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Abstract19

Recent estimates of the crustal thickness of Mars show a bimodal result of either ∼ 2020

km or ∼ 40 km beneath the InSight lander. We propose an approach based on random21

matrix theory applied to receiver functions to further constrain the subsurface structure.22

Assuming a spiked covariance model for our data, we first use the phase transition properties23

of the singular value spectrum of random matrices to detect coherent arrivals in the wave-24

forms. Examples from terrestrial data show how the method works in different scenarios.25

We identify three previously undetected converted arrivals in the InSight data, including26

the first multiple from a deeper third interface. We then use this information to jointly27

invert receiver functions with the absolute S-wave velocity information in the polarization28

of body waves. Results show a crustal thickness of 43± 5 km beneath the lander with two29

mid-crustal interfaces at depths of 8± 1 km and 21± 3 km.30

Plain Language Summary31

Recent analysis of seismic data from InSight shows that the crustal thickness beneath32

the InSight lander can be either 20 km or 40 km. To resolve this ambiguity, we apply results33

from random matrix theory to receiver function analysis. The distribution of singular values34

of a random matrix shows well-behaved deterministic properties that can be used to separate35

them from those of an underlying coherent signal if present. We use examples from terrestrial36

data to show how the method works. When applied to receiver functions computed from37

InSight seismic data, we identify three new energy arrivals, including one that supports the38

existence of a deeper third layer. Using this information, we simultaneously inverted the39

receiver function data along with the measured incidence angle of body waves. Results show40

a crustal thickness of 43±5 km beneath the lander with two mid-crustal interfaces at depths41

of 8±1 km and 21±3 km42

1 Introduction43

The InSight mission landed in the Elysium Planitia plain of Mars on November 26,44

2018 (Banerdt et al., 2020) and deployed a three component very broadband seismometer45

(SEIS) (Lognonné et al., 2019, 2020) on the surface. Along with measuring the seismicity46

and the present thermal state of its interior, a primary goal of the mission is to constrain47

the interior structure of Mars. In comparison with the Earth, Mars has a low seismicity rate48

with quakes of smaller magnitude (2-5 Mw) (Giardini et al., 2020). Receiver function (RF)49

analysis is a robust single station technique that can be used in this case to constrain the50

crustal structure. Primary body waves (P and S) give rise to converted secondary phases51

(Ps and Sp) when they impinge upon a seismic discontinuity from beneath. RFs exploit52

these converted phases to gain information about the discontinuities in the crust and upper53

mantle. They have previously been used to investigate the thickness of the lunar crust54

using seismic data from the Apollo missions (Vinnik et al., 2001; Lognonné et al., 2003;55

Gagnepain-Beyneix et al., 2006). Using the data from the InSight mission, Lognonné et56

al. (2020) computed RFs from two marsquakes and showed evidence of subsurface layering57

with low seismic velocities in the first upper 8–11 km. Recently, Knapmeyer-Endrun et58

al. (2021) used RFs from three marsquakes and showed the observations to be consistent59

with either a two-layer model with the Moho at 20± 5 km or a three-layer model with the60

Moho at 39± 8 km depth below the lander. Although the thicker model is more compatible61

with geodynamical constraints, this ambiguity could not be resolved from the data due62

to a lack of phase move-out information and excessive noise in the later part ( > 10 s)63

of the waveforms which inhibited the identification of multiple arrivals. Compaire et al.64

(2021) and Schimmel et al. (2021) analyzed ambient field autocorrelations and identified65

reflection signals consistent with the first two interfaces. Li et al. (2022) confirmed the first66

interface at ∼ 8 km depth and the anisotropic nature of the layer above based on SH-wave67

reflections. Kim et al. (2021) and Durán et al. (2022) later used updated RF datasets with68
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more events to provide additional constraints and connoted a preference for the three-layer69

crustal model. Khan et al. (2021) and Drilleau et al. (2022) arrived at similar results using70

body wave travel-times. In this paper, we build upon the previous work of Knapmeyer-71

Endrun et al. (2021) to infer further constraints on the crustal structure of Mars using new72

techniques and additional data from the InSight mission.73

We first focus on the problem of detection of multiple phases in our selected RF dataset.74

For this, we propose a method that utilises recent results from the random matrix theory75

to extract coherent signals in the RF waveforms. Assuming the observed signal to be a76

superposition of random noise and an underlying low-rank signal, the eigenvalues of the77

data covariance matrix follow a well behaved and deterministic limiting spectral distribu-78

tion dictated by the generalized Marchencko-Pastur law. This information can be effectively79

used to decouple and identify coherent signal eigenvalues reflecting primary subsurface fea-80

tures from a bulk spectrum formed by incoherent scattering, random noise, and small-scale81

heterogeneity with distinct eigenvector rotation properties. Once identified, the secondary82

phase arrivals together with the primary conversions from crustal interfaces can be used to83

invert for the structure. We then address the problem of non-uniqueness of RF inversions.84

Being primarily sensitive to shear velocity contrasts of interfaces and relative travel-time85

of converted waves, inversions of RF data alone can be affected by depth velocity trade-off86

(Ammon, 1991). They are therefore usually inverted jointly with other independent data87

sets that provide additional constraints on absolute shear wave velocities like surface-wave88

dispersion (e.g. Du & Foulger (1999); Julia et al. (2000); Bodin et al. (2012)). Svenningsen89

& Jacobsen (2007) showed that P-wave polarization can also be used to constrain the S-wave90

velocity structure of the subsurface using a simple relation between the observed apparent91

incidence angle and half-space S-wave velocity (Wiechert, 1907). Following this, we previ-92

ously showed how a joint inversion of apparent velocity curves and receiver function data93

can lead to a well constrained velocity structure for limited data sets comprising only a few94

events (Joshi et al., 2021). We adopt a similar methodology here to jointly invert an RF95

dataset with a mean apparent velocity curve using a transdimensional approach.96

2 Data and Method97

2.1 RF processing98

InSight has identified 1244 marsquakes (InSight Marsquake Service, 2022) since its99

operations started in 2018. Each quake is assigned a type and quality depending on its100

energy content and uncertainty in location estimate (Giardini et al., 2020). Only a few101

of these marsquakes generate waves that propagate through the mantle like teleseismic102

earthquakes, most of which do not have a precise location. Our database for Mars thus103

consists of 8 LF and BB seismic events (InSight Mars SEIS Data Service, 2019) with high104

SNR and event quality A-B (J. F. Clinton et al., 2021). Most of these events have similar105

distances and back-azimuths as they all originate in the Cerberus Fosse region which is a106

young tectonic structure located to the east of the lander. S0183a is located farther away107

but we nevertheless use it as its inclusion does not have a significant effect on the results.108

For the terrestrial example, we use data from seismic station VSU in Vasula, Estonia. We109

select events with a similar back-azimuth and distance range to mimic the InSight data.110

Details of the events used in this study are provided in the Supplementary Material (Tables111

S1, S3, and S4).112

To calculate RFs, we apply a time-domain Wiener filter for deconvolution as described113

by Hannemann et al. (2017). We first remove the transfer functions from the individual114

components of the data, rotate to ZNE coordinates as VBB uses the U, V, W component115

system, and filter the seismograms between the corner frequencies (Table S1 in Supplemen-116

tary Material) using a zero-phase Butterworth filter. Subsequently, the ZNE coordinate117

system is rotated into ZRT to obtain radial and transverse components using the back-118

azimuth estimates provided by the Marsquake Service (MQS) (J. Clinton et al., 2018). For119
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S0784, a back-azimuth of 100◦ was determined by comparing RFs across different azimuths.120

A Wiener filter is determined such that it transforms the P-wave signal on the vertical121

component into a band-limited spike. All the components of the data are then folded with122

this filter to obtain the RFs. The terrestrial data was processed similarly but was filtered123

between 5 Hz and 50 s.124

2.2 Phase identification125

In RF data, the travel-times of the converted phases relative to the direct P arrival126

depend on the epicentral distance. This is generally seen as phase move-out which is dif-127

ferent for direct and multiple phases, and helps to distinguish between these. For complex128

structures with dipping interfaces and seismic anisotropy, the travel-times and amplitudes of129

conversions also vary with back-azimuth. Although events generated from similar epicentral130

distance and back-azimuths should theoretically have coherent conversions and multiples,131

interference with the scattered wave-field, small-scale heterogeneity, and random noise gen-132

erates variations which can be seen as perturbations superimposed on the response of the133

primary sub-surface feature. The observed RF data matrix, Yn×m = Xn×m + σZn×m, can134

now be modelled as a fixed rank perturbation (rank[X] = r ≤ n) of the random noise135

matrix Z ∼ N (0, 1). This is known as the spiked covariance model (Johnstone, 2001). To136

extract an approximation of the uncontaminated response X̂(Y )n×m ≈ Xn×m, we exploit137

the fact that the asymptotic eigenvalue distribution of the covariance of a random matrix138

follows the Marchenko-Pastur (MP) law (Marchenko & Pastur, 1967) which has a compact139

support Ω with bounds λ±140

Φ(λ|σ, γ) =
⎧⎨
⎩

√
(λ+−λ)(λ−λ−)

2πλγσ , λ− ≤ λ ≤ λ+

0, otherwise
, with λ± = σ2(1±√

γ)2 (1)

Φ denotes the probability density of eigenvalues. λ−, λ+, σ, and γ denote the smallest141

eigenvalue, largest eigenvalue, noise level and matrix aspect ratio n/m, respectively. λ± fluc-142

tuate on the small scale n−2/3 according to the Tracy-Widom distribution (Tracy & Widom,143

1996). Qualitatively, the empirical distribution of the eigenvalues of Z forms a deformed144

quarter circle bulk with bulk edges given by λ± and bulk width 4
√
γσ2, and all eigenvalues145

lie strictly within these bounds. The eigenvalues show a sort of self-arranging behaviour146

which, in presence of a non-random sample coherency (i.e., X �= 0), have a repulsion effect147

on the signal eigenvalue if present. Thus we see a phase transition phenomenon (Baik et al.,148

2005) where, above a certain signal threshold, the signal eigenvalues separate away from the149

bulk ”noise” eigenvalues and converge asymptotically to a different distribution. The same150

follows for the singular values which scale as the square root of the eigenvalues (Benaych-151

Georges & Nadakuditi, 2012). Setting Xn =
∑m

i=1 an,ixib
T
n,i and Yn =

∑m
i=1 un,iyiv

T
n,i, the152

BBP (Baik–Ben Arous–Péché) phase transition results in a mapping of singular values yi153

of the observed matrix Y to xi of the uncontaminated low rank signal X:154

yi
a.s.−−→

⎧⎨
⎩

σ(1 +
√
γ) xi ≤ σγ

1
4√

(xi +
σ
xi
)(xi + γ σ

xi
), xi > σγ

1
4

(2)

Similarly, the left and right singular vectors pairs (ui, ai) and (vi, bi) are orthogonal155

within the bulk but become strongly correlated and show a non-zero dot product past the156

critical point:157

| 〈an,i, un,j〉 |2 a.s.−−→
{

x4
i−γ

x4
i+γx2

i
, xi = xj

0, xi �= xj

(3)
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| 〈bn,i, vn,j〉 |2 a.s.−−→
{

x4
i−γ

x4
i+x2

i
, xi = xj

0, xi �= xj

(4)

Using these transition equations, Gavish & Donoho (2014) derive an analytical ex-
pression for the optimal rank-r approximation of the data matrix X̂(Y ) by minimising
the asymptotic mean squared error of their misfit ‖X − X̂(Y )‖2F over all singular values
ui > σ

√
1 + γ and 0 < γ ≤ 1. For the complete derivation, see Gavish & Donoho (2014).

This results in an expression for a threshold value τ

τ = λ�(γ) ·
√
nσ (5)

where

λ� =

√
(2γ + 1) +

8γ

(γ + 1) +
√

(γ2 + 14γ + 1)
(6)

This threshold marks the unique transition point of the signal singular values from
those of random noise matrix Z for a given spectral distribution of Y with noise σ, taking
into account the support fluctuations. The median of a standard MP distribution (σ = 1)
is given by

μMP =
1

2πt

∫ x

λ−

√
(λ+ − t)(t− λ−)dt (7)

The noise σ can be estimated by matching the median of the standard MP distribution158

to that of the bulk singular values. This results in a robust noise estimator that estimates159

noise by comparing the perturbed singular values with the MP distribution160

σ̂(Y ) :=
λmed√
nμMP

(8)

Using σ̂(Y ) for σ in eq. 5, we get161

τ̂� = ω(γ) · λmed (9)

where
ω(γ) ≈ 0.56γ3 − 0.95γ2 + 1.82γ + 1.43 (10)

In the final step, the singular value matrix yi is replaced by ŷi where the values below162

the threshold limit given by eq. 5 are padded and the approximate uncontaminated signal163

matrix X̂(Y ) is reconstructed from the observations Y using X̂(Y ) =
∑m

i=1 un,iŷiv
T
n,i. A164

sample algorithm is provided in the Supplementary Material. In essence, the outlined proce-165

dure provides objective criteria to select the number of principal components that describe166

the variance of the structural signal by modelling noise as an additive independent and167

identically distributed (i.i.d.) random matrix.168

2.3 Apparent velocity curves169

In order to reduce non-uniqueness in the inversion of receiver functions, we use the
absolute S-wave velocity information contained within the P-wave polarization as a comple-
mentary constraint. A consequence of Snell’s law, the relation between the apparent P-wave
incidence angle (īp) and the subsurface S-wave velocity was derived by Wiechert (1907) and
is given by eq. 10. Here p denotes the ray parameter. This apparent P-wave incidence angle
can be calculated directly from the amplitudes of vertical and radial receiver functions at
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Figure 1. (a) Raw RFs from terrestrial station VSU in epicentral distance range 65◦ - 69◦

and back-azimuth 10◦ - 40◦ (b) distribution of the singular spectrum (top) and the singular values

arranged in decreasing amplitude (below). The red dashed line denoted the noise threshold. (c)

RFs reconstructed using singular values above the noise threshold. The marked phases represent

the Ps phases of an intracrustal discontinuity (IC), the Moho (Ps) and a low-velocity zone (LVZ),

and the Moho PpPs and PsPs+PpSs phases, respectively.

Figure 2. Same as Figure 1 but for epicentral distance range 55◦ - 85◦ and back-azimuth between

80◦ - 120◦.

time t=0, as described in Svenningsen & Jacobsen (2007)

vS,app
= sin

(
0.5ip

)
/p (11)
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tan ip =
RRF (t = 0)

ZRF (t = 0)
(12)

Following a similar procedure as Knapmeyer-Endrun et al. (2018) and estimating ip as a170

function of low pass Butterworth filter period (T), we calculate a frequency-dependent S-171

wave velocity curve vS(T ) which emphasises the absolute S-wave velocity variation with172

depth. A mean RF is calculated from all the raw RF waveforms in the dataset. This is then173

used to compute a vS,app
curve which is jointly inverted together with the mean RF. We174

measure the dominant period of the spike in the mean ZRF and discard the values of filter175

periods smaller than that.176

2.4 Inversion177

A Markov-chain Monte Carlo (McMC) transdimensional Bayesian inversion method178

based on Bodin et al. (2012) (Dreiling & Tilmann, 2019) was used for the joint inversion of179

the mean RF and vS,app
curve. In this formulation, the number of layers itself becomes an180

unknown and is also inverted for along with the other model parameters. The solution is an181

ensemble of models that are distributed according to a posterior probability density function182

given by Bayes’s rule. Each layer is parameterised by depth, Vs and the vP /vS ratio. Density183

is not inverted for but is calculated using Birch’s law (Birch, 1961). We use flat model priors184

and their ranges for depth, Vs and vP /vS ratio were set to 0 − 100 km, 1 − 5 km/s and185

1.4 − 2.2, respectively. A maximum of 20 layers was imposed and the range for the noise186

amplitude was set to 0.01− 0.5 with correlation values of RF and vS,app data fixed to 0.96187

and 0, respectively. For calculating synthetic RFs, we use the forward calculation module188

implemented by Shibutani et al. (1996). The algorithm calculates the impulse response of189

a layer stack in the P-SV system. The resulting synthetic Z- and RRFs are convolved with190

the observed ZRF in order to account for the observed waveform complexity (Knapmeyer-191

Endrun et al., 2018). A vS,app
profile is then calculated for the RFs using the procedure192

described in Section 2.3.193

3 Results194

To illustrate the method, we show its application on data from the terrestrial seismic195

station VSU. Figure 1(a) shows the raw data which consists of RFs computed from closely196

located events. In general, the data are noisy. Subplot (b) shows the distribution of singular197

values and its spectrum for the data. We see the general singular value repulsion behaviour198

with a ”bulk” noise region well separated away from the signal ”spike”. This noise bulk199

follows the limiting spectral distribution given by the MP law with extreme eigenvalues and200

their variance given by Eq. 1 and 8. The red line shows the optimal threshold for singular201

value truncation when noise is modelled as an independent and identically distributed (i.i.d.)202

random matrix. Using the singular value above this threshold, we reconstruct the data by203

projecting it onto the corresponding eigenvector. Subplot (c) shows the reconstructed RF204

data showing clear coherent energy arrivals at ∼ 1 s, 5 s, 12 s, 14 s and 23 s. We interpret205

these as the Ps phases of an intracrustal discontinuity (IC), the Moho (Ps) and a low-velocity206

zone (LVZ), and the Moho PpPs and PsPs+PpSs phases, respectively. The reference timing207

for the Moho Ps phase here is taken from Knapmeyer-Endrun et al. (2014). In general, the208

method is applicable equally well to data sets covering a wider range of distances and back-209

azimuths. The number of singular values above the threshold then increases to accommodate210

the data variance. Figure 2 shows the reconstruction of RFs from similar back-azimuths211

but a wider epicentral distance range (55◦ − 85◦). Here the threshold increases to three212

to accommodate the move-out of various phases. Synthetic examples are provided in the213

Supplementary Material (Fig. S1, S2)214

Figure 3 shows the result of applying the phase identification methodology to our se-215

lected data from the InSight mission. Apart from the three primary phases at 2.4 s, 4.8 s,216
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and 7.2 s previously identified in Knapmeyer-Endrun et al. (2021), the raw RF data (sub-217

plot(a)) does not seem to contain any consistent phases after the initial 8 s. From subplot218

(b), we see that the first principal component is sufficient to identify the main phase arrivals219

within the first 30s of the RF waveforms. This is expected as all the events considered here220

have similar distances and back-azimuths. The reconstructed RF waveforms are shown in221

subplot (c). In addition to the three primary phases, we report three new multiple phases222

at 15 s, 20 s, and 23 s. We interpret these as the P2pPs, P2pSs and P3pPs phases, where223

the sub-scripted numeral in the phase name denotes the generating interface. Note that224

the P3pPs phase holds significant importance as it corroborates the existence of the much225

speculated third inter-crustal layer below the InSight landing site. These arrival timings are226

used to define a misfit window for the RFs which are then jointly inverted with the mean227

vS,app
profile. We initialised 72 chains of 1,000,000 iterations, each sampling the model space228

simultaneously and independently, with 500,000 iterations discarded as the burn-in phase.229

Outlier chains were removed, and the models were thinned to obtain a final ensemble of230

100,000 models. The main results of the inversion are shown in Figure 4.231

A three-layer model exhibits the highest probability density in the solution ensemble.232

Subplot (a) shows the posterior distribution of the vS profiles as a function of depth, along233

with the probability for each interface depth. We see two well-defined mid-crustal interfaces234

at depths of 8± 1 km and 21± 3 km, along with the crust-mantle transition at 43± 5 km.235

The resulting crustal models agree well with the three-layer models presented in Knapmeyer-236

Endrun et al. (2021) and Durán et al. (2022). The modelled vS,app
curves and the RFs follow237

the observed data closely and are shown in subplots (b) and (c), respectively. Due to the238

low SNR of the individual RF waveforms at longer periods, the vS,app
curves are limited239

to periods < 13 s. This helps provide tight constraints on the observed vS value within240

the shallow part of the crust, but the uncertainty increases with depth where the vS values241

and their increases are primarily controlled by the RF amplitudes. The estimated mean242

vP /vS ratio for the three layers is 1.82, 1.77 and 1.64, yielding an average value of ∼ 1.75243

for the crust. A distinct negative arrival of unclear origin is seen at 11.5 s. Although we do244

not include this in our analysis to avoid over-interpretation, it could either be a Pp phase245

from the second interface or a low-velocity zone at a depth of ∼ 70 − 75 km. The P1pSs246

would arrive earlier, between 8 − 10 s, ruling out this possibility. When combined with247

the observed gravity field using results from Wieczorek et al. (2022), our crustal thickness248

estimates predict a global average crustal thickness of 46 − 73 km, assuming a uniform249

density crust of 2600 kgm−3 for Mars. If a higher crustal density is considered for the250

northern lowlands, the global average crustal thickness of Mars will lie in the range of251

34− 73 km.252

4 Discussion253

With just a handful of good quality, small magnitude and closely located marsquakes,254

the analysis of the RF data from the Insight mission present us with many challenges. In255

this work, we attempt to use this close distance range to our advantage to uncover addi-256

tional features in the data using concepts of random matrix theory and principal component257

analysis. For events from similar distances and back-azimuths, considerably fewer principal258

components can reconstruct the main features present in the data. Additional components259

are needed as distance and back-azimuth ranges increase. Using synthetics and real data,260

Zhang et al. (2019) demonstrated that just the first few principal components could effec-261

tively reconstruct all the data variance within events from varying back-azimuths. Here262

we used events with varying distances and similar back-azimuths to establish an equivalent263

idea. A few points are, however, worth noting. Occasionally, data reconstruction with a few264

principal components can lead to an erroneous broadening of phases. Though it does not265

affect the detection of phases, it could sometimes lead to an unwanted merge of very close266

arrivals. We also find that the singular spectrum, and hence the resulting threshold, can267

show slight variations based on the dataset’s quality. For highly irregular RF waveforms,268
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Figure 3. Same as Figure 1 but for Mars. The shaded regions show the denoted arrivals.

this could severely bias the threshold estimate to lower values. In this case, utilising higher269

principal components for data reconstruction will likely result in individual waveform vari-270

ations instead of emerging features like phase move-out and back-azimuth variations. The271

compact support of the random singular values can sometimes be disconnected, and there-272

fore, choosing the threshold based only visually on the histograms can lead to errors. On273

the other hand, histogram bins might not always clearly reflect the transition gap from274

random to signal singular values. A full computation of the threshold is therefore required.275

The number of events is also an essential factor. As the size of the dataset (m,n) increases,276

the fluctuations of the Tracy-Widom distribution decrease. Thus, the larger the dataset,277

the higher the stability of the threshold. For a small dataset, the assumption of the spiked278

covariance model can break down. Finally, the noise in receiver functions is not entirely279

random and generally has a finite covariance. A recent study by Donoho et al. (2020) gen-280

eralises the spiked covariance model to include correlated noise. Extending this analysis to281

include the correlated case is essential and will be the subject of a later study.282

Various interpretations are available for the first two interfaces, ranging from a change283

in porosity to chemical composition. The low seismic velocity of the first layer has been284

attributed to a combination of high porosity (20 − 30%) and low-density lithology of the285

region due to the presence of cements and aqueous alterations of minerals (Li et al., 2022b).286

With increasing depth, material compaction and viscous deformation of host rock can lead to287

the closure of pore spaces resulting in a transition zone between the porous and non-porous288

material (Gyalay et al., 2020). Fractured ejecta deposits from the Utopia basin, change289

in rock crystallinity, and the Borealis impact melt could also explain these crustal layering290

(Wieczorek et al., 2022). Recent studies on surface wave dispersion show an almost constant291

S-wave velocity of ∼ 3.2 km/s in the top 5−30 km depth range for the crustal structure away292

from the InSight landing site (Kim et al., 2022). These values likely represent the average293

crustal structure in the northern hemisphere, indicating that the topmost low-velocity layer294

beneath the lander is plausibly a local feature.295
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Figure 4. (a) Posterior density of resulting Vs profiles and with histograms for interface depth.

KE 3la represents the 2σ bounds of the three-layer ensemble from Knapmeyer-Endrun et al. (2021).

(b) Fit to the mean vS,app curve (c) Fit to the mean RF waveform. The red dashed lines denotes

the observed data and green dash-dotted lines represent the 2σ uncertainty.

5 Summary and Conclusion296

The receiver function method has played an important role in the analysis of the Mar-297

tian crustal structure using data from the InSight mission. In order to contribute to that298

effort, here we present a method to identify coherent phase arrivals in noisy RF waveforms299

by modelling data noise as samples from an independent and identically distributed ran-300

dom matrix and using this information to jointly invert the RFs with apparent velocity301

curves. With examples from terrestrial data, we first show how only a few singular values302

can help reconstruct coherent parts of the signals enabling the detection of phase arrivals303

in RF waveforms. The number of singular values needed for this depends on the range304

of the distance and back-azimuths of the events in the dataset, with often a single value305

being sufficient in the special case of closely located events. We then apply this method to306

a set of 8 marsquakes detected by the InSight mission and evaluate the crustal structure307

below the landing site based on these data. Three new crustal phases were identified in the308

RF waveforms, which we interpret as P2pPs, P2pSs and P3pPs phases. A subsequent joint309

inversion of the RFs with the mean vS,app curve shows that the crust of Mars below the310
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InSight landing site is composed of three distinct layers with increasing velocity. A crustal311

thickness of ∼ 43 km is estimated.312

In conclusion, the results presented here agree well with previous work from Knapmeyer-313

Endrun et al. (2021). The identified P3pPs phase suggests a strong preference for the three-314

layer model in their study. The inversion results presented here have further constrained315

the subsurface velocities at the InSight landing site. Our preferred interpretation of the316

observed crustal layering beneath InSight considers this a result of a series of transitions from317

sediments or pyroclastic deposits that experienced aqueous alterations to less porous Utopia318

ejecta and finally to the pre-existing crustal materials from early differentiation of Borealis319

impact melt (Wieczorek et al., 2022). A thicker crust, like one obtained from such a three-320

layer model, is also more compatible with the amount of heat-producing elements within the321

Martian crust estimated by spectroscopy observations and geodynamical modelling (Taylor,322

2013; Knapmeyer-Endrun et al., 2021). A much lower bulk crustal density and significant323

enrichment in crustal heat-producing elements would otherwise be needed for a thinner crust324

(Knapmeyer-Endrun et al., 2021). However, it is unlikely that this three-layered formation325

is indicative of the global Martian crustal structure (Kim et al., 2022) and can be plausibly326

just a feature of the local geology in the vicinity of the InSight landing site.327

Acknowledgments328

R.J. acknowledges the funding provided by the IMPRS and the Emeritus group. The MPS329

MPG SEIS team acknowledges funding for development of the SEIS leveling system by330

the DLR German Space Agency. We acknowledge NASA, CNES, their partner agencies331

and Institutions (UKSA, SSO, DLR, JPL, IPGP-CNRS, ETHZ, IC, MPS-MPG) and the332

flight operations team at JPL, SISMOC, MSDS, IRIS-DMC and PDS. This paper is InSight333

Contribution Number 188.334

Open Research335

Seismic data for station VSU are publically available and can be obtained from EIDA336

(http://eida.gfz-potsdam.de/webdc3/) using the event information provided in the sup-337

plementary material. The InSight seismic data presented here (http://dx.doi.org/10338

.18715/SEIS.INSIGHT.XB 2016) are publicly available through the Planetary Data System339

(PDS) Geosciences node of the Incorporated Research Institutions for Seismology (IRIS)340

Data Management Center under network code XB (https://pds-geosciences.wustl.edu/341

missions/insight/seis.htm), and through the data center of Institut de Physique du342

Globe, Paris (http://www.seis-insight.eu).343

References344

Ammon, C. J. (1991). The isolation of receiver effects from teleseismic P waveforms. Bull.345

of the Seism. Soc. Am., 81 , 2504-2510.346
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(2021). Upper mantle structure of mars from insight seismic data. Science, 373 (6553),418

434–438.419

Kim, D., Banerdt, W. B., Ceylan, S., Giardini, D., Lekić, V., Lognonné, P., . . . Panning,420
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Lognonné, P., Banerdt, W. B., Pike, W., Giardini, D., Christensen, U., Garcia, R. F., . . .450

others (2020). Constraints on the shallow elastic and anelastic structure of mars from451

insight seismic data. Nature Geoscience, 13 (3), 213–220.452
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