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Critical Care

Reversible skin microvascular hyporeactivity 
in patients with immune-mediated 
thrombocytopenic thrombotic purpura
Jérémie Joffre1,2, Lisa Raia1, Tomas Urbina1, Vincent Bonny1, Paul Gabarre1, Louai Missri1, Jean‑Luc Baudel1, 
Paul Coppo3,4, Bertrand Guidet1, Eric Maury1 and Hafid Ait‑Oufella1,5* 

Abstract 

Background Immune‑mediated thrombotic thrombocytopenic purpura (iTTP) is a rare disease characterized by 
arteriolar and capillary microthrombosis precipitating organ failure. However, the contribution of endothelial dysfunc‑
tion on impaired microvascular blood flow in iTTP patients has been poorly explored. This pilot observational study 
aimed to explore endothelial‑mediated vasoreactivity in iTTP patients at admission and its changes after plasma 
exchange therapy (PE).

Methods We conducted a prospective observational study in patients (> 18‑year old) admitted in ICU for iTTP. Using 
laser Doppler flowmetry and acetylcholine (Ach) iontophoresis in the forearm, we recorded the skin microvascular 
blood flow and the endothelium‑mediated vasoreactivity at admission and after PE. Demographics, biological, clini‑
cal courses, and outcomes were also collected. As a control group, we used a previously published cohort of young 
diabetic patients after correction of ketoacidosis.

Results Eighteen confirmed iTTP patients and 34 controls were included in the study, mainly female (72%) aged 
43 ± 16‑year‑old. At admission, 55% had neurological abnormalities, 50% cardiac issues and 27.8% an acute kidney 
injury. Median platelet count was 19 G/mL [10–37]. Baseline microvascular blood flow was decreased in iTTP patients 
when compared to controls (5.97 ± 4.5 vs. 10.1 ± 6.3 PU, P = 0.03), associated with markedly impaired endothelial‑
mediated skin microvascular reactivity (AUC: 9627 ± 8122 vs. 16,475 ± 11,738, P = 0.03). Microvascular reactivity 
improved after the first PE session (AUC: 9627 ± 8122 vs 16,558 ± 10,699, P = 0.007, respectively, baseline and post‑
PE1) and much more after the second session (26,431 ± 23,181, P = 0.04 post‑PE1 vs post‑PE2). Hemolysis biomarkers 
(LDH and bilirubin) negatively correlated with skin microvascular flow and vasoreactivity.

Conclusion We highlighted a marked yet reversible skin endothelium‑mediated microvascular hyporeactivity in iTTP 
patients that could participate in organ injury pathophysiology.
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Introduction
Acquired or immune-mediated thrombotic thrombocy-
topenic purpura (TTP) is a rare thrombotic microangiop-
athy characterized by thrombocytopenia and hemolytic 
anemia [1–3]. Immune TTP is due to the presence of 
neutralizing anti-ADAMTS-13 autoantibodies respon-
sible for impaired cleavage of the von Willebrand factor 
(VWF) mega multimers [4, 5]. Ultimately, VWF–platelet 
aggregates provoke microvascular thrombosis leading to 
inadequate microvascular blood flow, tissue ischemia and 
multiorgan failure. Therefore, the iTTP pattern combines 
hemolytic anemia, thrombocytopenia, often with neuro-
logic, cardiac, or renal abnormalities, still associated with 
a 10–20% death rate [6, 7]. Current treatment consists of 
plasma exchange (PE) [8–10] combined with immuno-
suppressive therapy (e.g., glucocorticoids and rituximab) 
and caplacizumab [11], an anti–VWF factor monoclo-
nal humanized antibody inhibiting interaction between 
VWF multimers and platelets [12, 13].

Arteriolar and capillary microthrombosis due to the 
accumulation of VWF–platelet aggregates lead to life-
threatening organ hypoperfusion, affecting the heart and 
the brain. However, the consequences of VWF–platelet 
aggregates on the endothelium, a key regulator of blood 
flow, remain unknown. This observational study aimed 
to explore endothelial-dependent microvascular reactiv-
ity in iTTP patients in the intensive care unit (ICU) at 
admission and after treatment.

Methods
We conducted a prospective observational study in our 
tertiary university hospital. We included iTTP patients 
(> 18-year old) experiencing their first acute event, 
admitted to our ICU between January 2016 and Sep-
tember 2022. Clinical and biological parameters were 
recorded. Skin microcirculatory reactivity in the right 
forearm area was recorded at ICU admission (baseline) 
and after PE. As a control group for microvascular reac-
tivity, we used data from a previously published cohort 
of young diabetic patients recorded after the correction 
of metabolic acidosis [14]. The local ethical committee 
approved the protocol (Comité de Protection des Person-
nes, Hôpital Saint-Louis, France, No 2015/64NI), and the 
database was registered according to the French legisla-
tion (No 2,228,742), and all patients consented to anony-
mous data use for academic research and publication. It 
was a noninvasive observational study without any spe-
cific intervention. All patients were managed following 
international guidelines for TTP [15] and in collabora-
tion with the physician of the thrombotic microangiopa-
thy national reference center. All patients received urgent 
therapeutic PE (1.5 plasmatic mass, 100% fresh 

frozen plasma (FFP)), corticosteroids, and 17/18 patients 
received caplacizumab on the first day of ICU admission.

Skin microcirculatory endothelial function assessment
We recorded microvascular parameters at baseline and 
after PE, using laser Doppler flowmetry and acetylcho-
line iontophoresis in the forearm area (Additional file 1: 
Figure S1). Methods have been previously described and 
validated by our group in different clinical settings (15–
18). Briefly, a calibrated laser Doppler flow meter probe 
(Periflux 5000; Perimed, Craponne, France) embedded 
within a drug delivery chamber loaded with 80  μg of 
acetylcholine (Miochol; Novartis, Cedex, France) was 
used in combination with a current delivering generator. 
After 1 min of baseline microvascular blood flow record-
ing, three successive current pulses (0.12  mA, 12  ms) 
were delivered, leading to acetylcholine diffusion within 
small skin vessels. Microcirculatory skin blood flow was 
recorded for 10  min following the first impulse. Base-
line blood flow (expressed as flow index), maximal blood 
flow (peak value), and area under the curve (AUC) after 
acetylcholine iontophoresis were determined for each 
patient at each time point, and curves were blindly ana-
lyzed offline (a representative record is shown as Addi-
tional file 1: Fig. S1).

Statistics
Continuous variables were presented as mean ± SD or 
median and 25th–75th interquartile ranges (IQR). Dis-
crete variables were presented as percentages. Com-
parisons between groups were made with Fisher test 
for discrete variables and Mann–Whitney U test for 
continuous variables. Comparisons between admission 
and post-PE values were made using a paired Wilcoxon 
signed-rank test. Statistical analysis and graphical repre-
sentations were performed using GraphPad Prism 10.2 
software (Graph Pad Software Inc., La Jolla, CA). A two-
sided P-value of less than 0.05 was considered statistically 
significant.

Results
Eighteen consecutive iTTP patients were included, 72% 
were female, aged 43 ± 16-year-old. ADAMTS13 activ-
ity at baseline was below 10% in all included patients 
[16] (below 5% in 15 patients (83.3%)) and all included 
patients had circulating anti-ADAMTS13 autoantibod-
ies, which confirmed the final diagnosis of iTTP. At ICU 
admission, 55% had neurological abnormalities, 50% 
cardiac (troponin elevation, EKG, or echocardiogra-
phy) issues and 27.8% had stage ⩾1 acute kidney injury 
according to KDIGO classification [17]. At baseline, all 
included patients had severe thrombocytopenia with 
median platelet count at 19 G/mL [10–37] G/L, mild 



Page 3 of 8Joffre et al. Critical Care          (2023) 27:116  

regenerative anemia (hemoglobin: 9.6  g/dl [7.6–10], 
reticulocytes 178 [128–285]G/L) associated with hemol-
ysis markers (median bilirubin: 36 µmol/L [23–59], hap-
toglobin: 0 g/dL [0–0.035]). Only one patient was under 
mechanical ventilation and received vasopressors. None 
received renal replacement therapy. All patients were 
treated by PE (median number of PE: 4 [2–5]), 100% cor-
ticosteroids (methylprednisolone 1  mg/Kg/Day i.v), and 
88.9% caplacizumab (one injection i.v. before the first 
PE, then 10  mg/Day s.c). Patients’ baseline characteris-
tics are reported in Table 1 and initial treatment and ICU 

stay characteristics are summarized in Additional file  1: 
Table S1. Overall, the in-ICU length of stay was 6.4 [4.8–
8] days, and one patient died in ICU (5.5%).

First, we compared the microvascular reactivity of 
iTTP patients with a cohort of diabetic patients admit-
ted to our ICU after correction of keto-acidosis. Such 
a control cohort was relevant because patients were 
young with rare co-morbidities (Table  1) and no severe 
organ failure. At admission, when compared to the con-
trol group (Fig.  1 and Additional file  1: Table  S2), we 
observed that iTTP patients had twofold lower skin 

Table 1 Baseline patients’ characteristics

iTTP immune-mediated thrombocytopenic thrombotic purpura, SD standard deviation, BMI body mass index, CKD chronic kidney disease, SBP systolic blood pressure, 
HR heart rate, IQR interquartile range, WBC white blood cells, LDH lactate dehydrogenase, BNP brain natriuretic peptide, Ab antibodies, SOFA Sequential Organ Failure 
Assessment, CRT  capillary refill time

Baseline patient’s characteristics iTTP (n = 18) Controls (n = 34) P value

 Age (years. Mean ± SD) 43 ± 16 44 ± 15 0.86

 Male (n%) 5 (28) 23 (68) 0.009

Medical history (n%)

 Diabetes mellitus 3 (17) 34 (100)  < 0.0001

 Hypertension 5 (28) 7 (21) 0.73

 Cardiopathy 1 (5.6) 3 (8.8)  > 0.99

 Peripheral vascular disease 1 (5.6) 1 (2.9)  > 0.99

 CKD 0 (0) 7 (21) 0.08

 Neurological disease 1 (5.6) 0 (0) 0.35

 Cirrhosis 0 (0) 1 (2.9)  > 0.99

Vitals (Mean ± SD)

 Core temperature (°C) 37 ± 0.85 37 ± 0.34 0.41

 SBP (mmHg) 135 ± 20 135 ± 25 0.87

 HR (bpm) 89 ± 12 106 ± 14 0.0001

 CRT (sec) 1.3 ± 1.2 1.7 ± 0.9 0.15

 Mottling score 0.3 ± 0.8 0.2 ± 0.5 0.74

Biologicals (Median [IQR])

 Hemoglobin (g/dL) 9.6 [7.6–10] 13 [12–15]  < 0.0001

 WBC  (103/mL) 10.59 [7.8–13.6] 10.51[6.5–14.4] 0.87

 Platelets  (106/mL) 19.5 [9.75–37] 229 [145–272]  < 0.0001

 Urea (mmol/L) 6.5 [5.1–9.2] 4.7 [3.1–9.5] 0.05

 Creatinine (µmol/L) 73 [54–115] 76 [ 48–102] 0.99

 Haptoglobin (g/L) 0 [0–0.035] – –

 Bilirubin (µmol/L) 36 [23–59] – –

 LDH (UI/L) 1494 [942–2423] – –

 Schizocytes (%) 2.5 [1.5–4.4] – –

 Troponin us (ng/L) 13 [0.52–236] – –

 BNP (ng/L) 68 [20–155] – –

 Lactate (mmol/L) 1.4 [0.9–2.1] 1.1 [0.8–1.9] 0.55

 ADAMTS 13

  < 5% 15 (83.3) – –

  < 10% 3 (16.7) – –

 Ab Anti‑ADAMTS13 positivity 18 (100) – –

SAPS II 17.2 ± 12.7 30.1 ± 18  < 0.0001
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microvascular blood flow (5.97 ± 4.5 vs. 10.1 ± 6.3 
PU, P = 0.03) (Fig.  1A). In addition, we found marked 
impaired endothelial-mediated microvascular reactiv-
ity in iTTP patients characterized by a lower peak after 
Ach iontophoresis (31.9 ± 19.1 vs. 67.7 ± 39.9, P = 0.001) 
(Fig.  1B) and ultimately a lower AUC (9627 ± 8122 vs. 
16,475 ± 11,738, P = 0.03) (Fig. 1C) (Fig. 2).

Next, on iTTP patients, we analyzed the impact of 
combined treatment on endothelial-dependent micro-
vascular hyporeactivity during ICU stay. Acetylcho-
line iontophoresis was repeated after the first and the 

second PE session. After the first PE session, platelet 
count significantly increased (26 ± 28 vs 42 ± 38 G/
mL, P = 0.0003) while hemolysis parameters improved 
(LDH 1870 ± 1440 vs. 650 ± 203 UI/mL, P < 0.0001, 
Haptoglobin 0.09 ± 0.2 vs. 0.56 ± 0.16  g/L, P < 0.0001) 
and biological recovery was more pronounced after the 
second session (Additional file  1: Table  S1, Fig.  3 and 
Additional file  1: Fig. S2A). We observed that global 
microvascular blood flow significantly increased after 
the first PE session (Baseline perfusion index: 5.97 ± 4.5 
PU at admission vs 11.38 ± 8.6 post-PE1, P = 0.027,) and 

Fig. 1 Skin microvascular endothelium‑mediated reactivity assessed by laser Doppler flowmetry at baseline in iTTP and controls. Comparison of 
skin microvascular laser Doppler flowmetry value between controls and iTTP patients at admission regarding the baseline flow index (A) and the 
response to Ach iontophoresis (Peak value (B) and AUC (C)). *P < 0.05, **P < 0.01, CTR versus ITTP, two‑tailed Mann–Whitney U test. B Abbreviations: 
PU, perfusion index; CTR, controls, iTTP, immune‑mediated thrombocytopenic thrombotic purpura; AUC, area under curve

Fig. 2 iTTP patients’ skin microvascular endothelium‑mediated reactivity assessed by laser Doppler flowmetry at baseline and after PE. Evolution 
of skin microvascular laser Doppler flowmetry value regarding the baseline flow index (A) and the response to Ach iontophoresis (Peak value (B) 
and AUC (C)), in iTTP patients at admission and after the two first PE. *P < 0.05, **P < 0.01, paired Wilcoxon signed‑rank test at each time point versus 
admission value for. Abbreviations: PU, perfusion index; CTR, controls, iTTP, immune‑mediated thrombocytopenic thrombotic purpura; PE, plasma 
exchange; AUC, area under curve; Ach, Acetylcholine
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even more after the second session (Baseline perfusion 
index 12.89 ± 6.9 PU, P = 0.008 vs admission). Global 
microvascular reactivity improved after the first PE ses-
sion (AUC: 9627 ± 8122 vs 16,558 ± 10,699, P = 0.007, 
respectively, baseline and post-PE1) and much more 
after the second session (26,431 ± 23,181, P = 0.04 
post-PE1 vs post-PE2) (Fig. 2A–C and Additional file 1: 
Table  S2). Changes in microvascular reactivity after 
PE were heterogeneous, some patients improved after 
the first PE while others improved their microvascular 
reactivity after the second. Finally, few iTTP patients 
had no variation of skin microvascular response to Ach 
(Additional file 1: Fig. S3). Figure 4 shows an archetypi-
cal example of endothelium-mediated microvascular 
hyporeactivity in a single patient which improved after 
the plasma exchange session and much more after the 
second session. Interestingly, microvascular blood flow 
across time positively correlated with platelet but not 

the vasoreactivity (Additional file 1: Fig. S2A). Hemol-
ysis biomarkers (LDH and bilirubin) negatively cor-
related with microvascular flow and reactivity (Fig. 3). 
Conversely, we observed no correlation between micro-
vascular flow/ reactivity and hemoglobin, haptoglobin, 
schizocytes or reticulocytes (Additional file 1: Fig. S2B).

Discussion
In this prospective study, we showed a markedly impaired 
skin microvascular endothelial-mediated reactivity in 
iTTP patients which recovered quickly after plasma 
exchange therapy.

This profoundly impaired microvascular vasoreactivity 
is similar to what our group previously observed in other 
critical conditions characterized by patent endothelial 
dysfunction such as critically ill COVID-19 [18] septic 
shock [19] or severe keto-acidosis [14]. Endothelial cell 
(EC) involvement in the pathophysiology of thrombotic 

Fig. 3 Biological variations during ICU stay and correlation with microvascular perfusion parameters. Courses of biomarkers in iTTP patients during 
the first days in ICU and correlation with flowmetry values. Hemolysis biomarkers (LDH and bilirubin) negatively correlate with microvascular 
flow and reactivity ***P < 0.0001, versus admission value, paired Wilcoxon signed‑rank test at each time point. On correlations graph, the full 
line represents the linear regression and the dotted line show the 95%IC. Abbreviations: iTTP, immune‑mediated thrombocytopenic thrombotic 
purpura; PE, plasma exchange; LDH, lactate dehydrogenase; PU, perfusion unit
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microangiopathy-associated organ failure has been 
suggested in animal models but remains poorly dem-
onstrated in humans. Indeed, experimental models indi-
cated that Adamts-13 deficiency, by itself, is not sufficient 
to trigger thrombotic microangiopathy. Endothelial acti-
vation is another necessary step to induce microvascular 
disease, probably by releasing of a large amount of UL-
VWF [20–22]. In the same line, in primates, the injection 
of human anti-ADAMTS-13 neutralizing autoantibody 
provokes a transient biological thrombotic microangi-
opathy but not a severe disease responsible for organ 
failure [23]. In iTTP patients, circulating EC number 
and plasma biomarkers reflecting endothelial activation 
are increased and correlated with the outcome support-
ing a role of the endothelium in the pathophysiology of 
iTTP [24]. Recently, Tellier et  al., reported that several 
plasmatic components, including anti-ADAMTS13 IgG, 
free heme and possibly others converge to induce EC 
activation ex  vivo [25]. Interestingly the intensity of the 
ex vivo EC activation induced by iTTP patients’ plasmas 
correlated with the disease severity [25]. Among solu-
ble factors released in iTTP, hemolysis-derived products 
(including cell-free heme, free-hemoglobin and biliru-
bin at high concentration [26, 27]) are well known to be 
highly toxic for the endothelium [28, 29]. Moreover, in a 
murine model, Frei et al. reported that hemolysis causes 
direct vascular injury and functionally impaired vasodi-
lation via increased scavenging of nitric oxide by plasma 

free hemoglobin [30]. Interestingly, in our study, we 
observed a negative correlation between endothelium-
mediated skin microvascular vasodilation and hemolysis 
parameters.

We showed that the microvascular reactivity of iTTP 
patients is impaired and, therefore, could participate in 
organ injury besides the thrombotic process. Moreover, 
the endothelial vasoreactivity is restored after plasma 
exchange therapy at the same time than platelet count 
recovered. However, the improvement of endothelial 
reactivity could not be directly linked to exchange plasma 
therapy because at the same time, almost all the patient 
received additional treatment including steroids and 
Caplacizumab. Currently, there is no experimental data 
about the effect of Caplacizumab on endothelial micro-
vascular reactivity [31].

We acknowledge some limitations to this observa-
tional and translational study. First, this is a single-
center study with a limited number of patients. Second, 
given the multiple treatments received simultaneously 
and the synchronous correction of thrombocytopenia 
and hemolysis, one cannot speculate on which biologi-
cal mechanism is responsible for the microcirculatory 
improvement. Next, as a control group, we used a pre-
viously published cohort of young diabetic patients after 
correction of ketoacidosis where we showed that micro-
vascular hyporeactivity recovered after acidosis correc-
tion [14] Given that patients with cardiovascular risk 
factors are susceptible to a lower microvascular reac-
tivity; difference between healthy subjects and iTTP 
patients could be even more important than differences 
between diabetic and iTTP patients [32–35]. The device 
used in this study only allows exploration of the skin 
microvasculature and we did not investigate the endothe-
lium of key organs affected by iTTP such as the brain, 
heart and kidney microcirculation [36, 37]. Finally, we 
did not explore the endothelium-independent vasodila-
tion, which requires either heating or nitroprusside chal-
lenge. Thus, we cannot rule out that iTTP patients have 
impaired endothelium-independent vasodilation reserve 
[38] or decreased NO bioavailability [39], on top of the 
observed impaired endothelium-mediated vasoreactivity.

Conclusion
This prospective observational study highlights a marked 
endothelium-mediated microvascular hyporeactivity in 
acute iTTP patients that could participate in organ injury 
pathophysiology. Moreover, endothelium-mediated vaso-
reactivity dysfunction quickly recovered after PE therapy.

Fig. 4 Archetypical record of the gradual improvement of skin 
microvascular reactivity following PE. Example of the gradual 
improvement of the skin microvascular reactivity in a single iTTP 
patient. Arrows indicate the successive Ach iontophoresis application. 
Abbreviations: PU, perfusion index; iTTP, immune‑mediated 
thrombocytopenic thrombotic purpura; PE, plasma exchange; Ach, 
Acetylcholine
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