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1 INTRODUCTION

SUMMARY

Modelling of coupled free oscillations or seismograms in an earth with small-scale
lateral heterogeneities (a few hundred kilometres) is presently impossible without
strong approximations, such as taking into account the coupling effect of the
neighbouring modes only. Even within this assumption, first-order perturbation
theory is generally insufficient, and variational theory must be used, leading to
numerically heavy diagonalizations. An alternative method is presented in this
paper. The first characteristic of this method is the use of higher order perturbation
theory, which expresses the aspherical normal modes as a power series of
perturbations. This perturbation theory generalizes the classical perturbation theory,
in order to take into account density heterogeneities and secular terms by a
renormalization technique. We show that from the third order on, the aspherical
normal modes are computed with an accuracy a hundred times better than normal
mode observations usually permit. The second characteristic is the use of a
generalization of the spectral method in the tensor (elastic) case. Classically,
interaction terms are treated as matrix products and require computations increasing
as #max*, where ¢max is the maximum angular order of the modelled modes, when
coupling is fully taken into account for an earth model with small-scale heteroge-
neities. We show that such terms can be computed with a backward and forward
Legendre transformation, for which computations increase only as #max’. This
method is thus faster by an order of #max than the variational approach. It is
promising for the study of fully coupled modes and seismic waves in a realistic earth
including small-scale lateral heterogeneities associated with narrow tectonic prov-
inces such as in mid-oceanic ridges, subduction zones and continental margins.

Key words: normal modes, perturbation theory, spectral method.

1989). This first generation of tomographic models has
confirmed the relation of tectonic features at the surface and

For the past five years, seismological studies have helped to
increase our knowledge of large-scale, aspherical structure
of the Earth. The existence of lateral variations of structure
was first observed in the early 1960s (Ness, Harrison &
Schlicher 1961; Benioff, Press & Smith 1961), and the first
3-D maps of the Earth’s mantle were obtained twenty years
later. These studies have used surface wave dispersion
(Nakanishi & Anderson 1984), waveform modelling
(Woodhouse & Dziewonski 1984) or arrival times
(Dziewonski 1984). Increasingly sophisticated models, with
additional parameters such as anisotropy (Nataf, Nakanishi
& Anderson 1984, 1986; Montagner 1985, 1986) or
anelasticity (Romanowicz 1989) are now available. The scale
of the present models, developed into spherical harmonics,
reaches an angular order of 12-15 (Montagner & Tanimoto

deep structure in the first 200 km of the Earth. But their
limited resolution is unable to resolve the most interesting
smaller features such as hotspots, subduction zones, the
convection pattern under mid-oceanic ridges and more
generally the convective structure of the mantle, and,
moreover, it is not clear whether the seismic inversion for
large-scale structure is not biased by such smaller scale
features (Snieder & Neele 1989; Lognonné & Romanowicz
1990). As a matter of fact, the scale length of these features
is always less than a thousand kilometres and even if the
number of data might be sufficient for their resolution, the
solution of the direct problem of propagation of seismic
waves in this highly aspherical earth is one of the most
important restrictions for the development of a second
generation of tomographic models.
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366 P. Lognonné and B. Romanowicz

The direct problem of normal modes, for an elastic
spherical earth, was solved at the beginning of the century
(Love 1911). The solution consists of an infinite number of
degenerate states of vibration. Aspherical structure destroys
the symmetries, and introduces coupling between free
oscillations. A first approach to solve for the normal modes
of an aspherical earth is to use degenerate perturbation
theory, which considers only isolated multiplets (Backus &
Gilbert 1961; Madariaga 1971, 1972; Dahlen 1974;
Woodhouse & Girnius 1982), or quasi-degenerate perturba-
tion theory, which takes into account coupling within a
super-multiplet (Luh 1973a,b; Woodhouse 1983; Dahlen
1987). Another approach used is variational or Galerkin
theory (Morris et al. 1987; Park & Gilbert 1986).
Nevertheless, in all cases a great number of aspherical
parameters must be included: anelasticity, which breaks the
Hermitian symmetry of the problem (Dahlen 1981; Park &
Gilbert 1986), anisotropy (Montagner & Nataf 1986;
Mochizuki 1986; Tanimoto 1986; Romanowicz & Snieder
1988), or pre-stress (Valette 1986). All these difficulties lead
to a large number of computations and forbid the use of
variational or Galerkin methods for the modelling of
seismograms in an aspherical earth with small-scale
heterogeneities of both stiffness tensor and density.
Different approximations are usually made to reduce the
computations, such as assuming that only neighbouring
multiplets are coupled (Park 1987), or using asymptotic
approximations (Jordan 1978; Dahlen 1979; Romanowicz
1987). Especially, in the latter case, one is led to assume
that the asphericity is weak and that the scale of the
heterogeneities is large.

In this paper, in order to overcome these restrictions and
to perform modelling in a general aspherical earth, we
propose a formalism based on higher order perturbation
theory for the modelling of eigenfunctions, which can
include fundamental and overtone, spheroidal and toroidal
mode coupling without leading to a numerically heavy
diagonalization of very large matrices. This method differs
from other methods first by the way of computing the
interaction matrices or the product of such matrices by a
vector. We use a generalization of a method called ‘the
spectral method’ (Orszag & Gotlieb 1977) to the case of
tensorial (elastic) fields. This method is based, for its
optimization, on a systematic use of group theory, spatial
and time symmetries. Depending on the kind of coupling,
the interaction of eigenfunctions will be computed in the
spectral space of spherical eigenmodes (for Coriolis coupling
for example), or in the spatial space for anelastic and
anisotropic heterogeneities. Thus, all coupling operations
due to heterogeneities of density and elasticity, classically
treated as matrix multiplications, are faster by an order of
¢max, ¢max being the maximum angular order of the
modelled waves. We do not need Clebsch—Gordan
coefficients or explicit development of the asphericity into
spherical harmonics. A second major difference is in the
way of handling the effect of lateral heterogeneities in
density. These heterogeneities are either neglected (Morris
et al. 1987; Tsuboi & Geller 1989), or modelled with
first-order perturbation theory (Woodhouse 1983; Dahlen
1987), or require a Cholesky decomposition of very large
matrices (Masters, Park & Gilbert 1983; Park 1985). Here,
we prove that the effect of lateral heterogeneities of density

can be solved analytically with a renormalization technique,
which incorporates the density into the elasto-dynamic
operator. The Cholesky decomposition is thus no longer
necessary, if one uses the variational method, or, if one uses
higher order perturbation theory, the number of computa-
tions is reduced by half. Indeed, the last difference is the use
of higher order perturbation theory. Up to now, expressions
of eigenfrequency and eigenmode perturbations were either
given only up to first order (Tanimoto 1984; Park 1987,
Romanowicz 1987), without taking into account secular
terms, or up to second order with a first-order secular
equation (Dahlen 1987), but without taking into account the
perturbation of the inner-product produced by the rotation
and density lateral heterogeneities. We illustrate the
importance of the secular equation and generalize to any
nth order the results obtained by Dahlen (1987) to first
order. We thus give exact expressions of the nth-order
perturbation of eigenfrequency and eigenmode, and use it to
compute the eigenmodes and eigenfrequencies.

In what follows, we first recall, for the simple case of a
spherical, non-rotating, elastic, isotropic earth, (SNREI),
the formalism of generalized spherical harmonics introduced
by Phinney & Burridge (1973) and describe the symmetries
which leave this earth model invariant. In the second part,
we give the solution for the vibrations of a laterally
heterogeneous spherical earth, starting from an SNREI
model and using the higher orders of perturbation theory.
Exact expressions up to third-order perturbations are thus
given, by may be easily generalized to any higher orders. An
analysis of the error of perturbation theory is also given,
which illustrates the accuracy improvement of the higher
order perturbation with respect to the first-order one. The
numerical problem of the computation of splitting matrices
for models with any scale of lateral heterogeneities is solved
in Section 4 and the tensorial transformation method
presented. We then give the expression of any nth-order
perturbation of eigenmode and eigenfrequency with or
without the help of the density renormalization technique.
We then examine the accuracy of higher order perturbation
theory for two examples of spheroidal modes, for which the
coupling effects are significantly different, and compare both
the eigenfrequency and eigenmode of the aspherical singlets
with those obtained with the variational method.

2 THE SPECTRAL PROBLEM OF AN
ASPHERICAL ROTATING EARTH

Let us begin by recalling the formulation of the spectral
problem for the normal modes of a rotating, laterally
heterogeneous and self-graviting earth, which leads to
finding the eigenfunction v, in bracket notation |v), and the
eigenfrequency w, as a solution of the generalized
eigenproblem (Valette 1986; Woodhouse & Dalhen 1978):

—0?|v) + wBgy|v) + Av) =0, 0))

where B, is a self-adjoint operator associated to the Coriolis
force, such that

B, [v) =2i(R X v), V)]

and where the self-adjoint operator A is defined, in the case
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of an hydrostatic pre-stressed earth, as (Valette 1986)
AW = (@Dypr
\4

+ pS{v.gdiv(u*) —u* . Grad(v. g)} dV

Grad[y(v)] . Grad[y(u*)]
- L pees dv

—j pS{v.n[u*]. Grads(p,)} d=. 3

where, in the solid part of the model

diikl = ikt _ pgijgkl + pgikgjl + pgilgjk,

and in the fluid part of the model

4Kt = ypgiigh!.

E denotes the whole universe, 6% the surfaces of
discontinuities of the earth model, n the normal to these
surfaces, p the density, g the aspherical gravity field, ¥ the
gravity redistribution potential, G the universal gravity
constant, Q the earth’s rotation vector, p the istropic
pre-siress, y the adiabatic index of the fluid in the
outer-core, g’ the metric tensor and D; is the Eulerian

derivative. S{.} is the symmetric part of a bilinear form
b(u, v) and is defined as

S{b(w, v)} = 1/2{b(u, v) + b*(v, u)}.

As noted by Dahlen & Smith (1975), two normal modes,
v and v are bi-orthogonal with respect to the inner product:

(u]v) =f pdV[u*.v+ A®v) . u*/0,w,]

=(u|v) +(uA v}/ 0,0, “)

where w, and w, are the eigenfrequencies of u and v and
where the bracket product (u|v) is defined as

(u|v) =f pdVu* v

The goal of this paper is to present a method, based on
higher order perturbation theory, which will allow us to
solve, in a fast and accurate way, the normal mode equation
(1) for any laterally heterogeneous earth model, including
lateral variations in density and stiffness tensor. This method
can be used of course for a more complicated earth model,
including for example a pre-stress deviatoric part. We note
however that some controversy still remains in the effect of
such pre-stress on the expression of the operator A [e.g.
between Biot’s formulation of Dahlen (1972), Woodhouse
& Dahlen (1978), Valette (1986) and Love’s formulation of
Geller (1988)).

3 THE SNREI MODEL: A BASIS FOR ALL
ASPHERICAL MODES

3.1 Recall: SNREI normal modes

Any aspherical normal mode can be expressed in terms of
its displacement at each point of the volume V of the
aspherical earth model. However, we choose to express it in
the basis of the normal modes of a spherical, non rotating,
elastic and isotropic earth model (SNREI). These modes,
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depending on three discrete indexes n, ¢, m, respectively
associated to the spherical coordinates r, 6, ¢, are solutions
of the SNREI normal mode equation

—w”[u) + Ag[u) =0, )

where A4 is the elastodynamic operator of the spherical
model. As rotation is not taken into account in the SNREI
model, the SNREI normal modes ,u,™, noted as |,u,™) in
bracket notation, are orthogonal for the inner-product

mm’»

(6)

where the index ; in the bracket product means that the
integration is done with the spherical density p, and for the
spherical volume V,,.

In a spherical Cartesian basis, these solutions may be
expressed with spherical harmonics and for example, each
displacement field of a free mode ném is given, in operator
notation, by

u,"(r, 6, $) =DY,"(6, ¢)

(n“t’m I n’uf’m’>0 = deOnut’m. . n’“t"m’ = (snn’(sé’t"(5
Vo

where the index n has been omitted, as it will be in what
follows. The operator D is given by
DY,™(6, ¢) = U(1)Y."(6, ¢)e, + V(N)V,Y,"(6, ¢)

- W(r)e, X V,Y,"(6, ¢). M
where U, V, W are functions of r which depend on n and ¢,
the radial and angular orders of the mode respectively,
Y,™(6, ¢) is the fully normalized spherical harmonic, V, the
gradient operator on the unit sphere, e, the radial basis
vector of the spherical Cartesian basis, e,, €y, €,, and 6 and
¢ are the colatitude and longitude respectively.

Following Phinney & Burridge (1973), we express the

solution in terms of the canonical spherical basis, where
contravariant components of displacement are given by

ut=1/V2(Fug —iv,), u'=u, (8)
and new unitary basis vectors are
e.=1/V2(Fey + ie,), e, =e,. )
In this basis, using the operator D, the displacement field u
associated with a free mode nfm is thus
u,"(r, 6, ) =DY."(6, ¢) = Y(U(r)YeO"’(O, d)eg
+ YeQOe[V(r) +iWD]Y, '™, p)e,
+7.Q°%[V(D) ~iW(D)]Y, '™(6, ple_, (10)

where v, and Q,~ are given by
Ye=V((€+1))/2, QN=VE+N)(€-N+1)/2. (11)

U, V, W are the same functions as in (2) and Y ,N™(8, ¢) is
the generalized spherical harmonic defined in Phinney &
Burridge (1973). The displacement field u may be written
with the operator components

“em(r, 0’ ¢) = ut‘m(rv 0’ ¢)ea = Dfa(r)Yt’am(er ¢)enrr

using summation convention on indice, u denoting the
displacement eigenfunction of a mode nfm, D,* the
associated operator component of displacement, which is
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independent of m in the basis of generalized spherical
harmonics. For spheroidal modes, we thus have

ut’im(ra 6: 4’) = Y{QO(V(r)Yeilm(ei ¢)’

u""(r, 6, ) = r.U(MY™(6, ¢), 12)
and for toroidal modes,

u A" (r, 6, ¢) = iiYeQOfW(f)Yeilm(gy ?),

u " (r, 8, ¢)=0. (13)

3.2 Expression of the aspherical modes in the SNREI
normal mode basis

To ensure the completeness of the basis of spherical normal
modes which will help us to express the aspherical modes,
we shall map the volume V of the aspherical model, with
elliptical of more complicated topography, into the volume
V, of the spherical earth. This can be done by introducing
some set of local mappings between the two volumes V and
V, and leads to a new expression of (3) with all integration
done within the volume of the spherical earth (Valette 1987;
Woodhouse & Dahlen 1978). With this restriction, it is thus
possible to express any displacement field {v), defined in V,,
in the basis of the SNREI normal mode eigenfunctions, |kg)
(where k, is ,uy') as

lv) = % ko) (ko[ Vo, (14)

where (ko|v)o may be complex and is obtained with the
spherical inner-product (6). In principle, the summation
over kg includes not only all seismic modes (e.g. modes with
a period less than 55mn), but also the sub-seismic and
secular ones. However, it is practically limited to the few
nearest frequency modes, this restriction being motivated
either by the relatively fast decrease of coupling between
modes along dispersion branches, or by selection rules.

It is now possible to define the perturbation of the
operator A in such a way that

(ul Av) = (ul Ag[V)o + (ul 6A |v)o (14bis)

where A will now include two kinds of perturbations. The
first one is related to the volumic mapping between the
volume V of the aspherical earth and the volume V, of the
spherical reference earth and can be, in practice, expressed
only by its first-order approximation (Woodhouse & Dahlen
1978; Woodhouse 1980; Valette 1987). On the other hand,
the second one can be exactly expressed and is related to the
volumic lateral heterogeneities of the stiffness tensor, or to
the asphericity of the discontinuities, located in the
‘geocentric’ position (i.e. after the mapping between V and
Vo). We shall now assume that all integrations are done for
the volume and density V,, p, and thus forget the index
for the bracket products.

3.3 Unbroken symmetries in the SNREI model and
coupling control in the aspherical model

Many methods can be used to control the coupling between
SNREI modes induced by lateral heterogeneities, that is, to
obtain a priori information on the projection of a given
aspherical mode |v) on the SNREI normal mode basis. One

of the most powerful methods is to make use of all the
unbroken symmetries of the SNREI model.

The connection between group theory, symmetries and
earth’s normal modes was first presented by Phinney &
Burridge (1973), and later by Chao (1981) and appears from
time to time in other papers. In this part, we will recall some
symmetry properties of spherical harmonics and normal
modes of a spherical earth, which will be used later for the
computation of the normal modes of a general, aspherical
earth, Each of these symmetries, which lead to the
degeneracy of the SNREI eigenvibrations, can be associated
with an operator, which, applied to the spherical model,
leaves it unchanged. We will briefly recall these operators
for the three most important symmetries, that is, for the
spatial symmetries around the centre of the earth and
around a plane containing the rotation axis, and for the time
symmetry due to the pure elastic behaviour of this model.
More details can be found in Appendix 1.

The first symmetry is the spatial symmetry P about the
centre of the earth or parity symmetry. At each point, it
transforms a vector into an opposite vector located at the
antipodal point, which simply gives

Pu(x) = —u(—x).

In the SNREI case, we recall in Appendix 1, that the
spheroidal modes of order € have the same parity as ¢€:

Pu, = (-1)‘,, (15a)

and that the toroidal modes of order € have the opposite
parity to £:

Pu, = (1) u,. (15b)

This symmetry is only broken by lateral variations in
structure which are antisymmetrical with respect to P. It is
not broken, in particular, by rotation or ellipticity of the
earth.

The second spatial symmetry, unbroken in the SNREI
case, is the orthogonal symmetry S about the meridian plane
¢ =0, or around any plane containing the earth’s rotation
axis. Its operator is such that

Su(6, ) =u (6,27 — ¢),
Su, (6, ¢)=—uy(6, 2n - ¢),
that is in canonical coordinates,
S$% ) = (—1)"u"%(6, 2x — ¢).

This symmetry separates the SNREI modes into §
symmetrical ones, [cos(m¢) modes], and antisymmetrical
ones, [sin(m¢) modes]. It is broken by rotation and by the S
antisymmetric part of lateral heterogeneities.

The last symmetry T acts on the time variable and is just
the complex conjugation

Su, (6, ¢) =ug(6, 27 — ¢),

Tu=u*.

This symmetry is unbroken for the SNREI model, which
does not include anelasticity, and separates the SNREI
modes into real and purely imaginary ones. More generally,
if anelasticity is introduced, as shown by Dahlen (1981), the
T operator maps the space of permissible eigenfunctions
into its dual space. This T time symmetry is broken by
anelasticity, but also by rotation.
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Table 1. Structure of the eight symmetry subspaces associated with

the eigenspace of the operators P, T, S. In the elastic case, only the

four subspaces with 7, =1 are necessary. (a) Structure of the real

eigenfunctions. (b) Structure of the imaginary eigenfunctions.

(a) Subset 1

ﬂ'“+t-ﬁ(ut"'*( nm ugm) r"'d-yi-z-(uz‘“- -n™ug ™)
Spheroidal with £ even Toroidal with £ odd

(md.\/_ (ug™- (<1)™ up™) pm“.‘/_ (g™ + (-1)m uy-m)

Toroidal with £ odd

np.fiTMg = +1,41,41

Spheroidal with £ even
np fir.ng= = +1,+1,-1

Subset 2
ﬁm*"\/i (ug™+ (-1)™ ug™) ("’+z-‘/- (gm- (-1)™ uym)
Spheroidal with £ odd Toroidal with ¢ even
f"‘n=\,— (ug™- (-1)™ ugm) ﬂ'“+t=\/- (ug™+ (-1)™ uy™)
Toroidal with £ even Spheroidal with ¢ odd
Npir.g = -1, 41,41 Np.irfig= = -1,41,-1
{b) Subset 3
fm-t‘iTZ(“t"" (-1)™ uy-m) ™ _y=— f (ug™+ (-1)m u,-m)
Spheroida.l with £ even Toroidal with £ odd
[ t'\,— (ugm+ (-1)m ug-m) f"‘_g-%(ut"‘- (-1)m upm)
Toroidal with ¢ odd Spheroidal with £ even
NpMir Mg = +1,-1,41 npipMg= = +1,-1,-1
Subset 4

cm"ss/'("‘m ™ ugm) . l'f(utm*( 1)m uy-m)

Spheroidal with ¢ odd Toroidal with ¢ even

A 4=f(u¢m+( 1)m u,p-m) M. z-f(“zm D)™ up™)

Toroidal with £ even Spheroidal with ¢ odd

fpuirois = -1,-1#+l np Mg = -1,-1,-1

We have thus redefined three symmetry operators, which
all commute with the SNREI operator Ay, which implies
that the SNREI eigenfunctions are their eigenfunctions as
well. Note that, as the SNREI basis is complete, in terms of
quantum mechanics the set of operators P, T, § and A,
constitutes a complete set of commuting operators
(Cohen-Tannoudji, Diu & Lalog€ 1980). Thus, the space of
displacement field over V,, as well as the decomposition
(14), may be expressed as a direct summation of the 2°
subspaces associated with the different eigenvalues for the
three operators P, T, S, (p, 7s, 1) = (1, £1, £1), and
all elements of this basis, eigenmodes of the SNREI model,
will thus be uniquely defined by the set of six indices kq = (¢,
n, 1p, |m|, 75, ny), where n is the radial order of the mode.
(See Table 1 for a summary.) The coupling control of the
interaction terms can now be done by decomposing the
perturbation operator A into its P, § and T symmetrical
and antisymmetrical parts.

4 PERTURBATION THEORY STARTING
FROM AN SNREI MODEL

4.1 Higher order perturbation series

A direct way to solve the aspherical eigenproblem (1) is to
use a variational or Galerkin method to calculate the hybrid

Modelling of the Earth’s coupled normal modes 369

singlet eigenfrequencies and eigenfunctions in the basis of
SNREI normal modes (Park & Gilbert 1986; Morris et al.
1987). The computations are, however, time consuming,
especially with full interaction matrices for aspherical
structure with a scale comparable to the wavelength of the
normal modes. Another alternative is to use perturbation
theory in various forms (Woodhouse 1983; Tanimoto 1984;
Dahlen 1987; Snieder & Romatowicz 1988). Let us briefly
recall this method starting from equation (1), which, as the
brackets are now defined for the spherical density, can be
rewritten as

-wK|[v)+ wB|v) +Alv) =0, (16)

where the elasto-dynamic operator A is defined in (2), K
and B are

K=p/pol, B = p/poBo,

and o, and |v) are the eigenfrequency and eigenmode of
the aspherical normal modes.

Let us expand the eigenmode |v) and eigenfrequency w,
in terms of a power series of a small parameter e related for
example to the perturbation A as defined in (14bis). We
shall define

0,=0,+6w,+80,+...+8,0,+...,
¥)=10,v)+|1,v) +[2,v) +...+[n,¥v) +. .., 17)

where the eigenfrequencies 6,w, and the eigenmode |n, v)
are of order €". Here, w,” and [0,v) are the
eigenfrequency and eigenmode for the SNREI model with
elastodynamic operator Ay. We define in the same way, in

terms of powers of €, the squared eigenfrequency:
@0?™ =02 @ + 8,07, + 5,07, + 0%, +. ..

+8, 0% +. ..,
where
w(0)2 = w2 (0)
8,0%, =206, w,,
8,w%, = 8,02 +2008,0,, et (18)
Expanding equation (16) into powers of € yields the
following power series:

0 KV)+oBlv)—Av)=0+ > f,, (19)
n=1

with

£,=(Ag— 0@ n,v) +|n—1,1,v) — 6,0°,{0,v), (20)

where |n—1,1,v) can be expressed in terms of perturba-

tions to the eigenfrequencies and eigenmodes up to order
n — 1. The first three such terms are, for example,

[0,1,v)=8H|0, v),

&
+ [62wv ~20® ]B 0, v}, 21)
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370  P. Lognonné and B. Romanowicz

where

oH=6A+ 0B - 0{"?6K, O6K=K-1.

More generally, the nth-order ‘residual’ term |n,r,v) is
given by

In,r,v) =38H|n,v)
p=n s B

_gl S,w v[In— p+1,v)— [6K_2w—$0)} |n —-p,v)]

8,07,

200

+[6pwv— ]Bfn—p,v).
Since each term of order €, in equation (19) is equal to
zero, we obtain the following relations

(ws(])z‘ - Ag)n, v)=|n-1,r, v) — 6nw2n 10, v). (22)

Multiplying the left side of this relation by (v, 0| yields an
expression for the nth-order perturbation in the eigenfre-
quency, in terms of approximations up to order n — 1:

S, ={(v,0|n-1,r1,v). (23)

The first-order frequency perturbation 8,w®, and the
zeroth-order perturbation |[0,v) are solution of the
eigenproblem obtained by projecting the ‘residual’ f; on the
subspace S, associated to the SNREI multiplet with
eigenfrequency equal to w'”:

P, = POSH |0, v) — 6,07, |0, v) =0, (24)

where @ is the projector into the subspace S,. If the
eigenmodes {0, v) are normalized, the eigenfrequencies are
thus given by :

6,0%,=(v,0/ 6H|0,v).

Note that equation (24) is the definition of the isolated
multiplet perturbation theory (¢f. Messiah 1962; Madariaga
1971).

In order to calculate the nth approximation [n, v) to the
eigenvector, we can write, using relation (14),

ln,V)=kzlko)(kol"»V)

and thus we need to obtain the projection of |n, v) onto the
eigenmodes of the SNREI model. Equation (22) gives us
only the projection on modes that do not belong to multiplet
S, that is modes |k,) such that @, ‘Y # w ®. For these
modes, from (22)

1
<k°|n’v>=w‘2,(°)—wif,°) (koln—l,r,v). (25)

Within the multiplet S,, we need to calculate the projection
differently. As noted by Dahlen (1989, personnal com-
munication), or Landau & Lifschitz (1965), Lyons (1985), the
perturbation |n, v), even to first order, is orthogonal to this
subspace only if S, is non-degenerate and if the inner
product is not perturbed, that is if the angular order is zero
and if no rotation and density lateral heterogeneities are
taken into account. To obtain the expression of all nth-order
projections on S,, we make use of the following two

relations, verified by any aspherical modes |u) and |v) of S,:

(u—w,’K+w,B+A|v)=0, (26)
(uK~1(o,+0,)B|v)=1/2(u|v) =4, 27

Relation (26) stems directly from equation (16}, and relation
(27) is obtained from the definition of the inner product
(u|v) and from equation (16). We then expand relation
(25) and (26) into powers of €, and obtain, after some
algebra, the projection of the perturbation |n,v) on the
elements of S,

1 8,07,

0 n,v) = AL —
(,0]n,¥v) 8,07 — 8,02, 8,02, — 6,02,

BL., (28)

where u# v and where A}, and B}, are given in Appendix
2. Note that we have used the zero-order ket |0, u) of the
multiplet S, and not the SNREI modes |u,) of this multiplet
to compute the projection of |n,v). The last unknown is
now the projection of the perturbation |n,v) onto the
unperturbed singlet {0, v) itself. For this, we use expressions
(2.8) and (2.9) of Appendix 2 and obtain

(v,0|n,v)=-1/2B7, (29)

where we nave assumed that the phase of the eigenmode,
which is unconstrained, is such that (v,0|v) is real, that is
(v,0]n,v) is real for all order n. Hence, using (25), (28),
and (29), we obtain

1

In,v) = 2 2(0) _ ..2(0) ko) (ko [n—1,1,v)
ko¢S, Wy Wigg
—-10,v)1/2 B,

1 8,0°
+ 0,u ( A" — v B3v>.
nesgua&v l > (sla)2 - 610)2 61w2v - ‘slwzu

v u

(30)

Note that the first part of this equation can be also written
with the ket |0, k), solution of (24) for all multiplets, instead
of the ket |k,), as both {0,k) and |k,) are a base of the
subspace S,. Expressions (23) and (30) enable us to obtain
the nth approximation to eigenfrequency and eigenfunction
when we know approximations up to order (n —1). We note
that in the previous derivation, we have assumed that §A
and B can be expanded using the same small coefficient e.
However, it is possible to obtain similar perturbation series
directly in the product space (Valette 1989b), where
eigenmodes are expressed in terms of the generalized ket

= (oA,

v

This approach is more similar to the classical Rayleigh
Schroedinger perturbation of the Hamiltonian (see Appen-
dix 4). Note also that the second part of (30), i.e. the
summation over all singlets of S, is generally omitted in the
previously cited studies, and is necessary for the coherency
of (30) with results obtained with other perturbation
theories, such as the Brillouin—-Wigner perturbation theory
(Ziman 1969).
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4.2 Secular equation

As seen in the previous section, all nth-order perturbations
in,v) are, in general, not orthogonal to the subspace S,
their projections on S, being expressed using relations (28)
and (29). However, expression (28) contains terms such as

1
alwzv - 6lwzu '

where modes u and v are two different singlets of the same
multiplet S,. Such terms appear to be very unstable unless
singlets are regularly split. In a few cases, the terms Aj, and
By, cancel, as for the perturbations due to rotation and
ellipticity, for which the eigenfunctions are simply related to
Y,™ harmonic functions and the first-order frequencies are
expressed in terms of the azimuthal order m:

8,0% =20 (a + mb + m%),

where b and a, ¢ are linearly related to the rotation velocity
Q and to the ellipticity parameter €. respectively (Dahlen &
Sailor 1979). Equation (30) generalizes the results of Dahlen
& Sailor’s paper, especially for the eigenmode perturba-
tions. However, equation (30) is not suitable for the
eigenmode perturbations due to lateral variations, especially
to those due to smooth models, for which some of the 2€ + 1
singlets frequencies é,w, are grouped into doublets (Dahlen
& Hensen 1985), or are very close to one another.

We thus propose to perform modifications to the classical
perturbation theory in order to force the first nth-order
perturbations to be orthogonal to the subspace S,, which
amounts to cancelling the first Aj, and B], terms of
equation (28). Looking at the expression of (26) developed
into powers of €, we see in the Appendix 2 that an operator
6 can be defined by

5% = #*(6H + SHG,5H + SHG,0HG,0H + . . )P,

whose nth-order terms appears in the expression of A"
Here, * denotes the adjoint operator and G, is defined as

1
Go= > —m 3w ko) (Kdl-
v ko

koeS, W
In the same way, looking at the power series of expression
(27), another operator X can be defined, such that

N=?*1+G,0H+G,0HG,0H+...)*

B
X (1 + 0K _Z_wso))

x (1+G,0H + G,0HG,6H + .. .)®.

Instead of using a strength coefficient € related to 6H, we
will thus develop (26) and (27) with help of a coupling
coefficient related to 6. The first-order terms of (26) and
(27) thus lead to the following two equations, which must be
verified by two different zeroth-order singlets |0, v) and
10, u) of the multiplet S.:

(u,016%10,v)=0, (u,0|N[0,v)=0,

This can be done if the zeroth-order kets [0, v) verify the
following eigenproblem, which will be called the ‘secular
equation’:

dX0,v) = 8,0 N0, v). (31

foru#v.
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This equation appears obviously as a generalization of
equation (24) defining the order zero of ‘classical’
perturbation theory

PSHP |0, v) = 6w?, 10, v),

and also as a generalization of the equation obtained by
Landau & Lifschitz (1965), Park (1987) or Dahlen (1987)

P(6H + SHG,6H)P |0, v) = dw?, |0, v).

It is now necessary to perform modifications to the power
series of equation (16). We do that by redefining the terms
(20) of this power series as

£,=(Ag— ©P1) |n,v) + |n—1,1,v) — 6,0°, N |0, ¥)
where we have redefined the ‘residual’ part |n, 1, v) as
[0,1,v) =[(1— P)SH + 6X] |0, v},

for order zero, and as

in, 1,v)=>In,1,v) — PSH[G,6H]" |0, v)
= 8,0°(1-N)[0,v),

for nth order. These new definitions lead to the same
expression for the projection of the peturbation |n, v) onto
other multiplets than S, as in (25) and to the same
expression for the perturbation of the eigenfrequency as in
(23).

In the same manner, as in the previous section, we now
obtain, after some algebra, new expressions for the
projections of the ket |n, v) onto the singlets |0, v), first for
u=v:

(v,0|n,v)=-1/298,,
and then for u#v,

1 5,02,

’0 , = d"v_
v |HV> 8,0% — 0%, "

n
@uv ’

6,02, - 8,02,
(32)

where 1.7 and B are now defined as

ot 0, R, =0,

B
&fzuv = 6,wv6,wu(u, Ol m |0, V),

e =6,wu+61wv
0
uv 2(05,)

B
<“7 Ol 2(0(0) IO’ v) ’

B
.913‘", = {—61(1)2\,51(1)2“[(“, 1| + (u, 0 [61( —m]]

X Gv[[él( —2‘%0,] 10,v) +11, V)]}

+ {(61(0,,6260“ + 6,0,6,0, — 6,0,0,0,

6,0, + 6,0, B
) 2w$°)1 )(u,Ol 0.® |0,v)}

B B
+ 6lwv61wu<(“’ 1' m IO, V) + <Il, OI Fso) I, V)) >
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B
R, { (6,0%, + 6,0 u)[(u 1| + {w, 0] [6K Yo (0)]]

X Gv[[ax—m—'zm] 0,v) + |1,V>]}

4,0, + 6,0, B B
o (w0 + (w0l 0.m)

(6,0,+ 6,0,)> b,w,+ 6w
T T 200

X B
)(u, 0l 70® 10, v).
(33

We thus have the same expression as before for any
nth-order perturbation in eigenfrequency and eigenmode
associated to singlet |v), noting that the &,w® used in
relation (32) are now the eigenfrequencies obtained by the
secular equation. However, the main difference is that the
secular equation leads to a first-order perturbation always
orthogonal to the starting subspace S,. It remains valid to
second order, for which the non-orthogonality of the
eigenmode perturbation is only related to the rotation,
whose effect is linear and not quadratic in the frequency.
This effect can thus be well modelled using relation (32). It
can nevertheless be easily shown that, if the perturbation
series is done in the product space (see Appendix 4) or if the
rotation is neglected, the second-order perturbation is
orthogonal to the subspace S,. However, no such
simplification is possible for the third-order perturbation,
which always has a non-orthogonal component, but, as we
shall see in the last section of this paper, it appears in
practice to be very small and well expressed by relation (32).

Taking as zero-order ket the solution to the secular
equation greatly simplifies the perturbation procedure.
However, we shall now describe another modification to the
until now described method, in order to reduce the effect
induced by the perturbation of the inner-product, due to
density and rotation.

4.3 Density renormalization

A renormalization procedure was previously proposed by
Park (1985), in order to take into account the inner product
perturbation due to density lateral variations and to physical
dispersion (omitting however the perturbation due to
rotation). However, we shall now prove that this procedure,
generally done numerically by using a Cholesky decomposi-
tion, can be performed analytically for the density terms. In
this case, instead of looking for the hybrid multiplet |v), we
search for the renormalized ket, defined as

tve) =K"[v)

with the same eigenfrequency. This renormalization, which
is possible whenever the density p is non zero inside V is
sufficient to obtain a standard eigenproblem from relation
(16), which can be written as

—w?|v,) + 0By |v,) + A, [v,) =0, (34)

where, after renormalization, the Coriolis operator B, is the
same as in the spherical earth, and thus has selection rules
which allow the coupling of a mode of angular order € only

with modes of angular order € £ 1, and where A, formally
given by

A=K I/ZAK—I/Z

can be expressed analytically. (See Appendix 3 for details
and the expression of A, ) Note that the renormalization
yields a different parametrization of the Hamiltonian, closer
to parametrizations used for example in ray or asymptotic
theory. The new aspherical parameters are thus p,/p C*¥*
and Ln(p/p,), the expression of the former being related to
the squared S and P velocities, and one looks for the
renormalized eigenmodes, projected on the renormalized
SNREI normal mode basis. The inner product {4) between
two normal modes u and v is now transformed into

(u]v)=(uK-B/(0,+ w,)|v)
= (“rl 1- BO/(wu + wv) Ivr>'

If any Cholesky decomposition is needed for the ‘new’ inner
product, as for the perturbation series described in the
relations (23) and (30), or for a variational procedure, it can
be done around a fiducial frequency using the sparse
operator

B
- m ,
which greatly reduces the number of required operations. A
quick comparison of the results obtained with the density
renormalization can be done with those obtained without
renormalization, using for example Born linearization of the
kinetic term (Tanimoto 1984). Making a development of the

square root of the operator K"? =1+ 1/26K, we have to
first order,

OA,=A,— A=K (A, + SA)K 2 - A,
= 6A — 1/2(0KA, + A,0K).

We thus obtain the following first-order expression for the
eigenfrequency:

2098,0,= (v, 0| A — 025K |0, v),

and for the part of eigenmode orthogonal to S,:

1
I-P)1,v)= % PR T ko)
X (Kol 8A —1/2(0™ + 08K |0, v),

which can be written

(1-P)1,v)=1/2 E ko) (ko| 6K |0, ¥)

+ 2 (0)2

T ko) (el 84— 08K (0. v).  (35)

The first part is due to the mass renormalization (i.e. the
multiplication by K"?) and the second part is exactly the
first classical Born approximation. Similar comparison can
be done for the part of |1, v) projected into S,. Note that, as
each new order implies the computation of terms like
6K|n—1,v) as well as terms like 8H|n—1,v), the
renormalization reduces the number of operations required
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by two, and that for strongly coupled multiplets, for which,
even to higher order, degenerate perturbation theory gives
poor results, the quasi-degenerate perturbation with a
renormalization must be used, giving an exact expression of
the projection of the Hamiltonian into the subspace of these
nearly resonant multiplets. In this case, no fiducial
frequency needs to be used for the kinetic terms.

4.4 Perturbation theory and Rayleigh quotient

In order to compare the solutions obtained with different
orders of perturbation theory, and those obtained with the
variational method, it is necessary to have a measure of the
error associated with an eigenmode computation. Most
variational methods are based on a determination of the
eigenfrequency using the Rayleigh quotient a defined, for
an eigenvector |v) of an operator A, as

a=(v|A|v)/{v]v). (36)

Thus any comparison between variational and nth-order
perturbation theory must compare the difference between
the Rayleigh quotient obtained with variational methods
and that obtained with the quotient for an -nth-order
approximation of eigenfunction |v, ). We prove in Appendix
4 that this Rayleigh quotient is not related to the nth-order
frequency approximation, but to its (n+ 1)th-order
approximation.

Around the Rayleigh quotient frequency a, an estimate
of the error bar of the eigenfrequency can be obtained using
the Krylow-Weinstein theorem (Dautray & Lions 1984),
which is recalled in Appendix 4.

For perturbation theory, we prove in the same appendix
that, in the non-rotating quadratic case, an estimate of the
error is given by

VB - & =1/Qw,)
XV{v,r,n[r,n, v)/ (v 1 v,) = {v.[n, 1, v)%/{v [ v.)?
(37a)
We note that this error bar is the norm of the projection of
the remaining ket |n,r,k) on the orthogonal subspace of
|v,). In the rotating case, a similar estimation can be done

in the product space, and the error is greater and given by
the square root of

Vﬁ _; =1/(2wv)

XV2(v,r,n|n, 1,k)/ (v, | v,) = (v, [n, 1, v)?/{v,[v.)>
(37b)

§ THE TRANSFORMATION METHOD
5.1 Introduction

To compute the eigenfunctions with the expressions of
Section 4, let us note that all higher order perturbations are
expressed in terms of the projection on the reference basis
of kets such as 6H|v) and B, |v). If the computation of
By |v) is straightforward, that of SH|v) is more time
consuming, especially if the operator OH includes
small-scale asphericities. For example, let us take a model
with small-scale heterogeneities, which would be repre-
sented by a set of spherical harmonics of angular order
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smaller than fmax, and let us assume that one wants to
compute all modes with an angular order smaller than £max.
If one wants to take into account all coupling effects, the
SNREI basis necessary to the expression of the aspherical
modes must include all SNREI modes with an angular order
smaller than 2€max, i.e. a basis with a dimension growing as
¢max®. All the computations of interaction term such as
6H |u), in fact associated with convolution in the spectral
space, will thus require a number of computations increasing
as fmax® for small scales of lateral heterogeneities, for
which the interaction matrices are full. Finally, the
diagonalization of all fmax® singlets, either for the
perturbation method or for the variational method, requires
a number of computations growing as €max®. This high
number of computations forbids a fully coupled computation
of interaction terms, except for models with large-scale
lateral heterogeneities where the interaction matrices are in
fact band diagonal and may be expressed by using
Clebsch—Gordan coefficients.

As an alternative to these spectral convolutions, we
propose to use a generalization of the ‘Spectral Method’ or
‘Transformation Method’ to the tensorial elastic case, in
which the number of computations only increases as £max’,
leading to an number of computations growing only as
¢max’ for the eigenproblem. The transformation method,
presently used in seismology for Fourier transformations
(Kosloff & Baysal 1982), was first proposed in 1972 by
Orzsag for atmospheric modelling with classical harmonics
formalism, where it has been intensively developed. As the
present algorithms cannot be applied to the tensorial case,
we have thus developed a generalization of the transforma-
tion method using the generalized spherical harmonics. We
now describe this method only for density and elastic
coupling matrices, the generalization to other spectral
interactions such as boundaries, gravity and Coriolis being
easy to do. Let us take, for example, the computation of the
elastic term of expression (3) for a field |v) given by

Iv) =§|ko><ko|v>. (38)

The projection of this elastic term on the reference basis of
normal modes |k,) = |€, m) may be expressed as

(6, mE|v)=| [d**7°D,vg]D,u,"™" dV, (39)
Vo .

which may be written in the canonical basis of Phinney &
Burridge, taking expression (38) of (v), where k is replaced
by its indexes ¢, m

(Lo, mlEV) = > | dVE," () E~(r)

afyd Vg

X Yt’gNnmo-(O: ¢)daﬂyé( 0’ ¢’ I')
x 3 (6,m V)Y, ™6, ¢), (40)
£,m
where No=y+06, N=a+ 8 and E,*?(r) is the radially

dependent part of the reference normal modes strain tensor.
If we define the kernel

Xee2™0, 9)= 3 [drd oy, o6, ¢, DE> OB,

afyd
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limiting the summation with the condition N=a + B,
Ny =y + 6, we finally have

(o mlEI) = 3, [ A2 Y6, )3 X, ™6, 9)
NNg /= €

X >, (€, m| V)Y, N™(6, ¢). (41)

The other terms and kernels are, for example, in Snieder &
Romanowicz (1988). We see that the computation of such
terms as in relation (40) or (41) consists essentially in the
inverse and direct Legendre transformations of the tensorial
field, whose Legendre coefficients are given by (£, m|v).
These direct and inverse Legendre transformations may
generally be performed before the radial integration, with
expression (40), or after radial integration with the use of
the kernal relation (41). Let us now describe how to
perform these Legendre transformations.

5.2 A Gauss numerical integration for Legendre
transformations

Gauss integration is a well-known method for the numerical
integration of a polynomial of finite degree on the compact
interval [—1, +1]. We recall the most important properties
of this integration (Press et al. 1986): there is one and only
one set of N points u; and weighting coefficients w; such that

+1 i=N
R(z) dz= 2, R(u))w;, 42)
-1 i=1
for every polynomial R(z) of degree less than 2N — 1. The
points u; are the ith roots of the Legendre polynomial of
order N, Py(u), and the weight w, is given by

w;=2/((1- I"iz)PN'(l‘i)z),

where P’y is the derivative of P,. Note the important
symmetries of the Gauss points and weights:

Un-i = v WN—i = Witr- (43)

Let us use Gauss points to perform the integration of
generalized Legendre functions. All expessions which occur
in direct or inverse transformations are of the form

+1
P, " (2)P¢,""(2) dz. (44)
-1

The integration along longitude (or Fourier transforma-
tion) and the properties of the spherical canonical matrix
g.p cancels the terms with different n or m values.

Expressing the gencralized Legendre functions in the form
(Vilenkin 1968)

14 Z) (m+n)/2

11— (1 - 2)f(z, € - j),

Pm(z) = (
where j = Max(m, N) and f(z, € — j) is a polynomial of order
£—j, we see that the product in relation (44) may be
expressed as

+z

1 m+n i
P @R = (1) (1= 2, €~ i, € - ).

As 2j is greater than m + N, this is a polynomial of order

¢, + ¢, and a Gauss numerical integration is thus possible
for a set of N points greater than (€, +€,+1)/2.
Furthermore, as there are no Gauss points at the poles of
the Legendre generalized functions, no singularity appears
in the computation of the value of any field at the Gauss
points. Let us insist upon the condition for the validity of
the computation of the interaction terms. Let us assume that
lateral heterogeneities of the earth model are of angular
order smax, and the field |v) of angular order €max. After
interaction with asphericity, the resulting field has its
maximum angular order equal to €max +smax. Thus the
numerical Legendre transformation up to order ¢max will
require integration of polynomials up to degree (2*fmax +
smax) and the number of Gauss points (number of latitudes
in the spatial collocation grid) needed will be €max+
(smax/2) + 1. Similar aliasing rules may be obtained for the
Fourier points, using classical aliasing rules of the Fourier
transformation. If these aliasing conditions are verified, the
fields |[v), A|v) and B|v) may be expressed either in the
spectral space, in terms of their components (£, m |v), or in
the spatial space on a collocation grid, in terms of the values
v(u;, ¢;). This equivalence will be true for the computation
of all coupling operation and is the basis of the
transformaion method. For Coriolis and ellipticity perturba-
tions, the computations will be done in the spectral space,
using low-order Clebsch—Gordan coefficients, but all other
computations will be done on a collocation spatial grid,
where they become simple tensor contractions for the
elastic, density and gravity interactions.

5.3 Generalized discrete Legendre transformation

Using Gauss numerical integration and the bijection
between the spectral and spatial space, we define the
following forward and backward generalized Legendre
transformation for a tensorial field U of order N.

Backward Legendre transformation

m=+M €=~€max

U, ¢;) = EMexp(—imep,-) ZH Um™P "(p).  (45)

m=—

Forward Legendre transformation

i=nmax
U S W) S explmg) U, @) (40
i= j
We give in Appendix 5 an optimized algorithm for the two
transformations, more suitable for the decomposition of the
eigenspace in terms of subspaces related to the operators P,
S, T. Depending on the kind of field, the transformations
will be two to eight times faster, respectively, for a complex
spherical field or for a real hemispheric field. This algorithm
generalizes the classical optimization used in atmospheric
modelling (Butel 1984), taking into account the differences
introduced by the tensorial cases, and the final expressions
are given in Table 2. For this algorithm, only the spectral
terms with positive N and M values are necessary. If one
wants to use this method with relation (40), using N, layers
for the vertical integration, the number of required
computations for the spectral method grows as £max>*N, for
the direct or inverse transformation of the field U (including
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Table 2. Direct and inverse generalized Legendre transforma-
tions, as defined in Section 5. The U™ are the Legendre
coefficients of the field U" defined at Gauss points y; and
Fourier points ¢;. w; are the Gauss weights. A and B depend on
the properties of the field U with respect to the symmetry
operators P and T.

Direct Transform

i~nmax

U - i A () e Zexp(imas,-) Real( Un(s,¢))) +
i=nmax/2 j
j=nmax
nm 1 .
W B e exptim;) Imagl Un(u,4,).
i=nmax/2 j
Inverse Transform

m=+M ¢=tmax
Real( Ui, ¢ = ) expieimd)) Ug™ 172 Agem(y,).

m=-M 1=|m|

m=+M {=fmax
Imag( U"(k;,¢;)) = exp(-im¢; ) Z Ugnm 172 By™m(i,).

m=-M I=|m|

the displacement and the strain field) with field and
asphericities up to order ¢max, which is to be compared to
the number of computations used with classical matrix
products, which grows as ¢max**Nmax?, where Nmax is the
number of fundamentals and overtones used in the
truncated reference basis. If, on the other hand, relation
(41) is used, the number of required computations is now
growing as Mmax®? €max’ €og,(émax) with the spectral
method, the optimization being due to the fast Fourier
transformation, and Nmax® ¢max® with a classical matrix
product. Note however that great simplifications are
obtained if one takes into account the fact that the
eigenfunctions EZ#(r) and the kernal X,""(6, ¢) have
slow variations with respect to € and £, Thus, in many
cases, the use of the spectral method is faster than
performing, in a classical manner, the matrix products found
in the perturbation series procedure. The formalism and
method described here can be conveniently applied to
quantify the degree of coupling of target modes with a
variety of neighbouring modes and thus to test the
convergence of perturbation theory used in conjunction with
presently available earth models. In what follows, we
present several examples of such calculations.

6 NUMERICAL EXAMPLES

6.1 Description of the SNREI basis and of the laterally
heterogeneous model used

We illustrate the accuracy of the higher order perturbation
theory by taking a few examples concerning normal modes
along the fundamental spheroidal branch, the first one at
low frequency, around modes ¢S,5/0S,6 (i.e. with a period of
300s), the second one at higher frequency, around mode
o343 (i.e. with a period of 200s). In order to obtain most of
the coupling effect, we have taken into account the coupling
effect due to the 10 nearest spheroidal and toroidal
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fundamentals in the first case, and due to the 10 nearest
spheroidal fundamentals in the second case. As we focus
this paper on the coupling produced by stiffness and density
lateral heterogeneities of the Earth, we have neglected
rotation and ellipticity coupling effects. The anelasticity was
neglected in the computation of the coupling effects. This
assumption may of course produce an overestimation of
coupling strength between modes of different branches, for
which the Q ratio is very different (Park 1986; Lognonné
1989), and a more realistic modelling of aspherical normal
modes including this effect will be the subject of a future
paper (L.ognonné, in preparation).

We used the global M84 + 1.02.56 model (Woodhouse &
Dziewonski 1984; Dziewonski 1984), with weak and smooth
spatial variations. We obtain perturbations in x, u and A
using the scaling relations

op/p=0.46B/8, ba/a=0.8688/8,

where p, « and B are respectively density, P velocity and S
velocity, which suggest heterogeneities correlated with
temperature variations. Note that for such smooth structure,
coupling with overtones is forbidden by selection rules.

6.2 Coupling diagrams and sensitivity

On Figs 1(a)-(c), respectively for the modes (S,5, ¢S, and
0343, we show the coupling strength parameters between
these modes and their nearest neighbour fundamental
modes, defined as (Park 1987)

_ (k. 0} SH [0, v) ||
vk ws()) _ wao)
and related to the norm of the block terms of the operator
G.,0H. For the structure M84 +L02.56 and for the very
long-period modes ¢S,5—;S,¢, we see that most of the
coupling parameters are very small, generally less than 0.1.
Note however that the coupling parameter between
spheroidal and toroidal can be stronger, especially in this
frequency range between modes of same angular order /.
The coupling between S,5—0T,s, ¢S26—0T26 is due for its
main part to the asymmetrical part of degree 1 of the upper
mantle at depths around 400 km (Park 1985), however the
coupling for these two modes shows big differences: while
0S25—0 125 are weakly coupled, with a coupling coefficient €
less than 0.1, ¢S,s—~¢T, are strongly coupled, giving a
coupling strength coefficient of the order of 0.25, and
although this coefficient seems to be small, we will see in the
next section that it leads to quasi-degeneracy, which, if not
taken into account, can affect the convergence rate of
perturbation theory. At higher frequency and for the mode
0343, the coupling along the dispersion branch is larger,
leading to coupling parameters with the / £ 1 modes larger
than 0.1.

As the frequency variation is nearly linear along a
dispersion curve, the decreasing of the coupling strength for
the target mode is such that the strength coefficient is
approximately divided by nine every three angular orders
along the same branch. For the smooth model M84 + L0256,
90 per cent of the coupling effects is thus modelled using
only the three nearest modes on each side.
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Figure 1. Coupling strength for spheroidal fundamentals (S,s, (S5
and ,S,;. We observe a slow decrease of the strength of coupling
when one moves away from the target mode on the dispersion
branch, and this coupling becomes nine times smaller for an angular
shift of A¢= 3. Note that (S, is strongly coupled with T, and that
the coupling along the branch increases with frequency.

6.3 Performance of ‘classical’ perturbation theory

The first test we performed, was to check the convergence
of the perturbation series in the computation of the
eigenfrequency and Krylow—Weinstein error. The theory
was used up to third order without any secular
renormalization, i.e. using ‘classical’ Rayleigh—Schroedinger
perturbation theory. The eigenfrequencies of the singlets of
the three modes (S,s, (¢S.¢ and ¢S,; were computed,

increasing amplitude of lateral variations from 0 (i.e. the
spherical model PREM) to 5 (i.e. an earth with lateral
heterogeneities five times greater than those of MB84 +
L02.56).

Let us first show the result for the weakly coupled mode
052s. For this mode, we see in Fig. 2 that the most important
effect of higher order perturbation theory is to separate
singlets that are mostly associated into doublets in the
isolated mode case (Dahlen & Henson 1985). The coupling
between toroidal and spheroidal modes weakly removes this
quasi-degeneracy, as does the introduction of rotation, for
which the Coriolis force breaks the S symmetry even to first
order. Other non-linear effects may be observed in the
second and third frequency approximations, such as a few
branch crossings, for an asphericity three or five times
greater than that of M84 + L02.56. We describe in Figs 3(a)

2 Frequency splitting for ¢Sps : 1* order pertubation theory

°
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Figure 2. Frequency dispersion curves for the 51 singlets obtained
with a first- and third-order approximation. Each line is associated
with an aspherical singlet. Most of the curves corresponding to
first-order perturbation in frequency contain in reality two
quasi-degenerate singlets. Nevertheless, this degeneracy is removed
by higher order perturbations (Fig. 5b).
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Figure 3. Convergence rate of the frequency defined as the ratio of
the nth-order Krylow—Weinstein frequency error over the (n — 1)th
one. For the weakly coupled mode (S,5, the convergence of the
perturbation series is extremely fast.

and (b) the convergence rate of the perturbation series,
defined as the ratio of Krylow—Weinstein error bar of the
nth approximation over that of the (n— 1)th one. We see
that every new step of the perturbation series reduces the
Krylow—Weinstein error by an order of 10. For weak
heterogeneities, this leads to a separation of the different
singlets within the error bar, but for heterogeneities two or
three times bigger than L0256 + M84, this separation
disappears (Fig. 4).

The relative success of perturbation theory for the mode
0925 is also confirmed for the convergence of the eigenmode
perturbations, which is fast enough to change, after each
new iteration, the energy of the hybrid ket |v,,) by a few per
cent only (Fig. Sa-c). We note however that the
convergence rate is more efficient for the first perturbation
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Krylow—Weinstein error for a 2“ order approximation of gSas
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Figure 4. The Krylow-Weinstein error-bars associated with a
second-order approximation of the eigenfrequencies of two singlets
of ¢S,s. In the aspherical case, the singlet order m is not related to
the Fourier component m, but was taken here as the order in singlet
frequency after first-order perturbation. Note that the ‘classical’
perturbation theory cannot separate singlets for asphericity twice
larger than M84 + L0256. After fourth order however, the error is
reduced to a few per thousand for M84 + L0256.

than for the next one. Finally, the part of the energy of (S,
which belongs to other multiplets is very small and less than
2 per cent. The escape of energy from the starting multiplet
is illustrated by the norm of the projection on the starting
subspace of the nth approximation of all 2¢/ + 1 singlets,
and is plotted in Fig. 6 versus its eigenfrequency for the
second-order approximation. This can allow us to make a
first comparison between the solution obtained with higher
order perturbation theory and that obtained with the
variational method. We see that from the second order on,
the accuracy stops to improve, the results obtained with the
third order (Fig. 7) being very close to those of Fig. 6.
However, the differences between the eigenfrequency
approximations and those computed by the variational
method are beyond the frequency resolution of the longest
measurement of the earth’s normal modes (Fig. 7), and the
difference between projection values is also small, of the
order of 107>, This mode is thus relatively well modelled
with the ‘classical’ perturbation theory, for model
M84 +1.02.56, but apprarently not for models with larger
heterogeneities.

On the other hand, for other, more coupled modes, the
accuracy of ‘classical’ degenerate perturbation theory
decreases dramatically even for M84 + 1.0256. It leads, for
example for the mode (S,¢, to divergence in the estimation
of the eigenfrequency for heterogeneities from 1 to 2.8 times
larger than those of the Earth (Fig. 8). The same failure can
be observed in the computation of the eigenmodes, and we
see that for many singlets, from second order on, the series
slowly improves the eigenfrequency and the eigenmode
compared to the variational method. The solutions obtained
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Eigenmode : 1* order perturbation for 3Sz5

Convergence rate <1 | 1>/<0 | o>

Amplification factor (M84C+L02.56)

Eigenmode : 3™ order perturbation

]

o —————— . T

0 1 2 3 4 5
Amplification factor (M84C+L02.56)

Convergence rate <3 | 3>/<2| 2>
0.4

Figure 5. The convergence rate for eigenmodes defined as the ratio
of the norm of the nth ket perturbation to that of the (n — 1)th ket
perturbation for mode S,s. Just as for the eigenfrequency, the
convergence of the eigenmode is extremely fast, each new order
having its norm more than 20 times smaller than the previous one.

thus stay too far from those obtained with the variational
method (Fig. 9). A more accurate comparison with the
eigenmodes obtained using the variational method can be
done by computing the orthogonal part of the approximated
eigenmode with respect to the variational singlet. This
orthogonal part can thus be directly related to the
eigenmode error. Doing this for the three first approxima-
tions of one singlet of S,; (Fig. 10), we see that the
perturbation of the multiplet structure is, for this range of
frequency, stronger than the appearance of components on
the neighbouring SNREI multiplets. The classical perturba-
tion theory is unable to model this effect, even with the last

Mode S5
MB4+L0256 274 order of perturbation theory

.995

Projection on the spherical pSgzs

.985

3.35 3.36 3.37
frequency (mHz)

Figure 6. The eigenfrequencies and the remaining part of amplitude

in the target multiplet for mode ,S,s after the second order of the

‘classical’ perturbation theory. Up to this order, the evolution is

slow and no notable difference with this approximation appears.

terms of equation (30). This failure appears already to first
order, which explains that the higher orders do not
contribute to any improvement, as it does for ,S,s if the
lateral heterogeneities are increased. The use of the secular
equation (31), which will better constrain the three
first-order perturbations, and in particular, all coupling
effects within the multiplet, is necessary for all modes more
sensitive to lateral heterogeneities than to rotation and
ellipticity. We shall now present the results using this
formalism.

6.4 Secular equation and renormalization

Figure 11 illustrates the power of both secular and density
renormalization. The trace at the back shows, for one of the
87 aspherical singlets of S,;, the absolute value of all
components on the 952 SNREI singlets belonging to modes

Mode S2g
M84+L0258 variational / perturbation
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M 0 é & o) 0006 8@ o o
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g . 0
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2
2 § T T
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frequency (mHz)
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Figure 7. Comparison between the third-order approximation for
the mode (S,5 and the variational solution. Most of the singlets of
05,5 are very close to the variational solution. Note that the
difference between obtained ecigenfrequencies is smaller than the
resolution of the spectrum calculated using a 15 day long time
series.

€20z Arenuer /| uo 3senb Aq G09559/59€/2/201/8lo1e/B/Wwoo" dnoolwepese//:sdjy WOy papeojumoq



Frequency splitting for pSpg : 3™ order pertubation theory

frequency mHz
4
-

T T T T

0 1 2 3 4 5
Amplification factor (M84C+L02.56)

Figure 8. The same as Fig. 2(b) but for the more strongly coupled
mode ,S,s. A great number of dispersion curve crossings are
observed and lead to divergence of perturbation theory, due to a
high (T, character of some singlets. The mean frequency is strongly
affected by the higher order perturbation.

0338—054s- The three first traces show the same thing, but for
the orthogonal residual of three zero order approximations
of this singlet obtained by different perturbation theories.
From front to back, the third trace was obtained with the
‘classical’ perturbation theory, i.e. by solving the isolated
multiplet case using the Born approximation for the density
term. Although one would expect to find the largest
residuals in the neighbouring modes (S;3~¢S,, and
0S44—0545, We see that they are still located in the multiplet
0543 The second trace shows the improvement obtained by
using the density renormalization, in which the effect of
lateral heterogeneities of density is better modelled, which
leads to a more accurate modelling of the rearranging of the

Singlet gSy43
Variational and
“Classical” perturbation theory

with density renormalisation
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Figure 9. Comparison between the third-order perturbation for the
oT26 and (S, and the variational solution. The theory used here is
always the ‘classical’ higher order. Most singlets of (T,—.S,s are
very far from the variational solution.

multiplet structure, but one sees that it is still insufficient.
Finally, the first trace of Fig. 11 shows the residual after
taking for zero order ket the solution of the first-order
secular equation (32). We see that the projection of the
residual on the target multiplet ,S,; is no larger than the
residual in the neighbouring modes 4S35—¢S4> and (S,4—¢S4s-
These coupling terms can thus be treated in an efficient way
by higher order terms of perturbation theory.

Figure 12 shows the residual between the variational
method and the solution obtained with higher order
perturbation theory. Note that for any nth-order ap-
proximation, the zero-order one was taken as solution of the
nth-order secular equation. We see that for all nth-order
approximations, the largest residual still remains for the
SNREI starting multiplet, here S,;. It is thus reduced in
the next step by the (n + 1)th-order secular equation, while
the residual in the neighbouring modes is well reduced by

IP'U ard

[ I —

ond

order: residual

order: residual
15t order: residual

oth order: residual

M’ 2 o A . ——

Variational
S

L4

0538 0539 0540 0541 0542 0543 0544 0545 0546 0547 0548

Figure 10. Comparison between the four first-order approximations obtained with the ‘classical’ perturbation theory (from front to back, the
four last traces) and the solution obtained with the variational method (the first trace). The absolute value of the 952 components in the
SNREI basis S,5-0S4s are shown for the variational singlet, or for the perturbation theory approximations. The residuals are defined as the
orthogonal part of each approximation with respect to the variational singlet. Up to zero order, a big residual stays in the component
associated to (S,,, not reduced by the higher order approximations. Coupling terms with the neighbouring modes are thus very poorly

modelled by the non-secular perturbation theory.
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Singlet S43
Variational & isolated multiplet solutions
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Born: residual

Density: residual

Density+Secularity: residual

PLTIY b SV N, o A . — )
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Figure 11. Comparison between three zero-order approximations obtained with various perturbation theories (from front to back, the three
first traces) and the solution obtained with the variational method (the last trace). The residuals are defined as for Fig. 10, and the absolute
value of their components in the SNREI basis (S;5—S4s is plotted. The third trace is the residual obtained using the isolated multiplet Born
approximation, the second one using the zero-order perturbation theory with a density renormalization, and first one using the first-order
secular equation, after density renormalization. The largest residual in the third trace is in the ,S4; components, due to the non-orthogonal
perturbations induced by the coupling of this mode with the neighbouring modes. It is first reduced by the density renormalization, and then by
the secular equation. Finally, in the first trace, the residual is of order as that in the neighbouring modes (S4; and (S,,.

the (n + 1)th-order eigenmode perturbation. Note that the
direction cosine between these approximations and the
variational solution are for the zero, first, second and third
order equal to 0.9678, 0.1016, 0.9989, 1.0006, respectively.
The same accuracy is obtained for the eigenfrequency
estimation, and results are shown in Fig. 13. We see that
both singlet splitting effects and multiplet mean frequency
shift are determined, with a third-order approximation,
within a relative error of 1072 per thousand, that is an error
a hundred times smaller than the measurement error of the
Earth’s eigenfrequencies.

The same improvements are obtained for the determina-
tion of both eigenfrequency and eigenmodes of multiplet

Singlet 0543
Residuals between variational and
perturbation theory
density + secularity renormalisation

adhtad

oS26. Nevertheless, it is necessary to use here quasi-
degenerate perturbation theory, i.e. to start from a
supermultiplet including both S, and T, modes. All
coupling terms with the other neighbouring toroidals and
spheroidals are thus treated by the higher order
perturbations. Already to first order, the improvement
compared to the previous results of Fig. (9) is spectacular,
as shown in Fig. (14), where now notable differences
between the two solutions are distinguishable, and the
higher orders allow us thus to obtain an accuracy even
greater than for the case of ;S,3.

Seismograms can of course be computed using these
eigenmodes and eigenfrequencies and expressed as a

Isolated multiplet
15t order

order

3rd order

v

0538 0539 0540 0541 0542 0543 0544 0545 0546 0547 0548

Figure 12. Convergence of the eigenmode to the variational solution for perturbations up to third order, obtained using the secular equation
and density renormalization. The last trace is the first one of Fig. 11, where the corresponding variational solution was shown. For each new
order, coupling effects within the neighbouring modes are well modelled by higher order perturbations. Residuals decrease regularly and the
approximate eigenmode becomes more and more parallel to the variational one. Direction cosines for the approximations are respectively
0.9678, 1.016, 0.9989, 1.0006, which shows that already to third order, the eigenmode is modelled within a relative precision of 1073 and less.
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Figure 13. Comparison between the eigenfrequencies of the 87
singlets of ;S,; obtained with the variational method and those
obtained with the third-order perturbation theory in per million for
model M84. No differences bigger than 10> per thousand are
observable in both splitting and shifting effects.

summation of spherical normal modes, oscillating with the
spherical frequency ©{®, and having their amplitude slowly
modulated with time by the effect of lateral heterogeneities
(Dahlen 1987). These modulations, which lead to both
frequency splitting or shifting and amplitude anomalies, can
thus be modelled using higher order perturbation theory
within an relative error smaller than 1073, smaller than the
usual observation error for example, and likely smaller too
than the effect due to physical dispersion or due to the
non-quadratic Coriolis effect. We thus think that the higher
order theory is a fast and sufficient accurate way for solving
the normal mode equation of a laterally heterogeneous
earth, or for computing seismograms for all realistic earth
models. Note however that the accuracy of the eigenmodes
can be insufficient if seismograms are computed without
removing the ‘fast’ spherical oscillations with frequency
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Figure 14. Comparison between the first-order perturbation for the
supermultiplet 4T,5—(S,¢ and the variational solution. Theory used
here is the quasi-degenerate perturbation theory with secular
equation. Most singlets of (T,5—S,¢ have now converged to the
variational sotution.
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Table 3. Comparison of the CPU times required in the variational
method and in the higher order perturbation method on the
CONVEX C1. The spectral method was not used in the computa-
tion of the matrix products, which were performed classically
(matrix size: 952). The second comparison is representative of the
required CPU time if one wants to take into account coupling
effects of the ten nearest modes. CONVEX optimized assembly
routines were used for EISPACK path TRED2/TQL2.

| Computation of all singlets of the Sy,-S,, eigenproblem ¢ l

Numerical Path CPU (Convex C1)

Perturbation: 374 order (Analytical) 308 s
Variationat: RSG path ( Cholesky) 1754 s
Variational: TRED2/TQL2 path (Analytical) 736 s

® With analytical or numerical density renormalisatio!

[Compumion of all singlets of (S, coupled with (S;.- S, * ]

Numerical Path CPU (Convex CI)

Perturbation: 37 order 28s
Variational: TRED1/BISECT/TINVIT/TRBAKI path 192s
Variational: TRED2/TQL2 path ( Mean time per multiplet) 66 s

¢ After density renormalisatio

w'?, as it happens if one sums directly the singlet’s decaying
sinusoids in the frequency domain.

From a computational point of view, the higher order
perturbation theory leads to computer codes easily
implemented on vectorized computers (Cray or Cray-like)
or on highly parallelized computers (as CM-2 connection
machine), which are from two to six times faster than
eispack routines (see Table 3 for an accurate comparison).
Note in particular that this method is six times faster than
the variational method if one wants to compute a set of
fundamental modes coupled with a given number of
neighbouring modes, that is for block-band diagonal
interaction matrices.

6.5 Coupling for a model with sharp structure

We want to conclude by testing the perturbation theory for
a model with lateral heterogeneities sharper than those of
M84, for example for the shear velocity model of M & T
(Montagner & Tanimoto 1989), for which the coupling
between fundamental and overtones is no longer forbidden,
the maximum angular order s being now s =15 (Fig. 15).
The target modes ,S,5 and (S, Will now be coupled with all
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Figure 15. Map of shear velocity lateral heterogeneities at a depth of 58 km for the model of Montagner & Tanimoto (1990). Extremal values
reach +3 per cent of the spherical mean shear velocity. Note the very good correlation with surface tectonics and the well-determined odd

angular orders of lateral heterogeneities.
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Figure 16. Coupling strength diagrams for the spheroidal
fundamentals ,S,s and (S,¢ for the M & T model. The coupling
between modes of different polarities increased compared to Fig.
1(a) and (b). The selection rules still do not forbid coupling with
overtones, which appear to have a coupling strength parameter €
between 1072 and 1073,

fundamentals modes, and with overtones ;S;s, ;S;6, 1517
5815, 2816, 3512 and 1Ty, (Fig. 16). These modes are weakly
coupled with the target mode S,s, with a coupling strength
parameter € between 1072 and 107> for the more strongly
coupled overtones. A second big difference with the
coupling diagrams for model M84C + L.02.56 is that coupling
between modes of opposite polarities is stronger. This is due
to the odd part of lateral heterogeneities, which is stronger
in the M & T model than in the W & D model.

The coupling for these modes increases and the energy
lost is three times greater than for the W & D model.
Nevertheless, the comparisons we have performed show that
perturbation theory always gives a good accuracy with
respect to variational theory. We have plotted in Fig. 17 the
frequency splitting and the escape of energy from target
multiplet ,S,5 induced by the M & T model. Crosses are the
spherical frequencies of (S,s and ;S,,. The coupling pattern
shows extrema of eigenmode coupling. Two are related to
the most split singlets. Their eigenfrequency is thus
relatively distant from the other singlet frequencies, which
leads to a decrease of the effective coupling effects. As
expected, another minimum of eigenmode coupling is
observed for singlets which are weakly split, and thus close
to the central frequency of ,S,;. On the contrary, we
observe a maximum of eigenmode coupling, associated with
a high escape of energy from the target mode, close to the
central frequency of ;S,,, which can be explained as a
resonance effect with this mode. Even with relatively small
coupling, the overtones may thus affect the coupling pattern
of fundamental modes. Nevertheless, we think that this
coupling is still underestimated using M & T model, which
does not have very small-scale lateral heterogeneities, and
think that the effect of all small features of the Earth such as
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Coupling effect gSpg : 3™ order approximation
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Figure 17. Frequency splitting and remaining part of amplitude in the térget mode S, for the M & T model. The ‘non-isolated’ character of
this mode increases by an order of 3 compared to the W & D model. Note the minimum of eigenmode coupling for singlets near the mean
frequency of ,S,s (left cross) and the maximum of coupling due to a resonance effect with overtone ,S,,.

trenches, ridges or even hotspots (Neele et al. 1989) will
increase the coupling strength of overtones. For example,
unpublished results show that the coupling coefficient
between ,S,s and ;S;, due to lateral heterogeneities of a
Aleutian trench model can be, for this trench alone, as large
as that of M & T model. However, even for such sharp
models, the higher order perturbation theory is still
sufficient to compute realistic and accurate normal modes
and seismograms.

7 CONCLUSIONS

The method presented in this paper gives a very convenient
and fast way of computing multiplets for an earth model
with sharp or smooth lateral heterogeneities. Its first
advantage is due to the use of higher order perturbation
theory, which leads to a faster way to compute normal
modes than with the variational method. Non-quadratic
effects due to rotation, which lead to a doubling of the
dimension of the eigenproblem for the variational method
can be easily taken into account without any noticeable
increase of the computation time. This theory allows us to
compute modes along a given dispersion curve, with the
same number of neighbouring coupled modes for each of
them, and without neglecting coupling with the other
dispersion branches. A future paper (Lognonné, in
preparation) will generalize the present theory in order to
introduce anelasticity and physical dispersion (Lognonné
1989), which will avoid the overestimation of coupling
effects between modes with different Q ratios using any
perturbation theory starting from an elastic reference earth
model.

Its second advantage is due to the use of the spectral
method, which requires no Glebsch—-Gordan coefficients.
However, as the interaction matrices were needed in this
paper in order to perform the comparison with the
variational method, and as only a few neighbouring modes
were taken into account in the coupling terms, we have used
the spectral method only for the computation of the
interaction matrices, and performed thus all matrix products

classically. Nevertheless, this method will reduce the
number of computations even more if used directly in the
computation of terms such as A|u). In this case, the
number of computations needed by the higher order
perturbation theory will grow as #max’, while the number
of computation for the variational method grows as ¢max®.
This opens new prospects for fully coupled mode
computations, particularly in order to model the effect of
sharp tectonic features, crustal and interface variations more
precisely and also in the inversion of normal modes or
long-period surface waves.

More generally, the discrete Legendre transformation
based on generalized Legendre functions and on symmetry
subspace decomposition formalizes the optimization of
spectral methods used in atmospheric modelling. Such
methods will be helpful in solving global tensorial field
problems, which appear in the fields of Earth magnetism or

magnetohydrodynamics and .in the field of global
circulations.
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Appendix 1: Operator P, S and T and the S.N.R.E.I modes

We briefly recall the property of the S.N.R.E.I modes with respect to the three symmetry oper-

ators P, S and T, summarized in Table 1. For the operator P, we easily find, starting from its

definition in Part 3.3 that, for spheroidals modes, we have for the horizontal (a=+1) displacement

components:

P(u,™) = 74 1% V(1) Y o™(x-0, $+7)
= 7¢ Q% V(r) (-1)™ Py o™ (-p) exp(-img)
= 7 2% V(1) (-1)€ Pgom(p) exp(-img)
= (-1t ugom,

and for the vertical ones:

Po(uy™) = yg U(r) Yoo (x-6, $+7)
=9 U(r) (-1)™ P,om(-p) exp(-im¢)
= 72 U(r) (-1)¢ Py (u) exp(-im¢)
= (-1 ugom,

which means that

Pu=(-l)t u.

For toroidals, we have in the same way, for the horizontal components :

Pa(ug™) = -a i vy 0% W(r) Yy om(n-6,¢+7)
= -a i 7p 0% W(r) (-1)™ Pyom(-u) exp{-im¢)
= - i 1g 00 W(r) (-1)¢ Pgom(ps) exp(-imé)
= (-1)t+1 o,

which means that
Pu=(-1){* u

For the operator T, we find easily, for the spheroidal displacement, for example for the horizon-
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tal displacement
T (ug™) = (-1)* 74 0% V(r) Yo" (6,4)
= ¢ 09 V(z) (-1)® Py-om () exp(im)
= ¢ 0% V(r) (-1)™ Pp=™(u) exp(im¢)
= (-1)m gy m,
Doing this on the same way for the vertical component, we finaily find that
Tug™ = (-1)™ vy ™,
In the same way, we find for toroidal modes that
Tug™ = (-1)™ up ™,
The free modes u are not eigenfunctions of T. The eigenfunctions are easy to find and are
simply:
Bog™ = 1/V2 (ug™ + (-1)™ ug™)
Cog™ = i/V2 (ug™ - D)™ ug ™),
for eigenvalue +!,
Bg™ = 1/V2 (ug™ - (-D)™ ug™)
Com = i/V2(ugm+ (1) ug™),
for eigenvalue -1.
Finally for the operator S, we find gasily for the B, and ¢, functions defined above:

SH(Byy™) = % (~-1)*( ug-om(r,0,-¢) £ (-1)™ ug"=(r,0,-4))

= 1/V2 (-1)= ( sg-om(r) Pg-em(6) exp(img) £ (-1)™ sp"*"™(r) Py *"™(6) exp(-im¢))
= 1/V2 ((-1)™ sgem(r) Y@ (8, 9) 57 ™(r) Y o ™(8,4)
and thus that for spheroidal modes:
$p73™ = 54%°™ and 5p"* M = 5™
so that
SB, =t B,
and that for toroidals:
§p7%™ = - 504%™ and 5™ = - 59T
so that
SBy =% By
We find the same resuits for ¢, i.e. that
S¢, = 7 ¢, for toroidal modes

S¢, =t ¢, for spheroidal modes.

Appendix 2: Perturbation of the singlets

In order to determine the projection of all ntd order perturbations, let us recall that the 2£+1
aspherical singlets with the same w, (%) frequency verify the two relations (2.1) and (2.2):
<ul - w,2K +w,B+ A]v>=0, (2.1)
(2.2)

Let us substitute the bra and ket <u| and |v> by the power series (17) of section 4.1 and expand

<ulK - 1/(w, +w,) Blv> =2 <ulv>=§,,.
(2.1) into a power series of ¢, noting that, for two different singlets v and u, and since wgo) and
w‘(,o) are equal

~w,(0) -w, (0
L By, (wy ~w, M) (w, ~wy )B.

-w,2K +w,B+A=A,- w201 + 6H - (w,? - w, (O )K - - —
v u

v u

If (2.2) is verified to the nth order,
<uK - 1/(w, +w,) Blv> =0+ o(e"),
expression (2.1) can thus be written as

(w, ~w, (0 Yw, -w, (0))
w, +w

<ul -w,2K +w B+ Alv> = <u|A, - w,(,o)zl + SH|v> + <ujB[v> + o(en+1),

v u
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We then have, remembering that [0,v> and |0, u> are eigenvectors of A,
<tf -w,2K+w,B+Ajy>=0

+ <u,0|8H|0,v>

+ <u, | PSH|0,v> + <u,0[§HA L, v> + Al

+ .

+ <u,n| PEH|0,v> + <u,0|6HAIn, v> + AL,

+ o (2.3)
where &2 is the projector into the subspace S, and r—¢” the projector into its orthogonal, and
where
Al = <u,l|A°-w£°)2]l,v> + <u, |[(7—P)6H|0, v> + <u,0j§H(7 L)1, v>,

A2, = <u l[§H|Ly> + <u,2A -0 1, v> + <u, 1|A,-w{P%2, v>
+ <0, 2(7—P)SHI0,v> + <u, 0l5H(7—P)2,v> + 6,0, 6w, <u0] 2—:2@0.»,

A3, = <u,2l§H|1,v> + <u, l|§H|2,v> + <u,3|A°-w,(,°)2| 1,v> + <u, lle-w£°)2|3,v>

+ <u,2le—w‘(,°)2|2,v> + <, 3|(7—P)SH|0, v> + <u, 0| SH(7 )3, v>
) §
b (5,0, By +8 g 8,0y -8 0y 6,y ot LY

u-1vy - 0
w, )

ot

0,v>

) <u.0| ﬁwB(O) |
£ v

+ 61wy 6,wy (<, %L(O)lo,v>+<u,0| 2(”%| 1 v>). (2.4)
v v

Using relation (21) of section 4.1 and the following property of the first order perturbation
(from (23),(24) of the same section)
<u,0{H]n,v> + <u, lIAo—w,(,o)lln, v> = <u,0|6HSn,v>,

and defining the operator G, as

1
G, = 0,k><k, 01,
) ook
k#v

1,2,3,

we obtain, after some algebra, the following expression for A

Alu\v = <“7016H Gv 5"(0, v>,
Az, =<u0§HG, §H G, §H[0,v>
+ <0, P6H G, §H|0,v> + <u,0[6H G, §HS|1,v> + <u, l|PSHA 1, v>

B
+ 8w, §w, <u,0f mlo, v>
A3, = <u,0I6H G, §H G, §H G, §H|0,v> + <u,l|P6H G, §H G, §H|0, v>
+ <u,0l6H G, §H G, §HSL|l,v> + <u,2lP6H G, §H|0,v> + <u,0{6H G, §HS2, v>
+ <w,l{P6H G, §HA 1, v> + <u,2 PSHA 1, v> + <u, || PEHA)2, v>
B B
- w2, 8wk [<u,lf + <u,0i[6K - 2—(‘)‘@-]]0,[[6!( - W}IO, v> + |1, v>]

8w, +6,w, B
+ (Slw,,&zwud-élwu 620)' —Slw“ Slwv —zjwv())—) <u,0| mloy v>
+ 6wy 6,0y (<, 1] —B—{0,v>+<u,0f —B—|1.v>) (2.4)
1¥v“1%u ) 20)'(0) > L] Zwvlo) 1 .

In the same way, we can express (2.2) in terms of the power series of ¢, which gives

<uly> = <u,00, v>
+ <u,1[{A0,v> + <u,0|A1,v> + B,
+ o
+ <u,0{An, v> + <u,n|[A0,v> + B,

+ oy (2.5)
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where
B
Bl ., = <u,0|6K|0,v> - <u,0 0, v>,
uy ' l | Zw‘,(o)l

B2, = <u,I|l,v> + <u,06K]1, v> + <u, 1|§K|0, v>

S wy +6,w,

B B B
- <u,l TO,V> - <u,0l Ol I,v> + <u, —)‘O,v>,
<.l 2wv° | ! 2(:.:,,0)l 2wv(°) o 2w,(,° ‘

B3, = <u,2|1,v> + <u,1{2,v> + <u,0[6K|2,v> + <u,2|6K]|0,v> + <u, 1{6K]1,v>

8w, +6,w, B B (6w, +8,w, )2 §,w, +6,0, B
+ 2(‘),,(0’ (<uv ” zwvzoj ,0,V>+<ll,0' zwvloj | ],V>) + ( 4w£0) 2 zw‘('o) )<|l,0| _mwvo '0, >,

- < ﬁﬁﬂo,w - <, 2—:(07|2,v> -<ul| Z;%Y“’b (2.6)
v Y Y

Equating each term of order e® for (2.5) and each term of order e™*! for (2.3), we then obtain
the two equations
<u,n|0,v> + <u,0]Fn,v> + BY), =0,
<u,n|PH0, v> + <u,0|HAn,v> + A}, =0,
which give the expression of <u,0{n,v>, using
PHI0,v> = §,w?, 0,v>.
We then have
1 no_ §,wt,
Swi, -6,wd, W S wl, -6 Wiy

<u,0in,v> = BY,. 2.7

In the case where v is the same as u, we note that the n+1th order eigenfrequency associated to

the n*h order eigenmode approximation verifies

- w,(,“"'l)2 K|vin)> + w‘(,"“) Blv{n)> + Ajv(n)> = 0 + o(e"*1). 2.8)
so that

<v(@)] - W2 K 4 W"UB 4 Alv(R)> = 0 + ofen*1),

whenever

<vIK - 1/(2w,) Biv> = 1 + o(en*1).

Finally, only the relation (2.5) are needed, and assuming that the phase of the eigenmode ( which

still remains unconstrained) is such that <v{0,v> is real. We have thus, equating each term of

order " to zero:

<v,0in,v> = -1/2 BY,. (2.9)
Let us now look for the secular terms. Using the secular operators & and A"

K =PH+§HG, sH+SHG, SHG, §H + ... 19,

. . B
N = P'[1 + G,6H + G, 5H G, 6H + .. [I+SK- m]{l + G 5H + G, 6H G, 6H + .19,
v
one sees clearly that (2.3) can also be written in the form:
<0l ~w,2K+w,B+Alv>=0
+ <u,0|#10,v>

+ <u, | PEI0,v> + <u, 0 F AL, v>+ L,

+ .
+ <u,n|PE0,v> + <0, 00 F L n,v> + AT,
+ (2.10)

and in the same manner, that (2.5) can be written in the form:
<ulv> = <u,00,v>

+ <,0|PMNL > + <, 1|FM0,v> + B,

+ .
+ <u,0|PMn,v> + <u,n| ¥ A0, v> + By,
+. (2.11)

ey
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Maodelling of the Earth’s coupled normal modes

where 52 and BL2 are now defined as
Jﬂluv =0, Q!uv =0,

B
A, = < | PSHA L v> + 5w, 6w, <u,0| mlo,w,

B2, = <u, | AL, v> + <u, 015K A L, v> + <u, 1| P5K|0, v>

Sw, +8w,
Zw,(,o)

In the same manner as before, we see that, if |0,v> is solution of the secular equation

#10,v> = 5w, M0, v>,

we retrieve the same relation as (2.7) and (2.9), equating each term order ¢ in relations (2.10)

- <u,lj %%10» - <u,0 fj%u,b + <u,0| 2:(0)}0, v>.
v v v

and (2.11) to zero. The projection of the first order perturbation is now zero, which leads to the
following expressions for .7, and &5,

Aty =0, 81, =0,

S w, +8w,

0
2w,

B B
2 = 2 =
A uv Slwv 51“’u <u,0f WIO'D' @B uv <u,0 WIO‘V>'

Ay = - 6,02, 6,04, [<u,l| + <u,0(6K - 2—:@7110,[[51( -ﬁ’@-no, v> +[1,v5]
v v
8wy 6wy B
+ (61w,62wu+61w“ 62(4)' -61w“61wv 7&0)_) <u,0f W‘K), v>
+6,w, 6 w,(<u II—B-IO v>+<u, 0 B |1, v>)
Wy 0%y " zwv(o) ] Y m .
By = - (602 + 603, [<wll + O[6K - —DliGL 15K - or)0.v> +11,v>]

51(4)“+81va B B
Zw@ (<u, 1 2“)‘('0),0,v>+<u,0| Z_w,(,—o)“’b)

(6w, +6,w, ) b,w,+6,w,
4w‘(,°) 2 ZwS,U)

B
)(U,O[ m [0, v>

Appendix 3: Density renormalisation

Let us suppose that the aspherical density is non zero in YV, reference domain of the SNREI

model. We define the renormalised ket as

lu,> = 2 Ju>.
lpo

It is quite obvious that the density-renormalisation permits to retrieve the inertial terms of the
reference model, such as the inertial Coriolis and kinetic terms. For the expression of the opera-
tor, instead of expression (3), let us start from its eulerian form (Valette, 1986), which may be

directly used if all discontinuities of p are included in those of the reference density field p, :

(viAlu) = J. {5.'1'(‘% (d-1)iikl 6.-1-(,,-)“ + !lis_lv;—& N2 }dV _
v

IGmd(ﬂu)).Grad(ﬂV°)) dv +J [p}(g.n)(u.n)(v'.n) ds. (3.1)
4G £

E ]

where 6, T(u) , N2 are respectively the eulerian stress-tensor perturbation and the Brunt- Vaissala
parameter, equal to

5. T(u)ii = dikID, u; +p g.u g,

N2 = ( gradp - p? (d~V)f g ).8.

The first part of this expression represents the perturbation from the elastic state, the second the

entropy perturbation and the two last ones the gravitational perturbation. Note that every case of

389
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390 P. Lognonné and B. Romanowicz

non-positiveness of the operator A is due either to elastic unstability, i.e. a non-positive definite
tensor d or a negative Brunt Vaisala frequency, a condition for convective unstabilities, or a [p]
g.n, which is a condition for gravitational instabilities of interfaces. Let us express relation (3.1)

with the renormalised function u, and v_. We obtain for the different parts:

Renormalisation of the elastic perturbation

6, T(w)ii = UKD, [’ﬂo/p(ur ).] + [ppyg.u gl = ,po/p(d”“'Dk(ur).-I/Z(u,), Dy Ln(p/py)} + po8.u, 84

which finally gives for the elastic perturbation
'seT(u)ij (d-l)ijkl SCT(V' )kl = ‘seTr(ur)ij (dr-l)ijkl 6eTr(vr‘ )kl'
where the renormalised stress and stiffness tensor are

diikt = Po giju
T p )
5, T (u)ii = d,‘i“‘{ D,y % uleLn(p/po)}+ PoB-u gl

Renormalisation of entropy perturbation

After substitution, we get the term

po/p (gradp - p? (A~ g ) = ( gradp, - pg? (d, "V 8 ) + pegrad(Ln(p/py))

which gives for the entropy perturbation

u,.gv,'.g
'3 2

where N2, is the renormalised Brunt Vaissala parameter given by

N2, = ( gradp, - p? (d; "V 8 ).8 + p,8rad(Ln(p/p,)).8 -

N2z,

Renormalisation of the boundary perturbation

The renormalised boundary term here simply becomes.

L]
[pgl g2 u.n v, .0

Renormalisation of the pre-stress

The pre-stress, which appears in the tensor d, is simply renormalised by a multiplication by p,/p.
Let us define the renormalised pre-stress as

o4 = p/p o,

Starting from the equilibrium equations of the reference and aspherical states,

Do + p, 8,1 =0

Dol +pgl =0

we obtain , multipling by p,/p,

Dy(e,ii - Uoij) - 0,4 Dy(Ln(p/py)) =0,

which gives to first order for a hydrostatic reference model

Di(0, - 0,1i) + p, Di(Ln(p/p,)) = 0,

Renormalisation of the redistribution potential

There is no simple way to renormalise the redistribution potential. Nevertheless, the effect of this
renormalisation is a second order effect and may be neglected, except for modes with very low
angular order. In this case, since:

Grad(¥(u,)).Grad(¥{(v" ) . '
JE e dv J.vGrad(tl:(u,)).pv LAV
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Modelling of the Earth’s coupled normal modes

one has to take into account the perturbation to the mass-redistribution force, which can be

written as :

grad(¥(v,)) = ,po/p grad (yy(v)) + &¥,

where ¥, and ¥v_) are respectively solutions of the spherical and aspherical redistribution
potential equation:

V2h(v) = 4G div(p,v),

Vv, ) = 4G div(pv,).

Using all these expressions, neglecting the perturbation of the mass-renormalisation forces, the

final expression of the renormalised operator A_ is thus given by

<vlA |u> = [ {‘SCTF(“).lj (dr-l)ijkl 6.T,(v' Yo+ u. gvz. N,? }dV
A\

Grad .Grad *
) J ra (V’o(U):“Gra XU J o e mua)v B) i (32).
E £

,

Apppendix 4: Error Analysis and perturbation in the product space

Let us first use the Krylow-Weinstein theorem (Dautray & Lions, 1985), valid for a self-adjoint

operator A, as in the case of the elastic case.

Krylow-Weinstein Theorem

For every |v> included in the definition domain of the operator A, let us define the real a
and £ such as

a = <v|A|v>/<v|v>,

B = V<V AYv>/<v|v>.

Then the operator A has a real eigenvalue A, such that

a-Vp-at <X <a+ Vpi-al

We can apply this theorem for a non-rotating Earth, and consider an nth order approximation

for the solution of the renormalised equation (34). Using (19), we obtain

- W™ |v()> & ALIv()> = |n,r,v> + ofent]) | (4.1)
and using the Krylow-Weinstein theorem, we have the approximation a for the quadratic fre-
quency of singlet |v(t)> by definition the Rayleigh quotient:

a= wz‘(,") + <v(?|n,r,v>/<v®)|v(d)> = u)’s,"”) + o{en*1), 4.2)
i.e. the n+1th order approximation of eigenfrequency. As A, is a self-adjoint operator, we have
for the second term $2, using its definition given in part 4.3 and equation (4.1) :

82 = (mz,(,"))2 +2 w’g‘) <v)n,r,vs/<v(M|y(n)> + <v r,nln,rv>/<vin)|v(n) >

which finally gives, for the error bound on quadratic eigenfrequency a

VBizaz = v <v,r,nin, r, v>/<vi [v{Rl> - <v(|n,r, v>2/<vin}vin) 52

which yields, using <v(n)|v(n)> ~ |
VvBi-at = vV <v,r,njn,r,v> - <vl[n,r,v>2, 4.3)

We note that the error is the norm of the projection of the remaining ket [r,n,v> on the orthogo-

nal of |v(n)>,
In the non renormalised case, starting from

- ™ KIv®)> + Alv()> = n,r,v> + o(en*]) (4.4)

391
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392  P. Lognonné and B. Romanowicz

we have, after multiplication by K(1/2):

- w2 K12)vin)> + A K1/2)v(0)> = K1/2|n, 1, v> + o(en*]),

which proves that the expressions for a and # are the same to order n+l.

Let us now generalise this result in the case of a rotating, elastic Earth. Instead of using the
second order equation
~w?|v>+ wBlv> + Alv> =0, (4.5)
we shall use the equivalent first order equation written in the product space (Valette, 1989) of

generalized kets |v>

1/wAl/Zy
. .
This equation can thus be written as:
wlv> =H|[v>, (4.6)
where H the hamiltonian associated to the operators A and B, defined as

0 Al/2

H= (4.7)

Al/lz B

Here Al/2 is the square root of the operator A, defined if no unstable modes are included in the
spectrum of A. It can be proven (Valette, 1989) that the hamiltonian is self-adjoint, and thus all
properties and results of the perturbation theory and Krylow-Weinstein theorem applications can
be done in the product space. For exemple, for any n*h order approximation of the renormalized
quadratic equation (4.5):

- W2 v(0)> & W™ Biv()> 4 Ajv(R)> = 0,1, v> + o(en*1),

we can define an nth order approximation in the product space ll’_(")> and its associated residual

In,r,v> as

I/w‘(,n) AY/2,(n)
|l(n) > =

v(n)

jr.n,v®)> = 9

s

~l/w£n) r(n)

where r‘(,") is In,r,v(0)>,

This nth order approximation will verify equation (4.6) to within the residual:

ws,") (vi?)> = H|v(®> + [n,r,v> + o(en*1).

We see that the n*h order perturbation of frequency is now obrained by the projection of the
residual part on the zero order |v(0)>:

<1(°)|n,r,1(“)> =- <v(°)ln,r,v>/w‘(,") .

The Krylow-Weinstein theorem can now be used, with relations equivalent to (4.2), (4.3) and
(4.4), but with the product space inner product. We have thus for o

a = <v(®)|H)v(®)>/<y()|vin)>,

which gives, using (4.7)

as= w‘(,") - <v()ir,n,v>/<v()|v(n)>,
and for B

B = <v(a)|H3|v(n)>/<y(m)|vn) >,
which gives

B2 - a? = <v,r,nin,r,y>/<v®|v()> - <v(@lin,r, v>2/cv(n)|vin) 52,
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Modelling of the Earth’s coupled normal modes 393

These results can now be expressed in the usual space, using

<vm)vin)> = <v(Mvin)> 4 <vin)| Alvin)> /w2,

which gives, using equation (4.4):

<v(n)jv(n)> = 2 <vin)jvin)> - <v(")|B|v(")>/w‘(,") + <v(")|r,n,v>/w,(,“)2 ,

and thus, if <v(®)|v(n)> ~ |,

a = w® + 520M /20 4 o(en+1)

which is nothing else but the squared root of the n+l order quadratic frequency. In the same

way, the Krylow-Weinstein error may be expressed as :

VB2-a? = v 2¢<v,r,nin,1,v> - <v(®@in,r,v>2 .
In this case, this error is thus bigger than those defined in the quadratic case. In the non-renor-

malised case, all relations may be applied, to the same order.

Appendix 5: The transformation method

The Legendre forward and backward transformation of a tensorial field U of order N are given
by

Backward transformation

m=+M f=£max

Un (s, 9;) = Z exp(-imé;) Z Ugm Pyam(y), (5.1)
m=-M t=|m|

Forward transformation

i=nmax
Upm = ) w PemGs) D explimdy) Un(u ;) 52
i=1 j

In this appendix, we shall give an optimised discrete, generalized Legendre Transformation
based on a direct decomposition of the field U into the four symmetry subsets S,,,,. Let us take

a field U in one of these subsets, with associated eigenvalues n,, 7. After P reflection:

m=+M
Un(eppdyam) = ) explimdy) ) (-DE Ugmm Pym(i)
m=-M (4
=1, Un(n,4;)

and thus
Ugnm =, (-1)¢ Uyom, (5.3)
After T reflection:
m=+M
(1P URG) = ) explimd) ) ()™ Upm pemis)
m=-M £=|m|
=M U"(#i,¢j)
and thus
UtN"‘ =n (-1)™ Ut'"'m'. (5.4)
The intrinsic symmetries are very important to provide an optimisation of the discrete transfor-
mation. We start from equation 5.1, using the symmetry of Gauss points, the symmetry relation
of the generalised Legendre functions:
Pom(-py) = (-1)8+m Pyom (i), (5.5)
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and the property of the Fourier Transformation:

) Cm exptimy) Uniu,8) = i ) explimey) UnG, )
j j
Expression 5.1 then becomes:
i=nmax

Ulm'l'l = w; (-l)t Pt-nm(“l) ﬁ Zexp(lmqﬁj) Un(-“i’¢j -ﬂ')
i=nmax/2 j
i=nmax
+ w; Ppam(y,) -]M- Zexp(imqﬁj) Un (5, 4;)
i=nmax/2 j

but, using the P and T reflections:
Un (-, 45-7) = n, U (g, 45) = (-1)* n, 0, Un* (4, 4;)
using the functions
AP () = ( Perm(p) + (-1)™E 0 ny Prm(y;) )
B (p) = ( P () - (-1)™E g ny Peom() )
we finally have the expression:
i=nmax
Upm= ) W ARG & ) explimd;) Reall UnGu, ) +

i=nmax/2 }
i=nmax

Wi Bg"™ (1) ﬁ Zexp(im¢j) Imag{ U™ (1;,¢;))- (5.6)
i=nmax/2 ]
Thus, we note that only components for positive n and m index are necessary. For scalar fields,
the number of computations is divided by two, only Ay or By being non zero. This is the sym-
metric/antisymmetric decomposition used in the scalar Legendre Transformation (Butei, 1984).
The backward transformation optimisation uses the same symmetry. Starting from equation 5.2,

we have for the real part of UP:

Real( Un(;,¢;)) = 1/2 { Ui, ¢5) + U™ (1, 4;))

m=+M £=fmax
=172 Z exp(-img;) Z Ugnm pyam(y ) 4 Uyn-m® Pyom(y;), 5.7
m=-M I=|m|
but
U = nymy(-1)bm Ugom,
and thus
m=+M ¢=¢max
Real( Un(1;,4;)) = Z exp(-im¢; ) Z Ugmm 172 Ag™™(;). (5.8)
m=-M t=|m|
For the imaginary part, we easily find the same expression, with B instead of A
m=+M £=¢max
Imag( U™(4,45)) = Z exp(-im¢; ) Z Ugmm 1/2 Bgm™ (). (59
m=-M ¢=|m|

Here also, the computation is necessary for positive index terms Un™ only in the half spectral
space, these terms being respectively hermitian or antihermitian. Using the symmetries of the

functions A and B,

A o=+ (-1)0m g n AgNM,
Agrm =+ (-D)bm g n, ANT,
By = - (-1)é+m g, BN,
Bymm = - (-1)&n g, BNm, (5.10)
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odd and even parts of £ are separated. For a vector, the number of computations is 3 times larger
of course and generally, is equal to (2N+1)(¢max+1)nmax(M+1) for the forward transformation
and (2N+1)(2¢max+1-M)nmax(M+1) for the backward transformation. We recall that £max is the

maximum order of the Legendre Transformation, nmax is the number of Gauss points.
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