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Molecular characterization of Richter syn-
drome identifies de novo diffuse large B-cell
lymphomas with poor prognosis

Julien Broséus 1,2,3,32 , Sébastien Hergalant 2,32, Julia Vogt 4,
Eugen Tausch1, Markus Kreuz5, Anja Mottok4, Christof Schneider1,
Caroline Dartigeas6, Damien Roos-Weil7, Anne Quinquenel8, Charline Moulin9,10,
German Ott11, Odile Blanchet 12, Cécile Tomowiak 13,14, Grégory Lazarian15,
Pierre Rouyer2, Emil Chteinberg4, Stephan H. Bernhart16, Olivier Tournilhac17,
Guillaume Gauchotte2,18, Sandra Lomazzi19, Elise Chapiro 20,21,
Florence Nguyen-Khac 20,21, Céline Chery2,22, Frédéric Davi21,23,
Mathilde Hunault24, Rémi Houlgatte2, Andreas Rosenwald25, Alain Delmer 8,
David Meyre2, Marie-Christine Béné 26,27, Catherine Thieblemont28,
Peter Lichter29, Ole Ammerpohl4, Jean-Louis Guéant 2,22, ICGC MMML-Seq
Consortium*, Romain Guièze17, José Ignacio Martin-Subero 30,31,
Florence Cymbalista15, Pierre Feugier2,9,33, Reiner Siebert4,33 &
Stephan Stilgenbauer 1,33

Richter syndrome (RS) is the transformation of chronic lymphocytic leukemia
(CLL) into aggressive lymphoma, most commonly diffuse large B-cell lym-
phoma (DLBCL). We characterize 58 primary human RS samples by genome-
wideDNAmethylation andwhole-transcriptomeprofiling. Our comprehensive
approach determines RS DNA methylation profile and unravels a CLL epige-
netic imprint, allowing CLL-RS clonal relationship assessment without the
need of the initial CLL tumor DNA. DNA methylation- and transcriptomic-
based classifiers were developed, and testing on landmark DLBCL datasets
identifies a poor-prognosis, activated B-cell-like DLBCL subset in 111/
1772 samples. The classification robustly identifies phenotypes very similar to
RS with a specific genomic profile, accounting for 4.3-8.3% of de novo DLBCLs.
In this work, RS multi-omics characterization determines oncogenic mechan-
isms, establishes a surrogate marker for CLL-RS clonal relationship, and pro-
vides a clinically relevant classifier for a subset of primary “RS-type DLBCL”
with unfavorable prognosis.

Chronic lymphocytic leukemia (CLL) is the most frequent leukemia in
Western countries1. While generally considered an indolent B cell dis-
ease, CLL is in fact associated with a highly heterogeneous clinical
course. CLLs are classified into two major molecular subtypes that

differ in their degree of somatic hypermutations in the immunoglo-
bulin heavy chain variable (IGHV) domains. IGHV-unmutated CLLs (U-
CLL) are associatedwith an inferior prognosis than IGHV-mutatedCLLs
(M-CLL)2. CLL transformation into a more aggressive histology is
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termed Richter syndrome (RS)3. Diffuse large B cell lymphoma
(DLBCL) subtype accounts for 90–95% of RS cases. Around 80% of RS
cases are IGHV-unmutated while the remainder are IGHV-mutated4. In
contrast, most de novo DLBCL (from now on called DLBCL) are IGHV-
mutated as they originate from germinal center (GC) or post-GC B
cells. Based on gene expression patterns, different cell-of-origin (COO)
derivations of DLBCL include GC B cell like (GCB) and activated B cell-
like (ABC) DLBCL5. Recent genomic studies combining DNA and RNA
sequencing extended DLBCL subtyping beyond COO6–10, identifying
DLBCL subgroups defined by their genomic alteration patterns and
associated clinical courses, but a notable proportion remains
unclassified7,8,10. Moreover, although studies have shown some extent
of association of genetically defined groups with transcriptionally
defined COO signatures, the transcriptome in its entirety is not fully
used in current classifications.

As compared to other lymphoid malignancies, the availability of
in vitro or in vivo models to study RS is limited11–15, and therefore our
current knowledge on RS biology remains incomplete. The few geno-
mic studies attempting to decipher oncogenicmechanisms underlying
RS described disabled DNA damage response and cell cycle control
through TP53 abnormalities and CDKN2A deletions, chronic B cell
receptor (BCR) signaling, and NOTCH, MYC, and MAPK pathway
deregulations16–20. A recent report using multiome and single cell
approaches in sequential CLL-RS samples describes that the increased
molecular complexity of RS does not seem to be the consequence of
clonal evolution over timebut rather the selectionofminute subclones
present at CLL diagnosis and years before overt transformation21.
Additionally, recent studies focusing on DNA methylation (DNAm)
further captured the genomic complexity of CLL22–26, RS27, de novo
DLBCL28–30, and other B cell neoplasms31–33. A better understanding of
epigenetic signatures is needed,whether related to B cell development
or tumor transformation mechanisms.

Distinguishing between CLL-derived RS and de novo DLBCL in a
diagnostic setting based on histology and immunochemistry alone is
challenging. Around 80% of RS cases are clonally related to the CLL
disease stage while the remainder are unrelated (i.e. independent de
novo DLBCL). This dichotomy is of importance for treatment deci-
sions. De novo DLBCLs are chemosensitive in most patients, whereas
CLL-derived RS is mainly characterized by chemoresistance and poor
outcome, with a median overall survival (OS) of around 12 months.

In this study, we performgenome-wideDNAmanalysis andwhole-
transcriptome profiling for a large series of primary human RS sam-
ples, and comprehensively compare our findings to those in CLL and
DLBCL. We extensively characterize the epigenetic architecture of the
RS samples and find the majority retain a CLL imprint. Remarkably,
applying DNAm- and gene expression-based classifiers to datasets
from landmark studies identifies a subset of “RS-type” DLBCL that is
not previously described at the genomic level, is enriched in cases with
an ABC-like COO signature, and has an unfavorable prognosis 7,8,10.

Results
Data quality controls
The study workflow is described in Fig. 1. We investigated DNAmusing
array-based technologies, exploring a total of 433 samples, including
58 RS samples, 25 CLLs paired with RS (i.e. tumor samples were avail-
able at both CLL and RS stages; hereafter “paired-CLLs”), 68 DLBCLs,
and additional published methylomes from 190 other CLLs, and
92 samples representing normal B cell subpopulations (Supplemen-
tary Fig. 1)22,25,26,34,35. Limiting the batch effect is critical for comparing
large cohorts exploredwith different platforms indifferent facilities. In
this regard, we used EPIC and 450K Illumina microarray platforms, as
these provide accurate, robust, and reproducible genome-wide cov-
erage of CpG sites36,37. We extensively explored potential batch effects
and showed it was completely removed after applying strict quality
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Fig. 1 | Study workflow.Genome-wide DNAmethylation data were available for 58
RS, 25 CLLs paired with RS (tumor DNA samples were available at both CLL and RS
stages), 190 other CLLs, 68 de novo DLBCLs, and 92 samples from normal B cells
spanning the entire B lineage. All 58 RS samples were also documented for muta-
tions in a custom panel of 13 CLL driver genes, and RNA-sequencing data were
concomitantly available for 41 RS samples, allowing integrative analyses and

detailed exploration of oncogenic processes and epigenetic network deregula-
tions. RNA sequencing data were obtained for another 6 RS, 28 de novo DLBCLs,
and 10 non-tumoral lymph nodes. Data acquired fromnormal B cell control groups
were used for methodologic purposes only (see “Methods”). CLL chronic lym-
phocytic leukemia, DLBCL de novo diffuse large B cell lymphoma, NGS next-
generation sequencing, RS Richter syndrome.
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controls (see “Methods”). In addition, we applied a bioinformatic
deconvolution method to separate methylation data attributable to
five subtypes of normal white blood cells (CD4+ T-lymphocytes, CD8+
T-lymphocytes, neutrophils, monocytes, B cells). Use of respective cell
composition data as covariates in supervised analyses limited the
influence of tumor cell content of our samples.

RS is a DNA hypomethylated entity versus CLL and de
novo DLBCL
Unsupervised principal component analysis (PCA) showed a clear
partitioning between RS, CLL, and DLBCL samples in themost variable
components, highlighting different DNAm patterns in each group
(Fig. 2a and Supplementary Figs. 2 and 3). Principal component

1 separated CLL from RS and DLBCL, while principal component
2 separated DLBCL from RS. However, some RS clustered within the
DLBCLs or the CLLs. Decreased DNAm was observed in RS compared
to CLL, DLBCL, and normal B cells (Fig. 2b and Supplementary Figs. 4
and 5). DNAm levels of the paired-CLLs were intermediate between RS
and the other CLLs (Fig. S6). Hypomethylated and hypermethylated
CpGs in RS were differentially distributed regarding CpG islands but
similarly distributed regarding genomic context (Supplementary
Figs. 7 and 8).

Next, we annotated CpGs differentially methylated between RS,
CLL, and DLBCL according to 12 chromatin states reported in 7 CLL
reference epigenomes26. The 102,614 CpGs differentially methylated
between RS and CLL (two-way moderated t test adjusted for a false
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discovery rate (FDR) < 0.01; 90.8% hypomethylations in RS) were:
depleted (ratio < 0.75) in active promoters, poised promoters,
promoter-associated strong enhancers, and weak promoters; and
enriched (ratio > 1.5) in transcription transition regions and hetero-
chromatin (Fig. 2c). The 82,940 CpGs differentially methylated
between RS and DLBCL (96.4% hypomethylations in RS) were: deple-
ted in activepromoters; and enriched in poised promoters and regions
repressed by H3K27me3. Differentially methylated regions (DMRs; see
“Methods”) between RS and DLBCL were strongly enriched in targets
of polycomb complex components SUZ12 (p = 1.2e−121) and EZH2
(p = 1.5e−30), which likely corresponds to the derivation of DLBCL
from GC or post-GC B cells. Notably, genes associated with the extra-
cellular matrix were overrepresented in this subset (Supplementary
Fig. 9 and Supplementary Data 1). DMRs between RS and CLL were
linked to NOTCH and Wnt pathways, and to the adaptive immune
system, with PD-1 signaling and T cell/B cell co-stimulations (Fig. 2d
and SupplementaryData 2), which likely corresponds to the driver role
of NOTCH and PD-1 signaling in RS onset.

DNA methylation separates CLL-derived and DLBCL-like RS
subgroups
The PCA principal component 2 split the RS samples into two sub-
groups, one with a profile similar to CLL, the other closer to DLBCL
(Fig. 2a). We postulated that “CLL-derived RS” (maintaining a CLL
imprint) could be separated from “DLBCL-like RS” (distinct from the
preceding CLL and closer to DLBCL). To test this, we modeled a linear
predictor score (LPS)38, computing two underlying probabilities
(p): one to label samples according to their CLL-derived RS profile
(pCLL-derived), one for DLBCL-like RS (pDLBCL-like), defining pCLL-

derived≥ 98% and pDLBCL-like ≥ 98% to obtain highly specific and homo-
geneous groups (see “Methods”; Supplementary Fig. 10). The statis-
tical model devised to compute LPS was constructed with 4863 CpGs
robust in separating CLL from DLBCL. Since de novo DLBCLs are
usually IGHV-mutated whereas CLL may be IGHV-mutated or -unmu-
tated, we excluded CpGs highly differential according to IGHV
status22,24 from the LPS calculation to focus on other distinctive fea-
tures between CLL and DLBCL. The LPS scoring system was confirmed
with hierarchical clustering (Fig. 2e), non-negativematrix factorization
(NMF), PCA (Supplementary Figs. 11 and 12), and displayed differential
patterns on normal cells spanning the B cell lineage (Supplementary
Fig. 13). The scoring system identified 33 CLL-derived RS (57%) and 13
DLBCL-like RS (22%), leaving 12 intermediate samples (21%). This latter
subgroup clustered within the CLL and CLL-derived RS branch, albeit
marginally (Fig. 2e). The subgroup was then referred to as “low-LPS
scoreCLL-derived RS” (lowCLL-derived RS), in contrast to the “high-LPS

score CLL-derived RS” (highCLL-derived RS). Comparing highCLL-
derived RS and DLBCL-like RS confirmed global hypomethylation of

highCLL-derived RS. In addition, DLBCL-like RS genomic distribution of
DNAm did not coincide with that of DLBCL, with most locations
hypomethylated in DLBCL-like RS (Fig. 2f, g and Supplementary
Fig. 14). This subgroupingwasnot influenced by the tumor cell content
(Supplementary Fig. 10).

RS homogeneous subgrouping corroborates with gene
expression
Among the 58 RS samples investigated for DNAm, 41 also underwent
whole-transcriptome profiling. RNA samples from6 independent RS
cases were also sequenced. In total, the RNA-sequencing experi-
ment included lymph node samples of 47 RS, 2 paired CLLs, and 28
DLBCLs, plus 10 non-tumoral samples for methodologic validation
purposes (see “Methods”). Hierarchical clustering of the 23,508
identified genes confirmed clear subgrouping among RS samples
(Fig. 3a). All RS classified as DLBCL-like RS by DNAm clustered with
DLBCL (predominantly with non-GCB subtype) and separated from
CLL-derived RS. This supports the existence of CLL-derived RS and
DLBCL-like RS, through cross-validation using an orthogonal tech-
nique (>95% concordance). Annotations of gene clusters showed
that CLL-derived RS shared a solid CLL gene expression signature,
with upregulated genes involved in the BCR pathway and down-
regulated genes involved in the immune response, p53-signaling,
and JAK-STAT pathways. Furthermore, K-means gene clustering of
the 47 RS samples ranked according to LPS gradient revealed two
main clusters of differentially expressed genes between highCLL-
derived and DLBCL-like RS (Fig. 3b). One cluster is downregulated in

highCLL-derived RS, is related to the extracellular matrix and TLR
signaling, and included methylation-regulated p53 activity as an
interesting feature (Supplementary Data 3). The other cluster is
reminiscent of a CLL signature, overexpressed in highCLL-derived
RS, and linked with NOTCH, PI3K signaling, and DNAm metabolism
(Supplementary Data 4).

RS subgroups correlatewith IGHVmutational status and CLL-RS
clonal relationship
To reduce the influence of IGHVmutational status on LPS, CpGs highly
differential between U-CLL and M-CLL were filtered from the scoring
CpGs. However, IGHV mutational status is associated with major
DNAm changes in CLL22,24,34. Therefore, we next performed PCA on the
10,000 most variable CpGs, whether associated or not with GC reac-
tion, tagging samples with IGHV annotations (Fig. 3c). CLL-derived RS
accounted for nearly 80% of our RS samples and displayed a high

Fig. 2 | DNA methylation comparative analysis with CLL and de novo DLBCL
shows that RS is a heterogeneous and hypomethylated entity. a Unsupervised
principal component analysis of the adjusted DNAm values of RS, CLL, and DLBCL.
Geometrical centers are representedbybigger circles of the same color.bBoxplots
of sample-averaged methylation levels with all 397,769 CpGs. RS (n = 58) versus
U-CLL (n = 112): p = 7.74e−11; RS versus M-CLL (n = 103): p = 4.46e−12); RS versus
DLBCL (n = 68): p = 6.07e−12. c Distribution of differential CpGs (FDR<0.01;
methylation differential >10%) according to the reported chromatin states in 7 CLL
reference epigenomes26. Enrichments are shown as a heatmap and were calculated
from the position of the selected CpGs. Their distribution was reported among 12
different chromatin state categories. Barplots in the right part of each panel show
the methylation status difference in RS versus CLL or DLBCL. Differentially
methylated CpGs are distributed among 3 methylation level categories. Upward
bars indicate a comparative gain of CpGs in RS for the corresponding category,
while downward bars indicate a comparative loss in RS. d RS versus CLL top
annotations network (ReactomePA) from 238 differential DMRs computed with
DMRcate (Fisher’s multiple comparison statistics: min_smoothed_FDR and HMFDR
both <0.01; max beta-value differential >30%; at least 3 CpGs in the DMR with no
gap >1 kb between CpGs). e DNAm-based linear predictor score (LPS) CpG archi-
tecture. Hierarchical clustering of 4863 CpGs differential between CLL and DLBCL

(FDR<0.01; beta-valuedifferential >30%;moderated t test). fDensitymapofDNAm
between highCLL-derived and DLBCL-like RS. Smoothed beta-value densities from
the EPIC dataset. Scale from blue (no density) to yellow (medium density) and red
(high density). g Boxplots showing general methylation levels for highCLL-derived
(n = 33), lowCLL-derived (n = 12), and DLBCL-like RS (n = 13), de novo DLBCLs
(n = 68), and CLLs (n = 215). CLL versus highCLL-derived RS: p = 2.2e−16; highCLL-
derived RS versus DLBCL-like RS: p = 5e−3; lowCLL-derived RS versus DLBCL-like RS:
p = 9.9e−3; DLBCL-like RS versus DLBCL: p = 3.5e−2. BCP B cell precursors, CLL
chronic lymphocytic leukemia, DLBCL de novo diffuse large B cell lymphoma,
DNAm DNA methylation, EBV Epstein–Barr virus, FDR false discovery rate, gcBC
germinal center B cells, highCLL-derived RS CLL-derived RSwith a high LPS, HMFDR
harmonic mean of the individual components FDR, MBC memory B cells, M-CLL
IGHV-mutated CLL, lowCLL-derived RS CLL-derived RS with a LPS score below
threshold, LPS linear predictor score, naiBC naive B cells, PC plasma cells, PC1/2
principal component 1/2, RS Richter syndrome, U-CLL IGHV-unmutated CLL. p
values were derived from two-sided t tests. **p <0.01; ***p <0.001; ns not sig-
nificant. For all box plots, center line indicates median; box limits indicate upper
and lower quartiles; whiskers indicate 1.5× interquartile range; points indicate
outliers. Source data are provided as a Source data file.
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prevalence of IGHV-unmutated samples. In contrast, 12/13 (93%)
DLBCL-like RS were IGHV-mutated. RS subgrouping was thus highly
associated with IGHV mutational status (p = 6.3e−9). This raises the
possibility that RS subgroup partitioning simply reflects DNAm pat-
terns of U-CLL and M-CLL. However, while most CLL-derived RS sam-
ples gathered among U-CLL, DLBCL-like RS samples regrouped with
DLBCL, well separated from M-CLL (Fig. 3c).

Moreover, noneof theDLBCL-like RSwereclonally related to their
respective CLL component (n = 5 pairs), confirming that DLBCL-like RS
were not M-CLL-derived RS but rather de novo DLBCLs. In contrast,
CLL epigenetic imprint is a feature of CLL-derived RS, likely an entity
arising from CLL cells (Supplementary Fig. 15). This CLL-RS clonal
relationship was further confirmed by identical IGHV-CDR3 sequences
found in paired CLL and RS samples (n = 26 pairs; p = 5.8e−6). To
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confirm the ability of the LPS to identify CLL-derived RS, we set up an
independent validation EPIC 850K experiment, investigating 52 sam-
ples (see “Methods” and Supplementary Fig. 16): (i) 44 new samples,
including 18 new RS, the CLL component of 14 of these, 6 newDLBCLs,
and 6 new CLLs; (ii) 8 samples from the first series: 4 RS samples (3
clonally related and 1 clonally unrelated), with the 4 respective CLL
components. LPS classified 5/22 RS samples (22.7%; including the
clonallyunrelated RS from the first series) as DLBCL-like RS. Absence
of clonal relationship with preceding CLL was confirmed by IGHV
sequencing for 3 of these (data unavailable for the 2 other cases). The
other 17 RS samples were identified as CLL-derived RS, with IGHV-
assessed clonal relationship for 15/15 samples with concomitant CLL
(Supplementary Fig. 16). These findings clearly indicate that DNAm is a
powerful tool to determine the cellular origin in cases diagnosed asRS,
as it differentiates DLBCL arising in a patient with CLL from true
morphological transformations of CLL.

To further characterize our RS samples, we sequenced a panel of
13 CLL driver genes. Data integrated with copy number variations
obtained from DNAm showed a high prevalence of CLL-driver muta-
tions in RS samples harboring a CLL methylation signature (Supple-
mentaryFig. 17). CLL-derivedRSandDLBCL-likeRSclinical features are
displayed in Table 1. Both RS groups were uniformly treated with
rituximab-based chemotherapy regimens, yet with inferior outcome
for CLL-derived RS (p = 1.7e−3). This was further confirmed with gene-
expression profiling, where RS samples aggregating in the CLL-derived
branch of the dendrogram (Fig. 3a) were associated with a median OS
of only 8 months. In contrast, RS samples clustering with the DLBCLs
were associated with a longer median OS (35.5 months; p =0.018)
(Supplementary Fig. 18).

CLL-derived and DLBCL-like RS feature different epigenetic
networks
To better understand the epigenetic architecture of RS subgroups, we
performed an integrative analysis based on correlations between
DNAm and gene expression data (see “Methods”). The resulting inte-
grome associated 674,567 transcripts with methylation loci. From
these, 63,305 (9.4%) significant correlations (p <0.01, Spearman’s rho
<−0.33 and >0.33) were first selected. Compared with DLBCL-like RS,

highCLL-derived RS were mainly hypomethylated, which transcribed
into a dominant direction of overexpression (Fig. 4a). Matching den-
sity maps were observed for highCLL-derived and lowCLL-derived RS,
with only slight differences. In contrast, DLBCL-like epigenomic pro-
grams largely differed (Supplementary Fig. 19), so we undertook an in-
depth comparison of their integrome against that of highCLL-derived
RS. Significant correlations between the twoRS groups accumulated at
regulatory locations and were mostly negative (77.3%; Fig. 4b). Genes
under the control of these regions were related to cell proliferation
(cell cycle, NOTCHpathway, PLCγ-mediatedBCR signaling), epigenetic
regulation and RNA processing, immune response (T- and
B-lymphocyte activation and differentiation), and transcriptional reg-
ulation, including STAT family transcription factors (TF). Negative

correlations between promoter methylation levels and gene expres-
sion (rho < −0.33; at least three hits in the same regulatory region;
Supplementary Data 5) led to a list of 666 unique associations showing
enrichment in TF binding sites of SUZ12, TP63, TP53, and target genes
of early B cell development TFs. Conversely, 234 regions correlated
positively between DNAm and gene expression levels (22.7%; 3 hits
with rho >0.33; Supplementary Data 6 and Fig. 4b). These were
involved in controlling cellular proliferation and differentiation, reg-
ulation of transcription, protein metabolism, and immune response.
Taken together, positively and negatively correlated locations
amounted to 861 unique genes summarizing the most prominent
features of highCLL-derived compared to DLBCL-like RS in terms of
transcriptional mechanisms. Substantial differences in B cell devel-
opment programs were highlighted, including the lower expression of
B-lymphocyte-associated TFs EBF1 and E2F partnerMSC/ABF1, and the
higher expression of CD5, CCND1, ZAP70, ID3, BLK,WNT3, PRKCZ, and
MGMT in highCLL-derived RS (Fig. 4c, Supplementary Fig. 20, and
Supplementary Data 7).

Methylome and transcriptome integration provide insights into
RS regulatory features
Key players of RS epigenetic deregulations were further identified in

highCLL-derived RS, using DLBCL-like RS as a reference, and the 861
genes transcriptionally controlled throughmethylation. Among these,
156 were identified as TFs (18.1%; 2.3-fold enrichment; p < 1e−16)39. The
regulatory network reconstructed in silico from these genes showed a
central role of p53-like TFs and STAT proteins, an extensive control
emanating from master regulators such as TP53, NF-KB1, and FOXC1,
an essential developmental TF inmany tissueswhichmayhave a role as
a tumor suppressor. Over-represented target genes included those of
the transcriptional repressors ZNF418 (6.1-fold; FDR = 1.87e−21) and
ZNF217 (2.1-fold; FDR= 1.56e−8), involved in differentiation and
antagonizing cell death, respectively. On the network, downstream
effectors were mainly involved in epigenetic repression via the poly-
comb complex Prc2 (Supplementary Fig. 21 and Supplementary
Data 8), for which we noted a SUZ12 signature (FDR = 5.68e−4) and an
EZH2 target enrichment (FDR = 2.84e−4) in B cells, also linked with
H3K9me3, H3K27me, and H3K27me3 epigenetic marks (FDR < 3.85e−6
in GM12878 cell line). The 156 TFs were strongly enriched in KRAB
domain/C2H2-ZF-type TFs defining homeobox developmental
proteins40. We observed P300 favored interactions (4.2-fold increase;
FDR = 3.1e−3), denoting enhancers as enriched targets41. These results
support our previous findings and highlight critical pathway repro-
gramming through selected epigenetic control of key TFs as an
important mechanism in RS.

RS-based classifiers uncover “RS-type” DLBCLs with poor
outcome
DLBCL histological presentation of RS is essential to be distinguished
from de novo DLBCL because they differ greatly in terms of prognosis.
We thus developed a gene expression based linear classifier score

Fig. 3 | RSgene expressionprofiles corroborateDNAmethylation subgrouping.
a Unsupervised hierarchical clustering of RS and de novo DLBCL transcriptomes
(RNA-Seq; 23,508 genes). b K-means consensus clustering of RS transcriptomes
according to DNA methylation-based LPS gradient. Expression level statistics for
each cluster are displayed as barplots. Barplot: data are presented as mean values
+/− standard deviation from themean. Cluster 1: n = 1657genes; p = 1.29e−5.Cluster
6: n = 2203 genes; p = 2.56e−7. p values were derived from two-sided t tests. Source
data are provided as a Source data file. Differential clusters are functionally anno-
tated to the right. Mutational statuses as reported with NGS, or abnormalities
determined with CNV analysis on DNAm data, are added below sample annotation
for a selected panel frequently described in CLL and RS. c Sample partitioning
according to IGHV mutational status. Unsupervised PCA clustering of U-RS, M-RS,
U-CLL, M-CLL, and DLBCL according to the 10,000 most variable CpGs in the

dataset. The focus is made on the most variable CpGs because these are highly
representative of the IGHV signature in CLL (59% of these CpGs are strongly dif-
ferential between U-CLL and M-CLL). Indeed, PC1 separates IGHV-unmutated from
IGHV-mutated B cell malignancies, with U-CLLs and U-RS segregating in the same
area. Conversely, M-RS partition with DLBCLs, clearly separated from M-CLLs on
PC2. CLL chronic lymphocytic leukemia, COO cell of origin, DLBCL de novo diffuse
large B cell lymphoma, DLBCL-like RS DLBCL-like Richter syndrome, e enrichment,
EBV Epstein–Barr virus, GCB germinal center B cell, highCLL-derived RS CLL-derived
RS with a high LPS, LN lymph node, lowCLL-derived RS CLL-derived RS with an LPS
score below threshold, LPS linear predictor score, M-CLL IGHV-mutated CLL, M-RS
IGHV-mutated Richter syndrome, PC1/2 principal component 1/2, q q-value (cor-
rected p value), RS Richter syndrome, U-CLL IGHV-unmutated CLL, U-RS IGHV-
unmutated Richter syndrome.
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Table 1 | Biological characteristics of the different RS subgroups, according to DNA methylation profiling

Characteristic Full cohort CLL-derived RS DLBCL-like RS CLL-derived versus DLBCL-like RS

n/N % n/N % n/N %

Clinical features at CLL diagnosis

Age at diagnosis (years)

Median (range) 60 (35–82) 59 (35–80) 64 (52–82) p = 0.1 (NS)

Number of CLL treatment lines before RS transformation

0 18/56 32 10/44 23 8/12 66 p = 0.02

1 14/56 25 12/44 27 2/12 17

≥2 24/56 43 22/44 50 2/12 17

Clinical and biologic features at RS diagnosis

Male (%) 39/58 67 31/45 69 8/13 62 p = 0.73 (NS)

Age at diagnosis (y)

Median (range) 66 (42–88) 65 (42–83) 69 (59–88) p = 0.12 (NS)

Time to RS transformation (y)

Time <2 y 15/56 27 10/44 23 5/12 42 p = 0.44 (NS)

2 y ≤ time ≤5 y 10/56 18 8/44 18 2/12 16

Time >5 y 31/56 55 26/44 59 5/12 42

CLL status at RS diagnosis

Binet A 34/50 68 27/40 68 7/10 70 p = 0.41 (NS)

Binet B 10/50 20 7/40 17 3/10 30

Binet C 6/50 12 6/40 15 0/10 0

Response 13/52 25 12/43 28 1/9 11 p = 0.42 (NS)

Progression 39/52 75 31/43 72 8/9 89

ECOG PS > 1 28/52 54 21/42 50 7/10 70 p = 0.30 (NS)

Ann Arbor stage I–II 8/55 15 7/43 16 1/12 8 p = 0.67 (NS)

Ann Arbor stage III–IV 47/55 85 36/43 84 11/12 92

RS score

0−1 30/49 61 21/39 54 9/10 90 p = 0.07 (NS)

2–3 19/49 39 18/39 46 1/10 10

Rossi score17

High risk 28/50 56 21/40 52 7/10 70 p = 0.67 (NS)

Intermediate risk 17/50 34 15/40 38 2/10 20

Low risk 5/50 10 4/40 10 1/10 10

First-line RS treatment

R-CHOP/R-ACVBP 46/53 87 37/43 86 9/10 90 p = 1 (NS)

Platinum-based immuno-chemotherapies 7/53 13 6/43 14 1/10 10

Response to RS first-line treatment

Complete remission 15/53 28 10/42 24 5/11 45 p = 0.35 (NS)

Partial remission 2/53 4 2/42 5 0/11 0

Stable disease progression 36/53 68 30/42 71 6/11 55

OS< 12 months 42/56 75 35/44 80 7/12 58 p = 1.7 × 10−3

12 ≤OS ≤48 months 8/56 14 8/44 18 0/12 0

OS> 48 months 6/56 11 1/44 2 5/12 42

EBV positive 3/21 14 1/16 6 2/5 40 p = 0.12 (NS)

IGHV unmutated 43/58 74 42/45 93 1/13 7 p = 6.3 × 10−9

Stereotyped IGHV 12/58 21 10/45 22 2/13 15 p = 0.71 (NS)

CLL clonally related 26/31 84 26/26 100 0/5 0 p = 5.8 × 10−6

Large cell component (%), median [range] 80 [50–95] 80 [50–95] 80 [50–90] p = 0.44 (NS)

Del 17p (13.1) 26/58 45 23/45 51 3/13 23 p = 0.11 (NS)

Del 11q (22.3) 6/58 10 6/45 13 0/13 0 p = 0.32 (NS)

Trisomy 12 11/58 19 9/45 20 2/13 15 p = 1 (NS)

Del 13q (14.3) 10/58 17 10/45 22 0/13 0 p = 0.09 (NS)

TP53 21/58 36 17/45 38 4/13 31 p = 0.75 (NS)

NOTCH1 21/58 36 18/45 40 3/13 23 p = 0.33 (NS)

SF3B1 12/58 22 12/45 27 0/13 0 p = 0.05 (NS)

EGR2 11/58 19 11/45 24 0/13 0 p = 0.055 (NS)
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(LCS) to discriminate CLL-derived RS cases amongDLBCL samples.We
used a set of 215 genes selected from the transcriptomic CLL-derived
RS signature (SupplementaryData 9; see “Methods”) to screen external
datasets of supposedly de novoDLBCL for the CLL-derived RS imprint.
We first explored an independent gene expression dataset containing
RS samples, untransformed CLLs, and EBV-positive DLBCL cell lines
(GSE103265). The 215-gene set allowed unequivocal clustering of RS
and CLL samples, well separated from DLBCLs (Supplementary
Fig. 22). To cross-validate the previously described DNAm-based
classifier (LPS) with the gene expression-derived classifier (LCS), we
explored array-based DNAm and transcriptome-sequencing data of
the ICGC MMML-Seq consortium (both classifiers can be used inde-
pendently). Four (6.2%) DLBCL samples with classical DLBCL mor-
phology showed extreme DNAm and gene expression scores,
suggesting a CLL-like RS profile (Supplementary Fig. 23). Applying the
gene expression-based classifier to array-based gene expression data
of 430 DLBCL from the MMML-network identified 31 samples (7.2%)
with a statistically significant score (see “Methods”). Next, we mined
four large external cohorts of de novo DLBCL, including
1342 samples8–10,42. As with previous datasets, gene expression-based
LCS distributions were biased toward overrepresenting extreme
positive values (Supplementary Fig. 24). Our transcriptomic classifier
identified35/420 (8.3%; series fromLenz and colleagues)42, 8/137 (5.8%;
series from Chapuy and colleagues)8, 13/223 (5.8%; series from Dubois
and colleagues)9, and 24/562 (4.3%; series from Wright and
colleagues)10 samples harboring the CLL-derived RS signature with a
score above the threshold, for a total of 80/1342 (5.9%) samples. In the
four datasets, 91.6% to 100% of these samples were of ABC-like sub-
type. We cross-compared this 215-gene signature and a discriminant
44-gene signature of ABC-type DLBCL38, identifying LMO2 as the only
common gene. LMO2 is an important gene of the ABC signature but
holds nomoreweight in our classifier than the other 214 genes. Indeed,
instead of just outlining every ABC-subtype DLBCL, our classifier
extracted DLBCL with outstanding features, enriched in, but not
exclusively, ABC-subtype DLBCL, with an overlap between ABC and
GCB DLBCL and a subset of ABC-subtype DLBCL associated with a low
LCS (Supplementary Fig. 25). DLBCL sharing the extreme score values
with CLL-like RS showed a shorter progression-free survival (PFS) and/
or OS (p values ranging from <10−3 to 0.02 depending on the cohort)
compared to all other samples, and compared to other ABC-subtype
DLBCL (p values ranging from <10−3 to 0.07) (Fig. 5a, b and Supple-
mentary Figs. 26–28). We next conducted a multivariate analysis with
Cox Proportional Hazards models, including all available covariates to
evaluate the association of gene expression-based LCS with survival
(OS and PFS). This association was set up in binary (top 25% versus the
rest) as well as linear (as a continuous variable) models and provided
estimates and effect size for each covariate (IPI, TP53 and MYC/BCL2
double hit status; Supplementary Fig. 29). This systematic analysis

confirmed strong associationswith survival, independently fromother
covariates. In particular, this shorter survival was unrelated to inter-
national prognostic index distribution (Supplementary Fig. 30).

We next explored whether this effect might be due to the
enrichment of a previously described genomic subgroup of ABC-like
DLBCL associated with unfavorable prognosis10. In the 562-sample
dataset from Wright and colleagues, the 25 cases with top LCS scores
were enriched in formerly unassigned (1.5-fold relative enrichment;
p =0.04) and N1 subgroups (6-fold; p = 6e−3) while depleted in EZB
subtype (p =0.03). These cases were also strongly enriched (6.74-fold;
p = 4.1e−4) in samples collected at relapse, raising thehypothesis of the
ability of our classifier to identify DLBCL prone to relapse. Thus, the
extreme LCS values seemed to characterize a distinct subset of ABC-
type DLBCL, accounting for 4.3–8.3% of de novo DLBCL, with poor
prognosis. The highest 25% scores in the series from Wright and col-
leagues showed biased distributions in genomic subgroups, domi-
nated by unclassified cases, and associated with shorter PFS and OS
(Fig. 6). These findings suggest an ability of the LCS classifier to: (i)
identify high-scoringDLBCL samples as a separate DLBCL entity within
de novo DLBCL, associated with ABC phenotypes and other features
comparable to RS; and (ii) linearly classify other samples according to
survival and overall prognosis (Supplementary Figs. 29 and 31). Inter-
estingly, while absent from the 215-gene list, the CLL-associated mar-
ker CD5 was overexpressed in RS versus DLBCL (2.4-fold; FDR = 2.13e
−3) and highCLL-derived versus DLBCL-like RS (2.3-fold; FDR =0.01). In
thedataset fromWright and colleagues10,CD5 expressionwas higher in
samples within the top 25% LCS than in other samples (p = 5.8e−7),
corroborating our results. Last, in a dataset with concomitant tran-
scriptomeandCD5 immunochemistry stainingGSE66770, themajority
(17/22; 77.2%) of the top 25% samples were CD5+DLBCL (2.1-fold
enrichment) while this proportion was significantly lower (16/68;
23.5%) in the rest of the cohort (p = 4.73e−3).

Discussion
In this study, by using genome-wide DNAm analysis and whole-
transcriptome gene expression profiling, we extensively characterized
the epigenetic architecture of primary human RS samples. We identi-
fied a CLL epigenetic imprint that can act as a surrogate for identifying
whether an RS is clonally related to CLL or has arisen de novo. Dis-
covery of the CLL imprint in an RS sample avoids reliance on obtaining
tumor DNA at the CLL stage. Considering de novo DLBCL, DNAm- and
gene expression-based classifiers delineated an RS-like subset in
datasets from several landmark studies that was not previously
described at the genomic level, was enriched in cases with an ABC-like
COO signature, and had an unfavorable prognosis7,8,10.

Previous extensive explorations with exome or full genome-
sequencing had found differences in genomic landscapes between
DLBCL-subtype RS and de novo DLBCL16–20. Here we used a different

Table 1 (continued) | Biological characteristics of the different RS subgroups, according to DNA methylation profiling

Characteristic Full cohort CLL-derived RS DLBCL-like RS CLL-derived versus DLBCL-like RS

n/N % n/N % n/N %

XPO1 7/58 12 7/45 16 0/13 0 p = 0.33 (NS)

MYD88 5/58 8 1/45 2 4/13 31 p = 7 ×10-3

ATM 4/58 7 4/45 11 0/13 0 p = 1 (NS)

POT1 3/58 5 3/45 7 0/13 0 p = 0.1 (NS)

RPS15 2/58 3.5 2/45 4 0/13 0 p = 1 (NS)

FBXW7 1/58 2 0/45 0 1/13 8 p = 0.22 (NS)

BIRC3 1/58 2 1/45 2 0/13 0 p = 0.4 (NS)

BRAF 1/58 2 1/45 2 0/13 0 p = 0.4 (NS)

Two-sided Student’s t tests.
CLL chronic lymphocytic leukemia,DLBCL diffuse large B cell lymphoma, EBV Epstein–Barr virus, ECOG PS Eastern CooperativeOncologyGroup performance status,NS non-significant,OSoverall
survival, RS Richter syndrome.
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study design andmethodological approach to expand this knowledge.
Firstly, we studied epigenetic deregulations using robust and proven
methods, and profiled the RS molecular landscape beyond gene
mutations and copy number variations. Secondly, we conducted a
comprehensive analysis of RS pathophysiology which combined the
analysis of genome-wide DNAm and whole transcriptome profiling,

rather than pinpointing a limited number of specific targets. Thirdly,
we compared the RS epigenetic profile to that of large cohorts of
diverse CLL and de novo DLBCL, which contrasts with previous work
mostly focusing on the RS transformation process.

Human-derived xenograft mouse models and cell lines were
recently reported to study RS biology and test drug response11–15.

highCLL-derived vs DLBCL-like RS

Negative 
correlation

0

-2

- 4

0.2 0.4

Hypermethylated

0

2

4

-0.2-0.4

Methylation (beta-value differential)

dl
of 2

g
ol( 

n
ois ser

px
E

- c
h

an
g

e)

Hypomethylated

O
ve

re
xp

re
ss

ed
U

n
d

er
ex

p
re

ss
ed

a

rho = -0.33

rho = -0.5

Negative
correlations

Positive
correlations

39
(4.5%)

195
(22.6%)

627
(72.8%)

b

E
xp

re
ss

io
n

 (l
o

g
2 

fo
ld

-c
h

an
g

e)

Methylation (beta-value differential)

Homodirectional

c

Opposite change

rho = -0.33

rho = -0.5

Fig. 4 | Integrative analysis of DNA methylation and transcriptome data
highlights different epigenetic programs in highCLL-derivedandDLBCL-likeRS.
a Density map (smoothed density scatterplot) representing overall DNA methyla-
tion versus gene expression changes between highCLL-derived RS and DLBCL-like
RS. Scale ranges from blue (no density), to yellow (medium density) and red (high
density). Only genes with at least one significant correlation (Spearman’s test; p
value <0.01) were retained. Locations of the corresponding CpGs were mainly
distributed in proximal and distal regulatory regions, with specific enrichments in
TSS features for negative (TSS200: 2.6-fold, TSS1500: 2.2-fold) and positive
(TSS200: 1.2-fold, TSS1500: 1.6-fold) correlations. Hypo/hyper-methylations and
under/over-expressions are indicated relatively to the highCLL-derived RS sub-
group.bManhattanplots of negatively andpositively correlated regulatory regions
and associated transcript expressions. Chromosomes are displayed at the bottom
of each plot, with a color code (from green to red) indicating the density of

correlations over sliding windows of 1Mb. Series of vertically aligned dots indicate
DMRs (of at least 3 CpGs with a hit in TSS-associated location) significantly corre-
lated with gene expression. Upper part: negative correlations, amounting to 666
unique genes; bottompart: positive correlations, amounting to 234unique genes; a
VENN diagram indicates the overlap between negative and positive correlations.
c Quadrant scatterplot displaying methylation levels of regulatory sequences and
corresponding expression levels for the 861 selected genes (overall absolute cor-
relations: rho = 0.72; p < 2.2e−16; Spearman’s tests). The upper left and lower right
quadrants show genes with a negative correlation between methylation and
expression. Lower left and upper right areas: genes with positive correlations. CLL
chronic lymphocytic leukemia, DLBCL de novo diffuse large B cell lymphoma,
DLBCL-likeRSDLBCL-like Richter syndrome,DMRdifferentiallymethylated region,

highCLL-derived RS CLL-derived RS with a high linear predictor score, RS Richter
syndrome, TSS transcription start site.
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However, the availability of these models is limited and they cannot
recapitulate the full heterogeneity of RS, as theywere generated froma
limited number of tumor samples. Our approachusing large cohorts of
primaryhumanRS samples and comparative tumormaterial alsoholds
promise for discoveries and better characterize thewide RS epigenetic
complexity. We cross-validated our epigenetic findings using DNAm

patterns, that were largely corroborated by transcriptome data, in an
independent manner.

Our genome-wide DNAm data provide a more complete RS
hypomethylation profile description. The DNAm patterns confirm pre-
vious findings that RS is a DNA-hypomethylated entity as compared
with CLL and de novo DLBCL27. Such global hypomethylation may in
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Fig. 5 | DLBCLs harboring the CLL-derived RS epigenetic signature are asso-
ciated with ABC phenotype and worse outcome. a Kaplan–Meier estimates of
progression-free survival for n = 429 patients from three combined and clinically
annotated public DLBCL datasets8–10. Comparative PFS between patients with top
LCS and the rest of the cohorts, according to COO (p = 8.4e−8). b Kaplan–Meier
estimates of overall survival for n = 780 patients from four combined and clinically
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LCS and the rest of the cohorts, according to COO (p = 1.1e−11). Statistical com-
parisons were performed with the log-rank test. Bonferroni method was used for
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under GSE10846; PMID: 21546504); from Chapuy et al. (n = 137; microarray,
accession under GSE98588; PMID: 29713087); from Dubois et al. (n = 223; micro-
array, accession under GSE87371; PMID: 31648986); from Wright et al. (n = 562;
RNA-Seq; PMID: 32289277). ABC activated B cell, CLL chronic lymphocytic leuke-
mia, COO cell of origin, DLBCL de novo diffuse large B cell lymphoma, GCB
germinal center B cell, LCS linear classifier score, OS overall survival, PFS
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Article https://doi.org/10.1038/s41467-022-34642-6

Nature Communications |          (2023) 14:309 10

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10846
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE98588
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE87371


part reflect a more extensive proliferative history of the RS subclone21,
as measured by the epiCMIT mitotic clock33. Using a reproducible
DNAm microarray uniformly spanning the vast majority of regulatory
regions at a whole-genome scale37, we characterized the epigenetic
architecture underlying the commonly accepted dichotomic hetero-
geneitywith regard towhether a primary RS is clonally related toCLL or
has arisen de novo17. As expected, around 80% of our RS samples har-
bored a CLL epigenetic imprint (likely derived from a pre-existing CLL
clone). This was confirmed by identical IGHV-CDR3 sequences for all

CLL-RS follow-ups. As nearly all de novo DLBCLs harbor a mutated
IGHV, we propose that RS clonally related to the underlying CLL clone
are: (i) IGHV-unmutated DLBCL; and (ii) IGHV-mutated DLBCL with a
CLL imprint. DeterminingCLLhistory usingDNAmandgene expression
by identifying a CLL imprint independently from matched-CLL avail-
ability is a step forward, and is essential for clinical and therapeutic
management. Interestingly, DLBCL-like RS would conversely be DLBCL
without clonal relationship with the CLL counterpart. However, DNAm
of DLBCL-like RS differed from that of de novo DLBCL in terms of
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increased cell cycle activity and IGF1, ERK/MAPK, PI3K/AKT, and PD-1
signaling pathways. These differences suggest influences of the CLL-
invaded microenvironment for the development of a specific DLBCL
pathogenesis43.

Moreover, by integrating the DNAm and transcriptomic data, we
evidenced different epigenetic networks in CLL-derived and DLBCL-
like RS. Epigenetic architecture remodeling and subsequent dereg-
ulation of EZH2 and Wnt pathways, as well as PI3kinase/AKT and
IGFR1 signaling cascades, unravel CLL-derived RS underlying
mechanisms potentially responsible for chemotherapy resistance.
Thesemechanisms arepotentially druggable through EZH2, PI3K/AKT,
or IGFR1 inhibitors. IGFR1 pathway triggeringwas recently described as
a resistancemechanism to targeted therapy in CLL44. Interestingly, O6-
methylguanine-DNA methyltransferase MGMT regulatory sequences
are hypomethylated andMGMT is consequently overexpressed in CLL-
derived RS. MGMT promoter hypomethylation status is a known
negative prognosticmarker in glioblastoma45, denovoDLBCL46, and an
actionable target. This marker is easily assessable in the context of
DLBCL diagnosis and routinely used to guide therapeutic decisions.

Our results show B cell-specific TF implication and epigenetic
imprint in CLL-derived RS, and emphasize the previously described
important role of TP53, FOXC1, NF-KB, and epigenetic regulators in
oncogenicmechanisms. Strikingly, genes involved in the regulation of
TP53 activity through methylation were overexpressed in CLL-derived
RS, confirming the central role of TP53 in clonally-related RS and the
primary importance of epigenetic deregulation in the transformation
process. An interesting finding of this study is the putative role of the
FOXC1 TF in the RS regulatory network. FOXC1 has previously been
described as cooperating with HOX family members for orchestrating
mesenchymal tissue development, through NF-KB signaling47. FOXC1
is PRC2 repressed during hematopoietic development, but frequently
derepressed in hematopoietic progenitors in acute myeloid
leukemia48. Our data identified FOXC1 derepression as a hallmark of
CLL-derived RS, likely associated with the blockade of B cell develop-
ment and proliferation due to NF-KB signaling unleashing. We also
observed hypomethylation of DMRs regulating the expression of
genes involved in the extracellular matrix organization, and in the
immune system. These observations suggest a strong influence of the
microenvironment in RS development.

Notably, our findings directly translate into classification and
prognostication of de novo DLBCL, the most common human B cell
lymphoma.We provide a gene expression-based, stable, reproducible,
and potentially widely applicable classifier, on the basis of a CLL-
derived RS epigenetic imprint. The classifier differentiates a particular
DLBCL subgroup from supposedly de novo DLBCL datasets. Of clinical
importance, cases assigned to this subgroup are frequently not
detected by recently described genomic and gene expression classi-
fiers of DLBCL, and they are associated with an unfavorable prognosis.
These cases were ABC-like DLBCL, enriched in unclassified or N1
DLBCL genomic subtypes7,10. This is in line with the association of RS
with a particular gene expression profile and with NOTCH1 mutations
and NOTCH pathway activation. Given the efficacy of ibrutinib plus

R-CHOP chemotherapy in N1 subtype DLBCL49, the enrichment in N1
profile within RS samples supports research into whether these
patients may also benefit from BTK inhibition combined with R-CHOP
chemotherapy. However, a recent single cell transcriptome analysis of
sequential CLL-RS samples revealed that, as compared to the CLL cells,
RS cells downregulate genes related to BCR signaling and upregulate
those involved in oxidative phosphorylation21, and therefore RS may
be less sensitive to Ibrutinib. By applying a stringent cut-off to our
transcriptomic score, generalized to all studied DLBCL datasets8–10,42,
we identified a separate de novo DLBCL subset associated with a
median PFS comparable to that of clonally-related RS. Based on our
observations, 4-8% of DLBCL diagnosed as de novo DLBCL, non-
otherwise specified, may in fact be a subgroup of DLBCLs sharing
common epigenetic and transcriptional features with clonally related
RS, and with a similar unfavorable outcome. We propose a stable and
reproducible expression-based classifier widely applicable to tran-
scriptomic data, enabling the identification of this specific entity
within supposedly de novo DLBCL, termed “RS-type DLBCL.” Limita-
tions of the transcriptome scoring method are dataset size and com-
position (DLBCL features associated with outcome), which by design
prevent the exploration of single samples independently and may
exert biases. However, the method also demonstrated the linear
association of DLBCL scores with poor outcome and clinical variables
of cancer aggressiveness, and soconstitutes ameans for improving the
current DLBCL classification system.

In conclusion, our study has revealed several relevant aspects of
RS biology, including the complete RS hypomethylation profile and
differentiation of clonal versus non-clonal RS according to DNAm
patterns and gene expression profiles. The discovery of a CLL imprint
allows clonal relationship assessment without the need for tumor DNA
at the CLL stage. Subgrouping of primary RS samples according to
extensive characterization of the epigenetic architecture has provided
information underlying oncogenic processes, with clear clinical
implications. In particular, identification of RS-type DLBCL cases helps
to advance the current DLBCL classification system and could be
incorporated in treatment decisions, potentially improving disease
management. Our findings also enable the evaluation of larger cohorts
recruited in clinical trials and the development of novel treatment
approaches, which are urgently needed in RS.

Methods
Our methods and results made extensive use of data from previous
landmark studies26,31. Care was taken to follow good practices in the
analyses of methylome and transcriptome data, employing widely
approved procedures previously used in other high-standard studies.
Regarding the handling of large cohorts, we used sample correlations,
performed genotype checks between omics data, and added technical
and biologic replicates wherever possible.

Ethics statement
This study complies with all relevant ethical regulations and we have
obtained written informed consent for all participants. No

Fig. 6 | The gene expression-based LCS linearly classifies de novo DLBCL sam-
ples, with high scores enriched in N1, unclassified genomic profiles10, and
shorter progression-free survival. Dataset from Wright et al. (n = 562; RNA-Seq;
PMID: 32289277). Two-sided t tests were used to assess statistical significance. Top
25 LCS scores: enrichment in “other” subtype (e = 1.51; p = 4.6e−2); depletion in EZB
subtype (e =0; p = 3.0e−2); enrichment in N1 subtype (e = 5.99; p = 6.4e−3). Top 141
(25%) LCS scores: enrichment in “other” subtype (e = 1.28; p = 1.4e−2); depletion in
BN2 subtype (e =0.56; p = 1.9e−2); enrichment inMCD subtype (e = 1.57;p = 1.7e−2);
depletion in EZB subtype (e =0; p = 1.7e−8); enrichment in A53 subtype (e = 1.62;
p = 7.5e−2); depletion in ST2 subtype (e =0; p = 2.6e−3); enrichment in N1 subtype
(e = 2.92; p = 7.0e−3). Survival curves: Kaplan-Meier estimates of progression-free
survival for n = 233 patients from a clinically and genomically annotated dataset

from Wright and colleagues. Comparative PFS between patients with top 25% LCS
and the rest of the cohort. Statistical comparisons were performed with the log-
rank test (p = 1e−4). Source data are provided as a Source Data file. ABC activated B
cell like, A53 TP53 mutations/deletions-associated DLBCL subgroup, BN2 DLBCL
subgroup associated with lesions of BCL6 and/or NOTCH2, COO cell of origin,
DLBCL de novo diffuse large B cell lymphoma, EZB DLBCL subgroup associated
with abnormalities of epigenetic regulators KMT2D, CREBBP, EP300, and/or EBF1,
GCB germinal center B cell, LCS linear classifier score, MCD DLBCL subgroup
associated with lesions of MYD88 and/or CD79B, N1 DLBCL subgroup associated
with NOTCH1 gain of function, PFS progression-free survival, RS Richter syndrome,
ST2 DLBCL subgroup associated with lesions of SGK1 and/or TET2. *p value <0.05;
**p value <0.01; ++: enrichment >1.2; +++: enrichment >5; –: depletion <0.6.
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compensation was provided. We obtained consent to use and publish
information that identifies individuals, including indirect identifiers
such as gender and age. Individuals recruited for this study can no
longer be identified by the information provided, due to sample
anonymization and processing of the genomic data. All procedures
were in accordance with Helsinki declaration. Study protocol was
approved by the Institutional Review Boards and Ethics Committees of
Nancy, Kiel (#A150/10), Ulm (#349/11; #459/19 and #96/08) and Bar-
celona university hospitals, and by the French national ethics com-
mittee (Comité de Protection des Personnes Ouest IV 09/05/2017).

Patients and materials
Amulticenter registry of RS accrual was established across nine centers
affiliated to the French Innovative Leukemia Organization (Clinical-
Trials.gov Identifier: NCT03619512). Sixty-four patients diagnosed with
DLBCL-subtype RS were enrolled. Fresh frozen biopsies were gathered
at RS diagnosis and met the criteria for DLBCL, including diffuse pat-
terns of large B cells with the same size asmacrophages or twice the size
of normal lymphocytes3,50. For all patients, diagnoseswere reviewed and
confirmed by two independent pathologists. Only RS samples with at
least 50% (median 80%, range 50-95%) high-grade component assessed
by pathology review were selected for analysis. The same process was
applied for assembling a validation cohort of 58 samples, further
reduced to 52 QC-passed samples, which we processed to an indepen-
dent EPIC 850K experiment. This 52-sample validation cohort included
44newsamples: 18newRS samples, theCLL componentof 14of these, 6
new DLBCL samples, and 6 additional CLLs. In addition, 8 samples from
the training serieswereused as controls: 4RS samples (3 clonally related
and 1 clonally unrelated), with the 4 respective CLL components (Sup-
plementary Fig. 16). Thus, this EPIC850Kexperiment investigated 22RS,
6 new DLBCLs, and 24 CLLs, including 18 paired-CLLs.

Fifty-eight of the 64 enrolled patients with RS were from a pre-
viously described cohort, andboth targetedNGSsequencing andDNAm
exploration were performed; 56 of these 58 patients with RS underwent
18F-fluorodeoxyglucose positron emission tomography/computed
tomography for initial diagnosis51. For the other six patients with RS, the
fresh frozen biopsywas too small for extracting bothDNA andRNA, and
due to the large cellular component (>70%), we prioritized gene
expression data and only RNA sequencing was performed. Theminimal
tumor purity was raised to 70% for RNA analysis, as contamination by
signal from residual normal cells strongly influences global gene
expression, especially for a subset of transcripts with very low expres-
sion in tumor cells but high expression in residual normal cells.

Additional data for CLL (n = 215), and 92 normal B cells spanning
the entire B lineage development were obtained as part of previously
published studies22,25,26,34,35. DNA methylation from 68 de novo DLBCL
cases were also used as a reference. These DLBCLs originate from a
larger lymphoma cohort gathered by the ICGC MMML-seq
consortium52. Finally, 10 lymph nodes from healthy subjects were
analyzed as a control group for transcriptome sequencing.

Methylome data analyses
EPICmicroarray. DNAm status of 866,562 CpG sites was interrogated
on the Infinium Methylation EPIC array (Illumina, San Diego, CA, USA;
see Supplementals), later referred to as the EPIC 850K platform.

Dataset generation. Datasets were created using the minfi package53.
The EPIC set comprises 90 distinct samples (58 RS, 25 CLL, plus a
subset of 7 DLBCL replicates also available on 450K), interrogated on
EPIC 850K. DNAmethylation data from the control groups (215 CLL, 68
DLBCL, 92 normal B cells spanning the entire B-lineage) were acquired
with the Illumina Infinium® HumanMethylation450 BeadChip (later
referred to as the 450Kplatform)22,25,26,34. These and the EPIC 850Kdata
were processed from IDAT files. Analyzes were run under R 3.6 with
Bioconductor 3.10 and later versions. The FULL dataset comprises 433

distinct samples (92 benign B cells, 215 CLLs, 68 DLBCLs and 58 RS),
combined into a single 450K object containing probes shared by 850K
and 450K microarrays: (i) raw IDAT files corresponding to 96 and
377 samples for the 850K (866,091 CpGs) and 450K (485,512 CpGs)
platforms, respectively, and included technical replicates; (ii) each
subset was loaded independently, stored into a dedicated RGChan-
nelSetminfi object, along with full sample annotations, then both were
combined into a third subset containing 473 samples × 452,567 CpGs
using the combineArrays function with output type as “IlluminaHu-
manMethylation450k”; (iii) the EPIC dataset stems from the first
(850K) subset alone, the FULL dataset is obtained from the combined
subsets.

To reduce technological issues and biases, the same preparation
protocol was applied to both EPIC (850K) and FULL (combined) sub-
sets. Themain stages of the filtering and quality control pipeline are as
follows: (i) technical checks, filtering, and evaluations (ii) data nor-
malizationwith SWAN54; (iii) probes located on X and Y chromosomes,
flagged as cross-hybridization probes, or located near known SNPs
were further removed with the rmSNPandCH function (with para-
meters dist = 2 and mafcut = 0.05) available from the DMRcate
package55; (iv) imputation of the remaining failed β-value positions
with imputePCA of the R missMDA package56,57, (v) 2 × 2 sample cor-
relation checks (Supplementary Figs. 32 and 33). Correlation heat
mapswere renderedwith the R corrplot package; (vi) extended quality
control step to remove sample outliers and check for residual post-
normalization batch effects (Supplementary Fig. 34); (vii) ultimately,
technical replicateswere averaged into unique samples as all replicates
were found comparable (Supplementary Fig. 35). These filtering steps
led to the final EPIC (90 samples × 794,927 CpGs) and FULL (433 sam-
ples × 397,769 CpGs) datasets.

Technical checks, filtering, evaluations, and quality control. These
steps included failed CpGs removal (>10% samples with a detection p
value >0.01), gender check between clinical data and gender returned
by the getSex function, and genotype checks (Supplementary Data 10)
between RNA-seq data (see Supplementals) and genotypes inferred
with the beta2genotype function available from the R OmicsPrint
package58.

Cell composition deconvolution. Cell type composition was esti-
mated for each sample with the estimateCellCounts function against a
library of 6 normal white blood cells (CD8 T cells, CD4 T cells, NK, B
cells, monocytes, and granulocytes) (Supplementary Data 11). The
proportions of each explored cell type were reported and later used as
covariates in statisticalmodels to adjust for B cell representation in the
mixes. Blood samples deprived in B cells (<30%) were thus discarded
from further analyses.

Downstream bioinformatics
Supervised analyses. As a rule, β-values were used for direct inter-
pretation and graphical representation, while M-values were favored
for statistics and computations. Linear modeling based on empirical
Bayesianmethods was used to assess for CpG differential methylation.
When applicable, these models included cell deconvolution results as
added covariates to correct for B cell content. Additionally, at this
point, any unwanted methylation variation such as residual batch
effects were removed by using the RUVm function from package
missMethyl59. The overall dispersion was calculated on the entire
dataset, then p values for each comparison were obtained with a two-
way moderated t test and adjusted for FDR following the
Benjamini–Hochberg procedure. At probe level, an FDR <0.01 indi-
cated statistical significance. Differentially methylated region (DMR)
determinationwas performed on the same linearmodels with dmrcate
(package DMRcate), with lambda = 1000 and C= 3. FDR cut-off for first
allowing a CpG to initiate a DMRwas set to FDR =0.01, and DMRs were
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considered statistically significant if both min_smoothed_fdr and
HMFDR output probabilities were <0.01.

Unsupervised analyses. Explorations were conducted on β-values,
and all methods used Euclidean distances as (dis)similarity metrics.
PCAs were performed with R packages FactoMineR and factoextra, on
the entire datasets or a subset of the top variant CpGs across all con-
sidered samples. Hierarchical clusterings included complete and
average linkage criteria, and resulting heat maps and dendrograms
were rendered with the R package ComplexHeatmap. Non-Negative
Matrix Factorizations were performed with the R package NMF, either
on all CpGs or a subset of the most variant ones according to the
context, with method lee, and parameters ranking = 3 and
iterations = 50.

Feature annotations. Methylome data were analyzed using the avail-
able Illumina 450K and EPIC platform annotations, which strongly rely
upon the hg19 assembly. As several tools like minfi and DMRcate still
use those by default, CpG and DMR locations/annotations were lifted
to hg38 coordinates as an after-computation-process when required,
especially when dealing with integrations with transcriptomic and
epigenomic data. Additional CpG annotations included B cell devel-
opmentmodules34, UCSC tracks for the EBV-transformedGM12878 cell
line, such as DNaseI and chromatin marks from ENCODE and tran-
scription factor ChIP-Seq peaks fromENCODE3, histonemodifications,
and chromHMM chromatin states for 7 reference CLL epigenomes (2
U-CLLs and 5M-CLLs)26. Any liftOver of coordinates between hg19- and
hg38-annotated data was achieved with the UCSC table browser or
with R packages liftOver and XGR.

Gene set and pathway analyses. Unbiased functional annotations on
ontological terms (GO) and KEGG pathways were achieved at CpG and
DMR levels with the R package missMethyl. Additional enrichment
analyses were conducted on curated gene lists with Enrichr60. Reac-
tome pathway overrepresentations and enrichment analyses were
performed with ReactomePA61 on curated sets of unique genes asso-
ciatedwith identifiedDMRs. Enrichments in sets of CpGs,DMRs, target
genes, GO terms, or pathways were calculated as the occurrences of
the selection against a background representing the entire dataset
(enrichment = observed frequency/expected frequency). p values
associated with enrichment analyses were obtained with (i) an over-
representation test, (ii) Fisher’s exact test, or (iii) a Chi-square test,
depending on the context and group size.

Linear predictor score (LPS). To formally distribute RS samples into
subgroups, we developed a scoring predictor inspired by the work of
Wright and colleagues on transcriptome data, that successfully sepa-
rated GCB from ABC DLBCL38. Here, we applied LPS on methylome
data, with a cohort composed of all 58 RS samples, 215 CLLs, and 68
DLBCLs. As we aimed to best discriminate between CLL and DLBCL
profiles, only the highly differential CpGs between the two groups
were considered in the analysis (261,085; FDR <0.01; moderated t-
statistics were retained for further use in the score computation). To
lessen the impact of B cell IGHV maturity on the scoring model, we
next subtracted CpGs that were also differential between U-CLL and
M-CLL (128,408; FDR <0.01). The 181,231 remaining CpGs were then
filtered into 4863 CpGs with high methylation differential (beta-value
differential or β-Fold-Change), that is, >30%. This amount was con-
sidered appropriate as: (i) statistical power to discriminate such a
methylation differential was reached; (ii) probe composition was
balanced between regulatory region/gene body/intergenic location as
compared to the background; (iii) it provided sufficient number to
expect a normal distribution of LPS within subgroups; and (iv) those
CpGs demonstrated a strong correlation structure among the groups
of samples (Fig. 2e).

Finally, fromeachof these4863CpGs and for each sample Sof the
cohort, the score

LPS Sð Þ=
Xn

i= 1

ti:Si ð1Þ

was calculated, with ti representing the moderated t-statistic for CpG i
and Si the corresponding methylation β-value. Known score distribu-
tion of CLL and DLBCL samples within their respective subgroup G 2
CLL,DLBCL½ � allowed the Bayesian likelihood approximation for RS
samples S to belong in each one of them, with probability

P S in G=CLLð Þ=
Φ LPS Sð Þ,μ̂CLL,σ̂

2
CLL

� �

Φ LPS Sð Þ,μ̂CLL,σ̂
2
CLL

� �
+Φ LPS Sð Þ,μ̂DLBCL,σ̂

2
DLBCL

� �

ð2Þ

and PðS in G=CLLÞ ’ 1� PðS in G=DLBCLÞ where Φ computes the
normal density function with the estimated means μ̂ and variances σ̂2

of LPS within either subgroup G. To finally obtain highly specific and
homogeneous subgroups, thresholds were defined as follows: (i)
p(S in G=CLL) ≥0.98 for CLL-derived (namely pCLL-derived), and (ii)
p(S in G=DLBCL) ≥0.98 for DLBCL-like (pDLBCL-like) labeling, since the
gray zone between the two main groups is centered on scores for
which the probability density functions overlap at values >0.02 either
way (Supplementary Fig. 10).

Transcriptomics
All samples were processed within the same batch. Demultiplexed
single-end sequencing data corresponding to 50-nucleotide-long
reads were available in FASTQ files, one for each of the 87 samples,
and used in the next processing steps. The cohortwas composed of 47
RS samples, 2 paired-CLLs, 28 DLBCLs, and 10 controls from normal
lymph nodes. The 10 normal controls were added for methodologic
purposes: (i) normalization; (ii) checking benign profiles against B cell
malignancies; (iii) checking the feeble amplitude of the transcriptomic
component separating inflammatory (n = 3) from non-inflammatory
lymph nodes (n = 7); and (iv) validation of the efficiency of the devel-
oped scoring methods.

Transcriptome reconstruction pipeline. First quality controls were
conducted using FastQC v0.11.5 [http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/] results as a guideline. No adapter
content or known overrepresented sequenceneeded to be removed at
this step. Read mapping and the main filtering were performed using
HISAT2 v2.0.462 against a reference index built to account for human
population SNPs as well as known transcripts (this index can be
obtained from ftp://ftp.ccb.jhu.edu/pub/infphilo/hisat2/data/grch38_
snp_tran.tar.gz). The following scoring constraintswere applied during
alignment:–score-min L, 0,−0.2–sp 10.3–dta. Samtools v1.3.1 [http://
github.com/samtools/samtools] was used for manipulating the align-
ment files throughout the downstream analysis. PCR duplicates were
flagged with Picard v1.13 MarkDuplicates [https://broadinstitute.
github.io/picard/]. Differentially spliced transcripts were assembled
from the obtained alignments with StringTie v2.1.063. The present
protocol took advantage of the proposed workflow for identifying
known aswell as novel isoforms, using anannotationfile for hg38 in gtf
format as a guide [ftp://ftp.ensembl.org/pub/release88/gtf/homo_
sapiens/Homo_sapiens.GRCh38.90.gtf.gz]. The following parameters
were used: (i) first step is applied for each sample -f 0.2 -j 3 -c 10 -M0.5,
(ii) second stepmerges all transcripts of all samples–merge -m200and
(iii) the last step estimates abundances and read coverage for all the
merged transcripts, for each sample -A -C -f 0.2 -j 3 -c 10 -M 0.5. Two
tables were generated from these results, one compiling raw read
count at the gene level, and another at the transcript level.
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Raw abundance filtering and normalization. Raw counts were fil-
tered by applying a minimum expression threshold for a gene or
transcript. Those had to be expressed (non-zero value) in at least two
samples and present an average expression value across all samples
higher than 1/5,000,000 of the average library size (64 ± 3 million
reads per sample), that is, at least 20 reads per feature. Data was fur-
ther adjusted with the TMM normalization method64, and finally was
log2 and cpm (count per million) transformed65. A total of 23,508
genes and 77,491 transcripts were identified and reported at the end of
theprocess. Pearson’s correlations for gene expression levels averaged
at 0.92 for genes and 0.75 for transcripts and were very stable across
samples (data not shown).

Gene and transcript annotations. All transcriptomic analyses were
performed using the hg38 reference assembly of the human genome.
Results were fully annotated with known symbols corresponding to
gene and transcript genomic locations whenever possible. Upon
completion of the transcript assembly, gene symbols were assigned
Ensembl IDs based on overlapping positions with known transcripts
(90% overlap minimum). In case of failed overlap, custom and unique
IDs were used. Therefore, gene and transcript assignments were based
on the Ensembl66 GRCh38 annotations available in both core and
funcgene databases, version 90. These were downloaded from ftp://
ftp.ensembl.org/pub/release-90/mysql/ for local installation andquery
with in-house custom tools).

Transcriptome explorations. Unsupervised analyses were all carried
out with hierarchical and K-means clustering techniques, as previously
described67. Expression values weremedian-centered, and uncentered
Pearson’s correlation was used as distance metrics. Supervised ana-
lyses were performed through linear modeling (empirical Bayes), and
differential expression p values were obtained using a two-way mod-
erated t test then adjusted for FDR following the Benjamini–Hochberg
procedure. An FDR <0.01 indicated statistical significance. Cluster
dissection was achieved with functional annotation tools for target
gene associations, such as the Open Targets platform68, and gene
signature correlation with public datasets from multiple databases,
such as GEO (Gene Expression Omnibus), with Enrichr [https://
maayanlab.cloud/Enrichr].

Methylome and transcriptome data integrations
Herewe focused on the RS cohort, forwhich 41 RS samples overlapped
between methylome and transcriptome experiments. A subset of the
methylome EPIC dataset (M-values, normalized and curated) and part
of the transcriptome dataset (gene and transcript CPMs – also nor-
malized and filtered) were integrated to eliminate unwanted signals
and pinpoint the functional mechanisms linking DNA methylation of
regulatory regions with gene expression in RS.

Both datasets were re-annotated with biomaRt69 and linked
using two methods: (i) with shared Ensembl identifiers; and (ii) by
genomic coordinates for refined feature overlap when the first
method failed. We used “TSS200,” “TSS1500,” and “first exon” CpG
information to define associations with promoter regions in the next
analysis steps, and overlap was considered successful within 2 kb
between CpG and gene transcription start sites (TSS). The inte-
gromes generated at this step represented 475,148 and 674,567
associations at the gene and transcript levels, respectively. As
described in a similar setup70, Spearman’s correlations were calcu-
lated for each association. Correlations at the gene level were used
for generating density plots and presenting a general view, whereas
transcripts were used for precise analyses and final results. These
were filtered into candidate transcriptional effector locations, by
selecting “promoter regions” containing at least three negatively-
correlated CpGs (rho < −1/3; p value <0.001) or three positively cor-
related CpGs (rho > 1/3; p value <0.001) with features corresponding

to “TSS200,” “TSS1500,” “first exon,” or “TSSoverlap2kb” (each
linked to the same transcript identifier).

Manhattan representations were plotted against the background
with theRCMplot package. Gene set enrichment andpathwayanalyses
of selected candidate lists were carried out as described inMethylome
data analyses. Interaction networks of putative TFs encoded by can-
didate genes, protein domain enrichments, and effector functions
were performedwith STRING tools [https://string-db.org/]71. A curated
database of 1639 human TFs with DNA-binding domain information
was obtained from http://humantfs.ccbr.utoronto.ca/. Regulatory
networks were built with NetworkAnalyst [www.networkanalyst.ca]72.

Methodology for building the gene expression-based scoring
system
CLL-derived RS signature. A 215-gene set was obtained by extracting
two clusters of strongly correlated up- and down-regulated profiles
from the transcriptome hierarchical clustering tree (Fig. 3a, Supple-
mentary Fig. 36, and Supplementary Data 9). The two initial clusters
displayed a very high enrichment in CLL genes and mainly drove the
whole sample aggregation process. These were further reduced to
protein-coding genes, to avoid biases when applying the signature to
transcriptomes of different origins, which may not contain ncRNAs or
genes of undefined biotype. The reduced setwas then overlappedwith
genes integrating significantly between transcriptome and methy-
lome. The resulting 215-gene signature contained 93 protein-coding
genes underexpressed inCLL-derivedRS and 122 protein-coding genes
overexpressed in CLL-derived RS.

Linear classifier score (LCS). For each analyzed dataset, scores were
obtained according to the following procedure, to render the process
as reproducible as possible. (i) When applicable, raw expression data
with relevant sample annotations were retrieved from the Gene
Expression Omnibus curated database (https://www.ncbi.nlm.nih.gov/
geo/) with GEOquery73. Expression matrices were then prepared,
described statistically, and normalized according to a well-established
protocol74. Otherwise, already normalized expression data were used
“as is”. (ii)Whole transcriptomeswere reduced to their features (genes,
transcripts, probes) corresponding to matches with the 215-gene sig-
nature. (iii) Expression valueswere summedupover genes toobtain an
aggregated andunique expression for each gene. (iv) Datawere scaled,
i.e., mean-centered and standard-deviation-reduced. (v) Positive out-
liers were trimmed at the last permille (99.9%) to reduce the impact of
extreme gene expression values on the score but preserve high
enough values as essential markers. Trimmed values were replaced
with the last permille value. After a distribution check, no negative
outliers were found in any dataset. (vi) For each of the 215 genes,
weights were assigned: those originating from the upregulated cluster
were weighted +1 and those originating from the downregulated
cluster were weighted −1. (vii) Finally, LCS scores were computed as
the mean of weighted gene expressions for each sample S of the
dataset:

LCS Sð Þ= 1
n

Xn

i = 1

Gi:Wi ð3Þ

with n the number of genes in the signature, and Gi representing
the gene i weighted by Wi. LCS scores were then standardized (mean-
centering to 0 and standard-deviation-reducing to obtain scores fully
comparable between datasets). The obtained Z-scores were compared
to a normal distribution in a one-way test to calculate a p value, used to
define the initial LCS cutoff (p <0.05) in each dataset.

Statistics and reproducibility
No statistical method was used to predetermine sample size. Data
exclusion criteria according to quality controls are explained in the
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“Methods” section. The experiments were not randomized. The
investigators were not blinded to allocation during experiments and
outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw DNA methylation, gene expression and targeted NGS data gen-
erated in this study from RS samples have been deposited in the Eur-
opean Genome-Phenome Archive (study EGAS00001005495) under
accession number EGAD00010002194 for DNA methylation data;
accession number EGAD00001007922 for transcriptomic data, and
accession number EGAD00001009509 for targetedNGS data. The raw
data are protected and available under restricted access. Clinical and
genomic data can be obtained by contacting the data access com-
mittee, according to the European Genome-Phenome Archive’s pro-
cedure. Data access will be granted if their use complies with the data
use conditions, including a commitment to strictly use these data for a
clearly identified academic research programs and according to good
practice recommendations. The Data Access Committee will respond
to requests within 2 weeks. Once access to the data is granted, these
are available until the end of the research program they support.
PreviouslypublishedDNAmethylation datasets from the ICGCMMML-
seq consortium that were used in this study are available upon request
from the data access committee at the ICGC consortium data portal
[https://dcc.icgc.org/]. Published datasets can be found under the
following accession codes: GSE103265; GSE66770; GSE10846;
GSE98588; GSE87371. All other data supporting the findings of this
study are available from the corresponding authors upon
request. Source data are provided with this paper.

Code availability
The source code developed for this study for designing the DNam
and gene expression classifiers and the methylome–transcriptome
integrative analyses is available on the GitHub platform, [https://
github.com/zetcheuv/RichterOmicsCode]. All other source data
supporting the findings of this study are available from the corre-
sponding authors.
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