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Methods

Plasma proteome dynamics of COVID-19 severity learnt by
a graph convolutional network of multi-scale topology
Samy Gauthier1, Alexy Tran-Dinh2,3, Ian Morilla1,4

Efforts to understand the molecular mechanisms of COVID-19
have led to the identification of ACE2 as the main receptor for
the SARS-CoV-2 spike protein on cell surfaces. However, there are
still important questions about the role of other proteins in
disease progression. To address these questions, we modelled
the plasma proteome of 384 COVID-19 patients using protein level
measurements taken at three different times and incorporating
comprehensive clinical evaluation data collected 28 d after
hospitalisation. Our analysis can accurately assess the severity of
the illness using a metric based on WHO scores. By using topo-
logical vectorisation, we identified proteins that vary most in
expression based on disease severity, and then utilised these
findings to construct a graph convolutional network. This dynamic
model allows us to learn the molecular interactions between
these proteins, providing a tool to determine the severity of a
COVID-19 infection at an early stage and identify potential
pharmacological treatments by studying the dynamic interac-
tions between the most relevant proteins.

DOI 10.26508/lsa.202201624 | Received 22 July 2022 | Revised 6 February
2023 | Accepted 6 February 2023 | Published online 20 February 2023

Introduction

The sudden spread of severe acute respiratory syndrome coro-
navirus 2 (Sars-Cov-2) worldwide meant one of the most re-
markable public health crises of recent times. Currently, more
than 60 million individuals have been infected, causing over 1.5
million deaths related with severe complications of the COVID-19
disease.

There exists proved evidence on how certain proteins such as
ACE2 receptor or TMPRSS2 are used by Sars-Cov-2 as entrance gates
to infect the cell via membrane fusion and endocytosis (Ou et al,
2020; Zhou et al, 2020). Likewise, there are also multiple clues on a
likely participation of other proteins in the downstream of the
disease during its progression (Delgado Blanco et al, 2020; Yang
et al, 2020; Zamorano Cuervo & Grandvaux, 2020; Scudellari, 2021).
All these experimental efforts aim to characterise the progression

of COVID-19 from an in situ baseline analysis of proteomic profiles.
An approach that is getting more popular nowadays is to switch off
those protein interactions resulting essential to the viral infection.
Thus, the targeting of protein–protein interaction interfaces may be
used to discover anti-COVID-19 treatment (Xiu et al, 2020; Yang et al,
2020). Unfortunately, this and most of those analyses tend to
overlooking nonlinear programmes of interaction determined by
subsets of proteins already described in such studies. Some of
those programmes are merely contributing to an innocuous
reconfiguration of the secondary immune response system, but
others can be causally provoking a worsening in the severity of the
symptoms (i.e., hyperinflammatory syndrome) during the disease
progression.

In this work, we learn the latter through graph convolutional
networks (GCNs) calibrated with higher topological features
extracted from raw plasma proteomic data collected by the Mas-
sachusetts General Hospital Emergency Department COVID-19
(https://www.olink.com/mgh-covid-study/– [Filbin et al, 2021]).
The examination of plasma as a potential source of insight into the
evasion mechanisms of severe acute respiratory SARS-CoV-2 has
been the subject of recent research (Cabrera-Garcia et al, 2022;
Zhao et al, 2022). Plasma, as the liquid component of blood, is a
complex mixture of substances, including antibodies and proteins
produced by the host immune system in response to a stimulus,
such as infection or disease. Alterations in the levels of these
substances in the plasma may provide evidence of underlying
conditions or disorders, even in the absence of direct evaluation
of immune system cells.

Thus, we clustered and identified patient phenotypes by the
World Health Organization (WHO)-mediated scores along their
comorbidity effectors (if any) in a non-supervised fashion first
and computed later with persistent homology of more than
1; 400 protein profiles in blood enhanced in endothelial cells
(see Fig 1) across samples (Xu et al, 2019). To the best of our
knowledge, this study is the first to chart longitudinal associ-
ations between plasma protein interactions and disease out-
comes in patients with COVID-19 disease. Finally, we are
convinced our results will be instrumental in a later experi-
mental validation.
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Results

Study design

Our models achieved tracking protein interactions occurring
postinfection by which different levels of severity developed by
384 individuals suffering from COVID-19 symptoms might be
explained (Filbin et al, 2021). In this sense, the COVID status of
inpatients was tested positive prior to enrolment or during
hospitalisation. Then, based on that test, we discriminated 306
patients as Covid + and 78 patients as Covid − (see Fig 2A). In
addition, we wanted to improve our models’ interpretability by
means of the detailed clinical outcomes available from each

patient at day 28 of their stay in the hospital. In total, those
variables encompass up to 40 different types of multi-variated
sequences (see Supplemental Data 1). Those data allowed us to
compute a precise overall score of severity based on discrete WHO
scores (Organisation world health, 2021) provided in the cohort for
each patient over time of stay in the hospital. First, we vectorised
those scores with the aim of being using entropy (Gray, 2013) to
calculate the information encapsulated by the WHO scores in
each patient. That information in bits (Murphy, 2012) enabled the
construction of a probability density function that basically well
stratified individuals according to severity progression of the
disease which ultimately reinforced the explanatory power of our
learning omic models.

Figure 1. Flowchart of the entire analysis.
(A) Admission of inpatients presenting COVID symptoms and triage. (B) Blood extractions of inpatients at days 0, 3, and 7 after their admission. Measurement of 1,400+
plasma protein levels by proximity extension assay. (B1, B2, B3) Proximity extension assay protocol: immunoreaction, extension, and detection of levels by sequencing.
(C) Record of clinical annotations and evaluation of discharged inpatients after 28 d of stay in the hospital. (D) The usage of algebraic invariants to study the shapes of each
inpatient plasma proteome. (D1, D2, D3) Three stages of multi-topology analysis, namely, WHO scores of severity fitting and inpatient stratification based on that fit,
protein candidates described by persistent homology per stratum, and prediction of disease progression based on convolutional neural networks constructed from
those candidates and per stratum. Link https://www.olink.com/mgh-covid-study/. Modified and used with permission.
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Hierarchical models of WHO scale–based entropy information
stratify patients by severity

WHO provides scores that monitor disease progression during a
patient’s stay at a hospital. These scores, recorded using the dis-
cretemeasureWs = f1; 2;…; 6g2Z+ at days 0, 3, 7, and 28 (see Table 2
and Supplemental Data 1), provide a local snapshot of an indi-
vidual’s disease progression (see Fig 2B). To better understand and
track disease progression, we propose using information theory
scores, as proposed by Shannon in his seminal paper (Shannon,
2001). This approach allows us to efficiently store and retrieve
relevant information and create a continuous distribution to model
disease progression. By vectorising the WHO scores and calculating
entropy, we can extract self-information and fit the transformed
data (see Fig S1A) to the best distribution by checking a compre-
hensive set of probability density functions. In particular, we obtain
a discrete random variable V, with possible outcomes v1;…; v6,
which occur with probability Pðv1Þ; :::;Pðv6Þ and computed the
entropy of each individual per vector by applying the formula
HðV̂ Þ = − �

6

i = 1
P v̂iÞlogbitsP v̂iÞ

��
(see Fig 2C). The generalised continu-

ous normal random variable yielded the best performance (see Fig

2D) and was used to calculate the bits of information (Mackay, 2017)
for a context channel (i.e., pðv̂ ����v9Þ) with v̂ and v9 in the discrete
alphabetWs. Thus, we can accurately track disease progression and
identify potential trends.

The generalised continuous normal random variable of sub-
domain D = ½1; 2� 2R+ was calculated as follows:
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where β2 ½0:01; 0:99� and Γ is the function gamma (Sun, 2020). By
means of this function, we calibrated hierarchical clustering
models that were computed by applying the Hdbscan algorithm
(Campello et al, 2013). Hence, we achieved to discriminate the COVID
cohort into three different groups (see Video 1, Video 2, and Video 3).
Those groups basically met the mild, intermediate, and acute
symptoms as registered in the available clinical dataset (see Fig 2D).

Figure 2. HDBSCAN severity clustering by means of entropy measures.
(A, B, C) UMAP projection of clinical data. (A) Stratification by Covid+ and Covid−. (B) Inpatients’ stratification by WHOmax score (i.e., a measurement correlated with the
maximum WHO outcomes achieved by patients during their hospital stay and available in the clinical dataset). (C) Individual discrimination by Shannon’s Entropy
combined with Hdbscan clustering algorithm. The blank circles show inpatients considered as outliers by the dissimilarity of their symptoms. (D) Probability density
function optimally fitted in accordance with Shannon’s Entropy displaying three sharp peaks, namely, mild, intermediate, and acute associated with inpatients of the
Covid cohort.
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From this stratification, 13 out of 384 patients were excluded to be
considered as outliers with noisy data. These patients displayed
dissimilar symptoms and unmatched characteristics amongst them
to be included in any of the groups (see Video 4 and Fig S2).

The latent space of clinical features explains patients’
stratification

We unifiedmany local perspectives of the clinical dataset to explain
models of severity progression (see Fig S3A–D). To this end, we
summarised both an entire model and individual features learnt
from the pdf of our Shannon’s entropy severity. This task was
eventually performed using the medical outcome dataset (see
Supplemental Data 2) to train a three-dense layer convolutional

neural network with 269; 313 trainable parameters (see Fig S4). The
architecture of this network consisted of two convolutions 2D
and a last flatten layer with a scheme of ð384; 40; 512Þ × 2 and
ð384*ð40==512Þ*1Þ as output dimension. Next, we computed local
explanations based on Shapley-related extensions, that is, the so-
called SHAP values (Lundberg & Lee, 2017). To figure out the relative
contribution of each feature to our model output individually, we
plotted the values of every local feature for every sample in the
cohort. The Fig 3A—right hand panel—shows a plot of sorted fea-
tures by the sum of local value magnitudes over all samples and
uses such values to show the distribution of the impacts each
feature has on the model output. The colour represents the feature
value (red high, blue low). This reveals, for example, a known fact,
that a high categorical age (% lower status of the population) raises

Figure 3. Clinical evaluation of our entropy-based model on COVID severity score by the model and higher individual features.
Initial explanations are based on a gradient boosted decision tree model trained on the COVID cohort. (A) Left: bar chart of the average SHAP value magnitude. Age was
the most influential symptom, changing the predicted absolute COVID probability on average by two percentage points (0.02 on x-axis). Right: a set of beeswarm plots,
where each dot corresponds to an inpatient in the cohort per significative symptom. The dot’s position on the x-axis shows the impact that a symptom has on the model’s
prediction for a given inpatient. The piled-up dots mean the density of inpatients suffering from a symptom with similar impact on the model. Younger ages reduce the
predicted Covid risk, elder ages increase the risk. (B) Globally stacked SHAP explanations clustered by explanation similarity. Inpatient profiles land on the x-axis. Red
values increase the model prediction, blue ones decrease it. Two clusters stand out: On the left is a group with low predicted risk of suffering an acute Covid, whereas on
the right, we have a group with a high predicted risk of suffering from acute COVID. (C) Top-bottom: locally stacked explanations clustered by explanation similarity for
infection, lung, and respiratory symptoms. (D) Effect of a single feature across the whole cohort. Top–bottom: dependence plots for Age and Hypertension (HTN) features.
These plots display inflection points in predicted age and hypertension as $Age cat$ and HTN (oldness by years on average and hypertension complaint per individual in
the cohort) changes. Vertical dispersion at a single category of Age (resp. HTN) represents interaction effects with other features. To help reveal these interactions, we
coloured by Fever (resp. BMI). We passed the whole explanation tensor to the colour argument in the dependence plots to pick the best feature to colour by. In this case, it
selected fever symptoms (resp. Body Mass Index) because that highlights that the average age (hypertension) per inpatient has more (less) impact on Covid severity for
categories with a low (high) Fever (BMI) value.
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the predicted risk of experiencing acute severity in the COVID
disease. In the left-hand panel of Fig 3A, we observe this same effect
in stacked red bars for our multi-class output task.

To understand how a single feature affects the output of the
model, we plotted the local value of that feature versus the value of
the feature for all the inpatients in the clinical dataset (see Fig 3B).
Now, we can zoom in some of those effects individually as shown in
Fig 3C for the lung and respiratory (the one quantified as lowest in
its contribution to severity learning) symptoms. Because locally
explained values represent a feature’s responsibility for a change
in the model output, the plot in Fig 3D represents the change in
predicted COVID severity as Age cat (the average age per category in
the cohort), or preexisting hypertension change. Vertical dispersion
at a single value of Age cat represents interaction effects with other
features. To help reveal these interactions, we can colour by an-
other feature. If we pass the whole explanation tensor to the color
argument, the scatter plot will pick the best feature to colour by. In
this case, it picks Fever Sympt (symptoms associated with fever)
because that highlights that the the average age per category in the
cohort has less impact on acute COVID severity for categories with a
high Fever Sympt value.

The values of interaction between locally explained variables are
a generalisation of those to higher order interactions. Fast exact
computation of pairwise interactions is implemented for tree
models. This returns a matrix for every prediction, where the main
effects are on the diagonal and the interaction effects are off-
diagonal. These values often reveal interesting hidden relation-
ships, such as how the increased risk of death peaks for inpatients
with mild febrile symptoms at the age between 20 and 34 years (see
Fig 3D -upper panel-), or that non-preexisting hypertension has less
impact on individuals with a high BMI cat value (see Fig 3D -lower
panel-).

Persistent homology identifies novel key proteomic features
involved in severity

Based on the previous clinical characterisation of COVID severity,
we exploited the proteomic plasma information available for the
remaining 371 individuals in the cohort. Unfortunately, the par-
ticular geometry of inpatient’s proteomes as embedded onto lower
dimensional spaces resulted highly sensitive to parameter setups
considered in downstream analyses according to entropy-based
severity. In such a scenario, we computed topological invariant
structures instead (see Video 5). These invariants, the so-called
simplicial complex, qualitatively analyse features that persist
across multiple scales. Such invariants can be classified over days
0, 3, and 7 by obtaining their generators through persistent ho-
mology (see Fig S5A). This analysis led us to identify unique protein
configurations (see Figs S5B and S6) within inpatient proteomes
based on their connected components (Xia & Wei, 2014; Aktas et al,
2019). Thus, the whole universe of proteome embeddings could be
enclosed in the quotient space P=~ under the given equivalent
relation: for any p•2P, pi~pj if the projected proteome i “is similar
to” on the set of all rotated tails, the so-called special orthogonal
group SOð3Þ (Hall, 2004). Hence, a partition with two classes of
equivalence come out whose disjoint union determines the all
three revealed groups of patients (see Video 6). Indeed, these

classes of equivalence have as represents ½cb� : = fx2P : x~cbg if b
is a ball-like shape in SOð3Þ and ½cs� : = fx2P : x~csg if s is a start-
like shape in SOð3Þ. These two classes can be visualised in upper
and lower panels of Fig 4A and B. Now, to identify proteins whose
profiles are invariants of each inpatient over the days of their stay
f0; 3; and 7g, we primary analysed the classes of equivalence ½cb�
and ½cs� of each partition by persistent homology per group. Spe-
cifically, we used persistence diagrams wherein we quantified the
number of homology generators (see upper Fig 4C) while testing
their quality by means of confidence band generated by proba-
bilistic boosting and density diffusion (see lower panel of Fig 4C).
This enabled the identification of a unique set of proteins (see
Video 1, Video 2, and Video 3) that encapsulated two- and three-
dimensional structures (Fig 4D and E) important to topologically
characterise severity classification per group over the days of stay
of each individual in the hospital. Thus, we mapped the trans-
membrane serine proteases TMPRSS5 and SS15 (Huttlin et al, 2017)
as novel receptors taking part of the infection machinery. These
proteins belong to the same family of TMPRSS2, a known receptor
used by Sars-CoV-2, to enter the cell (Hoffmann et al, 2020). Both of
those proteins were located amongst the dysregulated interactome
of inpatients stratified as acute and strikingly also as mild. Fur-
thermore, amid the proteins we found (see Video 1, Video 2, and
Video 3 for the entire list), there were proteins in acute -BRK1, LAP3,
SLC27A4, SLC39A14-, intermediate -SLC27A4-, and mild -BRK1,
SLC27A4, and SLC39A14- inpatients functionally linked (Huang et al,
2009a, 2009b) with AP3B1, BRD4, BRD2, CWC27, SLC44A2, and ZC3H18
whose profiles are reported to be likely involved in early infection
caused by the virus (Gordon et al, 2020). Finally, the functional
analysis of the novel proteomic features resulted from our per-
sistence analysis showed along with their ancestors two sharp
clusters bound to pneumonia and inflammation pathways (see Fig
S7).

Dynamic tracking of protein interactions required by the virus to
efficiently infect the cell

Once we put the spotlight on individual proteins topologically
important to discriminate COVID patients over time, we envisaged
to capture their dynamics of functional interactions at regulatory
levels. To this end, integrated protein–protein interaction networks
were firstly constructed per group of patients using colocalization,
coexpression, physical interactions, and shared domains (Morilla
et al, 2010; Warde-Farley et al, 2010). Then, we enquired these
graphs about their connection quality by means of degree and
centrality distributions as shown in Fig 5. Surprisingly, we could
confirm (see Fig 5) that it neither was highly connected nor played
an important modular role in the graphs. Next, to predict disease
progression, wemonitored the behavioural regulation of the nodes’
graph aggregation on semi-supervised learning on a community
composed by known and unknown protein interactions with ACE2
and TMPRSS2 (Morilla et al, 2022) (see the Video 1, Video 2, and Video
3, and Video 4). To compute such a tracking, we endowed the graphs
with a tailored hybrid design (see Fig S8) covered in convolutional
layers along with a spectral rule (Defferrard et al, 2016) as occurs in
GCNs. The first model’s performance yielded an accuracy, for each
group of inpatients, of 0.49, 0.41, and 0.85 supported by 76, 146, and
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355 samples regarding covid and non − covid feature representa-
tions, respectively (see Figs S9–S11 and Table 1). Those values in-
creased to 0.71, 0.84, and 0.95, respectively, to the second learning
model. We also found that their corresponding performances as-
ymptotically tended to 0.65, 0.7, and 0.81 when the layers were
largely increased from the 32 units in the convolutional
architecture.

In that way, we learnt how ACE2 and TMPRSS2 interacted with the
persistent novel candidates to explain the virus machinery at its
entrance into the cell to put patients into mild, intermediate, or
acute groups of severity over time (see Video 7, Video 8, Video 9, and
Video 10). Hence, a primary set of proteins that led to acute severity
consisted of the progressive aggregation of BCAN, CA2, CA12, CLEC4,
FOLR1, FOLR2, IFNGR2, IGSF3 (R), ILR13A1(R), LAIR1, LRRN1, PCDH17,
RTBDN, SEZ6L, SIGLEC6 (Schulte-Schrepping et al, 2020), and
TNFRSF21 with respect to covid feature representation. Especially,
CLEC4 belongs to a protein family (i.e., the C-type lectin receptor)
involved in regulating immune reactivity through platelet de-
granulation whose expression significantly decreased in COVID-19
and correlated with disease severity (Overmyer et al, 2021). The
interactions occurring early on during the infection amongst AXL,
CD58, DDR1, DLK1, FCGR3A, TNFRSF12A, UXS1, and XPNPEP2 set the
non − covid latent feature. Herein, we spotted CD58, a nonclassical
monocyte, such as CD274 (PD-L1) known inhibitor of T-cell activation
along with Arginase 1 (Bronte et al, 2003; Li et al, 2018) highly
expressed in neutrophils in COVID-19 patients or CD24 involved
in neutrophil degranulation with an increased expression of

neutrophil function (Overmyer et al, 2021). Therein, we also iden-
tified FCGR3A (encoding CD16a) that is regulating severity-
dependent alterations of the myeloid cell compartment during
Sars-CoV-2 infection. Indeed, FCGR3A has been already found to be
a nonclassical monocyte marker in COVID-19 (Schulte-Schrepping
et al, 2020). Next, to the covid representations that determined
intermediate severity of patients, we found the early aggregations
of FR2, GALS4, IL1RN(R), ILR1(R), LRPAP1, RNF41, TRIM21(R), and VWV2.
Remarkably, RNF41 plays a central role during interactions of Sars-
CoV-2 with innate immune pathways because its interferon path-
way is targeted by RNF41 (NSP15) (Gordon et al, 2020). Then, the
intermediate non − covid representations are governed by the in-
teractions of CCR5 (intestinal pro-inflammatory), CPA1, LAMA2,
PLA2G4A, PON3, SETMAR, TGFB1, and XCL1. Finally, aggregations of
C4BPB, CD70(R), IPCEF1, MAVS(R), PLCG2, and THBS2(R) led to mild
severity stratification to covid feature representations. At the same
time, the interactions between CD200, MAPKAPK5 (Kindrachuk et al,
2015), NTRK3(R), PRAP1(R), and XPNPEP2(R) set the non − covid
feature representations. In these two lists, we might mention a
similar effect on neutrophils and expression as CD58 to CD70 and
CD200 (Overmyer et al, 2021).

We checked that covid feature representation of patients with
acute symptoms was functionally charaterised by a set of proteins
involved in the fusion of virus enclosure to the host endosome
membrane (GO:0039654) at the virus entrance into the cell. Overall,
the interactions between ACE2 and TMPRSS2 and these persistent
proteins were largely enriched in the immunoglobulin-like fold

Figure 4. Multi-scale topology analysis
flowchart.
(A) Upper: class of equivalence [cb]
determined by umap projection of mild
inpatients upon rotation on SO(3). Lower:
umap projection of an inpatient’s soluble
proteome. (B) Upper: class of equivalence [ct],
taking as example to show the mild
inpatient 101. Lower: umap projection of that
inpatient’s soluble proteome. (C) Upper:
topological feature extraction from diagram
of persistence of patient 101 and its later
calibration. Lower: application of density
diffusion for separating noise from robust
signals in the persistence diagram of
impatient 101. (D) Spotted loops of proteins
enclosing dimension 2 structures important
to explain severity stratification over time of
patient 101. (E) Spotted voids of proteins
enclosing dimension 3 structures important
to explain severity stratification over time of
patient 101.
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functional category. From amere clinical stratification point of view,
these conditions characterise most of the inpatients in the avail-
able clinical dataset suffering of cardiovascular complications.
Non − covid representation of acute patients was strongly com-
posed by membrane and signal peptide functional categories,
protein tyrosine kinase and glycoprotein with extracellular and
cytoplasmatic topological domains and transmembrane helix and
integral component in the region biological processes. In this case,
these conditions were felt on patients mainly suffering from dia-
betes of type 1 and immunosuppression.

Regarding the covid feature representation of intermediate
patients, an overabundance of protein binding function is observed
with diabetes of type 2 and normal variation diseases associated
with such conditions. On the other side, the non − covid feature of
this group is strongly enriched with disulfide bond and signal
peptide functional categories. Therein, we found various terms
directly linked with endosome viruses’ machinery. Thus, we iden-
tified clathrin-dependent endocytosis (GO:0075512), host lysis, in-
hibition of host IKBKE, JAK1, RLR pathway, TBK1, and TLR pathway
triggered by the virus in the host cell. Those symptoms were
identified to a wide range of the complications described in the
clinical dataset; in particular, asthma severity, chronic hepatitis C,

immunosuppression after liver transplantation, diabetes, es-
pecially strong of type 2, heart and kidney complications, and
hypertension.

Finally, the latent covid representation of mild patients’ pro-
teomes was functionally characterised by a weak overabundance of
disulfide bond and glycosylation site (i.e., N-linked as GlcNAc, etc.).
These categories were related with suppression by the virus
of host-adaptative immune response (GO:0039504). Remarkably,

Figure 5. Regulatory gene networks predicting disease progression regarding ACE2 and TMPRSS2.
(A) Mild patients. (B) Intermediate patients. (C) Acute patients. (D) Group of proteins nonfunctionally enriched in acute patients. Highlighted in red ACE2 as one initial
seem in the downstream analysis of protein interactions occurred post-infection. Yellow enhances those proteins (ERBB3, CD48, CCR5, FCRL6, and PLA2G10, among others)
with a higher connectivity degree in the networks.

Table 1. Performance of the GCN hybrid model to mild COVID patients.

Precision Recall f1-score Support

False 0.07/0.33 0.17/0.06 0.10/0.10 18

True 0.95/0.95 0.89/0.99 0.92/0.97 337

Accuracy 0.85/0.95 355

Macro avg. 0.51/0.64 0.53/0.52 0.51/0.53 355

Weighted avg. 0.91/0.92 0.85/0.95 0.88/0.93 355

The first set of figures before the “/” represents Model 1, whereas the second
set of figures represents Model 2 with aggregation (see in Materials and
Methods section: notes on the GCN). For the sake of simplicity, we only show
acute subgroup patients. For further details, see Tables S1 and S2.
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there were no disease-associated genes type-specific to these
biological processes. The non − covid mild features were actually
overrepresented by signal peptide, qualitatively similar to those
features described to the intermediate non − covid patients. We will
fully expose and discuss the intriguing implications of such results
in the next section.

Discussion

Sars-CoV-2 has become in these two last years a real life-thread
that has collapsed the health systems worldwide. Many efforts have
been already done to structurally characterise the Sars-CoV-2 spike
protein. To predict its severity, large mappings of proteins likely
involved in the machinery applied by the virus to infect the cell
have been reported (Jackson et al, 2022; Sokhansanj & Rosen, 2022).
All these investigations have led to enormous advancements in
COVID-19 treatment that consequently have given rise to efficient
vaccines (Kumari et al, 2022). However, there is still some facets
not well-characterised or yet sufficiently explored. In our attempt
to contribute to this research, we computed an overall severity
score based on WHO scales instrumental to provide a chart
explaining the protein interactions required by the virus to
stratify a patient’s infection into mild, intermediate, or acute
(Organisation world health, 2021). To this end, we made use of a
double analysis linking symptoms to protein expressions and
interactions with ACE2 and TMPRSS2. Merely from a stratification
standpoint, we give novel information and verified known facts
about COVID. As conclusion, we could claim that in itself, COVID-
19 is not as harmful as it is in association with other risk factors
such as age, febrile symptoms, or overweight. Indeed, most of the
Covid − patients, though some were considered as outliers as
indicated in the earlier sections, held a relative high entropy
value of severity due to an eventual intubation, ventilation or
supplementary oxygen requirement. To achieve those high peaks,
Covid + should be overweight elderly people and present fever
and/or respiratory symptoms.

More importantly, we obtained functional evidence of how
particular sequences of proteins interacted with the virus to block
the immune systems during the infection. Thus, we could explain
the infection fate towards the acute symptoms because an
endosome acidification is produced during the infection initiating
conformational proteins fusion (Yang et al, 2022). In that way, Sars-
CoV-2 could take advantage of such pathway to be endocytosed as
happens with many types of viruses such as influenza A virus,
alphaviruses, or HIV-1.

Regarding patients suffering from intermediate symptoms that
endocytic process is caused over proteins that contain at least one
coiled domain forming stiff bundles of fibres. Hence, proteins are
modified by signaling upon creation of interchain disulfide bonds,
which can produce stable, covalently linked protein complexes
likely contributing to fold and stabilise proteins. In virus inter-
nalization, clathrin-mediated endocytosis could be then generated
in response to getting assembled on the inside face of the cell
membrane to cleave the host cell (CCV) by the action of DNM1/
dynamin-1 or DNM2/dynamin-2 (Jima & Hinshaw, 2018). Then, the
virus may be delivering their content to early endosomes via CCV.

These mechanisms could be expressing in Sars-CoV-2 using dif-
ferent ways as by lysing the host cell, blocking the host innate
defenses via IKBKE/IKK-epsilon kinase inhibition, JAK1 protein,
DDX58/RIG-I-like repector (RLR) what stabilises the antiviral state,
TBK1 kinase inhibition to prevent IRF activation, or toll-like rec-
ognition receptor (TLR) pathway evasion, which makes the pro-
duction of interferons to be inhibited and so to establish a stable
antiviral state (Chen et al, 2021; Aliyari et al, 2022).

To mild cases, the Sars-CoV-2 protein could be preventing the
tuned repertoire of self and nonself antigens’ recognition of effi-
ciently acting against the malicious effects of cell infection. In these
cases, Sars-CoV-2 would be escaping the adaptive immune re-
sponse by simple interference with the presentation of antigenic
peptides at the surface of infected cells (Sette et al, 2021).

The use of plasma in COVID-19 research can be justified for many
reasons, even if the cells of the immune system are not evaluated
directly. Plasma contains a wide range of substances produced by
the immune system, including antibodies and other proteins, which
can provide valuable information about the body’s response to the
SARS-CoV-2 virus. By studying these substances in the plasma,
researchers can gain insights into the immune system’s response to
the virus and how it may help or hinder the body’s efforts to fight off
the infection. Additionally, plasma can be collected and stored
easily, making it a convenient and accessible source of samples for
researchers studying COVID-19. Finally, plasma can be used in a
wide range of experimental techniques, making it a versatile tool for
researchers studying the immune system. However, it is important
to note that the relationship between plasma findings and the
immune system’s response is not always clear, and further research
may be needed to fully understand this relationship.

The approach presented in this work provides a more com-
prehensive and dynamic understanding of the molecular mecha-
nisms of COVID-19 compared to more conventional methods such
as antibody testing and PCR testing. These classic methods are
limited in their ability to assess disease severity and provide a
snapshot of the disease state, whereas the use of protein level
measurements and clinical evaluation data, combined with GCNs,
provides a dynamic understanding of the molecular interactions
between proteins and can help determine the severity of a COVID-
19 infection at an early stage.

Whereas traditional approaches rely on identifying the presence
of the virus through antibodies or PCR, this study goes beyond that
to provide insights into the molecular interactions and changes in
protein expression that occur during the progression of the disease.
This can aid in the identification of potential pharmacological
treatments by studying the dynamic interactions between the most
relevant proteins.

The use of GCNs in this study provides a unique and innovative
approach to understanding the complex molecular mechanisms of
COVID-19, offering valuable insights for future treatment and di-
agnostic tool development. However, this methodmay need further
validation before becoming a routine diagnostic tool.

Overall, the results provided in this work contribute to gaining
new insights into the mechanisms of the disease and how it affects
the immune system and how nonlinear relationship between
“message passing” proteins could particularly explain disease
severity modulation during the Sars-CoV-2 infection.
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Table 2. Variable descriptions of the clinical dataset.

Variable (subject_id) Description (subject ID)

COVID COVID status (tested positive prior to enrolment or during hospitalization) 0 = negative 1 = positive

Age cat Age category 1 = 20–34 2 = 36–49 3 = 50–64 4 = 65–79 5 = 80+

BMI cat Body mass index: 0 = <18.5 (underweight) 1 = 18.5–24.9 (normal) 2 = 25.0–29.9 (overweight) 3 = 30.0–39.9 (obese) 4 = ≥40
(severely obese) 5 = Unknown

HEART Pre-existing heart disease? HEART - (coronary artery disease, congestive heart failure, valvular disease) 0 = No 1 = Yes

LUNG Pre-existing lung disease? LUNG - (asthma, COPD, requiring home O2, any chronic lung condition) 0 = No 1 = Yes

KIDNEY Pre-existing kidney disease? KIDNEY - (chronic kidney disease, baseline creatinine >1.5, ESRD) 0 = No 1 = Yes

DIABETES Pre-existing diabetes? DIABETES - (pre-diabetes, insulin and non-insulin dependent diabetes) 0 = No 1 = Yes

HTN Pre-existing hypertension - HTN 0 = No 1 = Yes

IMMUNO Pre-existing immunocompromised condition ? IMMUNO (active cancer, chemotherapy, transplant, immunosuppressant
agents, aspenic) 0 = No 1 = Yes

Resp_Symp Respiratory symptoms? Symp_Resp (sore throat, congestion, productive or dry cough, shortness of breath or hypoxia, or
chest pain) 0 = No 1 = Yes

Fever_Sympt Febrile symptom

GI_Symp Any GI related symptoms at presentation (abdominal pain, nausea, vomiting, diarrhea)

WHO 0
WHO score for day 0 study window - enrollment plus 24 h 1 = Death within 28 d 2 = Intubated, ventilated, survived to 28 d 3
= Non-invasive ventilation or high-flow nasal cannula 4 = Hospitalized, supplementary O2 required 5 = Hospitalized, no
supplementary O2 required 6 = Not hospitalized

WHO 3
WHO score for day 3 study window 1 = Death within 28 d 2 = Intubated, ventilated, survived to 28 d 3 = Non-invasive
ventilation or high-flow nasal cannula 4 = Hospitalized, supplementary O2 required 5 = Hospitalized, no supplementary
O2 required 6 = Not hospitalized

WHO 7
WHO score for day 7 study window 1 = Death within 28 d 2 = Intubated, ventilated, survived to 28 d 3 = Non-invasive
ventilation or high-flow nasal cannula 4 = Hospitalized, supplementary O2 required 5 = Hospitalized, no supplementary
O2 required 6 = Not hospitalized

WHO 28
WHO score on study day 28 1 = Death within 28 d 2 = Intubated, ventilated, survived to 28 d 3 = Non-invasive ventilation or
high-flow nasal cannula 4 = Hospitalized, supplementary O2 required 5 = Hospitalized, no supplementary O2 required 6 =
Not hospitalized

WHO max
WHO max category at 28 d (maximum WHO score within first 28 d with death being the maximum possible) 1 = Death
within 28 d 2 = Intubated, ventilated, survived to 28 d 3 = Non-invasive ventilation or high-flow nasal cannula 4 =
Hospitalized, supplementary O2 required 5 = Hospitalized, no supplementary O2 required 6 = Not hospitalized

abs_neut_0_cat Absolute neutrophil count day 0 category: 1 = 0–0.99 2 = 1.0–3.99 3 = 4.0–7.99 4 = 8.0–11.99 5 = 12+

abs_lymph_0_cat Absolute lymphocyte count day 0 category: 1 = 0–0.49 2 = 0.50–0.99 3 = 1.00–1.49 4 = 1.50–1.99 5 = 2+

abs_mono_0_cat Absolute monocyte day 0 category 1 = 0–0.24 2 = 0.25–0.49 3 = 0.50–0.74 4 = 0.75–0.99 5 = 1.0+

creat_0_cat Creatinine day 0 category 1 = 0–0.79 2 = 0.80–1.19 3 = 1.20–1.79 4 = 1.80–2.99 5 = 3+

crp_0_cat c-reactive protein day 0 category: 1 = 0–19.9 2 = 20–59.0 3 = 60–99.9 4 = 100–179 5 = 180+

ddimer_0_cat D-dimer day 0 category: 1 = 0–499 2 = 500–999 3 = 1000–1999 4 = 2000–3999 5 = 4000+

ldh_0_cat Lactate dehydrogenase day 0 category: 1 = 0–200 2 = 200–299 3 = 300–399 4 = 400–499 5 = 500+

Trop_72h Cardiac event ? Trop_72h - (hs-cTn =>100 within first 72 h of presentation) 0 = No 1 = Yes

abs_neut_3_cat Absulute neutrophil count day 3 category: 1 = 0–0.99 2 = 1.0–3.99 3 = 4.0–7.99 4 = 8.0–11.99 5 = 12+

abs_lymph_3_cat Absolute lymphocyte count day 3 category: 1 = 0–0.49 2 = 0.50–0.99 3 = 1.00–1.49 4 = 1.50–1.99 5 = 2+

abs_mono_3_cat Absolute monocyte count day 3 category: 1 = 0–0.24 2 = 0.25–0.49 3 = 0.50–0.74 4 = 0.75–0.99 5 = 1.0+

creat_3_cat Creatinine day 3 category 1 = 0–0.79 2 = 0.80–1.19 3 = 1.20–1.79 4 = 1.80–2.99 5 = 3+

crp_3_cat c-reactive protein day 3 category: 1 = 0–19.9 2 = 20–59.0 3 = 60–99.9 4 = 100–179 5 = 180+

ddimer_3_cat D-dimer day 3 category: 1 = 0–499 2 = 500–999 3 = 1000–1999 4 = 2000–3999 5 = 4000+

ldh_3_cat Lactate dehydrogenase day 3 category: 1 = 0–200 2 = 200–299 3 = 300–399 4 = 400–499 5 = 500+

abs_neut_7_cat Absulute neutrophil count day 7 category: 1 = 0–0.99 2 = 1.0–3.99 3 = 4.0–7.99 4 = 8.0–11.99 5 = 12+

abs_lymph_7_cat Absolute lymphocyte count day 7 category: 1 = 0–0.49 2 = 0.50–0.99 3 = 1.00–1.49 4 = 1.50–1.99 5 = 2+

(Continued on following page)
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Materials and Methods

Samples

Data were provided by the Massachusetts General Hospital
Emergency Department COVID-19 with Olink proteomic (publicly
available at https://www.olink.com/mgh-covid-study/). Clinical
dataset and plasma proteomes of 384 adult patients were dis-
tributed in 306 ð80%Þ patients that tested positive in COVID-19 that
were named as Covid + and 78 patients tagged as Covid − that
tested negative, even suffering from respiratory symptoms. Blood
samples were drawn from Covid + patients on days 0, 3, and 7 after
their admissions. The blood samples from Covid − patients were
only drawn on day 0. The clinical dataset reported the 28 d outcome
stratification according with the WHO scores of maximal severity
described. Additionally, other clinical parameters including
comorbidities such as patient age or preexisting medical compli-
cations (i.e., chronic kidney disease, any chronic lung condition
such as asthma, diabetes) were also recorded. To anonymise this
dataset, continuous variables were turned into categorical (see
Table 2 and Supplemental Datas 1 and Supplemental Datas 2).

Interpreting latent space of clinical features

The Shapley values are a widely used approach in cooperative
game theory which have advantageous properties, as described by
Yoshida et al (2020). These properties facilitate a clear under-
standing of the computation and interpretation of Kapley values as
explanations for machine learningmodels. This is achieved through
an empirical approach using the shap Python package, which
demonstrates the explanations for increasingly complex models
(Lundberg & Lee, 2017). In this study, we apply Shapley values to
explain the predictions made by a neural network model trained on
clinical variables. The model was trained using the “adam” opti-
mizer and “binary cross entropy” loss functions (Chollet et al, 2015)
to uncover why it makes different predictions for different indi-
viduals. To use SHAP, the model must take a 2D numpy array as
input; so, a wrapper function was defined around the original Keras
predict function (Chollet et al, 2015). To explain a single prediction
(as shown in Fig 3A), 50 samples from the dataset were selected to
represent typical feature values and 500 perturbation samples
were used to estimate the SHAP values, which required 500 * 50
evaluations of the model. To explain many predictions, the above
process was repeated for 50 individuals. Note that as this expla-
nation is based on a sampling approximation, each explanation

may take a few seconds, depending on the machine setup (as
shown in Fig 3B–D).

Notes on persistent homology (multi-topology)

Persistent homology is a mathematical theory used as a tool in
topological data analysis (TDA) to study the topological features of
a dataset (i.e., plasma proteome of each patient in the cohort). It is a
type of algebraic topology that uses algebraic invariants to study
the shapes of data. The main idea behind persistent homology is to
study how the topological features of a dataset change as the scale
of observation changes. This is often done by constructing a se-
quence of simplicial complexes from the data, each of which
represents the data at a different scale, and then studying how the
topological features of these simplicial complexes evolve over time.

In TDA, persistent homology is used to identify topological
features of a dataset that are persistent, or stable, over a range of
scales (i.e., multi-scale topology). These persistent features are
considered to be the most significant topological features of the
data, and they can be used to distinguish different classes of data
or to identify patterns in the data. To use persistent homology in
TDA, one typically starts by constructing a simplicial complex from
the data, and then applying algebraic topology techniques to study
the topological features of the complex. This can be done using
specialised software tools, such as GUDHI, DIPHA, or Dionysus
(Maria et al, 2014; Gillani et al, 2016; Tauzin et al, 2020), which are
designed to compute persistent homology and other topological
invariants.

Notes on the GCN

We endowed the regulatory persistent-based protein networks with
a convolutional design (i.e., neural networks) along with a spectral
rule of node aggregation as in GCN (Defferrard et al, 2016). The
sequential combination of two hybrid models enabled the learning
of interactions between ACE2 and TMPRSS2, and the persistent
proteins needed by the virus to be spread in cells. Following this
reasoning, we primarily made use of the identity matrix I as features
and the adjacency matrix A (Model 1) contributing the model in the
following spectral rule:

SrðA; IÞi =�
N

l = 1
1

D1=2
k;k

Ak;l
1

D1=2
l;l

Il;

where D is the degree matrix. Right after, we considered the metric
given by distance of the shortest path to characterise the early

Table 2. Continued

Variable (subject_id) Description (subject ID)

abs_mono_7_cat Absolute monocyte count day 7 category: 1 = 0–0.24 2 = 0.25–0.49 3 = 0.50–0.74 4 = 0.75–0.99 5 = 1.0+

creat_7_cat Creatinine day 7 category 1 = 0–0.79 2 = 0.80–1.19 3 = 1.20–1.79 4 = 1.80–2.99 5 = 3+

crp_7_cat c-reactive protein day 7 category: 1 = 0–19.9 2 = 20–59.0 3 = 60–99.9 4 = 100–179 5 = 180+

ddimer_7_cat D-dimer day 3 category: 1 = 0–499 2 = 500–999 3 = 1000–1999 4 = 2000–3999 5 = 4000+

ldh_7_cat Lactate dehydrogenase day 7 category: 1 = 0–200 2 = 200–299 3 = 300–399 4 = 400–499 5 = 500+
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aggregation of persistent proteins to ACE2 and TMPRSS2 as an
additional feature in a second model (Model 2). Thus, we gen-
erated models with two layers computed by 32 units per layer and
a 2D transformation of the activation function tanh. When ap-
plying the spectral rule, the relu activation function is applied at
the beginning of the layer implementation instead of later on. The
number of epochs was set to 250 and 5,000, respectively. We
computed the stochastic gradient descent optimizer in the
training task picking a learning rate and momentum regularization
set to 0.001 and flagged true, respectively. The semi-supervised
classification (covid or non − covid early proteins aggregation) of
nodes in the persistent-based protein networks (Kipf & Welling,
2017) was performed by an in-house python script based on MXNet
implementation (Faster Cheaper Leaner, 2021).
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