?,) I [2a0K0 - B0lu? )) 
.A (") kk t 

O k t. J kk• 

fl O'k -- f10'k• 
(70) 

These terms correspond to the interactions between singlets 
and are highly unstable. Lognormal and Romanowicz [19905] 
have shown in the elastic case that they can practically stop 
the convergence of the perturbation procedure. As in the 
elastic case, we will thus modify the perturbation path in 
order to cancel the secular terms as far as possible for the 
perturbation series. 

CONSTRAINING THE PERTURBATION PATH 

Let us now determine the perturbation path which will 
cancel the secular terms up to the second order. In addition 
to the constraint given by relation (59), the first- and second- 
order perturbations for the operator g', the zero, first and 
second for B' and the first, second and third one for fH 
must be such that 

.A (1) - •472 , -- B (1) - H•2, -- 0 (71) kk • kk t , 

Let us start by cancelling the first-order .A (1) and B(•12, Us- kk • ß 

ing the result of Appendix C we end up with the constrains 

(•5•v?)l Bø u © ) + (v•) I •N[Xf•Hu• ø)) 25o 

112o, - = 0, (,2) 

a (o) ©) o, 
where 

N0-2a0K0-B0 , (74) 

is the operator related to the norm within the subspace 3. 
This shows that only the projection of fxK, fib and f2H 
within the subspace $ are constrained and must be such 
that 

P[fx B - 2rrof• K]P = 

P flHN• -•Bø +__N•-lf•H P, (75) 
2or0 2or0 

•Pf2 H7) = 

it + ItN; KON; It] 
The remaining part of f•H, related to the right and left 
projections within $ will be taken equal to zero. This means 
that the first-order perturbations fl H and fx K will be taken 
in such a way that 

[Z- 7)]fl H -- [Z- 7)Ifil ' , fl H[Z- 7 )] -- fH'[Z- 7)], 
(77) 

for 51H and 5H', but also for f•K, fK' and B0, B'. This 
means that all terms like zXfxH can be substituted by 
AfH •. In this case the first-order secular terms cancel, and 
the first-order perturbation is orthogonal to the subspace S 
and is given by 

lu?)) - AfxHlu?)) . (78) 

The second-order perturbation in the eigenfrequency can al- 
so be found by using relation (66), which, using the expres- 
sions of fixK, f•B and f2H gives, after some algebra 

f2ak - <v?)l r(•),uk) - f•a} (79) 
o'0 

This correction is just due to the quadratic term of the nor- 
mal mode equation. One must note that the usual second- 
order perturbation, due to the multiplet-multiplet coupling 
effect, is included in the first-order one, as it is, in the elastic 
case, for other nonsecular perturbation theories [Park, 1987; 
Dahlen; 1987, Lognormal and Romanowicz, 1990a]. 

The second-order terms can now be obtained in a similar 

way, and the corresponding expressions for the projections of 
operator perturbations f2K, f2B and f3H within S are given 
in Appendix D. These relations, as well as relations (75) and 
(76) are expressed with the zeroth-order perturbation Bo, 
the first ones f•H, f•K. We must now use the relation (59) 
in order to find these perturbations. This can be done with 
the projection of the different perturbations on the subspace 
3, which give, up to second order, 

PflHP - P [fH' + fH'AfH' + fH'AfH'AfH'] •P 
+ .7:'• (Bo, f• H, f• K) , (80) 

2a0•Pf•K7 • = •P[2a0fK' + fH'A[2a0K0]AfH ' 
+ fH'A[2a0fK'- B'] 
+ [2a0fK'- B']ZXfH']7 • 
+ •2(B0, f•H,f•K) , (81) 

•PB07 • -- •P [B'- 2a0f•K] •P 
+ •3(Bo, fxH, flK) , (82) 

where we have assumed that 52B is taken as zero. The func- 

tions .•'1,2,3 (B0, flH, fl K) are nonlinearly related to the pro- 
jection within S of the operators B0, 51H and flK and are 
given in Appendix D. The relations (80)-(82) give the exten- 
sion to the artelastic rotating case of the renormalization pro- 
cedure proposed by Lognormal and Romanowicz [19905] in 
the elastic case. It differs essentially by the nonlinear func- 
tions .•'1,2,a (B0,51H, 51K) which make the computations of 
B0, 51H and flK more complex but take a better account 
of the effect due to the rotation and dispersion. It must 
be noted, however, that these functions are expressed on- 

, 0•,Ao (ao) ly with the projection of Bo Ko, fxH, flK and a 
within the subspace 3, whose dimension is 2œ+ 1. The other 
part, which appears in the right-hand side of equations (80)- 
(82), is the same as by Lognormal and Romanowicz [1990a]. 
It depends on the coupling effect between different multi- 
plets and is much more complex to evaluate, especially for 
"rough" laterally heterogeneous Earth models, where the 
coupling can occur far along the same dispersion branch, 
and also between different dispersion branches. However, 
these last terms must be calculated only one time and B0, 
5xH, 51K can be easily determined in a few iterations by a 
Gauss resolution of a (2œ + 1) 2 dimension problem. 

We can now write the final expressions for the perturba- 
tions of the eigenmodes. The relation (78) can be used for 
the expression of the first-order perturbation and gives 

lu? )) - afH'lu?)) , (83) 
As the second-order perturbation now becomes also orthog- 
onal to 3, we can express the second-order perturbation of 
the eigenmode, which gives 
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lu?)) = 200m'] lut © 
+ ASH'ASH' lu(•ø)) . (84) 

In the same manner we obtain the third-order perturbations 
in the eigenfrequency, given by 

2a05•a• -- (v•ø)[r (•), u•). (85) 
One must note that even if the starting model is a non- 
rotating model, a nonzero operator B0 is needed. Howev- 
er, as shown in the relation (58), tMs operator only affects 
the biorthogonMity relation between modes of the subspace 
S. To zero order, it gives the same biorthogonMity as in 
the spheric• case. To first order, B0 is related to the self- 
coupling due to the rotation and to lateral variations in den- 
sity, if the operator A is not renormMized for the aspheric• 
density [Lognonnd and Romanowicz, 1990a]. To second or- 
der, it will be related to the escape of energy induced by 
coupling effects with the other multiplets. This operator 
thus just determines the initiM direction of the perturba- 
tion [u•ø)), given by the eigenproblem of relation (64). In 
the same way the perturbations of the dual mode are ob- 
tMned by taking in M1 the obt•ned expressions of the dual 
operators. Using expression (31), an appro•mation of the 
seismogram up to the third order for the eigenfrequency, 
and up to the second order for the eigenmode can finally be 
obtained. 

CONCLUSION 

The results shown in this paper give the eigenmode and 
eigen•equency perturbations up to the second and third or- 
der, respectively. In the elastic c•e, the second-order 
pro•mation of the norraM mode and third order of the eigen- 
frequency have been compared with the solution obtained 
with the variationM method by Lognonn• and Romanowicz 
[1990a]. They have found that the director cosine and the 
frequency deviation 5a between the two solutions differ only 
by a relative error less than 10 -•, an accuracy much higher 
than the observation error. Of course, if a better precision 
is needed, the expressions can be generalized to the other 
higher orders. However, secular terms will remMn for 
perturbations terms in eigenmode higher than 3. 

The cMculations presented here do not require large ma- 
trix ß agonMizations. Only sraM1 size matrices, of the same 
size as in the isolated multiplet approximation, must be di- 
agonMized. Computations with much bigger matrices, re- 
lated to the coupling between multiplets, are only matrix 
multiplications. The Mgorithm is thus well adapted to vec- 
toriM computers or to highly parMlel computers. Of course, 
the modes and eigenfrequencies can be stored after being 
cMculated for reMistic three-dimensionM models and can be 

used to compute seismograms. These seismograms will take 
a better account of the initiM amplitude and phase of the 
the multiplets, which are affected either by the anelasticity 
or by the coupling effects. This may be used, for example, 
to perform more reMistic seismic source inversions. 

APPENDIX A 

Let us show that the spectrum of an anelastic, dispersive 
and rotating Earth does not depend on the direction of ro- 
tation. For this purpose, let us assume that the eigenmodes 
[uk) and associated eigenfrequency crk are solution of the 
eigenproblem 

- •[u•) + •B[u•) + A(•)lu•) - 0. (A1) 

In equation (A1), laterM variations in density are taken into 
account by a renormaJization of the operator A, as shown by 
Lognonn• and Rornanowicz [1990a]. Let us now use a com- 
plete basis of functions for the displacement fields within the 
Volume V of the Earth, for example, given by the eigenfunc- 
tions of SNREI model, in order to express (A1) in a matrix 
form. In a spherical Cartesian basis, these modes may be 
expressed with spherical harmonics and their displacement 
is given, in operator notation, by 

,(o) _ ,•U•(r) •(o, q3)e• n•lm -- 

+ •(r) v15•(s, O) 
+ •W•(r) e• • V•5•(S, 4), (•) 

where U, V, W are hnctions of r which depend on n and 
t, tn• raaial ana angular oraer o• the moaes, 5•(S, 4) is 
the hlly normalized spherical harmonics, V1 the gradient 
operator on the unit sphere, e• the radial basis vector of the 
sphericM cartesian basis e•, e0, e,, and 0, • the colatitude 
and longitude respectively. Let us now define the matrix 
element of the B and A operators as 

n25, = (•u;•l•,u•,•,), 
•,•,(•) = (.u•lx(•).,u•,•,), 

where the asterisk is the complex conjugation, where index 
n is omitted and where the bracket product is defined in 
relation (36) in the text. Omitting also the index k, the 
mode u can be written in the form 

U • • nlra • 

ml 

and equation (A1) can now be written as 

- = 0. (A4) 
m • l• m • It 

Let us now use the symmetry of the matrix elements of A 
noted by Dahlen [1981], which results from the property of 
the spherical harmonics, such that •* = (-1)• -•, and 
from the symmetry of the operator A: 

m+mtA--m•l t •2•,(•) = (-•) .._• (•) , 
and note that due to the antisymmetry of the Coriolis op- 
erator we have 

n2•, (-1) •+•' •'•' -- -- BZml ß 

Ta•ng the equation (A4) for the component -m, using 
these two symmetry relations and changing the index m • 
into -m •, we have then, after multiplication by (-1) •' 

-• • - • n• • + • (•)• = 0, (As) 

where • is defined as 

• - (-1) • . 
This shows that a and • are solution of the transposed eigen- 
problem of an anelastic Earth with an opposed rotation di- 
rection, which can be written in the form 

• _ B•l •) +A • _ , 

where the matrix terms of the transposed of the operator B 
and A are given by 
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,,,r, = B.•r , [A'(•)]•r, = A•r (•) . 

The equction (A6) mecns •so that • is solution of the chcr- 
½c•eristic equction, formMly written ½s 

der [-a•I- aB • + A'(a)] = 0, (A•) 
which shows by ta•ng the transposed, that 

det [-a=Z- aB + A(a)] = 0, (AS) 
i.e., that a is •n eigenfrequency of the eigenproblem of •n 
•nel•tic E•rth with • reversed rotation. Note, however, 
that there is no generM w•y to find the •ssoci•ted eigen- 
mode, noted v, from u or • in the c•se of • l•terMly het- 
erogeneous E•rth. The relation between these two modes is 
simple in only two c•ses. The first one is the elastic, rotat- 
ing c•se, where the operators A •nd B •re self-•djoint •nd 
commute •nd •nticommutes, respectively, with the complex 
conjugation, defined •s • we•k time reversM by Lognonnl 
and Romanowi•z [1990a]. If u •nd a •re eigensolutions of 

- •' lu)+ •nlu) + Alu) = 0, (A9) 

we h•ve then by t•ng the complex conjugate of (AS), •nd 
• a is reM 

-•' lu*) - •nlu*) + Xlu*) = 0, 
which shows that 

v=u* (A10) 

The second one is the sphericM, •nel•stic •nd rotating 
c•se, where the operators A •nd B commutes •nd anticom- 
mutes, respectively, with the symmetry operator S defined 
by Lognonni and Romanowicz[1990a] • •n orthogonal sym- 
metry •round • plane contMning the rotation •xis, for ex- 
ample, the Greenwich meridian plane. In this c•se we have, 
by t•ng the S image of equation (A8), 

- •'lS•) - •nlSu) + XlSu) = 0, (All) 
which shows that 

v =Su. (A12) 

Let us note that in this c•se using the definition of S, the 
component of the vector v can be expressed •s 

v • = (-1)• -• , (A•a) 

which is the relation found by Dahlen [1981] between ß mode 
and its duM. 

APPENDIX B 

Starting from the relation (38), (39), (40), (50), and (59), 
we get easily the expressions of the three first remaining kets 
I r(n), uk) of equation(62) 

I r(ø), uk) = 5•Hlu? )) , (B1) 
Ir(•), u•) - 

(o) (•) •) •olu?)), +•2Hlu• ) + *•Hlu• ) - (•x (B2) 

It(2), u•) - 

+[2•o,•K - ,•H]lu(• •)) + [2•oKo - Ho]lu?))) 
+*• Hlu? ) ) + *,alu? )) + *•alu? )) + *•*(-•)lu• ø)) 

-2,• .•,2.•Kolu•ø)). (B3) 

AeezNmX C 

In order to determine the perturbation path which will 
cancel the secular terms and to determine the remaining 
projections of the perturbation on the starting multipier, 
we must start with the two secular equations: 

{v•, I[K- I (B + 5D(Sak,Sak,)) ] ua) = 5•, . 
(c•) 

+ *oX(•) ]u•) = 0 , (C2) 

where the indexes ' on B, H and K have been omitted. Let 
us now substitute the mode and dual mode, singlets for the 
same multipier, by the power series (38)-(40) in text and 
expand (C1) into a power series of (. We then have 

where 

No = 2aoKo- Bo , 

and where the first r•(n) terms are given by ""kk' 

+ 2ao 2ao • /' 

a(2) = <v•)l No (•) •' 2• u• ) 

2ao] u• ) 

2ao ] 

2ao 2•o 

• B (o) •o (o) (•)12•o• 
2ao 2ao 

(C3) 

(C4) 

) <v?,)l nø u(O)) 2ao • 

5•Du?)) , -(v?,)l 2• (c5) 
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where 

• (• • + • • •, + • •, ) o•(•o). *•(,•, ,•,) = • 
In the same way we substitute in (C2) the mode and fre- 
quencies by their power series and, using relations (C1), get 
the development into the power of (, 

(v•) I*•Hu• ø) ) 
+ (v•) I*•H•ug )) + (v½) I•*•Hu? )) + a(•) 

kk • 

+... (c6) 
where the •(•) •, are found using 

(•, • (Xo(•o) - •Ko) u? >) + (•, I(Z- •)*• Hu? >) = 0, 
(C7) 

where • is the identity operator and • is the projector into 
the subspace •sociated to the singlets k and k •. This gives 
thus 

•(•> - •½ø>I*•H(Z •)ut •)) + kk • -- • k • -- 

•(•> _ (v•>l,oaW))+ (v?,>l,•aW >) •k t 

+ ,•,•, ( 
+(v•> l•oW )) + •v(ø> •,•?)) ) 

+ (*•*•, +,•,•,) 
t, (o) 

+ (v?>l,ox•?)). (c•) 
Equating each •erm of order •+• for (C6) and each •erm of 
order • for (C3) we obtMn, using 

•,•al•o)) = 2•o[•o •o (o)) (c•o) - 2•]1• , 
A 

•,•HIv?,)> = 2•o[Ko- (Cll) 
the expressions of the projection of the perturbations within 
the multiplet' 

kk t (v?,)[[2aoKo - Bo]u? )) = 
5x •k -- 5x •rk, 

2ao 5x a• rl('•) ß ...kk • 
- (c•2) 

These terms are the perturbations due to the interactions 
between the singlets and are highly unstable, as the differ- 
ence in the denominator is very small. 

APPENDIX D 

Ip order to compute the second-order terms, let us sub- 
stitute the second-order perturbation by its expression (79). 
From relations (C4) and (ca), and using the relations (C3), 
(C5), (C7) and (C9), we obtain the following expressions for 
the operator perturbations 52K, 52B and 53H' 

7>[52B - 2•o52K]7> - 7>[ 5xHANoASxH 
+• HzX[2•o,• K - ,• •] + [2•o • • - • n]zX,• H 

+Sx HN• -x 5x K + 5x KN• -x 5x H 

-• 2• + 2• 

+h•HN• • • O•A(•o)N[•*•H 

PhaHP = -• [ h•H•h•H•h• H 
+h• HN• • h• KN• • h• H 

_ & ([*•u•;•] • •o•; •,• • •o 

+ 
1 

+ • ([*•u•; •] 
+,• •;• a} A(•o) [•,• •]• 

+2O}A(•o) [•;•,•]•) ]•. (•2) 
Note here that terms like (v•ø)lKolu), (v•ø)lBolu) and 
(v• ø) 1•2Hlu ) cancel as soon as I u) is orthogonM to S. Let us 
now substitute in these relations terms like • H by •hH •, 
and terms like •h•B, •h•K by •B •, •hK •. Ma•ng the 
summation of the first and second perturbations, and using 
the constr•n (59), we obtain the contrains for the projec- 
tion of the different perturbations on the subspace •, which 
give 

+ •(Uo,,•,,•), (•a) 
2•o•h•K• = •[2•ohK' + hH'•[2•oKo]•hH' 

+ hH'•[2•ohK' - B'] 
+ [2•ohK'- B']•hH']• 
+ •(•o,,•,,•), (m) 

•BoP = •[B'-2•o,•K]p 
+ • (Uo, ,• a, ,• •), (•s) 

where we have assumed that h2B is taken as zero. The 
functions •,2,a (Bo, • H, • K) are nonlinearly related to the 
projection within • of the operators Bo, h•H and h•K. Us- 
ing the relations (75) and (7•) of the m•n text and (D•) 
and (D2) of tMs appendix, we see easily that they are given 
by 

• (Bo, ,• H, ,• K) = • 
[ *•H•[ •[Ko + ,• •]•[•,• H 

•o 

) 
• ([,• u•;•] • O:A( )•;•,• u + • •o 

+h•HN• a a•A(•o) [•;•*•] • 

+ 2a}A(•o)[•;•,•U]o) ]?, (•) 
•2 (Bo, • H, • K) = • 

[ h• HN• • h• K + h• KN• • h• H 

- • 2• + 2• 

(D1) 
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