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Abstract 

The acquisition of genetic abnormalities engendering oncogene dysregulation underpins cancer development. Cer‑
tain proto‑oncogenes possess several dysregulation mechanisms, yet how each mechanism impacts clinical outcome 
is unclear. Using T‑cell acute lymphoblastic leukemia (T‑ALL) as an example, we show that patients harboring 5’super‑
enhancer (5’SE) mutations of the TAL1 oncogene identifies a specific patient subgroup with poor prognosis irrespec‑
tive of the level of oncogene dysregulation. Remarkably, the MYB dependent oncogenic 5’SE can be targeted using 
Mebendazole to induce MYB protein degradation and T‑ALL cell death. Of note Mebendazole treatment demon‑
strated efficacy in vivo in T‑ALL preclinical models. Our work provides proof of concept that within a specific onco‑
gene driven cancer, the mechanism of oncogene dysregulation rather than the oncogene itself can identify clinically 
distinct patient subgroups and pave the way for future super‑enhancer targeting therapy.
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Background
For many years a major focus of cancer research has 
been the identification of genetic alterations leading 
to oncogene dysregulation. Crucially, this has led to 
the discovery of several targeted therapies such as the 
tyrosine kinase inhibitor Imatinib in Chronic Myeloid 
Leukemia (CML), therapies targeting HER2 receptor in 
breast cancers or BRAF V600E inhibitors in melanoma. 
Recent studies have evidenced that certain oncogenes 
have several distinct dysregulation mechanisms, includ-
ing mutations in non-coding intergenic regions caus-
ing ectopic super-enhancer activation [1–3]. Whether 
different molecular mechanisms affecting oncogene 
dysregulation might have clinical implications remains 
unclear. An illustration of this would be the TAL1 
(T-cell Acute Lymphocytic Leukemia Protein 1) gene. 
TAL1 is a major transcription factor dysregulated in 
more than 50% of T-ALL [4]. Although some effort to 
determine the clinical impact of TAL1 dysregulation in 
T-ALL has been made, conclusions remain contradic-
tory [5, 6]. Like several oncogenes, TAL1 can be over-
expressed by chromosomal rearrangement placing its 
expression under the control of strong cis-regulatory 
elements. Most commonly reported is the SIL-TAL1 
fusion transcript resulting from 90  kb interstitial 
microdeletions fusing the 5’portion of the gene to the 
3’region of its neighboring gene STIL (SCL-interrupting 
locus) [7]. A much rarer chromosomal rearrangement 
involves the translocation of TAL1 into T-cell Recep-
tor Delta (TCRD) and Beta (TCRB) loci accounting for 
only ~ 1–2% of T-ALL [1]. Besides chromosomal rear-
rangement, we and others discovered the second most 
recurrent dysregulation mechanism involving novel 
intergenic mutations upstream of the TAL1 promoter 
that lead to oncogenic super-enhancer formation [1, 2]. 
These mutations nucleate the formation of the super-
enhancer by creating de novo MYB transcription fac-
tor binding sites. MYB in turn recruits transcription 
co-activators and the transcription factor complex in 
close proximity to the mutation, thus driving aberrant 
TAL1 expression. Here, we report a comprehensive 
study of the clinical importance and prognostic impact 

of 5’-TAL1 super-enhancer mutations in T-ALL. We 
demonstrate proof of concept that the mechanism of 
oncogene dysregulation rather than oncogene dysregu-
lation itself can have significant clinical implications 
and that uncovering the molecular basis for oncogene 
dysregulation can pave the way to new therapeutic 
targets beyond direct pharmacological inhibition of 
oncogenes.

Results
5% of T‑ALL have 5’TAL1 super‑enhancer (5’SE) mutations
The occurrence of 5’SE mutations was assessed in a 
large cohort of 443 unselected T-ALLs treated in the 
GRAALL-2003/2005 (Adult) and FRALLE-2000 (Pedi-
atric) clinical trials. Sanger Sequencing identified 20 
5’SE mutated patients accounting for 5% of T-ALL. The 
microinsertions were of variable size but all mapped to 
the same genomic position as previously reported [1, 
2] (1:47,239,295 hg38) and were predicted to create a 
neomorphic binding site for MYB transcription factor 
(Fig.  1A). Of note, we observed a comparable level of 
TAL1 expression between 5’SE, TAL1-TCRD and SIL-
TAL1 rearranged T-ALLs (Fig.  1B, C), however due 
to the limited number of TAL1-TCRD cases (n = 4) 
preventing robust statistical analysis, we focused 
subsequent analyses on 5’SE and SIL-TAL cases. As 
expected, 5’SE mutations, and SIL-TAL1 were both 
mutually exclusive with other major T-ALL driver 
oncogenes such as TLX1, TLX3, CALM-AF10 (Supple-
mentary Tables 1 and 2) [8, 9]. Furthermore, analysis of 
5’SE patients’ oncogenetic landscape revealed a similar 
mutational profile to SIL-TAL1 patients with a low rate 
of co-mutations (Fig. S1A-B + S2A + B).

5’SE patients have poor clinical outcome
Despite 90% of 5’SE patients achieving complete remis-
sion (vs. 95% of SIL-TAL1 patients; p = 0.6), having simi-
lar clinical and biological characteristics (e.g., age, WBC, 
immunophenotype), and similar early responses (Pred-
nisone response 42% vs. 32% respectively; p = 0.6,) and 
MRD1 assessments at the end of induction (MRD1 >  10–4 

Fig. 1 Mebendazole demonstrates anti‑leukemic activity in 5’SE T‑ALLs with poor clinical outcome due to MYB‑mediated TAL1 inhibition. A 
5’microinsertion sequences aligned to the normal physiological sequence (Hg38). The red arrow denotes the mutation insertion site. All TAL1 
super-enhancer mutations introduce de novo MYB binding sites (underlined). B The relative TAL1 expression normalized to ABL + GAPDH expression 
in the thymus and T‑ALL patients. Kruskal–Wallis; 5’SE vs. SIL‑TAL1 p-adj = 0.5, 5’SE vs. TAL1‑TCRD p-adj = 0.99, SIL‑TAL1 vs. TAL1‑TCRD p-adj = 0.97. C 
TAL1 protein expression in 5’SE compared with SIL‑TAL1 T‑ALL. Left Panel T‑ALL cell lines, Right Panel PDX. Histone was used as a loading control. 
D Cumulative Incidence of relapse (CIR) of 5’SE, SIL‑TAL1 and Other T‑ALL. E Kaplan Meier depicting overall (OS) survival of 5’SE, SIL‑TAL1 and other 
T‑ALL. F Viability curves of 5’SE, SIL‑TAL1, and Other T‑ALL (Cell lines + PDX) at increasing Mebendazole concentrations. Viability was normalized to 
DMSO controls. The Mean and SEM are shown of duplicate samples. (Two‑way ANOVA; 5’SE vs. SIL‑TAL1 and Other T‑ALL p < 0.0001). G MYB and 
TAL1 protein expression after 48 h Mebendazole exposure in the Jurkat cell line, a representative 5’SE, SIL‑TAL1 and TAL1 negative (TAL1‑) PDX with 
corresponding TAL1 mRNA expression for TAL1 + T‑ALL (Right Panel). TAL1 expression was normalized to GAPDH 

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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in 29% vs. 43% respectively, p = 0.4), 5’SE patients were 
significantly associated with poorer clinical outcomes 
than SIL-TAL1 patients (Supplementary Table  2). 5’SE 
patients had significantly increased cumulative incidence 
of relapse (CIR) (5y-CIR; 50% vs. 36%; specific hazard 
ratio (SHR); 2.3, 95% CI [1.03—5.1]; p = 0.04) and shorter 
overall survival (OS) (5y-OS: 45% vs. 63%; Hazard Ratio 
(HR); 2.5, 95% CI [1.1—5.4]; p = 0.02) compared with 
SIL-TAL1 patients (Fig. 1D + E, S3A-B).

Poorer clinical outcomes for 5’SE patients were also 
true when comparing with Other T-ALL, whereas SIL-
TAL1 patients’ outcomes were not significantly different 
from Other T-ALL. 5’SE patients were associated with 
an increased cumulative incidence of relapse (CIR) (5y-
CIR: 50% vs. 28%; specific hazard ratio (SHR), 2.8 95% CI 
(1.4- 5.4); p = 0.003) and a shorter overall survival (OS) 
(5y-OS: 45% vs. 72%; hazard ratio: 2.9, 95%CI (1.5—
5.5); p = 0.001) compared to Other T-ALL (Fig.  1D + E, 
S3A-B).

Our results emphasize the specificity of this T-ALL 
subgroup as no other major genetic abnormality was 
associated with the poorer prognosis observed in 5’SE 
patients (Fig. S1A-B + Supplementary Table  1). Given 
their prognostic outlook, 5’SE mutated patients should 
therefore benefit from innovative clinical management.

Mebendazole demonstrates anti‑leukemic activity in 5’SE 
T‑ALL due to MYB‑mediated TAL1 degradation
Mebendazole is a readily available and well tolerated 
anti-helminth drug that has anti-tumoral activity in a 
wide range of cancers, including in Acute Myeloid Leu-
kemia via a MYB protein degradation mechanism [10]. 
Mebendazole specifically and significantly reduced the 
cell viability of 5’SE T-ALLs in vitro and ex vivo (T-ALL 
cell lines and Patient Derived Xenografts (PDX)) after 
48 h exposure (p < 0.0001). 5’SE T-ALLs had an IC50 of 
0.35 μM (95% CI [0.29–0.43] n = 5) compared with SIL-
TAL1, TAL1-TCRB, and Other T-ALLs, which had IC50s 
of 1.81 μM (95% CI [1.37–2.78] n = 8), 1.66 μM (95% CI 
[1.05–4.80] n = 1) and 2.99 μM (95% CI [2.00–5.61] n = 9) 
respectively (Fig.  1F + S4A + B). As expected, Meben-
dazole induced MYB degradation and reduced TAL1 
mRNA and protein expression in 5’SE T-ALLs but had 

minimal effect on TAL1 expression in SIL-TAL1 T-ALLs 
despite MYB degradation (Fig.  1G). These results con-
firm 5’SE T-ALLs dependency on the MYB-TAL1 axis for 
their survival and identified a potential specific targeted 
therapy for 5’SE patients.

Mebendazole delays tumor progression in vivo
To test Mebendazole’s ability to hinder leukemic pro-
gression in vivo, we injected NSG-mice with Jurkat cells 
carrying a native 12  bp 5’SE microinsertion [1] that we 
transduced to express the luciferase gene. Mice were 
administered Mebendazole in preventive and curative 
settings (Fig. 2A). Treatment with Mebendazole delayed 
tumor progression in treated mice compared to con-
trol mice. Significantly less bioluminescence, reflecting 
bulk leukemic engraftment was detected in preventive 
(p = 0.03) and curative mice (p = 0.01) compared to vehi-
cle control (Fig.  2B). Likewise, hCD45 staining of bone 
marrow cells revealed significantly reduced leukemic 
burden in preventive mice (p = 0.01) and curative mice 
(p = 0.02) compared to control mice (Fig.  2C). Fur-
thermore, Mebendazole improved the overall survival 
of both preventive (p = 0.005) and curative (p = 0.001) 
treated mice compared to control mice (Fig.  2E). We 
also tested Mebendazole’s efficacy in a more clinically 
relevant model using a 5’SE mutated PDX. Following 
the same treatment settings (Fig.  2A), hCD45 periph-
eral blood staining similarly showed reduced leukemic 
burden in treated mice with significantly fewer leukemic 
blasts detected in preventive (p = 0.03) and curative mice 
(p = 0.02) compared to control (Fig.  2D). Importantly, 
Mebendazole administration resulted in a significantly 
improved survival in both treatment settings (preventive 
and curative p = 0.01) (Fig. 2F). Collectively these results 
demonstrate the efficacy of Mebendazole in reducing leu-
kemic burden and delaying leukemic engraftment by spe-
cifically targeting MYB-dependent  TAL1+ T-ALLs.

Discussion
The work presented here challenges the paradigm of can-
cer treatment which has hitherto focused on the identi-
fication of genetic alterations underlying expression and 
maintenance of malignant phenotypes. We have shown 

(See figure on next page.)
Fig. 2 Mebendazole delays tumor progression in 5’SE T‑ALLs in vivo. A Schematic showing Mebendazole treatment settings. Adapted from “Mouse 
Experimental Timeline”, by BioRender.com (2022). Retrieved from https:// app. biore nder. com/ biore nder‑ templ ates. B Bioluminescence imaging 
of NSG recipient mice 31 days after injection with Jurkat cells. Representative images are shown. Mann–Whitney; Control vs. Preventive p = 0.03, 
Control vs. Curative p = 0.01. The Mean and SEM are shown. C hCD45 staining of bone marrow cells 28 days after injection with Jurkat luciferase 
expressing cells. Mann–Whitney; Control vs. Preventive p = 0.01, Control vs. Curative p = 0.02. The mean and SEM are shown. D Flow Cytometric 
peripheral blood staining of hCD45 21 days after injection with 5’SE PDX cells. Control vs. Preventive p = 0.03, Control vs. Curative p = 0.02. The mean 
and SEM are shown. E Kaplan Meier survival curves for Control, Preventive and Curative mice. Log‑rank (Mantel‑Cox) Test; Control vs. Preventive vs. 
Curative p = 0.007, Control vs. Preventive p = 0.005, Control vs. Curative p = 0.001. F Kaplan Meier survival curves for Control, Preventive and Curative 
5’SE PDX mice. Log‑rank (Mantel‑Cox) Test; Control vs. Preventive vs. Curative p = 0.004, Control vs. Preventive p = 0.009, Control vs. Curative p = 0.01 

https://app.biorender.com/biorender-templates
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Fig. 2 (See legend on previous page.)
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that the molecular mechanisms engendering oncogene 
dysregulation, rather than the level of oncogene overex-
pression itself, can identify subgroups of poor prognosis.

Clinical Management of T-ALL remains a challenge, 
especially for relapsed/refractory T-ALL which are asso-
ciated with extremely poor prognosis. Despite a high 
response rate after first-line therapy, about 20% of pedi-
atric and 40% of adult T-ALL patients will suffer from 
relapse [11]. Even though clinical testing of targeted ther-
apy has dramatically increased recently, such treatment 
options are limited for T-ALL due to the uniqueness of 
initiating events and oncogenic drivers implicated in 
T-ALL leukemogenesis. New approaches are needed for 
the design of personalized medicines in high-risk T-ALL 
[12]. Several oncogenes are considered ‘undruggable’ pri-
marily because of their critical functions in developmen-
tal and physiological contexts, or because of technical 
constraints designing specific and efficient molecules [11, 
13]. Hence, a void exists in the development of effective 
personalized medicines for such high-risk T-ALL and 
oncogene-driven malignancies.

Our study has shown proof-of-concept that a mecha-
nism of oncogene dysregulation such as the previously 
reported 5’SE [1, 2], is associated with poor clinical out-
come and can be efficiently targeted to suppress onco-
genic signaling. While super-enhancer (SE) dysregulation 
sustains oncogenesis, it also creates an exploitable vul-
nerability. Among candidate targets, bromodomain and 
extra-terminal domain (BET) protein BRD4 has been 
implicated as a core component of SE activation in can-
cer. Its targeting has shown promising results in several 
hematological malignancies [14]. Other critical SE regu-
lators such as CDK7 are currently being evaluated to dis-
rupt SE-driven oncogene dysregulation [15]. In line with 
this, our study provides a strong rationale for the devel-
opment of novel therapies targeting the dysregulation 
mechanism such as SEs to efficiently suppress oncogene 
driven cancers.

Conclusions
In this study we have shown that within a specific onco-
gene driven cancer the underlining molecular mecha-
nism responsible for oncogene dysregulation can have 
significant clinical implications rather than the level of 
oncogene overexpression. Importantly, we demonstrate 
that Mebendazole can be repurposed to induce MYB 
mediated TAL1 degradation and induce cell death in 
MYB-dependent 5’SE T-ALLs, highlighting the impor-
tance of understanding the molecular basis of oncogene 
dysregulation which can uncover suitable targets such 
as the 5’SE, exploitable for the development of targeted 
therapy.
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