Myelodysplastic Syndrome associated TET2 mutations affect NK cell

function and genome methylation

Supplementary Information

Supplementary Figure 1. KIR expression on CD3⁺ T cells in MDS/CMML patients according to the presence or absence of *TET2/IDH* mutations.

Supplementary Figure 2. Expression of KIR2D, NKG2A and Perforin in blood NK cells without specific treatments.

Supplementary Figure 3. Percentages of NK cells positive for various KIR molecules in $TET2/IDH^{WT}$ and $TET2/IDH^{MUT}$ MDS patients.

Supplementary Figure 4. KIR and Perforin correlation in MDS/CMML patients with *TET2/IDH* mutations.

Supplementary Figure 5. Fraction of Perforin positive NK cells according to KIR expression.

Supplementary Figure 6. Mutational landscape in the MDS/CMML cohort.

Supplementary Figure 7. Percentage of VAF in the WMC, sorted NK/T cells and KIR⁺ and KIR⁻ NK cells at diagnosis.

Supplementary Figure 8. Percentages of KIR2D⁺ NK cells in healthy donors, *TET2^{WT}* and *TET2^{MUT}* MDS patients after *in vitro* treatment.

Supplementary Figure 9. NK cells phenotyping.

Supplementary Figure 10. Flow Chart.

Supplementary Figure 11. Analysis of KIR2DL1 proximal promoter and localization of primer used for CHIP and luciferase vector construction.

Supplementary Table 1. Circulating NK cells phenotyping.

Supplementary Table 2. Specific KIR Locus phenotyping and NKG2A in circulating NK cells.

Supplementary Table 3. KIR Locus genotyping on 22 MDS/CMML patients.

Supplementary Table 4. List of 80 genes for targeted Next-Generation Sequencing.

Supplementary Table 5. Mutations association in the whole cohort according to *TET2/IDH* mutations.

Supplementary Table 6. NGS at diagnosis in WMC and in NK/T sorted cells.

Supplementary Table 7. Patients' characteristics.

Supplementary Table 8. Patients of the Clinical Trial NCT02985190.

Supplementary Table 9. List of Antibodies used for Flow Cytometry.

Supplementary Table 10. List of primers used for the ChIP-qPCR assay.

Supplementary Table 11. Specificities and probes used in the Multiplex RT-PCR analysis.

Supplementary Figure 1. KIR expression on CD3⁺ T cells in MDS/CMML patients according to the presence or absence of *TET2/IDH* mutations. Representation of the KIR, KIR2D and KIR3DL1/DS1 expression in blood CD3+ T cells of *TET2/IDH^{WT}* (n=19) and *TET2/IDH^{MUT}* (n=22). For all the analysis, median is represented, and error bars represents interquartile range. KIR = (KIR2D+KIR3DL1/DS1-, KIR2D+KIR3DL1/DS1+ and KIR2D-KIR3DL1/DS1+)

Supplementary Figure 2. Expression of KIR2D, NKG2A and Perforin in blood NK cells in absence of treatments. Expression of KIR2D, NKG2A and perforin in blood NK cells has been quantified by flow-cytometry. (a) markers expressions were analyzed in comparing *TET2/IDH*^{WT} (n=11 for KIR2D, n=9 for NKG2A n=15 for perforin) and *TET2*^{MUT} (n=13 for KIR2D, n=11 for NKG2A, n=13 for perforin) MDS patients in absence of any treatment. Statistics were calculated with the nonparametric Mann-Whitney test, two-sided, ** p=0.0036. (b) A similar analysis has been performed in *TET2/IDH*^{WT} (n=11 for KIR2D, n=9 for NKG2A, n=16 for perforin) or *TET2*^{MUT} (n=15, n=12 for NKG2A) MDS patients in absence of immunomodulating treatments. Data are presented as medians and interquartile ranges. Statistics were calculated with the two-sided nonparametric Mann-Whitney test, *p=0.0305, ** p=0.0092.

Supplementary Figure 3. Percentages of NK cells positive for various KIR molecules in *TET2/IDH*^{WT} and *TET2/IDH*^{MUT} MDS patients. *TET2/IDH*^{WT} (n= 11) are represented by blue bar and *TET2/IDH*^{MUT} (n=15) are represented by red bar. Data are presented as medians and interquartile ranges. Statistics were calculated with the two-sided nonparametric Mann-Whitney test. KIR2DL1: ** p=0.0092, KIR2DL2/L3: ** p=0.0077, NKG2A: * p=0.0246.

Supplementary Figure 4. KIR and Perforin correlation in MDS/CMML patients with *TET2/IDH* mutations. Correlation between the % of KIR (KIR2D+ KIR3DL1/DS1-, KIR2D+ KIR3DL1/DS1+ and KIR2D- KIR3DL1/DS1+) expressing NK cells and the % of Perforin expressing NK cells in *TET2/IDH^{MUT}* MDS/CMML patients (n=22). The nonparametric Spearman's rank-order correlation, two-sided, has been used, r = 0.651 p = 0.001.

Supplementary Figure 5. Fraction of Perforin positive NK cells according to KIR expression. Central pie charts represent the expression of KIR molecules on blood NK cells in $TET2/IDH^{WT}$ (n=19) and $TET2/IDH^{MUT}$ (n=22). Lateral pie charts represent the percentage of Perforin positive and negative cells in KIR+ (left) and KIR- (right) NK cells. KIR (KIR2D+ KIR3DL1/DS1-, KIR2D+ KIR3DL1/DS1+ and KIR2D- KIR3DL1/DS1+)

TET2	55%	Genetic Alteration	Inframe Mutation (putative driver)
IDH1	4%	•••	Inframe Mutation (unknown significance)
IDH2	6%		Missense Mutation (unknown significance)
SRSF2	27%	••••••	Missense Mutation (putative driver)
SF3B1	22%		Truncating Mutation (putative driver)
ASXL1	20%	• • • • • • • • • • • • • • • • • • • •	Truncating Mutation (unknown significance)
PHF6	10%	• • • • • • • • • • • • • • • • • • • •	No alterations
JAK2	8%		
U2AF1	8%		
TP53	8%		
DNMT3a	6%		
KRAS	6%		
ZRSR2	6%		
CBL	4%		
EZH2	4%		
NRAS	4%		
SMC3	4%		
ASXL2	2%		
BCOR	2%	••••••	
CTCF	2%		
CUX1	2%		
CREBPP	2%		
CSF3R	2%		
DDX41	2%		
DOT1L	2%		
ETV6	2%		
KMT2D/MLL2	2%		
KMT2A/MLL	2%		
NF1	2%		
PTPN11	2%		
RAD21	2%		
RUNX1	2%	•	

Supplementary Figure 6. Mutational landscape in the MDS/CMML cohort. Mutational Landscape

of the 51 patients carrying mutation in at least one of the 80 genes analyzed by NGS.

Supplementary Figure 7. Percentage of VAF in the WMC, sorted NK/T cells and KIR+ and KIR-NK cells at diagnosis. The percentage of Variant Allele Frequency (VAF) in the WMC and in sorted NK/T cells (a) or in KIR+ and KIR- NK cells (b) at diagnosis. WMC, White mononuclear cell.

Supplementary Figure 8. Percentages of KIR2D+ NK cells in healthy donors, TET2^{WT} and TET2^{MUT} MDS patients after *in vitro* treatment. NK cells from healthy donors (n=13, n=7 for Decitabine + Acid Acorbic), *TET2*^{WT} (n=11, n=6 for Decitabine + Acid Ascorbic), and *TET2*^{MUT} (n=12, n=7 for Decitabine + Acid Ascorbic) MDS patients were treated 5 days with (a) Azacytidine (0.5 μ M), (b) Decitabine (0.5 μ M), and (c) Decitabine supplemented with Ascorbic Acid (125 μ M). Blue dots show the basal KIR2D expression in presence of DMSO for the test with Azacytidine or Decitabine alone, or in presence of Decitabine alone for the test with ascorbic acid. Red dots show KIR2D expression after the different treatments. Non-parametric two-sided Wilcoxon paired-test has been performed. Azacytidine treatment: ***p=0.005 for HD, and *** p=0.001 for *TET2*^{WT}. Decitabine + Ascorbic Acid treatment: * p=0.0313 and * p=0.0156 for HD and *TET2*^{MUT} respectively.

Supplementary Figure 9. NK cells phenotyping. Gating strategy of KIR phenotyping (a), Perforin/Granzyme B/IFN-γ (b) and general phenotype (c) of NK cells (Fig 1, 2C, 3B, 5D, 6).

Supplementary Figure 10. Flow Chart. Flow cytometry chart deciphering the main gating strategy used to phenotype NK cells (Fig. 1, 2C, 3B, 5D, 6), or to sort NK and T cells (Fig 2A, 2B, 2D, 3F-H, 4, 5A-C).

Proximal promoter TATA BOX -64 -58 KIR2DL1prom1 Primer F1 (-147 to -127) KIR2DL1prom2 Primer R1 (+43 to +63) KIR2DL1prom2 Primer F2 (-63 to -43) KIR2DL1prom2 Primer R2 (+87 to +107)

TTGCTCTGTCGCCCAGGCTGGACTGCAGTGACACAATCTCAGCTCACTGCAACTTCTGCCTCCCAGGTTC TTTGGATTTTTAGCAGAGACACGGTTTCACTATATTGGCCAGGCTGCTCTCAAACTCCTTATCTCAGTTG ATCCGCCCACCTCGGCTTCCCAACGTGCTGGGGAAACTTGATTTCTATAGCATTATGTTACTGGATATT TCTTGGGTCATGAGACAAATTTTAGATTAAACTACAAAACTCCAGAATTTACAGGTGGGGTTTTTACTGA TAAAGTACAATTCTAAGATTGTAAATAATTGCATAATCCTTCCCTGGGAATTTAAATCATTTTAACTGGT TCTGCTGTAATACTAGAAATACAAGCATGAAAAATTCTAATGGTTTATTAGTGACAATGACTCTGAAAAC ATTAATAATACCTATTAGATATTTTGCATATTACACAGGAAGAAGAGTTTGAATCTCAGATAAAAACAAT AGAAATACATGAAAAGTCTTTCATGTTAGCACAGATTTTAGGCATCTCGTGTTCGGGAGGT<mark>TGGATCTCA</mark> GACGTGTTTTGAGTTGGTCATAGTGAAGGACACTAGGTGTCAAATTCTAGCGAGAACAATTTCCAGGAAG CCGTGTTCCGCTCTTGAGCGAGCACCCACTG<mark>GGCCTCATGCAAGGTAGAAA</mark>GAGCCTGCGTACGTCACCC TCCCATGATGTGGTCAACATGTAAACTGCATGGGCAGGGCGCCA<mark>AATAAC</mark>ATCCTGTGCGCTGCT</mark>GAGCT GAGCTCGGTCGCGGCTGCCTGTCTGCTCCGGCAGCACC**ATG**TCGCTCTTGGTCGTCAGCATGGCGTGTGT TGGTGAGTCCT<mark>GGAAAGCAATAGAGGGAGGG</mark>AGTGAGGGGGATGGAGATCTGGGCCC<mark>AGAGGTGGAGATAT</mark> <mark>AGGCC</mark>TGGAGGTGGAGTTATGGGCCTGGAGTGGAGATCTGGGCCTGGAGTGGATATATGGGCCTAGAGAT **GGAGT**GATGGGCCTAGAAGTGGAGATCTGGGCCCAGAGGTCGAGATATAGGCCTGGAGGTGGAGTGATGG GACTGTAGTGGAGATCTGGGCCTGGAGTGGAGATAGGAACCTGGAGGGGAGATAGGAACCTGGAGGGGAG CAGTAGAGATATGGGCCTGAAGTGGAGACATGGGCCTGGAGTGGAGATATGGGCCAGGAGTGGAGATATG GGCCTAGAGGTCGATATCTGGGCCTGGAGTGGAGATATGGGCCAGGAGTGGAGATATGGGCCTAGAGGTC GATATCTGGGCCTGGAGAGAGAGATATGTGCCTAGGATGGAGATACGGGCCTGGGTGTGGAGATATGGGAC TGGAGAGGATATATGGGCCTGGAGTGGAGATATGGGACTGGAGAGGAGATATGGACCTGGAGTGGAGATA AGGGCCTGGATTGGAGATATGGGCCCAGGGTGGAGATCTGAGCCTGGATTGGAGATATGGGCCTGGATTG GCGATATGGGCTTAGGGTGGAAATATCGGCCTGGAGTGGAGATATGGGCCTGGAGTGGAGATATGGGCTT GAGGTGGGGATATGGACCTGGAGGCTGGGTCTCTGCACAGCCGACAGCCCTGTTCTTGGGTGCAGGTAGG CACTGAGGGTGAGTTTACCTTCAGCCCAGGAAGGGCCTGGCTACCAAGACTCACAGCCCAGTGGGGGCAG GGTTCTTCTTGCTGCAGGGGGCCTGGCCACATGAGGGTGAGTCCTTCTCCCAACCTTCGGGTGTCATCTC CCCACATAAGAGGATTTTCCTGAAATGGGAGGGAAGTCCTGTCAGGGAGTCTCTCATAAACTAGGAAGAA GGGACCCTGGGGTGCTGGGCCCACATTTCTGACCTTGCCTCCCTGGCCTTTCATTCCCTTGGCAGAGTCA AGTTCTGTGGGGACCAGGGTTAGACTACGGTGCTCAAAGCTGGGGTGTGTGGGGGGAAGTGGTAGGAAC AGCAGATCCTCTGAGGACAAAGGTGTTACTCACACACTTCAGCGTTTCCATGACGGTAGGGGGCTGCAGTG TGGCTGCTGTCATTCTACCAGAAGAGGTGGGAAAACCACAGCCATGGCCCTGACATTCCAATCCTCTGAT GGGGACTCAGTTGTTTATTTTCGTTCAGGCATCGGCTGATATTCCATTCTCAAAGGACATGCCCTCCACC CCATGTCTACCCTGTGTTGTTTTATGTGAGTAATCTTACAGTATTAAAATCTAGTAGGAGTCTCTTACTC AGCACTTGCTCAAAGTTCTCAGCTGACACTTTTGTTGTAGGGAGACACCTTGTGTTTGCGGGATGGGTCC TTCCTTTAGCCCTGGGCACCAAGGTGTGATAGCAGCCATAGAAACTTGGAAAGCGAGGAGAATCTTCAGA GCACAGGGAGGGGGGGGGGGCGCCCCACATCCTCCTCTCAAGGCGGTGCCTCCTCTCCCCACGGTGGTCA GGACAAGCCCTTGCTGTCTGCCTGGCCAAGCCCTGTGGTGCCTCCAGGACATGTGATTCTTCAGTGTCAT TCTTATCTTGGGTTTAACAACTTCAGTCTGTAAAAGGAAGATGGGGTGCCTGTCCCTGAGCTCTACAACA TAATATTCTGGAACAGCCTTTTCATGGGCCCTGTGACCCCAGCACGCAGGGACCTATACATGTCGGGG TTCACAACCACACTACCCCAGTGGGTGGTCGGCACCCAGCAACCCCCTGGAGATCACGGTCACAGGTCAG AGGGCTCCTGTCTGGGATTCTCCTTGTCCCACCTCCTGAATCCCAGAGCTCCTGGTGGGCGTGTCCTTGC GGGTCCCATCATGCAAGTCCTGACTGTATTTGGGGTAAAGGGGGGATTGAATACAGGGAAATGGGTGCTGT GGTGGGAAGAATAATTGTCCCCAGTGATGACTACATTCTAATCCCTGGAGTCTGTGACTATTTATGATAT AGGGGAAGGGACTGAAGGAGAAGATGGAGCTCAGGTTGTTGATGAGTTGACCTTGAGATGGGGAGACAGC CTGGACTGTCCTGATGGGCTCAGTGTAGTCACAGGGGTCCACAGGAAAGGAGGAGGAAGAGGGGAGTGGG GATTACAGCAGCATAATGGGAGTCTCCATCAGCTTTGAAGGTGGAGGAAGTCCAGGAGCCATGAATGCAG GTGGCCTATAGAGGCTGGAAAAGTCAAGGAACTGATTCTCCTGAGTCTCCAGAGGGAACGAAGCCCTGCA GGTACCTTGATTTTACCCACGACAAACAGGGTCCGATTTCTGTCTCCAGAATTGGAAGGGGTTAGTGTGC TCTCTCCTGCTGCCATGCTTCTGATAATTTTCTACAGCAGCAACAGGAAACCAACACTGGAACCCAGGTC AAGGACAAGTTAAGAAACAACAACAAGGATAGCCAGGCATGGTGGCAGGTGCATGTAATCCTAGCGACTTG GGAGGCTGAGGGCAGGAGAATCACTTGAACCCAGGAGACAGAGGTTGCAGTAAGCCTAGACCACCACCAC AGGAGAAGGTTGGC

Supplementary Figure 11. Analysis of KIR2DL1 proximal promoter and localization of primer used for CHIP and luciferase vector construction.

	Î.	1				
	HD (n=23)	MDS/CMML (n=33)	p=	<i>TET2/IDH</i> ^{WT} (n =13)	<i>TET2/IDH</i> ^{MUT} (n=19)	p=
	Median [range] %	Median [range] %		Median [range] %	Median [range] %	
DNAM-1	96.2 [37.8-99.8]	90.5 [14.7-99.2]	0.0109	94.4 [14.7-99.2]	87.8 [33.7-98.8]	
NKG2D	65.4 [33.5-85.8]	61.4 [29-90.5]		62.9 [39.9-87.4]	59.9 [29-90.5]	
NKp30	78.6 [33.6-95.5]	79.5 [31.6-99.5]		81.1 [62-99]	74.5 [31.6-99.5]	
NKp46	33.2 [9.04-65.5]	37 [11.2-93.5]	0.0483	39.2 [15.6-93.5]	34.7 [11.2-90.3]	
CD85j	24.9 [5.56-76.5]	25.6 [11.7-76.5]		23.4 [11.7-56.9]	29.3 [13.7-76.5]	
CD96	5.51 [0.95-21.8]	11 [2.8-42.9]	0.0006	9.06 [5.67-42.9]	11.2 [2.8-41.4]	
KIR2D	54.8 [33.3-76.8]	31.2 [0.58-77.7]	0.0034	56.5 [10.5-77.7]	11.9 [0.58-69.1]	0.0005
CD57	63.2 [28.1-81]	60.1 [4.87-95.1]		63.1 [18.8-95.1]	58.9[4.87-85.6]	
KLRG1	21.9 [9.2-73.3]	29 [2.56-96.5]		26 [6.7-76]	38.5 [2.56-96.5	
CD69	20.9 [8.69-81.7]	24.8 [3.85-82.7]		47.7 [4.01-82.7]	23.6 [3.85-73.5]	
			CD56 ^{Dim}	NK cells		
DNAM-1	96.1 [39.3-99.8]	87.9 [13.9-99.2]	0.0038	94.5 [13.9-99.2]	86.6 [33.7-98.7]	
NKG2D	66 [33.8-86.7]	61.3 [29.1-89.9]		62.3 [39.9-87.3]	60.6 [29.1-89.9]	
NKp30	68 [33.8-96.3]	79.4 [29.6-99.8]		83.6 [59.9-99]	73.7 [31-99.8]	
NKp46	28.5 [8.07-56.6]	35.1 [10.5-93.1]	0.0493	38.4 [10.7-93.1]	34.4 [10.5-89.9]	
CD85j	21.4 [5.72-75]	26.1 [11-76.9]		23.4 [11-57.1]	28.8 [14-76.9]	
CD96	4.32 [0.65-23.2]	10.9 [2.66-42]	0.0001	8.77 [4.53-37,5]	11.5 [2,66-41.6]	
KIR2D	60.8 [37-80]	35.1 [0.63-82.3]	0.0009	60 [10.7-82.3]	17.9 [0.63-71.2]	0.0004
CD57	67 [37.2-84.5]	64.1 [5.76-86.5]		69.6 [20.1-95.9]	60.7 [5.76-86.5]	
KLRG1	30.1 [9.54-79.2]	35.1 [2.31-98.3]		27.5 [6.85-80.1]	41.7 [2.31-98.3]	
CD69	20 [8.88-84.9]	25.4 [3.8-83.1]		49.6 [3.8-83.1]	23.8 [4.13-76]	
			CD56 ^{Bright}	NK cells		
DNAM-1	97.5 [8.26-99.9]	90.4 [21.2-99.6]	0.0037	92.3 [21.2-99.6]	89 [33.7-96.6]	
NKG2D	64.6 [19.9-96.8]	83.1 [19.7-97.7]	0.0046	88.9 [58.4-95.1]	79.2 [19.7-97.7]	
NKp30	63 [20.3-93.8]	81.2 [29-98.5]	0.0029	79 [45.3-98.5]	84.4 [29-97.1]	
NKp46	62.1 [10.7-85.5]	64.5 [34-99.1]		63.9 [39.7-98.5]	64.5 [34-99.1]	
CD85j	24.7 [2.33-82.1]	25.7 [12.1-68.1]		22.4 [13.8-64]	31 [12.1-68.1]	
CD96	11 [3.28-29.6]	17.4 [2.48-54.5]	0.0182	33.5 [14.7-54.5]	15.2 [2.48-42.6]	0.0045
KIR2D	6.27 [3.07-17.8]	6.55 [0-40.9]		14.1 [3.34-40.9]	1.76 [0-26.2]	0.0035
CD57	3.51 [0.21-38.1]	3.8 [0.18-83.1]		3.64 [1.52-83.1]	4.58 [0.18-47.7]	
KLRG1	7.2 [2.33-26.8]	15.8 [3.16-78.3]	0.0012	10.2 [4.97-42.1]	20.4 [3.16-78.3]	
CD69	5.43 [1.72-35.1]	19.7 [2.34-78.5]	< 0.0001	17.9 [6.05-78.5]	22.3 [2.34-66.1]	

Supplementary Table 1. Circulating NK cells phenotyping.

Unpaired statistics analysis has been realized by using nonparametric Mann Whitney test two sided.

	$TET2/IDH^{WT}$ (n=11)	$TET2/IDH^{MUT}$ (n=15)	p=
	Median [range] %	Median [range] %	
KIR2DL1	14.1 [0.65-41.7]	3.63 [0.2-64.9]	0.0092
KIR2DL2/DL 3	29.1 [18-73.4]	10.3 [0.62-46.9]	0.0077
KIR3DL1/DL 2	9.71 [0.34-55.9]	3.08 [0.18-60.1]	
NKG2A	78.7 [71.9-86.4]	86.3 [65.8-9.3]	0.0246

Supplementary Table 2. Specific KIR Locus phenotyping and NKG2A in circulating NK cells.

Unpaired statistics analysis has been realized by using nonparametric Mann Whitney test two sided.

Identifiant	2DL1	2DL2	2DL3	2DL4	2DL5	3DL1	3DL2	3DL3	2DS1	2DS2	2DS3	2DS4	1D (2DS4v)	2DS5	3DS1	Genotype KIR
MUT01	+	-	+	+	-	+	+	+	-	-	-	-	+	-	-	AA
WT03	+	+	+	+	-	+	+	+	-	+	-	-	+	-	-	AB
WT04	+	+	+	+	-	+	+	+	-	+	-	+	+	-	-	AB
WT05	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	AB
MUT07	+	+	+	+	+	+	+	+	-	+	+	+	+	-	-	AB
WT08	+	+	+	+	-	+	+	+	-	+	-	+	+	-	-	AB
MUT08	+	+	+	+	-	+	+	+	-	+	-	-	+	-	-	AB
MUT14	+	-	+	+	-	+	+	+	-	-	-	+	+	-	-	AA
MUT15	+	+	+	+	+	+	+	+	+	+	-	+	-	+	+	AB
MUT16	+	+	+	+	-	+	+	+	-	+	-	+	+	-	-	AB
WT13	+	-	+	+	-	+	+	+	-	-	-	-	+	-	-	AA
WT14	+	+	+	+	+	+	+	+	-	+	+	-	+	-	-	AB
WT15	+	-	+	+	+	+	+	+	+	-	-	+	-	+	+	AB
WT17	+	+	+	+	-	+	+	+	-	+	-	-	+	-	-	AB
WT18	+	-	+	+	-	+	+	+	-	-	-	+	+	-	-	AA
MUT23	+	-	+	+	+	+	+	+	+	-	-	-	+	+	+	AB
MUT24	+	-	+	+	-	+	+	+	-	-	-	+	+	-	-	AA
WT22	+	-	+	+	-	+	+	+	-	-	-	+	+	-	-	AA
WT24	+	+	+	+	+	+	+	+	+	+	-	+	-	+	+	AB
MUT27	+	+	+	+	-	+	+	+	-	+	-	-	+	-	-	AB
MUT30	+	+	+	+	+	+	+	+	+	+	+	-	+	-	+	AB
WT29	+	+	+	+	-	+	+	+	-	+	-	+	+	-	-	AB

Supplementary Table 3. KIR Locus genotyping on 22 MDS/CMML patients

N°	Gene	Reference	N°	Gene	Reference
1	ASXL1	NM_015338	41	KMT2A/MLL	NM_001197104
2	ASXL2	NM_018263	42	KMT2D/MLL2	NM_003482
3	ATM	NM_000051	43	KRAS	NM_033360
4	ATRX	NM_000489	44	LIG4	NM_002312.3
5	BCOR	NM_017745	45	MDM4	NM_002393
6	BCORL1	NM 021946	46	MECOM	NM_001105078
7	BRAF	NM_004333	47	MPL	NM_005373
8	BRCA1	NM_007294	48	МҮС	NM_002467
9	BRCA2	NM_000059	49	NF1	NM_001042492
10	BRCC3	NM_024332	50	NPM1	NM_002520
11	CALR	NM_004343	51	NRAS	NM_002524
12	CBL	NM_005188	52	PARN	NM_002582
13	CDAN1	NM_138477	53	PHF6	NM_001015877
14	CEBPA	NM_004364	54	PPM1D	NM_003620
15	CHEK2	NM_007194.3	55	PRPF8	NM_006445
16	CREBBP	NM_004380	56	PTEN	NM_00314
17	CSF3R	NM_156039	57	PTPN11	NM_002834
18	CTC1	NM_02599	58	RAD21	NM_006265
19	CTCF	NM_006565	59	RIT1	NM_006912
20	CUX1	NM_001913	60	RPL11	NM_000975
21	DDX41	NM_016222	61	RPL5	NM_000969
22	DKC1	NM_0001363.2	62	RTEL1	NM_032957
23	DNAJC21	NM_001012339	63	RUNX1	NM_001754
24	DNMT3A	NM_022552	64	SAMD9	NM_017654
25	EP300	NM_001429	65	SAMD9L	NM_152703
26	ERCC6L2	NM_001010895	66	SBDS	NM_016038
27	ETNK1	NM_018638	67	SETBP1	NM_015559
28	ETV6	NM_001987	68	SF1	NM_004630
29	EZH2	NM_004456	69	SF3B1	NM_012433
30	FLT3	NM_004119	70	SMC1A	NM_006306
31	GATA2	NM_032638	71	SMC3	NM_005445
32	GSKIP	NM_001271904	72	SRP72	NM_006947
33	HRAS	NM_005343	73	SRSF2	NM_003016
34	IDH1	NM_005896	74	STAG2	NM_001042749
35	IDH2	NM_002168	75	TET2	NM_001127208
36	IRF1	NM_002198	76	TP53	NM_001126112
37	JAK2	NM_004972	77	U2AF1	NM_006758
38	KDM5A	NM_001042603	78	U2AF2	NM_007279
39	KDM6A	NM_021140	79	WT1	NM_024426
40	KIT	NM_000222	80	ZRSR2	NM_005089

Supplementary Table 4. List of 80 genes for targeted Next-Generation Sequencing.

Supplementary Table 5. Mutations association in the whole cohort according to *TET2/IDH* mutations.

			TET2 mutat	TET2 mutation profile		
	All patients	IDH1/2 ^{MUT}	TET2 ^{MUT}	TET2/IDH		
	(n = 63)	patie nts	patients	WT patients	p=	
		(n = 28)	(n = 28)	(n = 30)		
ASXL1	10	0	5	5	NS	
ASXL2	1	0	1	0	NS	
ATM	0	0	0	0	NA	
ATRX	0	0	0	0	NA	
BCOR	1	0	0	1	NS	
BCORL1	0	0	0	0	NA	
BRAF	0	0	0	0	NA	
BRCA1	0	0	0	0	NA	
BRCA2	0	0	0	0	NA	
BRCC3	1	0	1	0	NS	
CALR	0	0	0	0	NA	
CBL	2	0	1	1	NS	
CDAN1	0	0	0	0	NA	
CEBPA	0	0	0	0	NA	
CHEK2	0	0	0	0	NA	
CREBBP	1	0	1	0	NS	
CSF3R	1	0	0	1	NS	
CTC1	0	0	0	0	NA	
CTCF	1	0	1	0	NS	
CUX1	2	0	2	0	NS	
DDX41	1	0	0	1	NS	
DKC1	0	0	0	0	NA	
DNAJC21	0	0	0	0	NA	
DNMT3A	3	0	2	1	NS	
DOT1L	1	0	1	0	NS	
EP300	0	0	0	0	NA	
ERCC6L2	0	0	0	0	NA	
ETNK1	0	0	0	0	NA	
ETV6	1	0	0	1	NS	
EZH2	2	0	0	2	NS	
FLT3	0	0	0	0	NA	
GATA2	0	0	0	0	NA	
GSKIP	0	0	0	0	NA	
HRAS	0	0	0	0	NA	
IDH1	2	2	0	0	NS	
IDH2	3	3	0	0	NS	
IRF1	0	0	0	0	NA	
JAK2	4	0	2	2	NS	
KDM5A	0	0	0	0	NA	
KDM6A	0	0	0	0	NA	
KIT	0	0	0	0	NA	
KMT2A/MLL	1	0	1	0	NS	
KMT2D/MLL	1	0	1	0	NS	
KRAS	3	0	2	1	NS	
LIG4	0	0	0	0	NA	
MDM4	0	0	0	0	NA	
MECOM	0	0	0	0	NA	
MPL	0	0	0	0	NA	
MYC	0	0	0	0	NA	
NF1	1	1	0	0	NA	
NPMI	0	0	0	0	NA	
NRAS	2	0	1	1	NS	
PARN	0	0	0	0	NA	
PHF6	5	0	5	0	0,0214	
PPMID	0	0	0	0	NA	
PRPF8	0	0	0	0	NA	
PTEN	0	0	0	0	NA	
PIPNII	1	0	0	1	NS	
KAD21	1	0		U	INS NA	
RITI DDL 11	0	0	0	U	NA	
RPL11	0	0	0	0	NA	
RPL5	0	0	0	U	NA NA	
KIELI DIDIVI	1	0	1	0	INA	
KUNAI	1	0	1	0	IIS N.4	
SAMD9	0	0	0	0	NA NA	
SAMD9L	0	0	0	0	INA NA	
SBDS	0	0	0	0	INA NA	
SEIBPI	0	0	0	U	INA NA	
SF1 CE2D 1	11	0	- U	0	NA	
SF3B1	11	0	2	6	INS NA	
SMCIA	0	0	0	U	NA	
SMC3	2	0	2	0	INS N.4	
SKP /2	12	0	0	0	INA 0.0107	
SKSF2	13	4	8	1	0,0107	
SIAG2	0	0	0	U	NA 0.0001	
TET2	28	0	28	0	<0,0001	
1255	4	0	2	2	INS	
UZAFI	4	0	0	4	INS NA	
UZAFZ WTT1	0	0	0	0	INA NA	
W11 7D0D2	2	0	0	0	INA	
ZKSK2	5	U	5	U	IIS	

Fisher's exact test has been realized NS: Not Significative NA: Not Applicable

Supplementary Table 6. NGS at diagnosis in WMC and in NK/T sorted cells.

	VAF White Mononuclear	v	AF NK Cells		VAF	%KIR2D+
	Cells	Whole	KIR-*	KIR+*	T Cells	NK cells
MUT22	Blood 28/02/2017		Blood 3	1/10/2017		0,60%
TET2:NM_001127208:exon11:c,4669_4672del:p.V1557fs	42	50	NA	NA	-	
SRSF2:NM_001195427:exon1:c.C284T:p.P95L	42	45	NA	NA	-	
TET2:NM_001127208:exon6:c.C3646T:p.R1216X	26	-	NA	NA	-	
TET2:NM_001127208:exon7:c.T3898G:p.F1300V	14	54	NA	NA	-	
ASXL2:NM_018263:exon12:c.1966_1976del:p.T656fs	-	2	NA	NA	-	
NRAS:NM_002524:exon2:c.G35A:p.G12D	-	15	NA	NA	-	
RIT1:NM_006912:exon4:c.G229C:p.A77P	-	7	NA	NA	-	
MUT33	Bone Marrow 19/04/2017		Blood 09	9/01/2018		2,70%
PHF6:NM_001015877:exon2:c.65_66insTA:p.S22fs	91	93	NA	NA	-	
TET2:NM_001127208:exon11:c.4895delA:p.Q1632fs	42	48	NA	NA	-	
TET2:NM_001127208:exon10:c.4400delG:p.R1467fs	41	43	NA	NA	-	
MITTOP	Pland 18/07/2017		Blood 1	8/07/2017		10.20%
INU 108	BIOOD 18/07/2017	40	42	10//2017		10,20%
TET2.NM_001127208.ex0019.c.04108A.p.01370K	22	22	42	40	-	
SE2D1MM_00112/208.ex005.c.41/detA.p.r 15918	22	21	22	2	-	
SF3B1:NM_01127308/intern9/c 4044/2T> A	22	51		4	-	
1E12:NM_001127208:httpn8:c.4044+21>A	3	0	0	-	-	
MUT18	Bone Marrow 24/03/2010		Blood 0	5/03/2018		10.70%
TET2:NM_001127208:exon3:c_2050delC:n_0684fs	36	40	NA	NA	7	10,7070
TET2:NM_001127208;exon15c.2030dcic.p.Q004is	34	3/	NA	NA	4	
TET2:NM_001127208:ex011112:5500_550/lils1CCCCCCATC.p.A170918	34		NA	NA	4	
TET2:NIM_001127208.exon 7 c 3055 24 \G	2	-	NA	NA	-	
KR A S·NM_033360;exon2;c G34A in G12S	2	12	NA	NA	-	
KKA5.1\M_055500.ex012.c.054A.p.0125		12	INA	INA	-	
MUT24	Bone Marrow 23/06/16		Bone Marro	w 23/06/2016		37.20%
ASXL1:NM 015338:exon12:c.1927dupG:p.G642fs	3	6	6	3	-	
TET2:NM_001127208:exon7:c. T3860C:p.F1287S	2	11	11	7	-	
SF3B1:NM 012433:exon14:c.C1984T:p.H662Y	31	19	20	12	-	
MUT23	Bone Marrow 08/12/16		Bone Marro	w 08/12/2016		45,90%
TET2:NM_001127208:exon11:c.G5606A:p.G1869E	49	19	9	8	-	· · ·
TET2:NM_001127208:exon11:c.T5625A:p.C1875X	49	5	8	13	-	
TET2:NM_001127208:exon11:c.5062_5063del:p.S1688fs	-	-	22	15	-	
TET2:NM_001127208:exon3:c.C1642T:p.Q548X	-	-	6	-	-	
SRSF2:NM_003016:exon1:c.C284T:p.P95L	49	14	29	23	-	
MUT32	12/08/2016		Blood 2	8/12/2017		47,90%
TET2:NM_001127208:exon11:c.A5603G:p.H1868R	46	17	39	3	-	
TET2:NM_001127208:exon11:c.A5770G:p.K1924E	41	20	36	1	-	
SF3B1:NM_012433:exon15:c.A2098G:p.K700E	44	20	34	-	-	
MUT19	Blood 08/03/17		Blood 1	1/01/2018		56,90%
TET2:NM_001127208:exon3:c,C1642T:p.Q548X	32	2	14	-	-	
TET2:NM_001127208:exon11:c.5060_5061del:p.Q1687fs	33	21	31	9	-	
SRSF2:NM_003016:exon1:c.C284A:p.P95H	33	20	29	23	-	
TET2:NM_001127208:exon11:c.5315deIT:p.M1772fs	-	4	-	-	-	
			DI LU	000/001 6		
MUT31	Bone Marrow 14/12/17		Blood I)/03/2016		69,10%
TET2:NM_00112/208:exon/:c.G3818C:p.C12/38	34	4	NA	NA	-	
1E12:NM_00112/208:exon5:c.155//A:p.C11938	38	6	NA	NA	-	
SKSF2:NM_003016:exon1:c.C284A:p.P95H	21	4	NA	NA	-	
CTCF:NM_006565:exon5:c.C1024T:p.R342C	-	-	NA	NA	-	
1E12:NM_001127208:exon3:c.1693_1697del:p.1565fs	-	10	NA	NA	-	ļ
NATION 4	Plead 22/11/16		Plood 1)/12/2017		02.000/
MUT14 TET2NM_001127209texep10te_C4254T==D1452V	BIOOD 22/11/16		Blood I	9/12/2017		92,90%
1E12JNW_001127208texen11te 5544de14 -= \$19495	10	-	NA	NA	-	
DUEC.NM 001015977.0007.0 T7244 C2425	10	-	NA	NA	-	
r fr 0,1111 0010158//:ex0fl/:c.1/24A:p.C2428	10	-	INA	INA	-	

*KIR = KIR2D / KIR3DL1 / KIR3DL2

WMC, Whole mononuclear cell; VAF variant allele frequency

Variables	All patients (n = 63)	Non TET2/IDH mutated patients (n = 30)	TET2 mutated patients (n = 28)	p=	<i>IDH</i> mutated patients (n = 5)
Age at MDS/CMML diagnostic	70 [63-75]	71 [62.75-75]	70 [51-86]	ns	73 [59-84.5]
% women	38	40	36	ns	40
Peripheral blood					
Hb at diagnosis (g/dL)	11.45 [9.35-13.5]	10.15 [9.05-11.88]	13.3 [10.3-14.45]	0.0032	11.2 [9.1-13.4]
Platelets at diagnosis (G/L)	129.5 [89.25-286.8]	124.5 [89.5-369.5]	115 [85-223.5]	ns	155 [108-325.5]
WBC at diagnosis (G/L)	4.8 [3.9-7.4]	4.65 [3.9-7.0]	5 [3.8-7.6]	ns	5.05 [3.6-7.55]
ANC at diagnosis (G/L)	2.7 [1.8-4.2]	2.8 [2.2-4.675]	2.2 [0.6-3.95]	ns	1.8 [1.25-4.75]
Lymphocyte count at diagnosis (G/L)	1.250 [0.9-1.9]	1.2 [0.9-1.7]	1.5 [1.125-2.45]	ns	0.4 [0.2-1.3]
Peripheral blast % at diagnosis (%)	0 [0-0]	0 [0-0]	0 [0-0]	ns	0 [0-0]
Bone Marrow					
SLD/MLD*	25	17	6	ns	2
RS-SLD/RS-MLD*	10	5	5	ns	Ø
EB1*	8	4	4	ns	Ø
EB2*	1	1	Ø	ns	Ø
CMML*	17	2	12	0.0018	3
Other MDS/MPN	Ø	Ø	Ø	N.A	Ø
5q-*	2	1	1	ns	Ø
Unknown	Ø	Ø	Ø	N.A	Ø
Medullary blasts (%)	3 [2.0-4.0]	3 [2.0-4.0]	3 [1.0-4.0]	ns	3 [2-3.5]
IPSS-R					
Low	52	24	23	ns	5
High	11	6	5	ns	0
Treatments	14	5	7	ns	2
Prednisone	4	1	1	ns	2
Lenalidomid	4	3	1	ns	Ø
Rigosertib	1	Ø	1	N.A	Ø
Eltrombopag	1	ø	1	N.A	Ø
Darbepoietin	4	1	3	ns	Ø

Supplementary Table 7. Patients' characteristics.

*SLD = MDS with single-lineage dysplasia; MLD = MDS with multilineage dysplasia; RS-SLD = MDS with ring sideroblasts and with single-lineage dysplasia; RS-MLD = MDS with ring sideroblasts and with multilineage dysplasia); MPN = Myeloproliferative Neoplasm; del5q = MDS with isolated del(5q); EB1 = MDS with excess blasts (5 to 9 percent blasts in the bone marrow or 2 to 4 percent blasts in the blood); EB2 = MDS with excess blasts (10 to 19 percent blasts in the bone marrow or 5 to 19 percent blasts in the blood); CMML = Chronic Myelomonocytic Leukemia.

Code	Patient number (in Mekinian et al. Leukemia 2022)	Age	Sex	WHO 2016 classification*	Karyotype	Mutations (Targeted NGS)	IPSS-R
MUT34	#24	73	F	MDS-U	45,X,- Y[19]/46,XY[5]	TET2, ASXL1, CBL, JAK2, PHF6	2.0
MUT35	#14	72	М	MDS-EB2	46,xy[20]	TET2, DNMT3A, TP53	9.0
MUT36	#18	86	F	CMML-1	46,XY,del(20)(q11 q13)[1]/46,XY[1]	TET2, NRAS, KRAS, CBL	2.0
WT31	#21	77	F	CMML-2	46,XXdel(5)(q13q3 3)	SF3B1, NRAS, RUNX1, SETBP1	4.5
WT32	#29	76	М	MDS-MLD	46,XY,del(13)(q13 q21)[3]/46,XY[17]	UBA1	2.0
WT33	#26	68	М	MDS-MLD	46,X,inv(Y)(p11q1 2)c[20]	UBA1	4.5
WT34	#16	69	М	MDS-MLD	46,XX,del(3)(p21)[3]/46,XX[20]	UBAI	1.0
WT35	#22	82	М	MDS-MLD	92,XXXX[3] / 46,XX[17]	UBA1	3
WT36	#11	82	М	MDS-MLD	45,X, -Y[20]	DNMT3A	2.5
WT37	#16	69	М	MDS-MLD	46,XX,del(3)(p21)[3]/46,XX[20]	UBAI	1.0

Supplementary Table 8. Patients of the Clinical Trial NCT02985190

*SLD = MDS with single-lineage dysplasia; MLD = MDS with multilineage dysplasia; RS-SLD = MDS with ring sideroblasts and with single-lineage dysplasia; RS-MLD = MDS with ring sideroblasts and with multilineage dysplasia; del5q = MDS with isolated del(5q); EB1 = MDS with excess blasts (5 to 9 percent blasts in the bone marrow or 2 to 4 percent blasts in the blood); EB2 = MDS with excess blasts (10 to 19 percent blasts in the bone marrow or 5 to 19 percent blasts in the blood). CMML-1 = Chronic Myelomonocytic Leukemia (5 to 9 percent blasts in the bone marrow or 2 to 4 percent blasts in the bone marrow or 5 to 19 percent blasts in the blood).

Target	Conjugaisor	Clone	Supplie r	Reference
CD3	FITC	OKT3	Biolegend	317306
CD3	V450	UCHT1	BD	560365
CD3	BB700	SK7	BD	566575
CD4	FITC	OKT4	Biolegend	317408
CD4	APC-H7	RPA-T4	BD	560158
CD5	FITC	UCHT2	Biolegend	300606
CD7	PE-CF594	M-T701	BD	562541
CD7	APC	CD7-6B7	Miltenyi	130-105-841
CD8	BV785	SK1	Biolegend	344740
CD14	FITC	M5E2	BD	555397
CD16	BUV395	3G8	BD	563785
CD16	APC-H7	3G8	BD	560715
CD16	BV711	3G8	BD	563127
CD19	FITC	HIB19	Biolegend	302206
CD33	PE	WM53	BD	555450
CD56	AF700	B159	BD	557919
CD56	PE-Cy7	B159	BD	557747
CD56	BV421	HCD56	Biolegend	318328
CD57	BV605	QA17A04	Biolegend	393304
CD69	BUV737	FN50	BD	564439
CD85j	PE-Cy5	GHI/75	BD	551054
CD96	APC	NK92.39	Biolegend	338410
CD107a	APC-H7	H4A3	BD	561343
DNAM-1	PE-Vio770	REA1040	Miltenyi	130-099-966
KLRG1	APC-Vio770	REA260	Miltenyi	130-103-642
NKG2A	BV786	131411	BD	747917
NKG2D	BV650	1D11	BD	563408
NKp30	BV421	p30-15	BD	563385
NKp46	BV786	9-E2	BD	563329
CD127	PE-Cy7	A019D5	Biolegend	351320
IFN-γ	AF488	B27	BD	557718
CD158a (KIR2DL1)	APC	REA284	Miltenyi	130-103-935
CD158b (KIR2DL2/DL3)	BB700	CH-L	BD	746236
CD158d (KIR2DL4)	PE	REA768	Miltenyi	130-112-465
CD158e/k (KIR3DL1/DL2)	PE	5.133	Miltenyi	130-095-205
CD158e/k (KIR3DL1/DL2)	APC-Vio770	REA970	Miltenyi	130-116-181
CD158e1/e2 (KIR3DL1/DS1)	erCP-Vio70	REA168	Miltenyi	130-104-837
CD158f (KIR2DL5)	PE-Vio770	REA955	Miltenyi	130-115-841
CD158i (KIR2DS4)	VioBlue	REA860	Miltenyi	130-114-622
KIR2D (all KIR2D)	PE	NKVFS1	Miltenyi	130-092-688
KIR2D (all KIR2D)	APC	NKVFS1	Miltenyi	130-092-687

Supplementary Table 9. List of Antibodies used for Flow Cytometry.

ID	Sequence
CRE Forward	GGGGAGGGCAGTTTCCGTTC
CRE Reverse	GGTCATGGCGTCTCCTCTGC
KIR2DL1 Forward	GGCCTCATGCAAGGTAGAAA
KIR2DL1 reverse	CCCTCCCTCTATTGCTTTCC
KIR2DL2/DL3 Forward	CTCTTGAGCGAGCACCCAC
KIR2DL1prom2 Reverse	CACCAACACACACCATGCTG

Supplementary Table 10. List of primers used for the ChIP-qPCR assay

r

Target Gene	Reference	Target Gene	Reference
TET2	Hs00325999 m1	IKZF3	Hs05037772_s1
IDH1	Hs00271858 m1	ZRTR16	Hs00232313 m1
IDH2	Hs00158033 m1	IRF?	Hs01082884 m1
CXCL10	Hs00171042 m1		Hs01103582_s1
RUNX1	Hs01021970 m1	FOS	Hs99999140 m1
MYC	Hs00153408 m1		Hs00244839 m1
DNMT3A	Hs01027166 m1	EOMES	Hs00172872 m1
TFT1	Hs00286756 m1	NFIL3	Hs00705412_s1
TET1 TFT3	Hs00379125_m1	PRDM1	Hs00153357 m1
PRF1	Hs00169473 m1	STAT3	Hs00374280 m1
GZMA	Hs00989184 m1	STAT4	Hs01028017 m1
GZMB	Hs00188051 m1	STAT5B	Hs00560026_m1
GZME	Hs00157878 m1	STAT6	Hs00598625_m1
GZMH	Hs00277212 m1		Hs04187239 m1
INFG	Hs00989291 m1	ID3	Hs00171409 m1
TNF	Hs00174128 m1	BCL6	Hs00153368 m1
BCL2	Hs00608023 m1	ZEB1	Hs01566410 m1
KIR2DL1	Hs04961778 gH	ZEB2	Hs00207691 m1
KIR2DL2	Hs04961776 uH	BCL6	Hs00158218 m1
KIR2DL3	Hs04961777 gH	LEF1	Hs01547250 m1
KIR2DLA	Hs00427106 m1	TCF7	Hs00175273 m1
KIR3DL1	Hs01592437 m1	TNFRSF18	Hs00188346 m1
KIR3DL2	Hs00601497 gH	EZH2	Hs00544830 m1
KIR3DL3	Hs00601067 m1	MYB	Hs00920556 m1
CXCR4	Hs00976734 m1	GAPDH	Hs99999905 m1
ACKR3	Hs00664172 s1	ACTB	Hs99999903 m1
ITGA4	Hs00168433 m1	RPL27	Hs03044961 g1
KLRC1	Hs00970273 g1	NCAM1	Hs00941830 m1
CD96	Hs00976975_m1	FCGR3B	Hs04334165_m1
CD69	Hs00934033 m1	CD3E	Hs01062241 m1
KLRG1	Hs00195153 m1	CD4	Hs01058407 m1
CXCR3	Hs01847760_s1	CD8B	Hs00174762_m1
CCR2	Hs00704702_s1	CD33	Hs00233544_m1
NCR2	Hs00183113_m1	CD5	Hs00204397_m1
NCR3	Hs00394809_m1	CD7	Hs00196191_m1
NCR1	Hs00183118_m1	SPI1	Hs02786711_m1
TIGIT	Hs00545087_m1	NT5E	Hs00159686_m1
CD226	Hs00170832_m1	ENTPD1	Hs00969556_m1
IL2RA	Hs00907777_m1	CTLA4	Hs00175480_m1
IL7R	Hs00902334_m1	HAVCR2	Hs00958618_m1
IL15RA	Hs00542602_g1	PDCD1	Hs01550088_m1
AHR	Hs00169233_m1	LAG3	Hs00958444_g1
CYP1A1	Hs01054796_g1	CD244	Hs00175569_m1
NQO1	Hs01045993_g1	FN1	Hs01549976_m1
TBX21	Hs00203436_m1	CD44	Hs01075864_m1
FOXO1	Hs00231106_m1	ITGA4	Hs00168433_m1
FOXO3	Hs00818121_m1	ITGB1	Hs01127536_m1
ELF4	Hs01086126_m1	SELL	Hs00174151_m1

Supplemental Table 11. Specificities and primers used in the Multiplex RT-PCR analysis.