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A B S T R A C T   

Limbal epithelial stem/progenitor cells (LSCs) are adult stem cells located at the limbus, tightly regulated by 
their close microenvironment. It has been shown that Wnt signaling pathway is crucial for LSCs regulation. 
Previous differential gene profiling studies confirmed the preferential expression of specific Wnt ligands (WNT2, 
WNT6, WNT11, WNT16) and Wnt inhibitors (DKK1, SFRP5, WIF1, FRZB) in the limbal region compared to the 
cornea. Among all frizzled receptors, frizzled7 (Fzd7) was found to be preferentially expressed in the basal limbal 
epithelium. However, the exact localization of Wnt signaling molecules-producing cells in the limbus remains 
unknown. The current study aims to evaluate the in situ spatial expression of these 4 Wnt ligands, 4 Wnt in
hibitors, and Fzd7. Wnt ligands, DKK1, and Fzd7 expression were scattered within the limbal epithelium, at a 
higher abundance in the basal layer than the superficial layer. SFRP5 expression was diffuse among the limbal 
epithelium, whereas WIF1 and FRZB expression was clustered at the basal limbal epithelial layer corresponding 
to the areas of high levels of Fzd7 expression. Quantitation of the fluorescence intensity showed that all 4 Wnt 
ligands, 3 Wnt inhibitors (WIF1, DKK1, FRZB), and Fzd7 were highly expressed at the basal layer of the limbus, 
then in a decreasing gradient toward the superficial layer (P < 0.05). The expression levels of all 4 Wnt ligands, 
FRZB, and Fzd7 in the basal epithelial layer were higher in the limbus than the central cornea (P < 0.05). All 4 
Wnt ligands, 4 Wnt inhibitors, and Fzd7 were also highly expressed in the limbal stroma immediately below the 
epithelium but not in the corneal stroma (P < 0.05). In addition, Fzd7 had a preferential expression in the su
perior limbus compared to other limbal quadrants (P < 0.05). Taken together, the unique expression patterns of 
the Wnt molecules in the limbus suggests the involvement of both paracrine and autocrine effects in LSCs 
regulation, and a fine balance between Wnt activators and inhibitors to govern LSC fate.   

1. Introduction 

The basal epithelium of the human limbus contains a distinct pop
ulation of adult epithelial stem cells called limbal stem/progenitor cells 
(LSCs) (Davanger, 1971; Tseng, 1989). LSCs closely interact with their 
microenvironment, referred to as the stem cell niche, consisting of 
stromal cells, melanocytes, and extracellular matrix, in a highly vascu
larized and innervated stroma (Dziasko, 2016a; Scadden, 2006). These 
interactions confer dual functions on the limbus, i.e., formation of a 
barrier between the corneal and conjunctival epithelium, and renewal of 

corneal epithelial cells (Cotsarelis, 1989). Both functions are necessary 
to maintain homeostasis of the corneal epithelium, the integrity of the 
ocular surface, and visual function under physiologic conditions. 
Dysfunction or deficiency of LSCs and/or their niche can lead to limbal 
stem cell deficiency (LSCD), a condition that can cause corneal blindness 
(Bonnet, 2021d; Deng, 2019). Therapies of LSCD include surgical 
management when the LSC dysfunction cannot be medically treated 
and/or when the LSC pool needs to be restored (Deng, 2020b). Surgical 
techniques have been optimized to reduce the size of the donor’s tissue 
required (Basu, 2016), and cell-based therapies from ex vivo LSC 
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expansion have been developed (Pellegrini, 1997; Rama, 2010). Direct 
and cultivated LSCs transplantation methods have been reported with 
high survival rates (Le, 2020), up to 76.6% 10 years after transplantation 
(Rama, 2010). In the scope of reducing the amount of donor tissue 
necessary for transplantation, enhancing the outcomes of trans
plantation from LSCs, and developing targeted therapies, it is important 
to identify the limbal niche factors involved in LSC regulation. Ulti
mately, understanding the mechanisms of regulation of the limbal niche 
will aid in the development of feeder layer-free substrates, mimicking 
the in vivo characteristics of the human limbus, while alleviating any 
xenobiotic risk (Levis, 2016; Robertson, 2021; Yazdani, 2019; Yazdan
panah, 2019). 

Among the multiple and intertwined signaling pathways involved in 
LSC regulation (Bonnet, 2021b), Wnt signaling pathway activation has 
been reported in several studies (Han, 2014; Nakatsu, 2013; Vattulai
nen, 2019). We previously showed that 4 Wnt ligands, WNT2, WNT6, 
WNT11, and WNT16b, and 4 Wnt inhibitors, dickkopf WNT Signaling 
Pathway Inhibitor 1 (DKK1), secreted frizzled-related protein 5 (SFRP5), 
frizzled-related protein (FRZB), and WNT inhibitory factor 1 (WIF1), are 
preferentially expressed in the limbus compared with the central cornea 
(Nakatsu, 2011). Activation of the Wnt/β-catenin pathway by small 
molecules (Gonzalez, 2019; Nakatsu, 2011; Zhang, 2020) or exogenous 
Wnt6 (Bonnet, 2021c) can also promote LSC proliferation in vitro. 
Moreover, frizzled7 (Fzd7), the putative stem cell marker and a main 
Wnt receptor in LSCs, plays a crucial role in the maintenance of the 
undifferentiated LSC phenotype (Mei, 2014b). This mounting evidence 
highlights the critical role of Wnt signaling in LSC regulation (Bonnet, 
2021a; Bonnet, 2021b). 

Wnt proteins are powerful morphogen growth factors with a short 
range of action (Alexandre, 2014) because of their palmitoylation 
(Clevers, 2012). This lipid group renders them hydrophobic and thus 
attracted to neighboring cell membranes or Wnt receptors. Upon 
secretion of Wnt proteins, the mechanisms of their transport to target 
cells remain unclear. Different models have been established to support 
their short range of action (Clevers, 2014). Some Wnt proteins may be 
incorporated into secretory vesicles that could operate over a short 
distance, through a paracrine signaling in the stem cell niche. For 
example in the intestinal niche, Paneth cells secrete Wnt ligands that 
bind to the intestinal stem cells receptors (Sato, 2011). In addition, 
interfollicular epidermis stem cells can produce their own Wnt ligands, 
driving their own self-renewal in an autocrine manner (Lim, 2013). In 
LSC culture models, the feeder layer, acting as a stem cell niche secreting 
Wnt ligands (Schrader et al., 2014), is critical for LSC proliferation in 
vitro, suggesting that paracrine signaling occurs in LSC proliferation in 
vitro. Although several transcriptome-profiling studies of the human 
limbus have been performed, the samples used in the studies contained 
multiple cell types and did not identify the types of Wnt-producing cells 
or their precise location (Collin, 2021; Dou, 2021; Kaplan, 2019; Li, 
2021; Sun, 2021). Whether LSCs are capable of autocrine Wnt signaling 
in vivo still remains unknown, highlighting the need for more 
spatio-molecular data, to connect the limbal structure to its function of 
stem cell renewal. 

Traditional histologic methods are limited by the lack of reliable 
antibodies and the number of markers that are detectable simulta
neously; as a result, these methods lack the ability to characterize spatio- 
molecular details necessary to decipher the complex molecular and 
cellular structure of the LSC niche. Conversely, the recent development 
of small-molecule RNA fluorescent in situ hybridization (smFISH) 
methods allows for single-molecule in situ RNA localization and quan
titation (Femino, 1998; Raj, 2008). Compared with traditional smFISH 
methods, the RNAscope in situ hybridization (ISH) assay could offer 
higher specificity and sensitivity in different tissue types (Nakajima, 
2020; Yu, 2020). 

In the present study we evaluated the spatial location of the 4 Wnt 
ligands and 4 Wnt inhibitors whose expression is upregulated in the 
limbus (Nakatsu, 2011), and we correlated their location with that of 

Fdz7 using the RNAscope ISH technology in the human limbus and 
central cornea. Wnt signaling pathway molecules were mostly prefer
entially expressed in the limbal stroma and at the basal epithelial layer 
of the limbus, and their expression was highly correlated with the 
localization of Fzd7. A gradient expression pattern was found within 
limbal epithelial layers. Overall, these results suggest that Wnt signaling 
in the limbus acts by both paracrine and autocrine signaling, providing 
new insights into the importance of the LSC niche molecular hierarchical 
structure to its functions. 

2. Material and methods 

2.1. Human corneoscleral tissue 

Human corneoscleral tissues from 5 healthy donors (median age, 51 
years; range, 22–74 years) were obtained with permission for research 
from Saving Sight (Kansas City, MO, n = 2 donors), EverSight (Clark, NJ, 
n = 2 donors), and CorneaGen (Orlando, FL, n = 1 donor). Criteria for 
study eligibility were the following: death-to-preservation time ≤8 h 
(range, 7h10 min to 8h), clear cornea with minimal epithelial exposure 
and no sloughing, no history of systemic or topical chemotherapy, no 
history of glaucoma medication use, and no history of ventilation. The 
use of postmortem human tissues was exempted by the University of 
California Institutional Review Board (IRB#12–000363). All tissues 
were preserved at 4 ◦C in Optisol-GS (Chiron Ophthalmics Inc., Irvine, 
CA). Under a stereomicroscope on dry ice, tissues were cut into 4 
quadrants corresponding to the superior, inferior, nasal, and temporal 
areas. Each quadrant was embedded in a compound designed for 
optimal cutting temperature (Tissue-Plus, #4585, Fisher Scientific, 
Hampton, NH) on dry ice within 30 min of receiving the tissue and 
preserved at − 80 ◦C. To prevent RNA damage, the tissues from each 
quadrant were sectioned by a cryostat (ThermoFisher Scientific, Wal
tham, MA) within a week of cryopreservation, sections were then placed 
overnight in − 80 ◦C and used the following day. Experiments using 
human tissues adhered to the tenets of the Declaration of Helsinki. 

2.2. In situ hybridization 

The RNAscope Multiplex Fluorescent V2 Assay (Advanced Cell Di
agnostics, Newark, CA) was performed on 12-μm fresh frozen sections 
according to the ACD protocol for fresh-frozen tissue without target 
retrieval (protocol #323100-USM). Each section was contained the 
limbal region and a section of the peripheral and central cornea. The 
following modifications to the protocol were made: slides underwent 
pretreatment for 1 h by baking at 60 ◦C, permeabilized by using Protease 
Plus (#322330, ACD, Newark, CA) for 15 min at 40 ◦C, and fixed in 4% 
paraformaldehyde (paraformaldehyde 16% aqueous solution, #C004, 
Electron Microscopy Science, Hatfield, PA, dilution 1:4) for 20 min. 
Cryosections were then hybridized with 3 mRNA probes per experiment 
(Supplemental Table 1). 

A library of 9 probes, each composed of 20 Z-pairs complementary to 
sequences of genes involved in Wnt pathway regulation in the limbus 
was used (Mei, 2014b; Nakatsu, 2011). These probes were WNT2, 
WNT6, WNT11, WNT16, DKK1, SFRP5, FRZB, WIF1 (Nakatsu, 2011), 
and a Wnt receptor FZD7 (Mei, 2014b). FZD7 was combined with one 
Wnt ligand and one Wnt inhibitor, each of different channel, to avoid 
overlap during signal detection. The probes were amplified according to 
the manufacturer’s instructions and labeled with the fluorophore Opal 
520 (Akoya Biosciences, FP1487001KT; dilution ratio, 1:250), Opal 570 
(Akoya Biosciences, FP1488001KT; dilution ratio, 1:1500), and Opal 
690 (Akoya Biosciences, SKU FP1497001KT; dilution ratio, 1:1500). To 
confirm the mRNA integrity of tissue blocks, positive-control probes 
targeted against the human housekeeping genes RNA polymerase II 
subunit A (POLR2A), peptidylprolyl cis-trans isomerase B (PPIB), and 
hypoxanthine guanine phosphoribosyltransferase (HPRT), were used on 
one section in each individual experiment. To confirm signal specificity, 
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negative-control targeting against bacterial dihydrodipicolinate reduc
tase from B. subtilis (dapB) gene, scrambled in the 3 channels, was used 
on one section in each individual experiment. (Supplemental Fig. 1). 

2.3. Detection and quantitation of the fluorescence in situ hybridization 
signals 

An upright confocal microscope was used to visualize the fluorescent 
ISH signals in the limbus and the central cornea at 40X magnification. 
Images were acquired by using the following parameters: 4 channels 
(405, 488, 570, 690 nm), sequential mode, 12 bits/pixel, numeric 
aperture of 0.95, dimension of 1600*640 pixels, and 12 z-stack scans 
acquired every 1 μm and processed by Maximal Projection on the 
Olympus FluoView FV1000 v. 4.2.2.9 software. 

Quantitation of the spots among the limbal and corneal layers was 
performed with the surface and spot functions of Imaris software (V. 
9.7.0, Imaris, Oxford Instruments, Oxon, UK). Epithelium was defined as 
the layer of positive nuclei counterstained with DAPI. Segmentation into 
basal, intermediate, and superficial layers was performed as follow: the 
basal layer was identified as the layer containing 1 or 2 cells at the 
junction with the stroma, presenting with very high cell density, having 
a vertical cell orientation, and possessing a small nucleus when 
compared with the rest of the epithelium (Romano, 2003). The super
ficial layer was defined as the most superficial layer of cells, having a 
larger nucleus and a horizontal cell orientation. The suprabasal layer 
was defined as the layer between the superficial and basal layers. The 
corresponding 3 areas were manually drawn and applied onto the 12 
z-stacks for volume reconstruction (Supplemental Fig. 2A). Spots were 
detected by the spot function, which allowed for background subtraction 
and definition of the spot sizes (i.e., 1.63 μm for Opal 520, 2.01 μm for 
Opal 570, and 1.61 μm for Opal 647). Spot quality thresholds were set 
individually for each channel, and the same detection thresholds were 
used for quantitation consistency among the different experiments. The 
spots were automatically counted by Imaris processing software (Sup
plemental Figs. 2B–C). 

2.4. Statistical analysis 

To control for the thickness variations between limbal and corneal 

epithelia, the number of spots counted in each image was normalized to 
the epithelial volume. Analysis was performed by a biostatistician (C.H. 
T). Student’s t-test and analysis of variance were performed using R 
software (www.r-project.org). A P value < 0.05 was considered to 
indicate statistically significant. 

3. Results 

3.1. Wnt signaling pathway molecules and LSC marker are differentially 
expressed in the limbus 

Single-molecule RNAscope ISH enabled sensitive and specific in situ 
transcript detection in the human limbus (Fig. 1A-R) and central cornea 
(Fig. 1S–T). All 4 Wnt ligands, DKK1, and FZD7 appeared as single spots 
scattered predominantly in the basal limbal epithelium at a variable 
density (Fig. 1A-P), whereas SFRP5 was observed among all the limbal 
epithelial layers (Fig. 1I, M). FRZB and WIF1 were often present as very 
distinct clusters indicated by high-density signals at the basal layer of 
the limbus (Fig. 1H,K,L,O,P). These clusters colocalized with areas of 
FZD7 signals of high density in the basal limbal epithelium (Fig. 2). 

Quantitation of these expression profiles retrieved high expression of 
all 4 Wnt ligands, 4 Wnt inhibitors, and FZD7 in the limbal stroma but 
not in the central cornea stroma (Supplemental Fig. 3), confirming the 
role of Wnt signaling in LSC regulation in the limbal niche. All 4 Wnt 
ligands, 3 inhibitors (WIF1, DKK1, FRZB), and FZD7 were preferentially 
expressed in the basal layer of the limbus (Fig. 3A–E, K), and the 
expression decreased in a gradient manner toward the superficial limbal 
epithelial layer. In the central cornea, expression of 1 Wnt ligand 
(WNT6), 3 Wnt inhibitors (WIF1, DKK1, SFRP5), and FZD7 was high in 
the basal layer. The expression level decreased toward the superficial 
epithelial layer in a gradient manner (Fig. 3F–K). 

When compared to the central corneal basal layer, the basal layer of 
the limbus showed greater spatial expression of 4 Wnt ligands, FRZB, 
and FZD7 (Fig. 4). No expression in a cluster pattern was detected by any 
of the probes in the central cornea. 

Fig. 1. Expression of Wnt signaling pathways ligands and inhibitors in the human limbus and of Frizzled7 in the human limbus and central cornea. 
The assay allows specific and sensitive detection of the mRNA expression of Wnt signaling molecules. The mRNA expression of Wnt ligands (A–H) and some Wnt 
inhibitors (I–P) were preferentially expressed in the basal layer of the limbus. The expression of Fzd7, a putative LSC marker was preferential in the basal layer of the 
limbus (Q–R). The level of expression was low in the central cornea (S–T). Scale bar: 20 μm. High-magnification pictures represent the white box area in each picture. 
Scale bar: 5 μm. 
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3.2. The LSC marker Fzd7 is preferentially expressed in the basal layer of 
the superior quadrant 

Spatial expression profiles retrieved preferential expression of FZD7 
in the basal layer of the superior quadrant compared to the other limbal 
quadrants (Fig. 5). 

4. Discussion 

In this study, we were able to provide a map of the expression pat
terns of Wnt signaling components previously shown to be preferentially 
expressed in the limbus by gene profiling. As summarized in Fig. 6, most 
of the Wnt ligands evaluated are expressed in a gradient manner in the 
basal limbal epithelial layer decreasing towards the superficial layers, 
whereas in the central cornea, only Wnt6 presents a decreasing gradient 
of expression. Conversely, most of the Wnt inhibitors present a 
decreasing gradient of expression towards the superficial layers in the 
central cornea, but not in the limbus. 

4.1. Expression gradients 

Wnt gradients have been reported in many epithelial tissue models 
such as the hair follicle (Sick, 2006), the intestine crypts (Clevers, 2013), 
the colon (Gregorieff, 2005), and the adrenal glands (Basham, 2019). 
Such models provide critical information on the function of some of 
these factors, where varying levels of Wnt/β-catenin signaling have 
different functional consequences for stem cell proliferation and main
tenance. In the limbus, the Fzd7, a canonical and non-canonical Wnt 
receptor (Bonnet, 2021a) was found to co-localize with both Wnt 
signaling molecules involved in both canonical and non-canonical 
pathways: Wnt6 is a canonical and non-canonical activator in LSCs 
(Bonnet, 2021c); Wnt16 is a Wnt/β-catenin independent activator in 
LSCs (Zhao, 2022); Wnt2 and Wnt11, act as non-canonical ligands in 
many cell types (Fan, 2017); and DKK1 is a Wnt/β-catenin inhibitor 
(Bourhis, 2011). This observation suggests that both canonical and 
noncanonical Wnt pathways are tightly regulated by specific stromal 
and epithelial cells to maintain LSCs homeostasis. Varying temporal and 
spatial levels of canonical and non-canonical Wnt activation (Kestler, 
2011) are likely intertwined and do not function in isolation or 

independently. Differential expression pattern between Wnt ligands, 
which are mostly expressed in the basal layer (Nakatsu, 2011), and Wnt 
inhibitors, which are more diffusely expressed within the epithelium, 
may create a highly regulated activation gradient from the basal towards 
the superficial limbal epithelial layer, similar to that described in the 
interfollicular epidermidis (Lim, 2013). In this scenario limbal epithelial 
cell would encounter an increased concentration of Wnt inhibitors as 
they differentiate and migrate out of the basal layer. 

How gradients of secreted Wnt molecules regulate stem cell prolif
eration and how Wnt molecules travel to interact with their target cells 
is still unclear. Various modes of Wnt molecules secretion and signaling 
have been reported, such as extra-cellular vesicles and exosomes (Gross, 
2012). For example, miR-6723-5p is upregulated in the limbal basal 
layers (Ruiz, 2022). miRNAs have also been reported in Wnt signaling 
regulation during embryogenesis (Nagai, 2019). They are promising 
therapeutic tools to treat corneal injuries and scars (Deng, 2020a). 

Wnt signaling has also been shown to promote corneal wound 
healing in several animal models by activating metalloproteinase 12 
(Lyu, 2005; 2006) and promoting proliferation and migration of corneal 
epithelial cells (Liang, 2022; Yang, 2020; Zhong, 2021). Understanding 
the individual molecular mechanisms involved in the limbus and the 
central cornea could lead to the development of targeted Wnt therapies, 
promoting both proliferation of LSCs and corneal wound healing. 

4.2. Paracrine signaling 

The importance of the limbal niche for LSC regulation has been 
extensively demonstrated over the past 30 years (Dziasko, 2016b; 
Dziasko, 2014; Levis, 2016; Seyed-Safi, 2020; Tseng, 2016). In ex-vivo 
LSCs expansion models, the presence of a feeder layer, either in direct 
contact or using a three-dimensional sandwich model, mimics the niche 
and supports the cell expansion by secreting soluble niche growth fac
tors, cytokines, and through cell-cell interactions (Mei, 2014a). More
over, the presence of native limbal stromal cells (Gonzalez, 2013) or of 
exogenous Wnt activator (Gonzalez, 2019) can increase the expansion 
efficiency of LSCs in culture. The current manuscript correlates the 
functions of the limbal stroma and Wnt signaling reported in ex-vivo 
LSCs proliferation with the preferential expression of Wnt molecules 
in limbal stromal cells. 

Fig. 2. High mRNA level of FRZB and WIF1 co-localized with high level of Fzd7 in the human limbus. 
FRZB and WIF1 are expressed as clusters colocalizing with high-density Fzd7 signals (white circles). 
A–C: Fzd7 and FRZB, E–F: Fzd7 and WIF1. Scale bar: 20 μm. 
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4.3. Autocrine signaling 

The high level of Wnt signaling molecules at the basal layer of the 
limbal epithelium suggest that LSCs can secrete their own mRNA 
encoding Wnt ligands and Wnt inhibitors, supporting an autocrine 
signaling in LSC homeostasis. Autocrine signaling has also been 
described in interfollicular epidermal stem cells (Lim, 2013), where 
interfollicular epidermal stem cells expressing Axin2 can secrete their 
own Wnt4 and Wnt10a ligands to promote stem cell self-renewal and 
proliferation. The presence of both autocrine and paracrine signaling 
highlights the importance of fine tuning Wnt signaling pathway for LSC 
regulation. These redundant mechanisms (Fig. 6) are critical to avoid 
aberrant activation of Wnt signaling pathway, preventing ocular surface 

neoplasia development. 

4.4. Fzd7 preferential expression in the superior limbus 

Fzd7 mRNA expression is higher in the basal epithelial layer of the 
superior limbus, supporting the role of palisades-rich areas in LSC pro
liferation. Cultures of LSCs isolated from the superior and inferior 
limbus have better proliferation capacity than those isolated from the 
temporal and nasal quadrants (Dziasko, 2014; Meyer-Blazejewska et al., 
2010). 

The current study has several limitations. First, co-localization is 
limited to 3 markers due to the number of non-overlapping fluorescent 
molecules available. In the future, high-definition spatial 

Fig. 3. Quantification of Wnt signaling molecules in 
the limbus and cornea. 
A–E: Limbus, F–J: Central cornea Scale bar: 20 μm. 
K: Box and whisker plots of the relative level of 
expression Wnt signaling pathway molecules in the 
limbus and the central cornea. All four Wnt ligands, 
WIF1, DKK1, FRZB, and FZD7 are expressed prefer
entially in the basal limbal epithelial layer, with a 
significant decrease of expression towards the super
ficial layer in a gradient manner. In the central 
cornea, the same gradient of expression is observed 
for WNT6, WIF1, DKK1, SFRP5, and FZD7. B = basal 
layer; Sp = suprabasal layer; Su = superficial layer; 
St = Stroma 
Y-axis represents the number of dots detected 
normalized to the epithelial volume. N = 4 individual 
experiments performed in duplicates. Supplemental 
Table 2 details the quantification data.   
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transcriptomics (Vickovic, 2019) and slide-seq technologies (Rodriques, 
2019) are expected to improve our spatial understanding of limbal tissue 
organization. Second, because of the lack of specific antibodies available 
for the study of the Wnt signaling pathway in the limbus, the findings at 
the mRNA level could not be confirmed at the protein level. Finally, less 
than 5% of the limbus was explored, and it would be necessary to 
perform whole-mounted experiments to obtain a more complete over
view when this is method becomes feasible. 

4.5. Conclusions 

In conclusion, several Wnt ligands and inhibitors that are preferen
tially detected in the limbus compared to the cornea are expressed in a 
decreasing gradient fashion from the basal limbal epithelial layer and 
the immediate underlying stroma toward the superficial limbal epithe
lial layer. As many of these Wnt signaling molecules mediate canonical 
and/or noncanonical pathways, colocalization of these molecules sug
gests an interwind and co-dependent relationship of these 2 pathways. 

Fig. 4. Quantification of mRNA expression profiles of Wnt signaling molecules in the basal epithelial layer of the limbus and central cornea. 
All 4 Wnt ligands, FRZB, and FZD7 present a preferential expression at the basal epithelial layer of the limbus compared with the basal epithelial layer of the central 
cornea. 
Y-axis represents the number of dots detected normalized to the epithelial volume. N = 4 individual experiments performed in duplicates. Supplemental Table 3 
details the quantification data. 

Fig. 5. The mRNA expression of Fzd7 in the basal limbal epithelial layer is highest in the superior region in the limbus. 
A- Preferential mRNA expression of FZD7 in the superior quadrant. Scale bar: 20 μm. 
B- Box and whisker plots of the relative level of FZD7 single transcripts detected in the basal layer of each quadrant. FZD7 was significantly more expressed in the 
basal layer of the superior quadrant compared with the three other quadrants (P < 0.05). 
Y-axis represents the number of dots detected normalized to the epithelial volume. N = 4 individual experiments performed in duplicates. Supplemental Tables 2 and 
3 detail the quantification data. 
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In addition, both autocrine and paracrine effect likely exist in the LSC 
niche. Taken together, Wnt signaling is tightly controlled in the limbal 
stem cell niche involving both canonical and noncanonical pathways by 
a hierarchical expression gradient of Wnt signaling molecules and 
receptor. 
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