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Abstract: In this study, we attempted to find genetic variants affecting gene expression (eQTL =
expression Quantitative Trait Loci) in the human placenta in normal and pathological situations. The
analysis of gene expression in placental diseases (Pre-eclampsia and Intra-Uterine Growth Restriction)
is hindered by the fact that diseased placental tissue samples are generally taken at earlier gestations
compared to control samples. The difference in gestational age is considered a major confounding
factor in the transcriptome regulation of the placenta. To alleviate this significant problem, we
propose here a novel approach to pinpoint disease-specific cis-eQTLs. By statistical correction for
gestational age at sampling as well as other confounding/surrogate variables systematically searched
and identified, we found 43 e-genes for which proximal SNPs influence expression level. Then, we
performed the analysis again, removing the disease status from the covariates, and we identified
54 e-genes, 16 of which are identified de novo and, thus, possibly related to placental disease. We
found a highly significant overlap with previous studies for the list of 43 e-genes, validating our
methodology and findings. Among the 16 disease-specific e-genes, several are intrinsic to trophoblast
biology and, therefore, constitute novel targets of interest to better characterize placental pathology
and its varied clinical consequences. The approach that we used may also be applied to the study
of other human diseases where confounding factors have hampered a better understanding of the
pathology.

Keywords: placenta; preeclampsia; expression Quantitative Trait Loci

1. Introduction

Eutherian mammals made a drastic evolutionary ‘choice’ for survival, the one to host
the embryo and to develop the fetus over a relatively extended period of time. Since the
feto—placental unit is, in fact, a semi-allograft, that in all other circumstances should be
rejected by the maternal immune system. This tolerance period ranges from a few days
in marsupials (13 days in the Virginia opossum, where poor coping with inflammation
apparently shortens the length of the feto-maternal tolerance period [1]) to 22 months in
the African elephant. The pivotal organ for this heavy evolutionary option is the placenta,
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which manages immunotolerance, exchange of nutrients, withdrawal of waste, and pro-
gestational hormone production. The inherent complexity associated with this role of the
interface makes its regular function a fragile equilibrium, which in humans evolve relatively
often towards placental diseases, such as Hypertensive Disorders of Pregnancy (HDP),
Intra-uterine Growth restriction (IUGR), Gestational diabetes or other diseases related to
abnormal implantation [2,3]. Despite this obvious fundamental role, understanding the
genetic function of the human placenta is a difficult challenge, and overall this organ is not
explored as much as other organs. For instance, the Genotype Tissue Expression (GTex)
project, for instance, provides a comprehensive list of expression-Quantitative Trait Loci
(eQTLs), as well as splicing-QTLs (sQTLs) in 49 human tissues, that do not include the
placenta [4] Recent progress using global approaches made it possible to better analyze the
regulation of gene expression in the pathological placenta, such as in preeclampsia and
Intra-Uterine Growth Restriction [5,6]. Genetic regulation of gene expression by genetic
variants has been systematically analyzed in three recent articles that initiated deciphering
the landscape of genetically controlled genes in the placenta [7-9]. Our data presented
herein revisit the question of eQTL in the placentas and uses a novel methodological
approach to identify actual differences between normal and pathological placentas often
blurred by a major confounding factor, such as placental age. For this, we gave a strong
weight to the use and the definition of covariates. Covariates were defined by available
clinical (i.e., age of the placenta, disease status) and technical parameters (i.e., sample
preparation, origins), by principal components discovered from the transcriptome analysis,
and through the systematic identification of Surrogate Variables [10].

Since confounding factors are a major issue in placental genetics (especially the gesta-
tional age, the mode of delivery—C-section or Natural), we develop a novel approach that
could be used to identify relevant disease-associated genetic variants (SNPs) associated
with alterations of gene expression. In the first step, the QTL analysis was performed con-
sidering the disease status as a covariate, and then, in the second step, we did not correct
for disease status looking for eQTLs that might be influenced by genetics and disease and
being, therefore, potentially interesting in the context of placental pathologies. We surmise
that the additional couple of SNP-gene found were mostly and uniquely specific to the
disease. While it is not possible to affirm that the gene expression alterations are causal
to the disease, they could later be evaluated in other human cohorts of placental DNAs to
assess their potential predictive value heuristically.

The approach is summarized in Figure 1. This alternative analysis strategy could be
applicable to a wide range of eQTL studies, especially those in which gene expression is
believed to be highly influenced by clinical and technical variables and that is limited by
small sample sizes, such as those including disease samples.
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57 human placentas (35 controls and 22 pathological)

i

Genetic variants (SNPs) Transcriptome analysis

(ClariomD microarray)

Focus on the genes presenting a variation of expression
between the samples (residual variance >0.85)

Subtraction of the effects of

covariates
*  Clinically defined (without the disease)
*  Mathematically defined (Surrogate
variables, Prinicipal Components)

Cis-eQTL 1dentification in the placenta
(54, 16 specific of the disease state)

Figure 1. Overview of the experimental design. SNP = Single Nucleotide Polymorphism; PCA =
Principal Component Analysis; SVA = Surrogate Variable Analysis; eQTL = expression Quantitative
Trait Locus.

2. Methods
2.1. Summary of the Principle

In the first step, we performed the analysis including the disease status (Control,
Pre-eclampsia (PE), IUGR, and PE + IUGR) as a covariate, which allowed us to identify
eQTLs that influence placental gene expression independently of the disease. In order to
restrict the number of input genes for the analysis, we first built a linear model using the
gene expression levels for each gene in the function of the covariates, then we selected
a subset of potentially relevant genes based on their residual variance (the variability
of their expression level) since genes for which there is no residual variance once the
covariate effects are removed are not going to reveal any detectable effect that could be
partly explained by changes at the genetic level. This approach has similarly been used in a
QTL research paper for genomic methylation QTL (meQTL, [11]).
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This step of identification of eQTLs confirmed a large part of previously identified
couples eSNP-eGenes discovered in previous studies and identified new ones, presenting a
strategy that can be applied with a limited sample size (<100).

In a second step, we aimed to identify genes that are modified during complicated
pregnancy by the disease specifically and which present a component of genetic regulation.
Thus, we removed the disease status from the group of covariates and submitted the
data for analysis again in order to identify a novel list of eQTLs. This approach led to
the discovery of 16 cis-eQTLs that are potentially associated with placental diseases. We
surmise that these genetic factors identified may have been overlooked in previous analyses
since they could have largely been confounded with the covariates. In particular, in our
approach, we managed to partially account for critical confounding covariates such as
placental age, which is often difficult to dissociate from placental disease. Interestingly,
both approaches identified genes where we could observe statistical associations between
disease status and genotype at the locus.

2.2. Human Placental Samples

This study included the use of human placental samples from three different cohorts
for a total of 66 samples. For all the cohorts, the participant gave their informed consent. For
the St George’s cohort, the administrative ethical references were 19/L0O/0974, approved by
the Brent Research Ethic Committee (London) on 28 June 2019. For the Angers cohort, the
study was approved by the Ethics Committee of Angers. The cohort was registered at the
French CNIL (Commission Nationale de I'Informatique et des Libertés no. pWP03752UL,
ethics committee for the collection of clinical data from patient records). The study was
validated by the French CPP (Comité de Protection des Personnes) and registered to the
French Ministry of Research under number DC-2009-907. Finally, for the Co-chin hospital
cohort, the ethical administration was given by the CPP ‘lle de France XI' under the
reference number 11018, 3 March 2011.

Angers University Hospital and Cochin Hospital cohorts have been described in [12].
They included 8 control (CTRL, placentas obtained from uncomplicated pregnancies) and
13 IUGR samples from Angers, 9 CTRL, 7 PE, and 3 PE+IUGR from Cochin. Preeclampsia
was defined by the presence of hypertension (systolic pressure > 140 mm Hg, diastolic
pressure > 90 mm Hg) and proteinuria (>0.3 g/day). IUGR was defined as a reduction of
fetal growth during gestation accompanied by Doppler abnormalities and birth weight
below the 10th percentile [13,14]. The Gynecochin cohort samples were kindly shared
by Dr. Louis Marcellin, and included 20 CTRL, 13 from natural delivery, and 7 from C-
section. For placental sample collection relative to Angers, Cochin, and Gynecochin cohorts,
sections of 1 cm3 of placental villi were dissected from four different cotyledons between the
basal and chorionic plates, as previously described in [14]. St. George’s Hospital samples,
6 PE placentas from C-sections, were kindly provided by Prof. Basky Thilaganathan and
MD Veronica Giorgione in the context of the iPlacenta consortium. PE was defined by
de presence of hypertension according to guidelines by The International Society for the
Study of Hypertension in Pregnancy [15]. Placental samples were collected from the middle
region of the placenta containing only villous tissue, just above the cord insertion point,
then washed in PBS.

2.3. RNA and DNA Extraction

Human placental tissues were obtained from three different cotyledons of the maternal
side of the placenta, washed extensively in sterile PBS, and snap frozen or in RNAlater
(Invitrogen, Waltham, MA, USA), then powdered using pestle and mortar on dry ice or
the hammering method in liquid nitrogen. The powdered tissues were then processed
for DNA and RNA extraction. RNA was extracted with TRIzol (Invitrogen), according to
manufacturer’s instructions; UltraPure™ Phenol:Chloroform:Isoamyl Alcohol (25:24:1, v/v)
(Invitrogen) was used in place of Chloroform. Extracted RNA was resuspended in RNAse
and DNAse-free water, and integrity was assessed with Bioanalyzer Agilent 2100 nano kit.
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For DNA extraction, powdered tissue was resuspended in Sample Lysis Buffer (10 mM Tris
Hcl pHS, 10 mM EDTA, 50 mM NaCl, 0.5% SDS, Proteinase K (Invitrogen #25530-049) used
at 1:3000) and incubated overnight in shaking water bath at 58 °C. Addition of absolute
ethanol allowed precipitation of the DNA in filamentous, visible form, which was then
transferred to new 1.5 mL tubes for additional washes in ethanol 70%. The pellet was left
to air-dry, and DNA was resuspended in Tris-EDTA.

2.4. Transcriptomic Dataset

100 ng of RNA from the human placental samples were analyzed by ClariomD arrays
(Applied Biosystems™, Affymetrix, Thermo Fisher Scientific, Montigny-le-Bretonneux,
France) as described in [12]. This array measures gene expression both at the gene level as
well as the exon level, providing also splicing isoform-specific data. The 66 samples were
processed in three different batches, generating three sets of raw data files (CEL). Merging
datasets. To reduce batch effects in fluorescence signal due to experimental variability, the
raw data (.CEL) files were processed together using the Transcriptome Analysis Console
(TAC) software (Thermo Fisher Scientific), performing the default Robust Multi-Array nor-
malization (RMA). This algorithm performs background adjustment, followed by quantile
normalization and summarization [16]. The ClariomD array measures expression levels for
a total of 134,748 probes, corresponding to coding and non-coding genes, 18,858 and 66,845,
respectively, as well as predicted genes, pseudogenes, and small RNAs. Probe coordinates
refer to the GRCh38 Genome Build. For downstream analyses, only genes with known
GenelD and Description in TAC have been kept, removing transcripts identified by the
database AceView, as well as transcripts on the Y and mitochondrial chromosomes; for a
final total of 46,624 probes. Probes have been further filtered by mean fluorescent value
(LOG?2) across all samples > 4.5, reducing the total number of probes to 33,988 considered
to be “expressed”. Transcriptomic covariates. Classical clinical and experimental variables
in placental studies were used for the whole sample and included a total of 9 variables
(Batch, Cohort, Group, Delivery, Maternal Age, Ethnicity, Gestational Age, Sex, and Parity).
In particular, Batch refers to the experimental batch of transcriptomic data acquisition,
Cohort to the different cohort of origins of the placental samples relative to the Hospital
in which they had been collected, Group to the disease status, Delivery to the delivery
mode, either C-section or Natural delivery, and finally Sex to the placental sex. For these
9 variables, missing values were replaced with the mean of each disease group, according
to the disease group of the sample with missing value [17]. Summary statistics by disease
group are listed in Table 1, the complete dataset is available in Supplementary Table S2.

Table 1. Summary statistics of human placental samples sorted by disease.

Disease Group CONTROLS PE PE + IUGR IUGR
(Ci:;ir‘;jfl};gggﬁal) 23/12 (614%)  9/0 (15.8%) 3/0 (5.3%) 10/0 (17.5%)
Maternal age (years) 34.0+ 3.9 342+ 6.0 353+24 321+6.6
Ethnicity (Afr/Eur) 8/27 5/4 1/2 1/9

Gestational age (years) 392+12 349+ 26 30.0+25 31.0+238
Sex (M/F) 17/18 4/5 2/1 3/7
Parity 19£15 1.2+£11 20+14 1.2+04

Principal Component Analysis (PCA) was performed in R (version 4.1.0, 2021-05-
18) with the R package PCATools, on the 57 samples, for the transcriptomic dataset of
46,624 probes. The eigencorplot function within the package was used to calculate correla-
tion coefficients between the first 10 principal components (PCs) and the known covariates;
it performs a Pearson correlation, followed by F-statistic [18]. The R package SVA was used
to identify potential additional sources of variation in the dataset, i.e., surrogate variables,
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by building the mod linear distribution with “Group” as the independent variable and
setting the mod0, to the intercept [10]. For more details, see [12]. A correlation matrix was
calculated in R, using as input the 9 clinical and experimental variables, the first 10 PCs
of gene expression PCA, and 4 identified surrogate variables to identify the final set of
variables correlated with global transcriptomic changes. A correlation coefficient cut-off
threshold of 10.91 was used to remove colinear variables [19]. The final set of transcrip-
tomic covariates includes Batch, Group, Delivery, Maternal Age, Ethnicity, Gestational Age,
Sex, Parity, and Transcriptome PC1 to PC5.

2.5. Genotype Dataset

For the 66 samples, 200 ng of genomic DNA were genotyped using the Infinium
OmniExpress (illumina) BeadChip, which interrogates 713,407 SNPs. The raw data files
were analyzed with GenomeStudio2.0 software to retrieve the genotype dataset using
the A/B allele Illumina notation. SNP coordinates used refer to the GRCh38 Genome
Build. Quality control. Quality control (QC) of samples and SNPs was conducted in
PLINK1.9 [20,21]. Samples were subjected to quality control, removing samples with a rate
of missing genotype > 2%, as well as samples that presented an excess heterozygosity as an
index of contamination F < —0.05, calculated on the pruned dataset (pairwise correlations,
window size 50 SNPs, sliding window of 5 positions, SNPs with r2 > 0.2 removed).
For SNP QC, SNPs with a rate of missing genotypes across samples> 1%, as well as
SNPs diverging from Hardy-Weinberg equilibrium (p-value < 10~°), have been removed.
In total, 57 samples and 665,191 variants passed quality control. Genotype covariates.
PCA was performed in PLINK1.9 on the clean dataset (57 samples, 665,191 variants),
pruned as described above, retaining the first 10 principal components (GenotypePC1-
PC10) as covariates for downstream eQTL analysis to summarise population stratification.
Ancestry Estimation. Ancestry estimation has been performed to infer the ethnicity of
placental samples from Cochin and Anger cohorts. Briefly, the genotypes from the 1K
Genomes Phase III release have been downloaded from The International Genome Sample
Resource, mapped to the GRCh37 genome build, and have been used for imputation of
allele frequencies across populations [22,23]. The set of SNPs in common between the two
datasets has been established, and the two datasets merged using PLINK1.9. PCA was
performed on the merged dataset, pruned as described above, including only autosomal
chromosomes, for a total of 185,249 variants. Sample clustering along PC1 and PC2 have
been used to extrapolate the unknown ethnicities of the placental samples based on their
relative distance with the 1K Genomes Phase III samples.

2.6. eQTL Analysis Workflow

The R package MatrixEQTL has been used to perform the eQTL analyses in R [24], by
applying a linear multivariate model to test the contribution of each SNP genotype to gene
expression levels. Two main approaches were pursued. The ALL COVARIATES dataset
included the full set of 23 covariates (Batch, Group, Delivery Placental Sex, Gestational
Age, Maternal Age, Parity, Ethnicity, the first 5 PCs from gene expression PCA, the first
10 PCs from genotype principal component analysis that summarises population strati-
fication), allowing to identify the eSNPs correlating with changes of gene expression of
the eGenes while minimizing spurious associations between SNPs and Genes [25]. The
MINUS DISEASE dataset included all covariates but “Group” and Gene Expression PC5
given its strong correlation with the disease phenotype described by the “Group” variable.
With this approach, the contribution of the disease variable on gene expression changes
was not corrected for, allowing to investigate a set of genes for which the effects of disease
on expression are important and would have otherwise excluded to the residual variance
threshold, to identify SNPs that correlate with gene expression changes and could harbor
interaction effects with the disease phenotype.

For both approaches, the same workflow was followed. Each gene expression distribu-
tion was first normalized by a built-in function with rank (“average” method) followed by



Cells 2023, 12, 578

7 of 27

quantile normalization to reduce the impact of outliers. The normalized gene expression
dataset was then modeled by multivariate linear regression, expressing gene expression for
each gene in the dataset as a function of either the ALL COVARIATES or MINUS DISEASE
set of covariates. The residual variance of the model can be thought of as an indication of
potential genetic influence on gene expression levels [26,27]. Using incremental thresholds
of residual variance from 0.5 to 0.95 with 0.05 increments, 10 gene sets termed “RV0.05” to
“RV0.95” were defined and used as input gene expression datasets in eQTL analyses.

2.7. Cis-QTL Analyses of Gene Expression Subsets

Gene subsets RV0.50 to RV0.95 and 417,114 SNPs (MAF > 0.15) were analyzed for
correlation with the LINEAR model parameter in MatrixEQTL [24]. We evaluated only
the correlation of eGenes and eSNPs in cis (cis-eQTLs) given the limited power of our
analysis and the small number of trans-QTLs previously identified in the placenta by a
larger designed study [9]. To further reduce the total number of tests, the cis-distance has
been set to 100 kb rather than the default 1 Mb [8]. The gene expression dataset has been
normalized with MatrixEQTL prior to performing eQTL analysis, as described above. For
the ALL COVARIATES Dataset analysis, 23 covariates (Batch, Group, Delivery, Maternal
Age, Ethnicity, Gestational Age, Sex, Parity, first five PCs of gene expression PCA, first
10 PCs of genotype PCA) have been accounted for by the software when performing multi-
variate linear regression for each gene-SNP pair, while for the MINUS DISEASE dataset, 21
covariates have been included: Batch, Delivery, Maternal Age, Ethnicity, Gestational Age,
Sex, Parity, first four PCs of gene expression PCA, first 10 PCs of genotype PCA. To correct
for multiple testing, the in-built function in MatrixEQTL has been used that estimates
FDR-adjusted p-values (g-values) for each gene-SNP pair with the Benjamini-Hochberg
procedure. In this study, only SNPs with FDR < 0.05 have been considered as statistically
significant. The full lists of statistically significant eSNP-eGene pairs for both datasets are
presented in Supplementary Tables S3 and S4.

2.8. Calculating Enrichment of Significant cis-QTLs for Each Subset

To choose the best cis-eQTL analytical design, defined by the gene expression subset
used, the enrichment of significant cis-QTLs has been calculated. We define enrichment
as the number of cis-eQTL per eGene. Cis-eQTL enrichment has been considered together
with the total number of eGenes and eSNPs identified as a result of statistically significant
cis-eQTLs (FDR < 0.05) in order to find the optimal cut-off, where we see an increase of
enrichment, without losing too many eGenes. For both ALL COVARIATES and MINUS
DISEASE datasets, the input gene expression dataset RV0.85 was selected as optimal
for the final cis-QTL analysis workflow and statistically significant cisQTLs were further
characterized and are presented here. The list of input genes with relative individual
expression levels as well as residual variances, are presented in Supplementary Tables S5
and S6, respectively.

2.9. Calculating Overlap with Previous Studies

The statistical significance of the overlap with previous studies was calculated with
Fisher’s exact test, with normal approximation, with a statistical significance threshold set at
p-value < 0.05 [28]. As reference total number of genes, we used N = 30,818; this number of
placental expressed genes, with >0.1 RPKM (Read Per Kilobase of exon model per Million
mapped reads), as defined in the latest high-quality study on placental transcriptome
by Gong and coworkers [29]. The group carried out an RNA-sequencing analysis on
302 human placental samples, including messenger RNAs, long non-coding RNAs, as well
as small and circular non-coding RNAs. This number is consistent with our study, where
we observe 33,988 genes with mean fluorescent value (LOG) > 4.5. The total number of
genes in the human genome, even though still lacking consensus, is reported to be higher
than 35000, including coding and non-coding genes, as discussed in [30].
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2.10. Calculating Statistical Significance of Interaction between Best-eSNP and Disease on eGene
Gene Expression

To check whether an interaction exists between the genotype at the best-eSNP and
the disease status on gene expression levels of the eGene we performed a linear regression
in R and considered the linear model to be significant when the model p-value < 0.05,
similarly the effects of each variable on the model were considered significant when the
coefficient p-value in the model was < 0.05. The general formula of the linear regression
model was: eGene ~ eSNP + Group + eSNP*Group. The linear regression was performed
on the residuals of the gene expression dataset after multilinear regression with the MINUS
DISEASE set of covariates to correct for confounding factors (the data had also initially
been normalized by ranking and quantile normalization as described above).

3. Results
3.1. Transcriptome Identification of Confounding Variables

The transcriptome dataset is composed of 57 RNA samples that passed the quality
controls from either the Cochin Hospital (Technologic Facility Gernom’IC), Angers Univer-
sity Hospital, or St George’s Hospital, University of London (Table 1). The transcriptome
data were obtained using the Clariom D microarray (Affymetrix), which allows to analysis
of the level of mRNAs at the exon level [12].

From the transcriptomic datasets, only genes with known GenelD and Description in
the TAC (Transcriptome Analysis Console, Affymetrix) were kept, removing transcripts
identified by the database AceView, as well as transcripts on the Y and mitochondrial
chromosomes (n = 616 and 18, respectively), for a final total of 46,624 probes. Probes were
further filtered by mean fluorescent value (LOG2) across all samples > 4.5, eventually
reducing the total number of probes to 33,988.

A new analysis strategy of our work was the removal of the covariates affecting
gene expression; while some are interesting biological factors that could deserve interest,
such as maternal age for instance, we decided to consider them all as confounders to
identify solely eQTL that influence placental gene expression without obvious medical
consequences. There were nine variables available for each sample that was included ab
initio in the analysis (Batch, Cohort (St Georges, Cochin, or Angers), Disease Group, Mode
of Delivery, Maternal Age, Ethnicity, Gestational Age at Delivery, Sex, Parity). Using PCA in
R (PCATools) enabled us to define principal components (PCA axes). The 10 first PCA axes
captured ~61% of the variability, while the two first axes, PC1 and PC2 only, concentrated
~34.5% of the variability. The correlation of the PC axes with the clinical variables is
represented in Figure 2A. The weights of the clinical covariates could be estimated at 7.4%,
5%, 10.7%, 5.7%, 5.8%, 14.4%, 11.1%, 23.4%, and 23.5% for Parity, Sex, Gestational age,
Ethnicity, Maternal Age, Delivery Mode, Disease Group, Cohort, and Batch, respectively.
The total is above 100% since there are complex correlations between the different items;
for instance, disease status is correlated with gestational age. Some axes were strongly
correlated with the Group (i.e., the disease status), especially PC1 and PC5, the latter one
being also intimately correlated with the gestational age.

In addition, The R package SVA was used to identify possible surrogate variables
(additional unknown sources of variation in the dataset). We collated all variables in a
correlation matrix that was calculated in R, using as input the nine clinical and experimental
variables, the first 10 PCs of gene expression PCA, and four identified surrogate variables
to identify the final set of variables correlated with global transcriptomic changes. A
correlation coefficient cut-off threshold of 10.91 was used to remove colinear variables [19];
see Figure 2B. For the final choice of covariates included in the eQTL analysis, we kept the
five first PCs, “Batch”, “Group”, “Delivery”, “Maternal Age”, “Ethnicity”, “Gestational
Age” and “Sex”. The covariate “Cohort” was removed since it was colinear with “Batch”.
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Figure 2. Definition of covariates and surrogate variables potentially affecting the gene expression
dataset. (A) Eigencorplot expresses the results of Pearson correlation between the clinical and
technical variables and the first 10 principal components obtained from the PCA performed on the
gene expression dataset. A negative correlation is expressed in blue, and a positive correlation is
expressed in red. Within each pair the correlation coefficient is displayed with statistical significance.
(* = p-value < 0.05, ** = p-value < 0.01, ** = p-value < 0.001). (B) Correlation matrix between the 9
clinical and experimental variables, first 10 PCs of gene expression PCA, and 4 identified surrogate
variables, having effects on global transcriptomic changes. Only statistically significant correlations
(p-value < 0.05) are displayed as dots of increasing size as a measure of the correlation coefficient.
Positive correlations are displayed in blue, and negative correlations are displayed in red. In yellow
boxes are the variables that were kept as covariables for subtracting their effect (see text).

3.2. Genotyping and Population Stratification

The final genotype dataset included 665,191 variants for the 57 samples, of which we
kept SNPs with a Minor Allele Frequency > 0.15 (417,114 were kept). The legislation in
France forbids the collection of ethnic data. Nevertheless, with the genotype information,
we were able to classify our samples using PCA alone and with reference to the 1000 genome
project (Supplementary Figure S1). Seven placental samples were clearly of African origin,
42 were of European origin, and eight were mixtures between African and European
backgrounds. The first 10 PCs from the genotype principal component analysis were
included as covariates in the eQTL analysis to account for variations due only to population
stratification.

3.3. Optimal Feature Selection for the eQTL Analysis

We first explored the effect of varying the number of input genes for the eQTL analysis
to identify the optimal gene sets in order to achieve a satisfactory balance between the
number of statistically significant cis-eQTLs (FDR < 0.05), the number of identified eGenes
and cis-eQTL enrichment (in 100 kb proximal to the gene), defined as the number of
eSNPs/eGene. For this, we used the concept of residual variance (RV) to reduce the
number of tested genes.
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Given our limited sample size, it was our primary goal to be able to define the set of
genes to be used as input in the eQTL analysis that would give us the optimal experimental
design to identify significant cis-eQTLs, reducing as much as possible the number of tests,
without missing out potentially relevant genes. The eQTL workflow that we used was based
on multivariate linear modeling, which expresses the variance observed in the expression
levels for each gene in the function of the input covariates. Therefore, the RV is a measure
of potential genetic influence on gene expression levels, amongst other variables [26,27].
The summary of the threshold optimization for analysis is presented is Supplementary
Table S1. While the number of significant eGenes decreased from 153 to 22, when the RV
raised from 0.5 to 0.95, the number of significant SNP per gene increased from 4.00 to 8.91.

We selected an RV threshold of 0.85 for further analysis as a good compromise between
having significant but relevant eQTL, albeit other thresholds could certainly be chosen.
At this threshold, at least six SNP per gene were significant, meaning that the association
with gene expression is not merely due to linkage disequilibrium. The analysis at this
threshold rested upon 3201 genes, 417114 SNPs, a multivariat<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>