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SUMMARY 
Modelling of coupled free oscillations or seismograms in an earth with small-scale 
lateral heterogeneities (a few hundred kilometres) is presently impossible without 
strong approximations, such as taking into account the coupling effect of the 
neighbouring modes only. Even within this assumption, first-order perturbation 
theory is generally insufficient, and variational theory must be used, leading to 
numerically heavy diagonalizations. An alternative method is presented in this 
paper. The first characteristic of this method is the use of higher order perturbation 
theory, which expresses the aspherical normal modes as a power series of 
perturbations. This perturbation theory generalizes the classical perturbation theory, 
in order to take into account density heterogeneities and secular terms by a 
renormalization technique. We show that from the third order on, the aspherical 
normal modes are computed with an accuracy a hundred times better than normal 
mode observations usually permit. The second characteristic is the use of a 
generalization of the spectral method in the tensor (elastic) case. Classically, 
interaction terms are treated as matrix products and require computations increasing 
as Cmax4, where Cmax is the maximum angular order of the modelled modes, when 
coupling is fully taken into account for an earth model with small-scale heteroge- 
neities. We show that such terms can be computed with a backward and forward 
Legendre transformation, for which computations increase only as Cmax3. This 
method is thus faster by an order of Cmax than the variational approach. It is 
promising for the study of fully coupled modes and seismic waves in a realistic earth 
including small-scale lateral heterogeneities associated with narrow tectonic prov- 
inces such as in mid-oceanic ridges, subduction zones and continental margins. 

Key words: normal modes, perturbation theory, spectral method. 

1 INTRODUCTION 

For the past five years, seismological studies have helped to 
increase our knowledge of large-scale, aspherical structure 
of the Earth. The existence of lateral variations of structure 
was first observed in the early 1960s (Ness, Harrison & 
Schlicher 1961; Benioff, Press & Smith 1961), and the first 
3-D maps of the Earth’s mantle were obtained twenty years 
later. These studies have used surface wave dispersion 
(Nakanishi & Anderson 1984), waveform modelling 
(Woodhouse & Dziewonski 1984) or arrival times 
(Dziewonski 1984). Increasingly sophisticated models, with 
additional parameters such as anisotropy (Nataf, Nakanishi 
& Anderson 1984, 1986; Montagner 1985, 1986) or 
anelasticity (Romanowicz 1989) are now available. The scale 
of the present models, developed into spherical harmonics, 
reaches an angular order of 12-15 (Montagner & Tanimoto 

1989). This first generation of tomographic models has 
confirmed the relation of tectonic features at the surface and 
deep structure in the first 200 km of the Earth. But their 
limited resolution is unable to resolve the most interesting 
smaller features such as hotspots, subduction zones, the 
convection pattern under mid-oceanic ridges and more 
generally the convective structure of the mantle, and, 
moreover, it is not clear whether the seismic inversion for 
large-scale structure is not biased by such smaller scale 
features (Snieder & Neele 1989; Lognonnk & Romanowicz 
1990). As a matter of fact, the scale length of these features 
is always less than a thousand kilometres and even if the 
number of data might be sufficient for their resolution, the 
solution of the direct problem of propagation of seismic 
waves in this highly aspherical earth is one of the most 
important restrictions for the development of a second 
generation of tomographic models. 
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The direct problem of normal modes, for an elastic 
spherical earth, was solved at the beginning of the century 
(Love 1911). The solution consists of an infinite number of 
degenerate states of vibration. Aspherical structure destroys 
the symmetries, and introduces coupling between free 
oscillations. A first approach to solve for the normal modes 
of an aspherical earth is to use degenerate perturbation 
theory, which considers only isolated multiplets (Backus & 
Gilbert 1961; Madariaga 1971, 1972; Dahlen 1974; 
Woodhouse & Girnius 1982), or quasi-degenerate perturba- 
tion theory, which takes into account coupling within a 
super-multiplet (Luh 1973a, b; Woodhouse 1983; Dahlen 
1987). Another approach used is variational or Galerkin 
theory (Morris er al. 1987; Park & Gilbert 1986). 
Nevertheless, in all cases a great number of aspherical 
parameters must be included: anelasticity, which breaks the 
Hermitian symmetry of the problem (Dahlen 1981; Park & 
Gilbert 1986), anisotropy (Montagner & Nataf 1986; 
Mochizuki 1986; Tanimoto 1986; Romanowicz & Snieder 
1988), or pre-stress (Valette 1986). All these difficulties lead 
to a large number of computations and forbid the use of 
variational or Galerkin methods for the modelling of 
seismograms in an aspherical earth with small-scale 
heterogeneities of both stiffness tensor and density. 
Different approximations are usually made to reduce the 
computations, such as assuming that only neighbouring 
multiplets are coupled (Park 1987), or using asymptotic 
approximations (Jordan 1978; Dahlen 1979; Romanowia 
1987). Especially, in the latter case, one is led to assume 
that the asphericity is weak and that the scale of the 
heterogeneities is large. 

In this paper, in order to overcome these restrictions and 
to perform modelling in a general aspherical earth, we 
propose a formalism based on higher order perturbation 
theory for the modelling of eigenfunctions, which can 
include fundamental and overtone, spheroidal and toroidal 
mode coupling without leading to a numerically heavy 
diagonalization of very large matrices. This method differs 
from other methods first by the way of computing the 
interaction matrices or the product of such matrices by a 
vector. We use a generalization of a method called ‘the 
spectral method’ (Orszag & Gotlieb 1977) to the case of 
tensorial (elastic) fields. This method is based, for its 
optimization, on a systematic use of group theory, spatial 
and time symmetries. Depending on the kind of coupling, 
the interaction of eigenfunctions will be computed in the 
spectral space of spherical eigenmodes (for Coriolis coupling 
for example), or in the spatial space for anelastic and 
anisotropic heterogeneities. Thus, all coupling operations 
due to heterogeneities of density and elasticity, classically 
treated as matrix multiplications, are faster by an order of 
emax, fmax being the maximum angular order of the 
modelled waves. We do not need Clebsch-Gordan 
coefficients or explicit development of the asphericity into 
spherical harmonics. A second major difference is in the 
way of handling the effect of lateral heterogeneities in 
density. These heterogeneities are either neglected (Morris 
et al. 1987; Tsuboi & Geller 1989), or modelled with 
first-order perturbation theory (Woodhouse 1983; Dahlen 
1987), or require a Cholesky decomposition of very large 
matrices (Masters, Park & Gilbert 1983; Park 1985). Here, 
we prove that the effect of lateral heterogeneities of density 

can be solved analytically with a renormalization technique, 
which incorporates the density into the elasto-dynarnic 
operator. The Cholesky decomposition is thus no longer 
necessary, if one uses the variational method, or, if one uses 
higher order perturbation theory, the number of computa- 
tions is reduced by half. Indeed, the last difference is the use 
of higher order perturbation theory. Up to now, expressions 
of eigenfrequency and eigenmode perturbations were either 
given only up to first order (Tanimoto 1984; Park 1987; 
Romanowin 1987), without taking into account secular 
terms, or up to second order with a first-order secular 
equation (Dahlen 1987), but without taking into account the 
perturbation of the inner-product produced by the rotation 
and density lateral heterogeneities. We illustrate the 
importance of the secular equation and generalize to any 
nth order the results obtained by Dahlen (1987) to first 
order. We thus give exact expressions of the nth-order 
perturbation of eigenfrequency and eigenmode, and use it to 
compute the eigenmodes and eigenfrequencies. 

In what follows, we first recall, for the simple case of a 
spherical, non-rotating, elastic, isotropic earth, (SNREI), 
the formalism of generalized spherical harmonics introduced 
by Phinney & Burridge (1973) and describe the symmetries 
which leave this earth model invariant. In the second part, 
we give the solution for the vibrations of a laterally 
heterogeneous spherical earth, starting from an SNREI 
model and using the higher orders of perturbation theory. 
Exact expressions up to third-order perturbations are thus 
given, by may be easily generalized to any higher orders. An 
analysis of the error of perturbation theory is also given, 
which illustrates the accuracy improvement of the higher 
order perturbation with respect to the first-order one. The 
numerical problem of the computation of splitting matrices 
for models with any scale of lateral heterogeneities is solved 
in Section 4 and the tensorial transformation method 
presented. We then give the expression of any nth-order 
perturbation of eigenmode and eigenfrequency with or 
without the help of the density renormalization technique. 
We then examine the accuracy of higher order perturbation 
theory for two examples of spheroidal modes, for which the 
coupling effects are significantly different, and compare both 
the eigenfrequency and eigenmode of the aspherical singlets 
with those obtained with the variational method. 

2 THE SPECTRAL PROBLEM OF A N  
ASPHERICAL ROTATING E A R T H  

Let us begin by recalling the formulation of the spectral 
problem for the normal modes of a rotating, laterally 
heterogeneous and self-graviting earth, which leads to 
finding the eigenfunction v, in bracket notation Iv), and the 
eigenfrequency w, as a solution of the generalized 
eigenproblem (Valette 1986; Woodhouse & Dalhen 1978): 

- w 2  Iv) + wBO I v )  + A Iv) =O, (1) 

where B, is a self-adjoint operator associated to the Coriolis 
force, such that 

Bo Iv) = 2i(P X v), (2) 

and where the self-adjoint operator A is defined, in the case 
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of an hydrostatic pre-stressed earth, as (Valette 1986) 

(ul A Iv) = {diJklDivjDku: Jv 
+ pS{v . g div(u*) - U* . Grad(v . g)} dV 

pS{v. n[u*] . Grad.Jp,)) dZ. 
- I,, 

where, in the solid part of the model 
, j i jk l  = Cijkl - pgijgkl + pgikgil + pgilgjk, 

and in the fluid part of the model 
diJkl = ypgljgkl. 

(3) 

E denotes the whole universe, SC the surfaces of 
discontinuities of the earth model, n the normal to these 
surfaces, p the density, g the aspherical gravity field, the 
gravity redistribution potential, G the universal gravity 
constant, !2 the earth's rotation vector, p the istropic 
pre-stress, y the adiabatic index of the fluid in the 
outer-core, g'j the metric tensor and Di is the Eulerian 
derivative. S{.} is the symmetric part of a bilinear form 
b(u, v) and is defined as 

S{b(u, v)} = 1/2{b(u, v) + b*(v, u)}. 

As noted by Dahlen & Smith (1975), two normal modes, 
u and v are bi-orthogonal with respect to the inner product: 

(*) = p dV(u* . v + A(v) . u*/w,w,] I, 
= (u lv)  + ( ~ I A I v ) / o n w v ,  (4) 

where o, and w, are the eigenfrequencies of u and v and 
where the bracket product (u  1 v )  is defined as 

( ~ ( v )  = p d V u *  . v. I, 
The goal of this paper is to present a method, based on 
higher order perturbation theory, which will allow us to 
solve, in a fast and accurate way, the normal mode equation 
(1) for any laterally heterogeneous earth model, including 
lateral variations in density and stiffness tensor. This method 
can be used of course for a more complicated earth model, 
including for example a pre-stress deviatoric part. We note 
however that some controversy still remains in the effect of 
such pre-stress on the expression of the operator A [e.g. 
between Biot's formulation of Dahlen (1972), Woodhouse 
& Dahlen (1978), Valette (1986) and Love's formulation of 
Geller (1988)). 

3 T H E  S N R E I  MODEL:  A BASIS  F O R  A L L  
A S P H E R I C A L  M O D E S  

3.1 RecaU SNREI normal modes 

Any aspherical normal mode can be expressed in terms of 
its displacement at each point of the volume V of the 
aspherical earth model. However, we choose to express it in 
the basis of the normal modes of a spherical, non rotating, 
elastic and isotropic earth model (SNREI). These modes, 

depending on three discrete indexes n, e, m, respectively 
associated to the spherical coordinates r, 8, 9, are solutions 
of the SNREI normal mode equation 

-0.2 lu) + A, lu) = 0, ( 5 )  

where A, is the elastodynamic operator of the spherical 
model. As rotation is not taken into account in the SNREI 
model, the SNREI normal modes ,,upm, noted as InuCm) in 
bracket notation, are orthogonal for the inner-product 

(,,Uem I ,,*Up*m')o = jv:vpo,uem* . ,,*Up*m' = S, , , ,~S~~~S, , , ,~ ,  

(6)  
where the index in the bracket product means that the 
integration is done with the spherical density po and for the 
spherical volume V,. 

In a spherical Cartesian basis, these solutions may be 
expressed with spherical harmonics and for example, each 
displacement field of a free mode ntm is given, in operator 
notation, by 

upm(r, 8, @) = Dyem(& 9 )  
where the index n has been omitted, as it will be in what 
follows. The operator D is given by 

Dyem(@ 9 )  = U(r)Yem(@ 9)e, + V(r)VIYem(e, 9 )  
- w(r)e, x V1Yem(8, 9).  (7) 

where U, V, W are functions of r which depend on n and e, 
the radial and angular orders of the mode respectively, 
Yem(@, 9 )  is the fully normalized spherical harmonic, V, the 
gradient operator on the unit sphere, e, the radial basis 
vector of the spherical Cartesian basis, e,, e,, eb, and 8 and 
9 are the colatitude and longitude respectively. 

Following Phinney & Burridge (1973), we express the 
solution in terms of the canonical spherical basis, where 
contravariant components of displacement are given by 

U* = 1/16 ( T U B  - iu*), UO = u,, (8) 

e, = 1/I6 (Tee + ieb), e, = e,. (9) 

and new unitary basis vectors are 

In this basis, using the operator D,  the displacement field u 
associated with a free mode ntm is thus 

Uem(r, 8, @) = DYe'"(8, 9 )  = YeU(r)YeO"(e, 9)eo 
+ ypQoe[V(r) + iW(r)Iye+lm(e, 9)e+ 
+ ypQop[V(r) - i ~ ( r ) ] ~ ~ - l " ( @ ,  @)e-, (10) 

where y p  and QeN are given by 

yf = V(e(e + 1))/2, QeN = V(t + N)(e - N + 1y2. (11) 

U, V, W are the same functions as in (2) and YeN"(8, 9 )  is 
the generalized spherical harmonic defined in Phinney & 
Burridge (1973). The displacement field u may be written 
with the operator components 

Uem(r, 8, 9 )  = Upmn(r,  8, @lea = Dem(r)YpQm(B, @)em, 
using summation convention on indice, u denoting the 
displacement eigenfunction of a mode ntm, D P P  the 
associated operator component of displacement, which is 
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independent of m in the basis of generalized spherical 
harmonics. For spheroidal modes, we thus have 

uefm(r, 8, $1 = ypQOpV(r)Ye*””(~, $1, 
ugOrn(r7 6, 4) = Y J J ( ~ ) Y , ~ ( ~  $1, 
and for toroidal modes, 

uefm(r, 8, $) = *iypQopW(r)Yef1“‘(@, $), 

upOm(r, 8, 4) = 0. 

(12) 

(13) 

3.2 Expression of the aspherical modes in the SNREI 
normal mode basis 

To ensure the completeness of the basis of spherical normal 
modes which will help us to express the aspherical modes, 
we shall map the volume V of the aspherical model, with 
elliptical of more complicated topography, into the volume 
V, of the spherical earth. This can be done by introducing 
some set of local mappings between the two volumes V and 
V, and leads to a new expression of (3) with all integration 
done within the volume of the spherical earth (Valette 1987; 
Woodhouse & Dahlen 1978). With this restriction, it is thus 
possible to express any displacement field \v) , defined in V,, 
in the basis of the SNREI normal mode eigenfunctions, 116) 
(where k, is &) as 

IV) = c 116) (161 v),, (14) 
kl 

where ( b l v ) ,  may be complex and is obtained with the 
spherical inner-product (6). In principle, the summation 
over 16 includes not only all seismic modes (e.g. modes with 
a period less than SSmn), but also the sub-seismic and 
secular ones. However, it is practically limited to the few 
nearest frequency modes, this restriction being motivated 
either by the relatively fast decrease of coupling between 
modes along dispersion branches, or by selection rules. 

It is now possible to define the perturbation of the 
operator A in such a way that 

(4 A Iv) = (ul A, IV), + (4 6A Iv)o (14bis) 

where 6A will now include two kinds of perturbations. The 
first one is related to the volumic mapping between the 
volume V of the aspherical earth and the volume V, of the 
spherical reference earth and can be, in practice, expressed 
only by its first-order approximation (Woodhouse & Dahlen 
1978; Woodhouse 1980; Valette 1987). On the other hand, 
the second one can be exactly expressed and is related to the 
volumic lateral heterogeneities of the stiffness tensor, or to 
the asphericity of the discontinuities, located in the 
‘geocentric’ position (i.e. after the mapping between V and 
V,). We shall now assume that all integrations are done for 
the volume and density V,, p,, and thus forget the index , 
for the bracket products. 

3.3 Unbroken symmetries in the SNREI model and 
coupling control in the aspherid model 

Many methods can be used to control the coupling between 
SNREI modes induced by lateral heterogeneities, that is, to 
obtain a priori information on the projection of a given 
aspherical mode Iv) on the SNREI normal mode basis. One 

of the most powerful methods is to make use of all the 
unbroken symmetries of the SNREI model. 

The connection between group theory, symmetries and 
earth’s normal modes was first presented by Phinney & 
Burridge (1973), and later by Chao (1981) and appears from 
time to time in other papers. In this part, we will recall some 
symmetry properties of spherical harmonics and normal 
modes of a spherical earth, which will be used later for the 
computation of the normal modes of a general, aspherical 
earth. Each of these symmetries, which lead to the 
degeneracy of the SNREI eigenvibrations, can be associated 
with an operator, which, applied to the spherical model, 
leaves it unchanged. We will briefly recall these operators 
for the three most important symmetries, that is, for the 
spatial symmetries around the centre of the earth and 
around a plane containing the rotation axis, and for the time 
symmetry due to the pure elastic behaviour of this model. 
More details can be found in Appendix 1. 

The first symmetry is the spatial symmetry P about the 
centre of the earth or parity symmetry. At each point, it 
transforms a vector into an opposite vector located at the 
antipodal point, which simply gives 

Pu(x) = -u(-x). 

In the SNREI case, we recall in Appendix 1, that the 
spheroidal modes of order t‘ have the same parity as e: 
Put = (-lleue, (154 
and that the toroidal modes of order e have the opposite 
parity to e: 
Pue = (- l)e+lue. (133) 
This symmetry is only broken by lateral variations in 
structure which are antisymmetrical with respect to P. It is 
not broken, in particular, by rotation or ellipticity of the 
earth. 

The second spatial symmetry, unbroken in the SNREI 
case, is the orthogonal symmetry S about the meridian plane 
$ = 0, or around any plane containing the earth’s rotation 
axis. Its operator is such that 

su,(e, $1 = U,w, 2n - +), 
sU,(e, $1 = -u,P, 2n - $1, 

sa(U) = ( - i y U - y e ,  2n - $). 

su,(e, +) = u,(e, 211. - $), 

that is in canonical coordinates, 

This symmetry separates the SNREI modes into S 
symmetrical ones, [cos(m$) modes], and antisymmetrical 
ones, [sin(m$) modes]. It is broken by rotation and by the S 
antisymmetric part of lateral heterogeneities. 

The last symmetry T acts on the time variable and is just 
the complex conjugation 

Tu = u*. 

This symmetry is unbroken for the SNREI model, which 
does not include anelasticity, and separates the SNREI 
modes into real and purely imaginary ones. More generally, 
if anelasticity is introduced, as shown by Dahlen (1981), the 
T operator maps the space of permissible eigenfunctions 
into its dual space. This T time symmetry is broken by 
anelasticity, but also by rotation. 
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Table 1. Structure of the eight symmetry subspaces associated with 
the eigenspace of the operators P, T, S. In the elastic case, only the 
four subspaces with qT = 1 are necessary. (a) Structure of the real 
eigenfunctions. (b) Structure of the imaginary eigenfunctions. 

Subset I 

Subset 2 

Subset 3 

Subset 4 

P . L = i ( u ( m +  (-1)m ut -m)  

P m - L = $ ( u f m -  ( - l P  ut-m) 

J2 
Toroidal with f even 

Spheroidal with L odd 

'Ip,))T.'I.q- = -1.-1,-1 

We have thus redefined three symmetry operators, which 
all commute with the SNREI operator &, which implies 
that the SNREI eigenfunctions are their eigenfunctions as 
well. Note that, as the SNREI basis is complete, in terms of 
quantum mechanics the set of operators P, T, S and A, 
constitutes a complete set of commuting operators 
(Cohen-Tannoudji, Diu & Laloe 1980). Thus, the space of 
displacement field over V,, as well as the decomposition 
(14), may be expressed as a direct summation of the 23 
subspaces associated with the different eigenvalues for the 
three operators P, T, S, (qp, qs,  qT) = (fl, fl, fl), and 
all elements of this basis, eigenmodes of the SNREI model, 
will thus be uniquely defined by the set of six indices k, = ( e ,  
n, qp, Iml, qs ,  nT), where n is the radial order of the mode. 
(See Table 1 for a summary.) The coupling control of the 
interaction terms can now be done by decomposing the 
perturbation operator 6 A  into its P, S and T symmetrical 
and antisymmetrical parts. 

4 PERTURBATION THEORY STARTING 
FROM A N  SNREI MODEL 

4.1 Higher order perturbation series 

A direct way to solve the aspherical eigenproblem (1) is to 
use a variational or Galerkin method to calculate the hybrid 

singlet eigenfrequencies and eigenfunctions in the basis of 
SNREI normal modes (Park & Gilbert 1986; Morris et al. 
1987). The computations are, however, time consuming, 
especially with full interaction matrices for aspherical 
structure with a scale comparable to the wavelength of the 
normal modes. Another alternative is to use perturbation 
theory in various forms (Woodhouse 1983; Tanimoto 1984; 
Dahlen 1987; Snieder & Romatowicz 1988). Let us briefly 
recall this method starting from equation (l), which, as the 
brackets are now defined for the spherical density, can be 
rewritten as 

-w2K Iv) + wB Iv) + A Iv) = 0, ( 16) 

where the elasto-dynamic operator A is defined in (2), K 
and B are 

K = P/Pol, B = P/POBO, 

and w, and Iv) are the eigenfrequency and eigenmode of 
the aspherical normal modes. 

Let us expand the eigenmode Iv) and eigenfrequency w, 
in terms of a power series of a small parameter E related for 
example to the perturbation 6A as defined in (14bis). We 
shall define 
w, = w,(O) + 6 , 0 ,  + a2w, + . . . + 6,w, + . . . , 
Iv) = 10, v) + 11,~) + 12, v) + . , . + In, v) + . . . , (17) 

where the eigenfrequencies 6,w, and the eigenmode In, v) 
are of order cn. Here, w,(o) and 1 0 , ~ )  are the 
eigenfrequency and eigenmode for the SNREI model with 
elastodynamic operator &. We define in the same way, in 
terms of powers of E ,  the squared eigenfrequency: 
w y )  = w2V(O) + 61w2v + 6,w2, + a3wZv + . . . 

+ 6,wZv+. . . , 
where 

0, v 1  
(0)2 = w2 (0) 

6 , 0 2 ,  = 2w$O)6,wv, 

6,w2, = 61w,2 + 2~$~'6,w,, etc. (18) 
Expanding equation (16) into powers of E yields the 
following power series: 

n=m 

-w,ZK I v )  + w,B I v )  - A I v )  = 0 + C f,, (19) 
n = l  

with 

f,, = (& - w$O)2n) In, v )  + In - 1, r, v)  - 6,w2, 10, v ) ,  (20) 

where In - 1, r, v) can be expressed in terms of perturba- 
tions to the eigenfrequencies and eigenmodes up to order 
n - 1. The first three such terms are, for example, 

10, r, v) = 6H 10, v), 

(1, r,  v) = 6H 11, v) - 6,w2,[ (1, v )  + [ 6 K  - - 
B 

20$' 

B 
12, r, v) = 6H 12, v)  - 6,wZv 
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where 

6H = 6A + wLo'B - oLo'26K, 

More generally, the nth-order 'residual' term In, r, v) is 
given by 

In, r, v) = 6H In, v )  

P. Lognonne' and B. Romano wicz 

6 K  = K - 1. 

relations, verified by any aspherical modes lu) and Iv) of S,: 

(UI - W , ~ K  + W,B + A I V )  = 0 ,  

(uI K - 1(0, + w,)B I v )  = 112 (U - I V )  = hUv. 
(26) 

(27) 

Since each term of order E ,  in equation (19) is equal to 
zero, we obtain the following relations 

- &) In, v) = In - 1, r, v) - 6,,w2, 10, v).  (22) 

Multiplying the left side of this relation by (v, 01 yields an 
expression for the nth-order perturbation in the eigenfre- 
quency, in terms of approximations up to order n - 1: 

6,,wZv = (v ,  O I n - 1, r, v ) .  (23) 

The first-order frequency perturbation 6, wzv and the 
zeroth-order perturbation 10, v) are solution of the 
eigenproblem obtained by projecting the 'residual' f ,  on the 
subspace S, associated to the SNREI multiplet with 
eigenfrequency equal to w:"): 

9 f l  = 9 6 H  10, V )  - 6,w2,  10, V )  = 0, (24) 

where 9 is the projector into the subspace S,. If the 
eigenmodes 10, v )  are normalized, the eigenfrequencies are 
thus given by 

6 ,wz ,  = (v, 0)  6H 10, v). 

Note that equation (24) is  the definition of the isolated 
multiplet perturbation theory (cf. Messiah 1962; Madariaga 
1971). 

In order to calculate the nth approximation In, v) to the 
eigenvector, we can write, using relation (14), 

In, v>  = c lh) (k, I n, v>  
ka 

and thus we need to obtain the projection of In, v) onto the 
eigenmodes of the SNREI model. Equation (22) gives us 
only the projection on modes that do not belong to multiplet 
S,, that is modes Ik,,) such that a*,(') # wV("). For these 
modes, from (22) 

Within the multiplet S,, we need to calculate the projection 
differently. As noted by Dahlen (1989, personnal com- 
munication), or Landau & Lifschitz (1965), Lyons (1985), the 
perturbation In, v ) ,  even to first order, is orthogonal to this 
subspace only if S, is non-degenerate and if the inner 
product is not perturbed, that is if the angular order is zero 
and if no rotation and density lateral heterogeneities are 
taken into account. To obtain the expression of all nth-order 
projections on S,, we make use of the following two 

Relation (26) stems directly from equation (16), and relation 
(27) is obtained from the definition of the inner product 
(*) and from equation (16). We then expand relation 
(25) and (26) into powers of E ,  and obtain, after some 
algebra, the projection of the perturbation In,v) on the 
elements of S, 

where u # v and where A:, and B:, are given in Appendix 
2. Note that we have used the zero-order ket (0, u) of the 
multiplet S, and not the SNREI modes Iu,,) of this multiplet 
to compute the projection of In, v ) .  The last unknown is 
now the projection of the perturbation In,v) onto the 
unperturbed singlet 10, v )  itself. For this, we use expressions 
(2.8) and (2.9) of Appendix 2 and obtain 

(v ,  0 I n, v) = -1/2 Bk,  (29) 

where we nave assumed that the phase of the eigenmode, 
which is unconstrained, is such that (v, 0 I v )  is real, that is 
(v, 0 1 n, v) is real for all order n. Hence, using (25). (28), 
and (29), we obtain 

Note that the first part of this equation can be also written 
with the ket 10, k), solution of (24) for all multiplets, instead 
of the ket Ik,), as both 10, k) and IkJ are a base of the 
subspace Sk. Expressions (23) and (30) enable us to obtain 
the nth approximation to eigenfrequency and eigenfunction 
when we know approximations up to order (n - 1). We note 
that in the previous derivation, we have assumed that 6A 
and B can be expanded using the same small coefficient E .  

However, it is possible to obtain similar perturbation series 
directly in the product space (Valette 1989b), where 
eigenmodes are expressed in terms of the generalized ket 

l/w,A"2v 
I . , = (  ).  

This approach is more similar to the classical Rayleigh 
Schroedinger perturbation of the Hamiltonian (see Appen- 
dix 4). Note also that the second part of (30), i.e. the 
summation over all singlets of S, is generally omitted in the 
previously cited studies, and is necessary for the coherency 
of (30) with results obtained with other perturbation 
theories, such as the Brillouin-Wigner perturbation theory 
(Ziman 1969). 
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4.2 Secular equation 

As seen in the previous section, all nth-order perturbations 
In,v) are, in general, not orthogonal to the subspace S,, 
their projections on S, being expressed using relations- (28) 
and (29). However, expression (28) contains terms such as 

1 

where modes u and v are two different singlets of the same 
multiplet S,. Such terms appear to be very unstable unless 
singlets are regularly split. In a few cases, the terms A:, and 
BZ, cancel, as for the perturbations due to rotation and 
ellipticity, for which the eigenfunctions are simply related to 
Ytm harmonic functions and the first-order frequencies are 
expressed in terms of the azimuthal order m: 

6,w2 = 2w(')'(a + mb + m2c), 

where b and a, c are linearly related to the rotation velocity 
8 and to the ellipticity parameter E ,  respectively (Dahlen & 
Sailor 1979). Equation (30) generalizes the results of Dahlen 
& Sailor's paper, especially for the eigenmode perturba- 
tions. However, equation (30) is not suitable for the 
eigenmode perturbations due to lateral variations, especially 
to those due to smooth models, for which some of the 2t' + 1 
singlets frequencies 6, o, are grouped into doublets (Dahlen 
& Hensen 1985), or are very close to one another. 

We thus propose to perform modifications to the classical 
perturbation theory in order to force the first nth-order 
perturbations to be orthogonal to the subspace S,, which 
amounts to cancelling the first A:, and B:, terms of 
equation (28). Looking at the expression of (26) developed 
into powers of E ,  we see in the Appendix 2 that an operator 
6% can be defined by 

6% = 9*(6H + 6HGv6H + 6HGv6HGv6H + . . .)9, 
whose nth-order terms appears in the expression of A,,". 
Here, * denotes the adjoint operator and G, is defined as 

In the same way, looking at the power series of expression 
(27), another operator X can be defined, such that 

X = 9*(1+ Gv6H + Gv6HGv6H + . . .)* 

x (1 + Gv6H + Gv6HGv6H + . . .)9. 
Instead of using a strength coefficient E related to 6H, we 
will thus develop (26) and (27) with help of a coupling 
coefficient related to 6%. The first-order terms of (26) and 
(27) thus lead to the following two equations, which must be 
verified by two different zeroth-order singlets 10,~) and 
10, u) of the multiplet S,: 

(u, 01 6% (0, v) = 0, 

This can be done if the zeroth-order kets 1 0 , ~ )  verify the 
following eigenproblem, which will be called the 'secular 
equation': 

(u, 01 X (0, v) = 0, for u Z v .  

6% 10, v )  = 6,02,X 10, v). (31) 

This equation appears obviously as a generalization of 
equation (24) defining the order zero of 'classical' 
perturbation theory 

9 6 H 9  (0 ,  v) = 6w2, (0, v), 

and also as a generalization of the equation obtained by 
Landau & Lifschitz (1965), Park (1987) or Dahlen (1987) 

9(6H + 6HGV6H)9 10, v) = 6w2, (0, v).  

It is now necessary to perform modifications to the power 
series of equation (16). We do that by redefining the terms 
(20) of this power series as 

2, = (A, - w?)'l) In, v)  + In - 1, r, v) - 6,w2,X 10, v)  

where we have redefined the 'residual' part In, r, v )  as 

10, r, v )  = [(l - 9 ) 6 H  + 6 4  10, v ) ,  

for order zero, and as 

for nth order. These new definitions lead to the same 
expression for the projection of the peturbation In, v) onto 
other multiplets than S, as in (25) and to the same 
expression for the perturbation of the eigenfrequency as in 

In the same manner, as in the previous section, we now 
obtain, after some algebra, new expressions for the 
projections of the ket In, v)  onto the singlets 10, v) ,  first for 

(23). 

u = v: 

( v ,  O 1 n, v) = -1/298;, 

and then for u # v, 

where d:: and 9:; are now defined as 

dl,, = 0,  9Vuv = 0 ,  

+ 61w,62wu + 610us2w, - 610u610. I( 
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(33) 

We thus have the same expression as before for any 
nth-order perturbation in eigenfrequency and eigenmode 
associated to singlet Iv), noting that the 6,02 used in 
relation (32) are now the eigenfrequencies obtained by the 
secular equation. However, the main difference is that the 
secular equation leads to a first-order perturbation always 
orthogonal to the starting subspace S,. It remains valid to 
second order, for which the non-orthogonality of the 
eigenmode perturbation is only related to the rotation, 
whose effect is linear and not quadratic in the frequency. 
This effect can thus be well modelled using relation (32). It 
can nevertheless be easily shown that, if the perturbation 
series is done in the product space (see Appendix 4) or if the 
rotation is neglected, the second-order perturbation is 
orthogonal to the subspace S,. However, no such 
simplification is possible for the third-order perturbation, 
which always has a non-orthogonal component, but, as we 
shall see in the last section of this paper, it appears in 
practice to be very small and well expressed by relation (32). 

Taking as zero-order ket the solution to the secular 
equation greatly simplifies the perturbation procedure. 
However, we shall now describe another modification to the 
until now described method, in order to reduce the effect 
induced by the perturbation of the inner-product, due to 
density and rotation. 

4.3 Density renormalization 

A renormalization procedure was previously proposed by 
Park (1985), in order to take into account the inner product 
perturbation due to density lateral variations and to physical 
dispersion (omitting however the perturbation due to 
rotation). However, we shall now prove that this procedure, 
generally done numerically by using a Cholesky decomposi- 
tion, can be performed analytically for the density terms. In 
this case, instead of looking for the hybrid multiplet Iv) , we 
search for the renormalized ket, defined as 

Iv,) = K112 Iv) 

with the same eigenfrequency. This renormalization, which 
is possible whenever the density p is non zero inside V is 
sufficient to obtain a standard eigenproblem from relation 
(16), which can be written as 

-0’ Iv,) $. wBo Iv,) + A, Iv,) = 0, (34) 
where, after renormalization, the Coriolis operator B, is the 
same as in the spherical earth, and thus has selection rules 
which allow the coupling of a mode of angular order e only 

with modes of angular order e f 1, and where A,, formally 
given by 
A, = K- 112AK- 112 

can be expressed analytically. (See Appendix 3 for details 
and the expression of Ar.) Note that the renormalization 
yields a different parametrization of the Hamiltonian, closer 
to parametrizations used for example in ray or asymptotic 
theory. The new aspherical parameters are thus po/p CiJklr 
and Ln(p/po), the expression of the former being related to 
the squared S and P velocities, and one looks for the 
renormalized eigenmodes, projected on the renormalized 
SNREI normal mode basis. The inner product (4) between 
two normal modes u and v is now transformed into 

( u k )  = ( 4  K - B/(m, + 0,) I v )  
= (urI1-Bo/(wu+ wv)  Ivr). 

If any Cholesky decomposition is needed for the ‘new’ inner 
product, as for the perturbation series described in the 
relations (23) and (30), or for a variational procedure, it can 
be done around a fiducial frequency using the sparse 
operator 

B 
1--, 

2w‘e’ 

which greatly reduces the number of required operations. A 
quick comparison of the results obtained with the density 
renormalization can be done with those obtained without 
renormalization, using for example Born linearization of the 
kinetic term (Tanimoto 1984). Making a development of the 
square root of the operator K’” = I + 1/26K, we have to 
first order, 

6A, = A, - A, = K-In(A, + 6A)K-’” - A, 
= &A - 1/2(6KA, + &6K). 

We thus obtain the following first-order expression for the 
eigenfrequency : 

2 ~ ? ) 6 , ~ ,  = ( V, 01 6A - ~ p ’ ~ 6 K  10, v), 

and for the part of eigenmode orthogonal to S,: 

which can be written 

The first part is due to the mass renormalization (i.e. the 
multiplication by K”’) and the second part is exactly the 
first classical Born approximation. Similar comparison can 
be done for the part of 11, v) projected into S,. Note that, as 
each new order implies the computation of terms like 
6 K  In- 1,v)  as well as terms like 6H In - l , v ) ,  the 
renormalization reduces the number of operations required 
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smaller than emax, and let us assume that one wants to 
compute all modes with an angular order smaller than h a x .  
If one wants to take into account all coupling effects, the 
SNREI basis necessary to the expression of the aspherical 
modes must include all SNREI modes with an angular order 
smaller than 2emax, i.e. a basis with a dimension growing as 
emax'. All the computations of interaction term such as 
6H lu), in fact associated with convolution in the spectral 
space, will thus require a number of computations increasing 
as tmax4 for small scales of lateral heterogeneities, for 
which the interaction matrices are full. Finally, the 
diagonalization of all emax' singlets, either for the 
perturbation method or for the variational method, requires 
a number of computations growing as Cmax6. This high 
number of computations forbids a fully coupled computation 
of interaction terms, except for models with large-scale 
lateral heterogeneities where the interaction matrices are in 
fact band diagonal and may be expressed by using 
Clebsch-Gordan coefficients. 

As an alternative to these spectral convolutions, we 
propose to use a generalization of the 'Spectral Method' or 
'Transformation Method' to the tensorial elastic case, in 
which the number of computations only increases as [ma3,  
leading to an number of computations growing only as 
tmax5 for the eigenproblem. The transformation method, 
presently used in seismology for Fourier transformations 
(Kosloff & Baysal 1982), was first proposed in 1972 by 
Orzsag for atmospheric modelling with classical harmonics 
formalism, where it has been intensively developed, As the 
present algorithms cannot be applied to the tensorial case, 
we have thus developed a generalization of the transforma- 
tion method using the generalized spherical harmonics. We 
now describe this method only for density and elastic 
coupling matrices, the generalization to other spectral 
interactions such as boundaries, gravity and Coriolis being 
easy to do. Let us take, for example, the computation of the 
elastic term of expression (3) for a field Iv) given by 

by two, and that for strongly coupled multiplets, for which, 
even to higher order, degenerate perturbation theory gives 
poor results, the quasi-degenerate perturbation with a 
renormalization must be used, giving an exact expression of 
the projection of the Hamiltonian into the subspace of these 
nearly resonant multiplets. In this case, no fiducial 
frequency needs to be used for the kinetic terms. 

4.4 Pearbetion theory and Rayleigh quotient 

In order to compare the solutions obtained with different 
orders of perturbation theory, and those obtained with the 
variational method, it is necessary to have a measure of the 
error associated with an eigenmode computation. Most 
variational methods are based on a determination of the 
eigenfrequency using the Rayleigh quotient LY defined, for 
an eigenvector Iv) of an operator A, as 

a= (vl A Iv)/(v I v ) .  (36) 
Thus any comparison between variational and nth-order 
perturbation theory must compare the difference between 
the Rayleigh quotient obtained with variational methods 
and that obtained with the quotient for an -nth-order 
approximation of eigenfunction Iv,) . We prove in Appendix 
4 that this Rayleigh quotient is not related to the nth-order 
frequency approximation, but to its (n + 1)th-order 
approximation. 

Around the Rayleigh quotient frequency LY, an estimate 
of the error bar of the eigenfrequency can be obtained using 
the Krylow-Weinstein theorem (Dautray & Lions 1984), 
which is recalled in Appendix 4. 

For perturbation theory, we prove in the same appendix 
that, in the non-rotating quadratic case, an estimate of the 
error is given by 

v F 7  = 1/(20,) 

x V ( v 7  r, n 1 r, n, v)/(v,, I Vn) - (vn I n, r9  v)2/(vn 1 v,)'. 
(374 

We note that this error bar is the norm of the projection of 
the remaining ket In, r, k) on the orthogonal subspace of 
Iv,). In the rotating case, a similar estimation can be done 
in the product space, and the error is greater and given by 
the square root of 

5 THE TRANSFORMATION METHOD 

5.1 Lntroduction 

To compute the eigenfunctions with the expressions of 
Section 4, let us note that all higher order perturbations are 
expressed in terms of the projection on the reference basis 
of kets such as 6H Iv) and B, Iv). If the computation of 
B,lv) is straightforward, that of 6H Iv) is more time 
consuming, especially if the operator 6H includes 
small-scale asphericities. For example, let us take a model 
with small-scale heterogeneities, which would be repre- 
sented by a set of spherical harmonics of angular order 

The projection of this elastic term on the reference basis of 
normal modes 116) = It, m) may be expressed as 

( e ,  m( E Iv) =I [dapYGDavB]DY~,'"'* dV, (39) 
Vn 

which may be written in the canonical basis of Phinney & 
Burridge, taking expression (38) of Iv), where k is replaced 
by its indexes e ,  m 

(to, %I E I.> = c J d v  E ~ , Y ~ Y ~ )  E/W 
O S Y ~  Vn 

x Ye?"'O'(O, @)drrpydet 9, r) 

x C ( e ,  m Iv)y,Nm(f4 9)7 (40) 

where No= y + 6,  N = LY + /3 and Ee"'(r) is the radially 
dependent part of the reference normal modes strain tensor. 
If we define the kernel 

XeefNn(O, 9 )  = /r2dr d,p,,(O, 9, r)Ee~GL(r)EE'%), 
a P ~ 6  
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limiting the summation with the condition N = a + p, 
No = y + 6, we finally have 

x C ( a ,  m 1 V)yeNm(e, $1. (41) 
m 

The other terms and kernels are, for example, in Snieder & 
Romanowicz (1988). We see that the computation of such 
terms as in relation (40) or (41) consists essentially in the 
inverse and direct Legendre transformations of the tensorial 
field, whose Legendre coefficients are given by ( e ,  m Iv). 
These direct and inverse Legendre transformations may 
generally be performed before the radial integration, with 
expression (40), or after radial integration with the use of 
the kernal relation (41). Let us now describe how to 
perform these Legendre transformations. 

5.2 A Gauss numerical integration for Legendre 
transformations 

Gauss integration is a well-known method for the numerical 
integration of a polynomial of finite degree on the compact 
interval [ - 1, + 11. We recall the most important properties 
of this integration (Press et al. 1986): there is one and only 
one set of N points pi and weighting coefficients wi such that 

for every polynomial R(z) of degree less than 2N - 1. The 
points pi are the ith roots of the Legendre polynomial of 
order N, PN(p), and the weight wi is given by 

wi = 2/((1 - P?)pNr(Pi)2)? 

where P', is the derivative of P,. Note the important 
symmetries of the Gauss points and weights: 

PN-i = -Pit1 7 wN-i = w i +  I '  (43) 

Let us use Gauss points to perform the integration of 
generalized Legendre functions. All expessions which occur 
in direct or inverse transformations are of the form 
r + *  

J Pe,""(z)Pe,""(z) dz. 
- I  

The integration along longitude (or Fourier transforma- 
tion) and the properties of the spherical canonical matrix 
g,, cancels the terms with different n or m values. 
Expressing the generalized Legendre functions in the form 
(Vilenkin 1968) 

where j = Max(m, N) and f(z, e - j) is a polynomial of order 
e -  j, we see that the product in relation (44) may be 
expressed as 

As 2j is greater than m + N, this is a polynomial of order 

e ,  + t2 and a Gauss numerical integration is thus possible 
for a set of N points greater than ( P , + e 2 +  1)/2. 
Furthermore, as there are no Gauss points at the poles of 
the Legendre generalized functions, no singularity appears 
in the cornputation of the value of any field at the Gauss 
points. Let us insist upon the condition for the validity of 
the computation of the interaction terms. Let us assume that 
lateral heterogeneities of the earth model are of angular 
order smax, and the field [v )  of angular order emax. After 
interaction with asphericity, the resulting field has its 
maximum angular order equal to emax+smax. Thus the 
numerical Legendre transformation up to order tmax will 
require integration of polynomials up to degree (2*tmax + 
smax) and the number of Gauss points (number of latitudes 
in the spatial collocation grid) needed will be emax+ 
(smax/2) + 1. Similar aliasing rules may be obtained for the 
Fourier points, using classical aliasing rules of the Fourier 
transformation. If these aliasing conditions are verified, the 
fields Iv), A Iv) and B Iv) may be expressed either in the 
spectral space, in terms of their components ( e ,  m I.>,  or in 
the spatial space on a collocation grid, in terms of the values 
v(pi, &). This equivalence will be true for the computation 
of all coupling operation and is the basis of the 
transformaion method. For Coriolis and ellipticity perturba- 
tions, the computations will be done in the spectral space, 
using low-order Clebsch-Gordan coefficients, but all other 
computations will be done on a collocation spatial grid, 
where they become simple tensor contractions for the 
elastic, density and gravity interactions. 

5.3 Generalized discrete Legendre transformation 

Using Gauss numerical integration and the bijection 
between the spectral and spatial space, we define the 
following forward and backward generalized Legendre 
transformation for a tensorial field U of order N. 

Forward Legendre transformation 
i=nmax 1 

Up""' = WiPp""(P(i) exp(im$j)Un(pi, $j). (46) 
i = i  M i  

We give in Appendix 5 an optimized algorithm for the two 
transformations, more suitable for the decomposition of the 
eigenspace in terms of subspaces related to the operators P, 
S, T. Depending on the kind of field, the transformations 
will be two to eight times faster, respectively, for a complex 
spherical field or for a real hemispheric field. This algorithm 
generalizes the classical optimization used in atmospheric 
modelling (Butel 1984), taking into account the differences 
introduced by the tensorial cases, and the final expressions 
are given in Table 2. For this algorithm, only the spectral 
terms with positive N and M values are necessary. If one 
wants to use this method with relation (40), using N, layers 
for the vertical integration, the number of required 
computations for the spectral method grows as ernax3*NZ for 
the direct or inverse transformation of the field U (including 
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Table 2. Direct and inverse generalized Legendre transforrna- 
tions, as defined in Section 5. The U,”” are the Legendre 
coefficients of the field U” defined at Gauss points pi and 
Fourier points $+. w, are the Gauss weights. A and B depend on 
the properties of the field U with respect to the symmetry 
operators P and T. 

Direct Trms/orm 

Inverse Tram/orm 

the displacement and the strain field) with field and 
asphericities up to order Emax, which is to be compared to 
the number of computations used with classical matrix 
products, which grows as tmax4*Nmax2, where Nmax is the 
number of fundamentals and overtones used in the 
truncated reference basis. If, on the other hand, relation 
(41) is used, the number of required computations is now 
growing as Mmax’ h a x 3  tog,(emax) with the spectral 
method, the optimization being due to the fast Fourier 
transformation, and Nmax’ tmax4 with a classical matrix 
product. Note however that great simplifications are 
obtained if one takes into account the fact that the 
eigenfunctions ETB(r) and the kernal Xpe( ,”O(  8, @) have 
slow variations with respect to e and to. Thus, in many 
cases, the use of the spectral method is faster than 
performing, in a classical manner, the matrix products found 
in the perturbation series procedure. The formalism and 
method described here can be conveniently applied to 
quantify the degree of coupling of target modes with a 
variety of neighbouring modes and thus to test the 
convergence of perturbation theory used in conjunction with 
presently available earth models. In what follows, we 
present several examples of such calculations. 

6 NUMERICAL EXAMPLES 

6.1 Description of the SNREI basis and of the laterally 
heterogeneous model used 

We illustrate the accuracy of the higher order perturbation 
theory by taking a few examples concerning normal modes 
along the fundamental spheroidal branch, the first one at 
low frequency, around modes oS25/oS26 (i.e. with a period of 
300s), the second one at higher frequency, around mode 
oS43 (i.e. with a period of 200s). In order to obtain most of 
the coupling effect, we have taken into account the coupling 
effect due to the 10 nearest spheroidal and toroidal 

fundamentals in the first case, and due to the 10 nearest 
spheroidal fundamentals in the second case. As we focus 
this paper on the coupling produced by stiffness and density 
lateral heterogeneities of the Earth, we have neglected 
rotation and ellipticity coupling effects. The anelasticity was 
neglected in the computation of the coupling effects. This 
assumption may of course produce an overestimation of 
coupling strength between modes of different branches, for 
which the Q ratio is very different (Park 1986; LognonnC 
1989), and a more realistic modelling of aspherical normal 
modes including this effect will be the subject of a future 
paper (LognonnC, in preparation). 

We used the global M84 + L02.56 model (Woodhouse & 
Dziewonski 1984; Dziewonski 1984), with weak and smooth 
spatial variations. We obtain perturbations in K, p and 1 
using the scaling relations 

S p / p  = 0.4 Sf?/f?, 

where p, a and f l  are respectively density, P velocity and S 
velocity, which suggest heterogeneities correlated with 
temperature Variations. Note that for such smooth structure, 
coupling with overtones is forbidden by selection rules. 

6a/a = 0.8 Sf?/f?, 

6.2 Coupling diagrams and sensitivity 

On Figs l(a)-(c), respectively for the modes oS,,, $26 and 
oS43, we show the coupling strength parameters between 
these modes and their nearest neighbour fundamental 
modes, defined as (Park 1987) 

and related to the norm of the block terms of the operator 
G,SH. For the structure M84+L02.56 and for the very 
long-period modes oS25-oS26, we see that most of the 
coupling parameters are very small, generally less than 0.1. 
Note however that the coupling parameter between 
spheroidal and toroidal can be stronger, especially in this 
frequency range between modes of same angular order 1. 
The coupling between oS,,-oT,,, {)S26-,T,6 is due for its 
main part to the asymmetrical part of degree 1 of the upper 
mantle at depths around 400 km (Park 1985), however the 
coupling for these two modes shows big differences: while 
oS,,-oT,, are weakly coupled, with a coupling coefficient E 
less than 0.1, ,SZ6-,,T,, are strongly coupled, giving a 
coupling strength coefficient of the order of 0.25, and 
although this coefficient seems to be small, we will see in the 
next section that it leads to quasi-degeneracy, which, if not 
taken into account, can affect the convergence rate of 
perturbation theory. At higher frequency and for the mode 
,S4,, the coupling along the dispersion branch is larger, 
leading to coupling parameters with the If 1 modes larger 
than 0.1. 

As the frequency variation is nearly linear along a 
dispersion curve, the decreasing of the coupling strength for 
the target mode is such that the strength coefficient is 
approximately divided by nine every three angular orders 
along the same branch. For the smooth model M84 + L0256, 
90 per cent of the coupling effects is thus modelled using 
only the three nearest modes on each side. 
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Figure 1. Coupling strength for spheroidal fundamentals ,S,,, ,S, 
and ,S,,. We observe a slow decrease of the strength of coupling 
when one moves away from the target mode on the dispersion 
branch, and this coupling becomes nine times smaller for an angular 
shift of A t  = 3. Note that ,SZ6 is strongly coupled with oTx and that 
the coupling along the branch increases with frequency. 

increasing amplitude of lateral variations from 0 (i.e. the 
spherical model PREM) to 5 (i.e. an earth with lateral 
heterogeneities five times greater than those of M84 + 
L02.56). 

Let us first show the result for the weakly coupled mode 
oS25. For this mode, we see in Fig. 2 that the most important 
effect of higher order perturbation theory is to separate 
singlets that are mostly associated into doublets in the 
isolated mode case (Dahlen & Henson 1985). The coupling 
between toroidal and spheroidal modes weakly removes this 
quasi-degeneracy, as does the introduction of rotation, for 
which the Coriolis force breaks the S symmetry even to first 
order. Other non-linear effects may be observed in the 
second and third frequency approximations, such as a few 
branch crossings, for an asphericity three or five times 
greater than that of M84 + L02.56. We describe in Figs 3(a) 

u3 Frequency splitting for oS25 : 1- order pertubation theory 
$ 1  1 

@?? 
0 1 2 3 4 5 " 

5 Frequency splitting for $25 : 3* order pertubation theory 

6.3 Performance of 'classical' perturbation theory 

The first test we performed, was to check the convergence 
of the perturbation series in the computation of the 
eigenfrequency and Krylow-Weinstein error. The theory 
was used up to third order without any secular 
renormalization, i.e. using 'classical' Rayleigh-Schroedinger 
perturbation theory. The eigenfrequencies of the singlets of 
the three modes oS2s, oS26 and oS43 were computed, 

@?I 2 3 4 5 1 " 0  
Amplification factor (M84C+L02.56) 

F i r e  2. Frequency dispersion curves for the 51 singlets obtained 
with a first- and third-order approximation. Each line is associated 
with an aspherical singlet. Most of the curves corresponding to 
first-order perturbation in frequency contain in reality two 
quasi-degenerate singlets. Nevertheless, this degeneracy is removed 
by higher order perturbations (Fig. 5b). 
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Fire 3. Convergence rate of the frequency defined as the ratio of 
the nth-order Krylow-Weinstein frequency error over the (n - 1)th 
one. For the weakly coupled mode OSZSr the convergence of the 
perturbation series is extremely fast. 

and (b) the convergence rate of the perturbation series, 
defined as the ratio of Krylow-Weinstein error bar of the 
nth approximation over that of the (n - l)th one. We see 
that every new step of the perturbation series reduces the 
Krylow-Weinstein error by an order of 10. For weak 
heterogeneities, this leads to a separation of the different 
singlets within the error bar, but for heterogeneities two or 
three times bigger than M256 + M84, this separation 
disappears (Fig. 4). 

The relative success of perturbation theory for the mode 
oS25 is also confirmed for the convergence of the eigenmode 
perturbations, which is fast enough to change, after each 
new iteration, the energy of the hybrid ket Iv,) by a few per 
cent only (Fig. 5a-c). We note however that the 
convergence rate is more efficient for the first perturbation 
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Krylor-Weinstein error for a ZY order approximation of oS25 
In 
d ,  
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Amplification factor (M84C+LO2.56) 

Figure 4. The Krylow-Weinstein error-bars associated with 

5 

a 
second-order approximation of the eigenfrequencies of two singlets 
of $,. In the aspherical case, the singlet order m is not related to 
the Fourier component rn, but was taken here as the order in singlet 
frequency after first-order perturbation. Note that the ‘classical’ 
perturbation theory cannot separate singlets for asphericity twice 
larger than M84 + M256. After fourth order however, the error is 
reduced to a few per thousand for M84 + L0256. 

than for the next one. Finally, the part of the energy of $,, 
which belongs to other multiplets is very small and less than 
2 per cent. The escape of energy from the starting multiplet 
is illustrated by the norm of the projection on the starting 
subspace of the nth approximation of all 2ff + 1 singlets, 
and is plotted in Fig. 6 versus its eigenfrequency for the 
second-order approximation. This can allow us to make a 
first comparison between the solution obtained with higher 
order perturbation theory and that obtained with the 
variational method. We see that from the second order on, 
the accuracy stops to improve, the results obtained with the 
third order (Fig. 7) being very close to those of Fig. 6. 
However, the differences between the eigenfrequency 
approximations and those computed by the variational 
method are beyond the frequency resolution of the longest 
measurement of the earth’s normal modes (Fig. 7), and the 
difference between projection values is also small, of the 
order of This mode is thus relatively well modelled 
with the ‘classical’ perturbation theory, for model 
M84+L02.56, but apprarently not for models with larger 
heterogeneities. 

On the other hand, for other, more coupled modes, the 
accuracy of ‘classical’ degenerate perturbation theory 
decreases dramatically even for M84 + L0256. It leads, for 
example for the mode ,,SZ6, to divergence in the estimation 
of the eigenfrequency for heterogeneities from 1 to 2.8 times 
larger than those of the Earth (Fig. 8). The same failure can 
be observed in the computation of the eigenmodes, and we 
see that for many singlets, from second order on, the series 
slowly improves the eigenfrequency and the eigenmode 
compared to the variational method. The solutions obtained 
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Eigenmode : 1" order perturbation for oS25 
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Figure 5. The convergence rate for eigenmodes defined as the ratio 
of the norm of the nth ket perturbation to that of the (n - 1)th ket 
perturbation for mode 0S25. Just as for the eigenfrequency, the 
convergence of the eigenmode is extremely fast, each new order 
having its norm more than 20 times smaller than the previous one. 

thus stay too far from those obtained with the variational 
method (Fig. 9). A more accurate comparison with the 
eigenmodes obtained using the variational method can be 
done by computing the orthogonal part of the approximated 
eigenmode with respect to the variational singlet. This 
orthogonal part can thus be directly related to the 
eigenmode error. Doing this for the three first approxima- 
tions of one singlet of $43 (Fig. lo), we see that the 
perturbation of the multiplet structure is, for this range of 
frequency, stronger than the appearance of components on 
the neighbouring SNREI multiplets. The classical perturba- 
tion theory is unable to model this effect, even with the last 

Mode oS25 
Y04+L0256 2nd order of perturbation theory 

, . .. 
8 .'. 1 . : .  . .. 

3.35 3.36 3 
frequency (mHz) 

7 

Fire 6. The eigenfrequencies and the remaining part of amplitude 
in the target multiplet for mode $,, after the second order of the 
'classical' perturbation theory. Up to this order, the evolution is 
slow and no notable difference with this approximation appears. 

terms of equation (30). This failure appears already to first 
order, which explains that the higher orders do not 
contribute to any improvement, as it does for oS,, if the 
lateral heterogeneities are increased. The use of the secular 
equation (31), which will better constrain the three 
first-order perturbations, and in particular, all coupling 
effects within the multiplet, is necessary for all modes more 
sensitive to lateral heterogeneities than to rotation and 
ellipticity. We shall now present the results using this 
formalism. 

6.4 Secular equation and renormalization 

Figure 11 illustrates the power of both secular and density 
renormalization. The trace at the back shows, for one of the 
87 aspherical singlets of 0S43, the absolute value of all 
components on the 952 SNREI singlets belonging to modes 

Mode ($25 
M04+L0250 variational / perturbation 

B 

3.35 3.30 3 
frequency (mHz) 

7 

.: grd order perturbation theory, o : variational theory 

Figure 7. Comparison between the third-order approximation for 
the mode $,, and the variational solution. Most of the singlets of 
oS2, are very close to the variational solution. Note that the 
difference between obtained eigenfrequencies is smaller than the 
resolution of the spectrum calculated using a 15 day long time 
series. 
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Frequency splitting for os26 : 3" order pertubation theory 

I 1- 1 -  ~~ 
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Figure 8. The same as Fig. 2(b) but for the more strongly coupled 
mode "SZ6. A great number of dispersion curve crossings are 
observed and lead to divergence of perturbation theory, due to a 
high "TZ6 character of some singlets. The mean frequency is strongly 
affected by the higher order perturbation. 

oS38-oS48. The three first traces show the same thing, but for 
the orthogonal residual of three zero order approximations 
of this singlet obtained by different perturbation theories. 
From front to back, the third trace was obtained with the 
'classical' perturbation theory, i.e. by solving the isolated 
multiplet case using the Born approximation for the density 
term. Although one would expect to find the largest 
residuals in the neighbouring modes Os38-$42 and 
oS44-oS48, we see that they are still located in the multiplet 
oS43. The second trace shows the improvement obtained by 
using the density renormalization, in which the effect of 
lateral heterogeneities of density is better modelled, which 
leads to a more accurate modelling of the rearranging of the 

Mode os26 
M84+LO256 variational / perturbation 

' 3.k2 3.143 3.144 3.145 3.146 3.k7 
frequency (mHz) 

grd order perturbation theory , o variational theory 

Figure 9. Comparison between the third-order perturbation for the 
,,Tz6 and ,S, and the variational solution. The theory used here is 
always the 'classical' higher order. Most singlets of oTz6-oSz6 are 
very far from the variational solution. 

multiplet structure, but one sees that it is still insufficient. 
Finally, the first trace of Fig. 11 shows the residual after 
taking for zero order ket the solution of the first-order 
secular equation (32). We see that the projection of the 
residual on the target multiplet oS43 is no larger than the 
residual in the neighbouring modes oS38-0S42 and 0S,-0S48. 
These coupling terms can thus be treated in an efficient way 
by higher order terms of perturbation theory. 

Figure 12 shows the residual between the variational 
method and the solution obtained with higher order 
perturbation theory. Note that for any nth-order ap- 
proximation, the zero-order one was taken as solution of the 
nth-order secular equation. We see that for all nth-order 
approximations, the largest residual still remains for the 
SNREI starting multiplet, here oS43. It is thus reduced in 
the next step by the (n + 1)th-order secular equation, while 
the residual in the neighbouring modes is well reduced by 

Singlet  oS43 
Variational and 

"Classic a 1" p e r t  u rba  t 1 on t h e  or  y 
with density r enor  mi a I isa t I o n 

T 7 3rd order :  residual 

Znd order :  residual 

lSt  order .  res idual  
4L&--,---- ~~ _. 

O t h  o rder :  res idual  
!IL,-r*nWL&- I -.- 

Figure 10. Comparison between the four first-order approximations obtained with the 'classical' perturbation theory (from front to back, the 
four last traces) and the solution obtained with the variational method (the first trace). The absolute value of the 952 components in the 
SNREI basis oS38-oS, are shown for the variational singlet, or for the perturbation theory approximations. The residuals are defined as the 
orthogonal part of each approximation with respect to the variational singlet. Up to zero order, a big residual stays in the component 
associated to ,,S4,, not reduced by the higher order approximations. Coupling terms with the neighbouring modes are thus very poor\y 
modelled by the non-secular perturbation theory. 
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Variational & isolated multiplet solutions 
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Born: residual 

/ Density+Secularity: residual 

b 
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Figure 11. Comparison between three zero-order approximations obtained with various perturbation theories (from front to back, the three 
first traces) and the solution obtained with the variational method (the last trace). The residuals are defined as for Fig. 10, and the absolute 
value of their components in the SNREI basis oS3,-oS, is plotted. The third trace is the residual obtained using the isolated multiplet Born 
approximation, the second one using the zero-order perturbation theory with a density renormalization, and first one using the first-order 
secular equation, after density renormalization. The largest residual in the third trace is in the $,, components, due to the non-orthogonal 
perturbations induced by the coupling of this mode with the neighbouring modes. It is first reduced by the density renormalization, and then by 
the secular equation. Finally, in the first trace, the residual is of order as that in the neighbouring modes oS42 and oS,. 

the (n + 1)th-order eigenmode perturbation. Note that the 
direction cosine between these approximations and the 
variational solution are for the zero, first, second and third 
order equal to 0.9678, 0.1016, 0.9989, 1.0006, respectively. 
The same accuracy is obtained for the eigenfrequency 
estimation, and results are shown in Fig. 13. We see that 
both singlet splitting effects and multiplet mean frequency 
shift are determined, with a third-order approximation, 
within a relative error of lop3 per thousand, that is an error 
a hundred times smaller than the measurement error of the 
Earth's eigenfrequencies. 

The same improvements are obtained for the determina- 
tion of both eigenfrequency and eigenmodes of multiplet 

oS26. Nevertheless, it is necessary to use here quasi- 
degenerate perturbation theory, i.e. to start from a 
supermultiplet including both $26 and oT26 modes. All 
coupling terms with the other neighbouring toroidals and 
spheroidals are thus treated by the higher order 
perturbations. Already to first order, the improvement 
compared to the previous results of Fig. (9) is spectacular, 
as shown in Fig. (14), where now notable differences 
between the two solutions are distinguishable, and the 
higher orders allow us thus to obtain an accuracy even 
greater than for the case of $43. 

Seismograms can of course be computed using these 
eigenmodes and eigenfrequencies and expressed as a 

Singlet oS43 1 

Residuals between variational and 
per turbat ion theory 

density + secularity renormalisation 

solated multiplet 

T 
I.*& b 

OS39 OS40 OS4l OS42 OS43 OS44 OS45 OS46 OS47 OS48 

Figure 12. Convergence of the eigenmode to the variational solution for perturbations up to third order, obtained using the secular equation 
and density renormalization. The last trace is the first one of Fig. 11, where the corresponding variational solution was shown. For each new 
order, coupling effects within the neighbouring modes are well modelled by higher order perturbations. Residuals decrease regularly and the 
approximate eigenmode becomes more and more parallel to the variational one. Direction cosines for the approximations are respectively 
0.9678, 1.016, 0.9989, l.oo06, which shows that already to third order, the eigenmode is modelled within a relative precision of and less. 
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Comparison of the oS43 frequency splitting 

It2 2 1  * -5 0 I 

variational (per mille) 

Figure W. Comparison between the eigenfrequencies of the 87 
singlets of a,, obtained with the variational method and those 
obtained with the third-order perturbation theory in per million for 
model M84. No differences bigger than per thousand are 
observable in both splitting and shifting effects. 

summation of spherical normal modes, oscillating with the 
spherical frequency o.I$'), and having their amplitude slowly 
modulated with time by the effect of lateral heterogeneities 
(Dahlen 1987). These modulations, which lead to both 
frequency splitting or shifting and amplitude anomalies, can 
thus be modelled using higher order perturbation theory 
within an relative error smaller than smaller than the 
usual observation error for example, and likely smaller too 
than the effect due to physical dispersion or due to the 
non-quadratic Coriolis effect. We thus think that the higher 
order theory is a fast and sufficient accurate way for solving 
the normal mode equation of a laterally heterogeneous 
earth, or for computing seismograms for all realistic earth 
models. Note however that the accuracy of the eigenmodes 
can be insufficient if seismograms are computed without 
removing the 'fast' spherical oscillations with frequency 

Mode Os28 
M84+L0258 variational / secular perturbation 

0 

3 8.! 1-i 0, 
0 .T. 

g o  
a 3!42 3.743 3.44 3 . k  3.748 3.!7 

frequency (mHz) 
lst order perturbation theory , o variational theory 

Figure 14. Comparison between the first-order perturbation for the 
supermukiplet oTza-oS, and the variational solution. Theory used 
here is the quasi-degenerate perturbation theory with secular 
equation. Most singlets of oTz6-oS, have now converged to the 
variational solution. 

Table 3. Comparison of the CPU times required in the variational 
method and in the higher order perturbation method on the 
CONVEX C1. The spectral method was not used in the computa- 
tion of the matrix products, which were performed classically 
(matrix size: 952). The second comparison is representative of the 
required CPU time if one wants to take into account coupling 
effects of the ten nearest modes. CONVEX optimized assembly 
routines were used for EISPACK path TREDYTQL2. 

Computation of all singlets of the $,n-$4, eigenproblem 

I Numerical Path 1 
Perturbation: 3 d  order (Analytical) 308 s 

Variational: RSG path ( Cholesky) 1754 s 

Variational: TREDZPQLZ path (Analytical) 736 s 

With analytical or numerical density renormalisatioi 

Computation of all singlets of coupled with $38-,,S48 * 

Perturbation: 3 d  order 28 s 

Variational: TREDl/BISECT/TINVIT/TRBAKl path 192 s 

Variational: TREDZ/TQLZ path ( Mean time per multiplet) 6 6 s  

After density renormalisatio 

O.I:'), as it happens if one sums directly the singlet's decaying 
sinusoids in the frequency domain. 

From a computational point of view, the higher order 
perturbation theory leads to computer codes easily 
implemented on vectorized computers (Cray or Cray-like) 
or on highly parallelized computers (as CM-2 connection 
machine), which are from two to six times faster than 
eispack routines (see Table 3 for an accurate comparison). 
Note in particular that this method is six times faster than 
the variational method if one wants to compute a set of 
fundamental modes coupled with a given number of 
neighbouring modes, that is for block-band diagonal 
interaction matrices. 

6.5 Coupling for a model with sharp structure 

We want to conclude by testing the perturbation theory for 
a model with lateral heterogeneities sharper than those of 
M84, for example for the shear velocity model of M & T 
(Montagner & Tanimoto 1989), for which the coupling 
between fundamental and overtones is no longer forbidden, 
the maximum angular order s being now s = 15 (Fig. 15). 
The target modes oS25 and will now be coupled with all 
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' _  1 .  8.' F l . ; c M . N . C L  c1.r 1 .  I. e 

Figure 15. Map of shear velocity lateral heterogeneities at a depth of 58 km for the model of Montagner & Tanimoto (1990). Extremal values 
reach f3 per cent of the sphencal mean shear velocity. Note the very good correlation with surface tectonics and the well-determined odd 
angular orders of lateral heterogeneities. 
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Figure 16. Coupling strength diagrams for the spheroidal 
fundamentals "S,, and ,S, for the M & T model. The coupling 
between modes of different polarities increased compared to Fig. 
I(a) and (b). The selection rules still do not forbid coupling with 
overtones, which appear to have a coupling strength parameter E 

between lo-* and W3. 

fundamentals modes, and with overtones ,S,,, ,S,,, 
&,, $16, 3S12 and (Fig. 16). These modes are weakly 
coupled with the target mode with a coupling strength 
parameter E between and for the more strongly 
coupled overtones. A second big difference with the 
coupling diagrams for model M84C + L02.56 is that coupling 
between modes of opposite polarities is stronger. This is due 
to the odd part of lateral heterogeneities, which is stronger 
in the M & T model than in the W & D model. 

The coupling for these modes increases and the energy 
lost is three times greater than for the W & D model. 
Nevertheless, the comparisons we have performed show that 
perturbation theory always gives a good accuracy with 
respect to variational theory. We have plotted in Fig. 17 the 
frequency splitting and the escape of energy from target 
multiplet induced by the M & T model. Crosses are the 
spherical frequencies of and 3S12. The coupling pattern 
shows extrema of eigenmode coupling. Two are related to 
the most split singlets. Their eigenfrequency is thus 
relatively distant from the other singlet frequencies, which 
leads to a decrease of the effective coupling effects. As 
expected, another minimum of eigenmode coupling is 
observed for singlets which are weakly split, and thus close 
to the central frequency of oS25. On the contrary, we 
observe a maximum of eigenmode coupling, associated with 
a high escape of energy from the target mode, close to the 
central frequency of 3S,z, which can be explained as a 
resonance effect with this mode. Even with relatively small 
coupling, the overtones may thus affect the coupling pattern 
of fundamental modes. Nevertheless, we think that this 
coupling is still underestimated using M & T model, which 
does not have very small-scale lateral heterogeneities, and 
think that the effect of all small features of the Earth such as 
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Coupling effect 0525 : 3" order approximation 
with renormalisation 

,-I 

X X A 

E U 

OS25 3s12 

21 3.35 3.36 3.37 
frequency ( mHz) 

Figure 17. Frequency splitting and remaining part of amplitude in the target mode $,, for the M & T model. The 'non-isolated' character of 
this mode increases by an order of 3 compared to the W & D model. Note the minimum of eigenmode coupling for singlets near the mean 
frequency of oSzs (left cross) and the maximum of coupling due to a resonance effect with overtone &. 

trenches, ridges or even hotspots (Neele el al. 1989) will 
increase the coupling strength of overtones. For example, 
unpublished results show that the coupling coefficient 
between 0S25 and 3S12 due to lateral heterogeneities of a 
Aleutian trench model can be, for this trench alone, as large 
as that of M & T model. However, even for such sharp 
models, the higher order perturbation theory is still 
sufficient to compute realistic and accurate normal modes 
and seismograms. 

7 CONCLUSIONS 

The method presented in this paper gives a very convenient 
and fast way of computing multiplets for an earth model 
with sharp or smooth lateral heterogeneities. Its first 
advantage is due to the use of higher order perturbation 
theory, which leads to a faster way to compute normal 
modes than with the variational method. Non-quadratic 
effects due to rotation, which lead to a doubling of the 
dimension of the eigenproblem for the variational method 
can be easily taken into account without any noticeable 
increase of the computation time. This theory allows us to 
compute modes along a given dispersion curve, with the 
same number of neighbouring coupled modes for each of 
them, and without neglecting coupling with the other 
dispersion branches. A future paper (LognonnC, in 
preparation) will generalize the present theory in order to 
introduce anelasticity and physical dispersion (LognonnC 
1989), which will avoid the overestimation of coupling 
effects between modes with different Q ratios using any 
perturbation theory starting from an elastic reference earth 
model. 

Its second advantage is due to the use of the spectral 
method, which requires no Glebsch-Gordan coefficients. 
However, as the interaction matrices were needed in this 
paper in order to perform the comparison with the 
variational method, and as only a few neighbouring modes 
were taken into account in the coupling terms, we have used 
the spectral method only for the computation of the 
interaction matrices, and performed thus all matrix products 

classically. Nevertheless, this method will reduce the 
number of computations even more if used directly in the 
computation of terms such as A lu). In this case, the 
number of computations needed by the higher order 
perturbation theory will grow as emax', while the number 
of computation for the variational method grows as lmax6. 
This opens new prospects for fully coupled mode 
computations, particularly in order to model the effect of 
sharp tectonic features, crustal and interface variations more 
precisely and also in the inversion of normal modes or 
long-period surface waves. 

More generally, the discrete Legendre transformation 
based on generalized Legendre functions and on symmetry 
subspace decomposition formalizes the optimization of 
spectral methods used in atmospheric modelling. Such 
methods will be helpful in solving global tensorial field 
problems, which appear in the fields of Earth magnetism or 
magnetohydrodynamics and in the field of global 
circulations. 
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Appendix 1: Operator P, S and T and the S.N.R.E.1 modes 

We briefly recall the property of the S.N.R.E.1 modes with respect to the three symmetry oper- 

ators P. S and T, summarized in Table 1. For the operator P, we easily find, starting from its 

definition in Part 3.3 that, for spheroidals modes, we have for the horizontal (a=?]) displacement 

components: 

P"(u~) = rL noL v(r) Y(-am(x-e,&t*) 
= 

= 7~ nof V(r) ( - I ) !  ~ l ~ m ( p )  exd-imd) 

not V(r) ( - l ) m  P!-am(-p) exp(-imd) 

= (-1)L u p ,  

and for the vertical ones: 

pO(ut") = 7( U(r) YPY*-k&+n) 
= i t  U(r) (-1)"' P P Y - l r )  exp(-imd) 

= 7~ u(r) ( - 1 1 ~  plh"(p) exp(-imd) 

= (-1)l u p ,  

which means that 

Pu=(-I)l u. 
For toroidals, we have in the same way, for the horizontal components : 

P " ( u p )  = -a i 7~ n 0 ~  W(r) Y(-am(n-8,&tn) 

= -a i 7~ noL W(r) ( - l ) m  Pf-am(-p) exp(-im& 

= -a i 
= (-1)!+1 U,am. 

noL W(r) ( - I ) (  Pfam(p) exd-imd) 

which means that 

Pu = ( - I ) l + 1  u. 

For the operator T, we find easily, for the spheroidal displacement, for example for the horizon- 
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tal displacement 

T a ( u p )  = (-Ip 71 not V(r) Y p m ' ( e . 4 )  

= -ye f I O (  V(:) P i - a m ( p )  exp(imQ) 
= -ye no! V(r) (-1)"' Pea-m(p) exp(imQ) 

= ( - l ) m  u p - m .  

Doing this on the same way for the vertical component, we finally find that 

Tuem = (-1)"' u!-"'. 

In the same way, we find for toroidal modes that 

T u t m  = (-1)"' UL-"'. 

The free modes u are not eigenfunctions of T. The eigenfunctions are easy to find and are 

simply: 

p + p  = I / &  ( u p  + ( -1)m ut-m) 

c + p  = i/Jz ( u(m - (-1)m ut-"') , 

for eigenvalue + I ,  

p - p  = I / J 2  ( u p  - ( -1)m ul-m) 

c - t m  = i / J 2  ( u ~ m  + ( - ~ ) m  UL-") , 

for eigenvalue - I .  

Finally for the operator S, we find easily for the p, and c+ functions defined above: 

s a ( 8 , p )  = - ( - ] )a(  ul-am(r ,e , -d)  f 

= 1/J2 ( - ] )a  ( s l -am(r)  Pl-am(e)  exdimdl f ( -1)m s 1 -a-m (r) Pe-a-m(8) exp(-im+)) 

e (r,e,-d)) u -a-m 1 
J2 

= 11J2 ( (-1)m si-am(r)  Yp-m(e,d)  f ~ i - ~ - ~  (r)  Yf-a-m(e,4)) 
and thus that for spheroidal modes: 
SL-m = S p - m  and Sl-"-m = ~p 
so that 

ss, = f 8, 
and that for toroidals: 
Se-am = - S p - m  and SL-a-m = - stam 

so that 

S8, = i 8, 
We find the same results for c, i.e. that 

Rt = 7 c,, for toroidal modes 

Sc* = f c,, for spheroidal modes. 

Appendix 2: Perturbation of the singlets 

In order to determine the projection of all nth order perturbations, let us recall that the X+l 

aspherical singlets with the same wV(O) frequency verify the two relations (2.1) and (2.2): 

<u( - wV2 K + w V B  + A ~ v >  = 0, 
<u(K - I / (wv + wU) B ~ v >  = 2 <u(v> = 6"". 

(2.1) 

(2.2) 
Let us substitute the bra and ket <uI and Iv> by the power series (17) of section 4.1 and expand 

(2.1) into a power series of c, noting that, for two different singlets v and u, and since w f )  and 

wio) are equal 

(w, -w,(O))(w, -wu(0))  B, 
-wv2K + w V B  + A = A, - w2?)1 + 6H - ( W v z  - w,('))(K - - B ) +  

wv +wu wv +wu 

If (2.2) is verified to the nLh order, 

<ulK - l/(wv + w " )  B~v> = 0 + o(c"), 
expression (2.1) can thus be written as 

<uI -wVz K + uVB + Alv> = <ulA, - ~ $ ~ ) ~ 1  + 6Hlv> + 
( wv - w, (0) )( W" - wv ( 0 )  ) 

<u(Blv> + o(t"+l). 
wv +wu 
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We then have, remembering that I0.w and I 0 . u ~  are eigenvectors of A,: 

<uI - w,' K + w,B + A ~ v >  = 0 
+ <u,O(6H(O,v> 

+ <u,11G%HIO,v> + <u,016HflI,v> + AlUv 

+ ... 
+ <u,n1G%H(O,v~ + <u ,O(6Hf ln ,v~  + A b  

+ ..., (2.3) 

where P is the projector into the subspace S, and 127' the projector into its orthogonal, and 

where 

Aluv = <u,lJAo-w~)2JJ,v> + <u, l l ( / 3 )6HIO,v>  t < ~ , 0 1 6 H ( f ~ ) I l , v > ,  

AZuv = <u,1)6HJI,v> + < ~ , 2 ( A , - w ~ ~ ) 2 ( 1 , ~ ~  + <u, I IA,-w~)z12,~> 
B 
' W" 

+ < u , Z ~ ( I ~ ) S H J O , V D  + < u , 0 ( 6 H ( I g ) ) 2 , ~ >  + 6]w, 6,wu<u.Ol 7 o ) O .  v>, 

= <u,216H(l,v> + <u, 116H(2,v> + < ~ , 3 1 A , - w ~ ) ~ ~ l , v >  t <u, I I A , - W ~ ~ ) ~ ~ ~ , V >  

+ ~ U , ~ ( A , , - U ~ ) ~ ~ ~ , V >  + <u,31(f2)6HIO, v> t <u,016H(f2)13.  v> 

Using relation (21) of section 4.1 and the following property of the first order perturbation 

(from (23),(24) of the same section) 

<u,O(6HIn,v> + <u, 1)Ao-w~o)21n,v> = <u ,0 (6Hqn ,v> ,  

and defining the operator G, as 

we obtain, after some algebra, the following expression for 

AlUv = <u,q6H G, 6H(O, VD, 

AZuv = <u,0(6H G, 6H G ,  6H 1 0 , ~ ~  

+ <u , I JP6H G, 6H)O,v> + <u.016H G, 6 H P I l , v >  + <u, 1 ( 9 6 H f l I I , v >  

A'uv = <u,016H G, 6H G, 6H G, 6HIO,v> + < ~ , 1 ( 9 6 H  G ,  6H G, 6H(O,v> 

+ <u,q6H G, 6H G, 6 H p l  I ,  v> + <u,2IP6H G, 6H(O, v> + <u,q6H G, 6 H 9 2 ,  v> 

+ <u,I(P6H G, 6 H 9 1 , v ~  + <u,2(9'6Hfll,v> + <u, 1 1 9 6 H 9 2 , v >  

- 61w2v 61wz,[<u.l( + <u,q[6K - Bo ]]G,[[6K - %]lo. v> + I I ,  v>] zp 2% 

In the same way, we can express (2.2) in terms of the power series of 6 ,  which gives 

<U(VD - = <U,OIO,V> 

+ <u,11flO,v> + <u ,01q l ,v>  + BlUv 

+ ... 
+ <u,Olfln,v> + <u,n(qO.v> + B2v 

+ .... (2.5) 
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where 

BlUv = <u,OI~K~O,V> - <u,O~ -10, B v>, 
2% 

B*,, = <u,III,v> + < u , O ~ ~ K ~ I . V >  + <11,1(6KlO,v> 

Equating each term of order en for (2.5) and each term of order en+' for (2.3). we then obtain 

the two equations 

<u,nlqO,v> + <u,O(qn,v> + BE, - 0, 

< u , n ( w o , v >  + <u,OlJ@ln,v> + A:, = 0, 
which give the expression of <u,qn,v>, using 

p f l 0 . v ~  = 6 1 ~ z v  10,~. 
We then have 

In the case where v is the same as u, we note that the n+lth order eigenfrequency associated to 
the nrh order eigenmode approximation verifies 
- w?')~ K~v(")> + w?') Blv(")> + A(v(")> - 0 + @en+'). 

so that 
(2.8) 

<v(")l - wY')~ K + wY1)B + Alvb)> = 0 + @c"+'), 

whenever 

<vlK - 1/(2wV) Blv> = 1 + o(c"+'). 

Finally, only the relation (2.5) are needed, and assuming that the phase of the eigenmode ( which 
still remains unconstrained) is such that <vlO,v> is real. We have thus, equating each term of 
order en to zero: 
<v,qn,v> = -1/2 BR. (2.9) 

5fT = e6H + 6H G, 6H + 6H G, 6H G, 6H + ... p, 
Let us now look for the secular terms. Using the secular operators 97 and JV 

N = go[] + G,6H + G,6H G,6H + ..I' 1+6K-(o) [ I  + G,6H + G,6H G,6H + ..p, [ 2 4  

one sees clearly that (2.3) can also be written in the form: 
<uI - wVz K + w,B + A ~ v >  = 0 

+ <u,q97Io,v> 

+ <U,llP5qO,V> + <u,q%-5q1,v> + <OUV 

+ ... 
+ <u,nlP5qO,v> + <u,0(97qn,v> + A:, 
+ .... 

and in the same manner, that (2.5) can be written in the form: 
<*> = <U,OIO, VD 

+ < U , O ( P A I  1.- + <u, l(PAIO,v> + @, 

+ ... 
+ <u,Olpmn,v> + <u,nlNaO,v> + @Ev 
+ ..., 

(2.10) 

(2.1 1 )  
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In the same manner as before, we see that. if IO,v> is solution of the secular equation 

~ O , V >  = 61wfv qO,-, 
we retrieve the same relation as (2.7) and (2.9). equating each term order cn in relations (2.10) 

and (2.11) to zero. The projection of the first order perturbation is now zero, which leads to the 

following expressions for A:v and BEv: 
Al,, = 0. @l"v = 0, 

Appendix 3: Density renormalisation 

Let us suppose that the aspherical density is non zero in V,, reference domain of the SNREI 

model. We define the renormalised ket as 

It is quite obvious that the density-renormalisation permits to retrieve the inertial terms of the 

reference model, such as the inertial Coriolis and kinetic terms. For the expression of the opera- 

tor, instead of expression (3), let us start from its eulerian form (Valette, 1986), which may be 

directly used if all discontinuities of p are included in those of the reference density field p o  : 

where 6,T(u) , Nz are respectively the eulerian stress-tensor perturbation and the Brunt-Vsissula 

parameter, equal to 

6,T(u)'j = diJuDkUl + p g.u giJ, 

Nz = ( gradp - p* (d-l);: g ).g, 

The first part of this expression represents the perturbation from the elastic state, the second the 

entropy perturbation and the two last ones the gravitational perturbation. Note that every case of 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/102/2/365/655605 by guest on 17 January 2023



390 P. Lognonne' and B. Romanowicz 

non-positiveness of the operator A is due either to elastic unstability, i.e. a non-positive definite 

tensor d or a negative Brunt Vaisala frequency, a condition for convective unstabilities, or 3 [ p ]  

g.n, which is a condition for gravitational instabilities of interfaces. Let us express relation (3.1) 

with the renormalised function u, and v,. We obtain for the different parts: 

Renormalisation of the elastic perturbation 

+ p,,g.UrgiJ 

which finally gives for the elastic perturbation 

C,T(u),j (d-l)ijkl 6,T(V')kl = 6,T,(ur)ij (dr-l)iJkl 6,T,(Vr*)k1* 

where the renormalised stress and stiffness tensor are 

drijkl = !! dijkl 
P '  

Renormalisation of entropy perturbation 

After substitution, we get the term 

pdp  ( gradp - p2 (d-l)$ g ) = ( gradp, - pOz (dr-9$ 8 1 + pdwd(Ln(p/p,)) 
which gives for the entropy perturbation 

where Nzr is the renormalised Brunt Vaissala parameter given by 

Nz, = ( gradp, - pol (dr-9; g ).g + p&rad(Ln(p/p,)).g . 

Renormalisation of the boundary perturbation 

The renormalised boundary term here simply becomes. 

[pol g.n u,.n vt* .n 

Renormalisation of the pre-stress 

The pre-stress, which appears in the tensor d, is simply renormalised by a multiplication by pdp. 

Let us define the renormalised pre-stress as 
u,~J = pdp  d .  
Starting from the equilibrium equations of the reference and aspherical states, 

D,dj + p gj = o 
we obtain , multipling by pdp. 

Di(urij - 0,ij) - urij Di(Ln(p/p,)) = 0, 
which gives to first order for a hydrostatic reference model 

Di(uriJ - uOiJ) t po Di(Ln(p/p,)) = 0. 

DiU,'J t Po goj - 0 

Renormalisation of the redistribution potential 

There is no simple way to renormalire the redistribution potential. Nevertheless, the effect of this 

renormalisation is a second order effect and may be neglected, except for modes with very low 

angular order. In this case, since: 
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Krylow- Weinstein Theorem 

For every 1- included in the definition domain of the operator A, let us define the real Q 

and B such as 
a = <flAlv>/<vlvs, 

J3 = J<vl AT v>/<v~ V> . 
Then the operator A has a real eigenvalue A, such that 

a - @Z < x < Q + @2. 

one has to take into account the perturbation to the mass-redistribution force, which can be 

written as : 

grad(flv,)) - lpdp grad 

where $,, and flv,) are respectively solutions of the spherical and aspherical redistribution 

potential equation: 

V2$,,(v) = 4 6  div(p,v), 

Vzflvr)  = 4 6  div(pv,). 

+ 6*, 

Using all these expressions, neglecting the perturbation of the mass-renormalisation forces, the 

final expression of the renormalised operator A, is thus given by 

(4.3) 

We note that the error is the norm of the projection of the remaining ket Ir.n,v> on the orthogo- 

nal of ~v (n )> .  

In the non renormalised case, starting from 

- uzp) K I V ( ~ ) >  + A I V ( ~ ) >  = 1n.r.w + o ( c n + l )  , 
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we have, after multiplication by K('I2): 
- w ~ F )  K1/21~(n)> + A,Kl/ZIv(n)> Kl/Zln,r,v> + o(P+l), 

which proves that the expressions for a and @ are the same to order n+l. 

Let US now generalise this result in the case of a rotating, elastic Earth. Instead of using the 

second order equation 

-WI Iv> i w BJv> + AJv> = 0, (4.5) 

we shall use the equivalent first order equation written in the product space (Valette, 1989) of 

generalized kets IT> 

This equation can thus be written as: 

w Ip = H Iv>, 
where H the hamiltonian associated to the operators A and B , defined as 

(4.6) 

H = [ A:l2 (4.7) 

Here All2 is the square root of the operator A, defined if no unstable modes are included in the 

spectrum of A. It can be proven (Valette, 1989) that the hamiltonian is self-adjoint, and thus all 

properties and results of the perturbation theory and Krylow-Weinstein theorem applications can 

be done in the product space. For exemple, for any nth order approximation of the renormalized 

quadratic equation (4.5): 

- W?)Z lv(n)> + up) qv(n)> + A I V ( ~ ) >  = In,r,v> + o(P+~),  

we can define an nrh order approximation in the product space 

In,r,v> as 

and its associated residual 

r 1 

where $1 is In,r,v(n)>. 

This nth order approximation will verify equation (4.6) to within the residual: 

w?) k ( n ) >  = H ~v(n)> + ln,r, v> + o(cn+l). 

We see that the nth order perturbation of frequency is now obtained by the projection of the 

residual part on the zero order Iv(O)>: 
<v(o)ln,r,v(n)> - = - <v(o)ln,r,v>/w?) . 
The Krylow-Weinstein theorem can now be used, with relations equivalent to (4.2), (4.3) and 

(4.4), but with the product space inner product. We have thus for a: 

a = <~(~)JHlv(n)>/<v(n)lv(n)>, - -  

which gives, using (4.7) 

a = up) - <v(n)(r,n.v>/<v(n)lv(n)>, 
and for B 

- - 

- -  

- - -  

,9 = <v(n)(H'Iv(n)>/<~(~)(v(n)>. - - - -  
which gives 
8 2  - a2 = <v,r,nln,r,v,/<v(n)Iv(n)> - - -  - < v ( n ) I n , r , y > 2 / < y ( n ) ~ ( n ) > 2 .  - 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/102/2/365/655605 by guest on 17 January 2023



Modelling of the Earth's coupled normal modes 393 

These results can now be expressed in the usual space, using 
<v(")lv(n)> - -  = <v(n)lv(n)> + <v(")lAlv(")>/wP)Z, 

which gives, using equation (4.4): 

<v(n)lv(n)> - -  = 2 <v(n)lv(n)> - <v(n)lwv(n)>/wP) + <v(n)lr,n,v>/w?)z , 

and thus, if < v ( ~ ) ~ v ( ~ ) >  = I ,  

a = UP) + 6%$')/2w$") + o(cn+l) 

which is nothing else but the squared root of the n+i order quadratic frequency. In the same 

way, the Krylow-Weinstein error may be expressed as : 
@Z= J/<v,r ,nln,r ,v> - <v(n)ln,r,v>Z. 

In this case, this error is thus bigger than those defined in the quadratic case. In the non-renor- 

malised case, all relations may be applied, to the same order. 

Appendix 5: The transformation method 

The Legendre forward and backward transformation of a tensorial field U of order N are given 

by 
Backward transformation 

Forward transformation 

In this appendix, we shall give an optimised discrete, generalized Legendre Transformation 

based on a direct decomposition of the field U into the four symmetry subsets S,,,,. Let us take 

a field U in one of these subsets, with associated eigenvalues q, ,  qp. After P reflection: 

u-n(-pi,dj+*) = C exp(im4j) x(-l)f ~ l - n m  ppm(pi)  
m=+M 

m=-M L 
= qp U Y P i d j )  

(5.3) 

and thus 

u p  = 'I, ( - I ) !  ut-nm. 

(-1)n u-n(k.4,) .  = 1 exp(irndj) 1 (-1)m Ue-n-m* Pe"m(pi) 

After T reflection: 
m=+M 

m=-M e=lml 
=' I t  W P i , d j )  

u p  = 'It (-1)m u p - m ' .  
and thus 

(5.4) 

The intrinsic symmetries are very important to provide an optimisation of the discrete transfor- 
mation. We start from equation 5.1, using the symmetry of Gauss points, the symmetry relation 

of the generalised Legendre functions: 
P p y - k )  = (-I)!+m Pi-nm ( p )  1 .  ( 5 . 5 )  

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/102/2/365/655605 by guest on 17 January 2023



394 P. Lognonnt and B. Romanowicz 

and the property of the Fourier Transformation: 

-!- M C ( - I ) ~  exp(imdj) un(p i ,d j )  = 

Expression 5.1 then becomes: 
i=nmax 

ut-= 1 wi (-I)! P L - ~ ( & )  1 exp(imdj) un(-pi, dj -r) 

1 exdimdj) ~ n ( & , 4  -r), 

j j 

i=nmax/2 j 

(5 .6 )  

Thus, we note that only components for positive n and m index are necessary. For scalar fields, 

the number of computations is divided by two, only A t  or Bt being non zero. This is the sym- 

metric/antisymmetric decomposition used in the scalar Legendre Transformation (Butel, 1984). 

The backward transformation optimisation uses the same symmetry. Starting from equation 5.2, 

we have for the real part of Un: 

(5.7) 

(5.9) 

Here also, the computation is necessary for positive index terms Urn only in the half spectral 

space, these terms being respectively hermitian or antihermitian. Using the symmetries of the 

functions A and B, 

(5.10) 
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odd and even parts of t are separated. For a vector, the number of computations is 3 times larger 
of course and generally, is equal to (2N+1)(Lmax+l)nmax(Mt1) for the forward transformation 

and (2N+1)(2fmax+l-M)nmax(Mt 1) for the backward transformation. We recall that tmax is the 

maximum order of the Legendre Transformation, nmax is the number of Gauss points. 
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