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Abstract. We introduce new protocols for private set intersection (PSI), building upon recent
constructions of pseudorandom correlation generators, such as vector-OLE and ring-OLE. Our
new constructions improve over the state of the art on several aspects, and perform especially
well in the setting where the parties have databases with small entries. We obtain three main
contributions:

1. We introduce a new semi-honest PSI protocol that combines subfield vector-OLE with hash-
based PSI. Our protocol is the first PSI protocol to achieve communication complexity indepen-
dent of the computational security parameter κ, and has communication lower than all previous
known protocols for input sizes ℓ below 70 bits.

2. We enhance the security of our protocol to the malicious setting, using two different ap-
proaches. In particular, we show that applying the dual execution technique yields a malicious
PSI whose communication remains independent of κ, and improves over all known PSI protocols
for small values of ℓ.

3. As most previous protocols, our above protocols are in the random oracle model. We intro-
duce a third protocol which relies on subfield ring-OLE to achieve maliciously secure PSI in the
standard model, under the ring-LPN assumption. Our protocol enjoys extremely low communi-
cation, reasonable computation, and standard model security. Furthermore, it is batchable: the
message of a client can be reused to compute the intersection of their set with that of multiple
servers, yielding further reduction in the overall amortized communication.3

1 Introduction

Private Set Intersection (PSI) is a cryptographic primitive that allows parties to jointly compute the
set of all common elements between their datasets, without leaking any value outside of the intersec-
tion. It is a special case of secure multi-party computation (MPC). PSI enjoys a wide array of real-life
applications; it is perhaps the most actively researched concrete functionality in secure computation,
and has been the target of a tremendous number of works, see [PSZ14, PSSZ15, KKRT16, RR17,
KRTW19, PSWW18, PRTY19, PRTY20, CM20, RS21, GPR+21, RT21a] and references therein for a
sample. As a consequence of this intense research effort, modern PSI protocols now achieve impres-
sive efficiency features, communicating only a few hundred bits per database items, and processing
millions of items in seconds.

Improving PSI with pseudorandom correlation generators. Pseudorandom correlation gen-
erators (PCG) have been introduced in the works of [BCG+17, BCGI18, BCG+19b] and have been
the subject of a long and fruitful line of work [BCG+17, BCGI18, BCG+19b, BCG+19a, SGRR19,
BCG+20b, BCG+20a, YWL+20, CRR21, WYKW21]. At a high level, a PCG allows two parties to
securely stretch long pseudorandom correlated strings from short, correlated seeds. Securely sharing
correlated random strings is a crucial component in most modern secure computation protocols, which
operate in the preprocessing model; PCG allows to realize this functionality with almost no commu-
nication. Among their many applications, PCGs allow to construct silent oblivious transfer extension
protocols [BCG+19a], which can realize (pseudorandom) OT extension with minimal (logarithmic)
communication.

Since the top-performing PSI protocols rely on efficient OT extension, using PCG-based techniques
to improve their efficiency is a natural idea. And indeed, this was done recently for OKVS-based PSI

3 This paper appeared at PKC 2023, this is the full version.
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in [RS21], leading to the most efficient PSI protocol known to date (OKVS stands for oblivious key-
value store [GPR+21]; the use of OKVS is the leading paradigm for the design of PSI protocols). To
give a single datapoint, computing the intersection between two databases of size n = 220 with the
protocol of [RS21] communicates as little as 426n bits in total. In addition, some of the tools used
in [RS21] have been significantly improved since: replacing their OKVS (which is the PaXoS OKVS
of [PRTY20]) by the more recent 3H-GCT OKVS of [GPR+21], and replacing their PCG (which is
the one from [WYKW21]) by the recent PCG of [CRR21], the cost goes down to an impressive 247n
bits of total communication. In comparison, even the insecure approach of exchanging the hashes of
all items in the databases already requires 160n bits of communication. OKVS-based PSI protocols
are now firmly established as the leading paradigm in the field, and the use of PCGs to reduce their
communication overhead even more seems to further widen the gap with the other paradigms.

1.1 Our Contributions

We thoroughly investigate how the use pseudorandom correlation generators can reduce communica-
tion in PSI protocols. We obtain several contributions:

– A new family of semi-honest hash-based PSI protocols. Our protocols can be instantiated using
several hashing techniques, and achieve very low communication, especially for databases whose
entries have a small bitlength.

– New maliciously secure hash-based PSI protocols. Here, interestingly, we revive the dual execution
technique, which had been used previously to design malicious PSI protocols in [RR17], but was
considered outdated. We show that, combined with our new approach, it leads to very competitive
protocols, which achieve lower communication than all known alternatives for databases with small
entries.

– Eventually, we design a new maliciously secure polynomial-based PSI protocol. Our protocol
enjoys several powerful features: competitive communication, security in the standard model
under the ring-LPN assumption (in contrast, other maliciously secure PSI use the ROM), and
the possibility for a client to publish a single encoding of its database, and later retrieve the
intersection of its database with that of multiple servers independently, with a single server-to-
client message, plus minimal (database-independent) additional communication.

Below, we elaborate on each of our contributions.

Low communication PSI for databases with small entries. Modern PSI protocols have com-
munication O(κ ·n), where n is the database size, and κ is a computational security parameter. More
precisely, the receiver-to-sender communication is O(κṅ), while the sender-to-receiver communication
is O(λ ·n), where λ is a statistical security parameter (typically, κ = 128 and λ = 40). We introduce a
new protocol, that combines hashing techniques (e.g. Cuckoo hashing or its variants, as initially used
in [KKRT16]) with a new PCG-based oblivious pseudorandom function (OPRF). In contrast to all
previous works, our work avoid the O(κ ·n) overhead: it reduces the receiver-to-sender communication
to be roughly ℓ · n (where ℓ is the bitsize of the database items), leading to a significant reduction
in the overall communication. To our knowledge, our protocol is the first to achieve communication
independent of κ (up to low order terms). To give a datapoint, for n = 220, with 64-bit entries, our
protocol communicates 210n bits, and with 32-bit entries, it communicates only 148n bits. For the
same parameters, the leading OKVS-based PSI of [RS21] communicates 197n bits, even after improv-
ing it with all relevant optimization (such as using the 3H-GCT OKVS of [GPR+21], and the recent
PCG of [CRR21]). We provide further datapoints and comparisons to the state of the art on Table 1,
when instantiating our protocols with various hashing methods.

Fast maliciously-secure PSI for small entries. We then turn our attention to maliciously se-
cure PSI. We provide two alternative protocols which achieve malicious security; both use standard
paradigms for upgrading PSI to malicious security. The first protocol combines our new PCG-based
OPRF with simple hashing, and applies the standard paradigm used in most previous OKVS-based
PSI to achieve malicious security (e.g. [RS21]). This requires to increase the sender-to-receiver mes-
sage length, from O(λ · n) to O(κ · n) (λ is a statistical security parameter, κ is a computational
security parameter; typically, λ = 40 and κ = 128) to allow for extraction of the sender input. Along
the way, we also notice a small mistake in the parameter choices of [RS21]: they devise a new ROM-
based extraction strategy in the malicious setting, and prove that a Q-query adversary will make
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Table 1. Comparison of the communication cost of several PSI protocols in
the semi-honest setting and in the malicious setting, for various choices of the
database size n (we assume that both parties have a database of the same size).
ℓ denote the bit-length of the inputs in the database; we set the computational
security parameter κ to 128 and the statistical security parameter λ to 40 (for
usual applications) or 30 (which can be suitable for lower risk applications). For
all protocols, we take into account the optimization of [TLP+17] which reduces
the costs of sending n elements of bitlength λ+ 2 · logn to n · (λ+ logn). GCH
stands for Generalized Cuckoo hashing (here, with 2 hash functions and 3 items
per bin), 2CH for 2-choice hashing, and SH for simple hashing (N is the number
of bins).

n = 214 n = 216 n = 220 n = 224

Semi-honest setting

KKRT16 [KKRT16] 930n 936n 948n 960n

PRTY19 [PRTY19] low* 491n 493n 493n 494n

PRTY19 [PRTY19] fast* 560n 571n 579n 587n
CM20 [CM20] 668n 662n 674n 676n
PRTY20 [PRTY20] 1244n 1192n 1248n 1278n
RS21 [RS21] 2024n 898n 406n 374n

RS21 [RS21] enhanced** 280n 260n 263n 275n

Ours (ℓ = 64, GCH) 246n 220n 210n 209n
Ours (ℓ = 48, GCH) 215n 189n 179n 178n
Ours (ℓ = 32, GCH) 184n 158n 148n 147n

Ours (ℓ = 64, 2CH) 214n 190n 183n 185n
Ours (ℓ = 48, 2CH) 193n 169n 162n 164n
Ours (ℓ = 32, 2CH) 171n 148n 141n 142n

Ours (ℓ = 64, SH, N = n/10) 332n 302n 284n 276n
Ours (ℓ = 48, SH, N = n/10) 261n 230n 209n 198n
Ours (ℓ = 32, SH, N = n/10) 191n 158n 133n 120n

Ours (ℓ = 64, SH, N = 1) *** 154n 131n 125n 128n

Ours (ℓ = 48, SH, N = 1) *** 138n 115n 109n 112n

Ours (ℓ = 32, SH, N = 1) *** 122n 99n 93n 96n

Malicious setting

RS21 [RS21] enhanced** 343n 320n 315n 318n

Ours (ℓ = 48, SH, N = n/10) 430n 393n 356n 332n
Ours (ℓ = 40, SH, N = n/10) 359n 321n 281n 253n
Ours (ℓ = 32, SH, N = n/10) 289n 249n 205n 175n

* PRTY19 has two variants, SpOT-low (lowest communication, higher compu-
tation) and SpOT-fast (higher communication, better computation). Both
use expensive polynomial interpolation and require significantly more com-
putation compared to all other protocols in this table.

** Using the 3H-GCT OKVS of [GPR+21] instead of PaXoS, and the VOLE
of [CRR21] instead of the one from [WYKW21]. Setting κRS21 to κ+logn to
achieve κ bits of security.

*** Using N = 1 requires an expensive degree-n polynomial interpolation.
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extraction fail with probability bounded Q · n/2κ (this is the probability that one of the Q queries of
the malicious receiver collides with an element of the sender set). This implies that, to target 128 bits
of computational security, one must set κ = 128 + log n. However, the numbers reported in [RS21]
correspond to choosing κ = 128 at the 128-bit security level. We took this minor inconsistency into
account in our tables.

More interestingly, our second protocol applies dual execution [RR17] to our PCG-based protocol
with simple hashing. We observe that, in our context, this allows to achieve malicious security without
having to increase the length of the sender-to-receiver message, at the cost of increasing the receiver-
to-sender communication by a factor 2. Since our approach makes this communication as low as
O(ℓ · n), this turns out to be an excellent tradeoff whenever the database entries are not too large.
Therefore, our results show that the landscape of maliciously secure PSI is more subtle than previously
thought: for large entries, the standard approach still dominates, but for smaller entries (e.g. ℓ ≤ 40),
the dual execution technique leads to better performances. This revives the dual execution technique,
which was previously considered obsolete compared to the modern alternatives.

Efficient PSI in the standard model. Eventually, our last contribution is a new “polynomial-
based” PSI protocol that does not rely on the random oracle model, following the high level structure
of previous works [KS05,GS19,GN19]. To this end, we introduce the notion of PCG for the subfield
ring-OLE correlation, and show how a simple variant of the recent PCG for ring-OLE of [BCG+20b]
leads to efficient instantiations of this primitive. Then, we describe a new PSI protocol built on top
of this PCG, which enjoys a number of very interesting features.

Security features. Our PSI protocol is in the standard model: unlike our first protocol, it does not re-
quire the random oracle model, or any tailor-made correlation-robustness assumptions. We rely solely
on the (relatively well-established) ring-LPN assumption over polynomial rings with irreducible poly-
nomials. To our knowledge, our protocol is the first standard model protocol which offers competitive
performances compared to protocols using the random oracle heuristic or tailored assumptions. Fur-
thermore, our PSI protocol enjoys full malicious security (for both parties) almost for free. This stems
from the use of PCGs, which allows to confine the “price” of achieving malicious security to the dis-
tributed seed generation only, which has logarithmic communication and computation (in the set size
n).

We note that, though malicious security comes for free communication- and computation-wise,
the tweaks used to guarantee malicious security in our protocol are not straightforward. In fact,
achieving malicious security efficiently in polynomial-based PSI protocols is known to be complex and
error prone. For example, previous works [GN19] used a superficially similar approach and claimed
malicious security, but their protocol was found to be insecure in a recent preprint, which described
powerful concrete attacks on this proposal [AMZ21]. Leveraging the specific structure of our protocol,
we manage to get around these nontrivial subtleties with careful structural checks, for a minimal cost
(independent of the database size).

Efficiency features. Our PSI protocol enjoys a very low communication, considerably lower than all
previous PSI protocols in the standard model which we are aware of (excluding iO- or FHE-based pro-
tocol, which can have very low communication but poor concrete efficiency). In fact, communication-
wise, our PSI protocol is even on par with the best ROM-based PSI protocols of previous works.
Concretely, for sets of size n with ℓ-bit entries, our protocol communicates (2ℓ+3λ+3 log n) ·n+o(n)
bits. To give a single datapoint, for ℓ = 32 and n = 220, we estimate the total communication to be
278n bits. This is on par with the best maliciously secure protocol [RS21], which communicates 279n
bits in the same setting, with comparable computation (it also uses polynomial interpolation), but
without standard model security.
On Table 1.1, we compare our protocol to the current fastest maliciously secure PSI protocols [PRTY20,
RT21b,RS21]. As the table shows, the communication of our protocol is almost on par with that of
the best protocol (the protocol of [RS21], enhanced with the latest VOLE protocol) for small-ish
input size, and large enough set sizes. Yet, our protocol is in the standard model under the ring-LPN
assumption, while [RS21] is only proven secure in the ROM.

Batch non-interactive PSI. On top of these security and efficiency features, the structure of our
protocol allows to obtain a powerful interaction pattern: it leads to a batch non-interactive PSI, where
after a short interaction with each server, a client C with set X can broadcast a single encoding of its
database, and receive afterwards at anytime a single message from each server Si with set Xi (plus, in
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Table 2. Comparison of the communication cost of several PSI protocols in the malicious
model, for various choices of the database size n (we assume that both parties have a
database of the same size) and statistical security parameter λ = 40, using the encoding
technique of [TLP+17]. ℓ denote the bit-length of the inputs in the database; we set
the computational security parameter κ to 128. For fairness of comparison, since our
standard model PSI uses interpolation, we compare it to RS21 with an interpolation-
based OKVS (which has better communication), and we compare our other PSIs with
RS21 instantiated with (computationally) efficient OKVS.

Protocol
Communication Hardness

Assumption
Standard
Modeln = 216 n = 218 n = 220 n = 222 n = 224

Our Standard PSI Ring-LPN ✓

ℓ = 64 724n 423n 342n 324n 323n + OT
ℓ = 48 692n 391n 310n 292n 291n

ℓ = 32 660n 359n 278n 260n 259n

RS21 [RS21]
enhanced*

318n 286n 279n 279n 280n LPN + OT ✗

Our Direct PSI

LPN + OT

✗

ℓ = 64 421n 385n 374n 369n 365n

ℓ = 48 348n 311n 298n 292n 286n

ℓ = 32 277n 237n 223n 215n 208n

Our Dual PSI
ℓ = 64 609n 535n 511n 499n 489n

ℓ = 48 465n 388n 361n 345n 333n

ℓ = 32 321n 240n 210n 192n 176n

PRTY20 [PRTY20] 1766n OT ✗

RT21 [RT21b] 512n DH ✗

RS21 [RS21]
enhanced**

320n 315n 315n 317n 318n LPN + OT ✗

* Using interpolation instead of PaXoS, and the VOLE of [CRR21] instead of the one
from [WYKW21]. Sets κRS21 to κ+ logn to achieve κ bits of security.

** Using the new OKVS of [GPR+21] instead of PaXoS, and the VOLE of [CRR21]
instead of the one from [WYKW21]. Sets κRS21 to κ + log n to achieve κ bits of
security.

the malicious setting, a small database-size-independent 2-round structural check), from which they
can decode X∩Xi. To achieve this feature, we build upon the fact that the PCG for subfield ring-OLE
correlations is programmable, which means that we can enforce that a target party will receive the
same pseudorandom string across executions with many different parties. Concretely, we achieve the
following form of batch non-interactive PSI between a client C with database X and multiple servers
Si with datasets Xi (all of size n):

1. In a preprocessing phase, C interacts with each of the servers, using O(log n) communication and
computation in each interaction, in a small constant number of rounds.

2. Then, C performs a single Õ(n) cost local computation, and broadcasts a single 2ℓn-size encoding
EX of X.

3. Each server Si can, at any time, send a single message Mi = m(Xi, EX), of length 3(λ+ log n)n,
using Õ(n) computation.

4. Eventually, given X and Mi, the client C can run a Õ(n) cost decoding procedure and recover
X ∩Xi, without further interaction.

When the number of servers becomes large, our batch PSI protocol leads to strong savings for
the client compared to executing a PSI protocol individually with each server. Furthermore, in this
setting, the amortized communication (per PSI instance) is reduced to (2ℓ/NS + 3λ + log n) · n +
o(n), where NS denotes the number of servers. Even for relatively small number of servers, the
amortized communication quickly outperforms that of even the best ROM-based maliciously secure
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PSI protocols. For example, for n = 224 and ℓ = 32, the amortized communication per secure set
intersection approaches 195n bits with our protocol, versus 280n for [RS21].

1.2 Concurrent work

In a concurrent and independent work, recently accepted at CCS’22, Rindal and Raghuraman [RR22]
introduced a new PSI protocol, using an approach similar to ours: the authors also leveraged subfield-
VOLE to achieve communication independent of the computational security parameter κ. Our results
have been obtained independently of theirs, around the same time period. Although their main result
bears similarities to our first two contributions, we highlight some important distinctions between our
work and theirs:

– The work of [RR22] uses an OKVS-based construction, and achieves a receiver-to-sender commu-
nication of (λ+2 log n) ·n. In contrast, we use a hash-based protocol, and achieve an (ℓ− log n) ·n
receiver-to-sender communication. Therefore, we get smaller communication overall in the setting
where the databases have small entries, but a slightly larger computation.

– For malicious security, the work of [RR22] only considers the standard paradigm of previous works
(e.g. [RS21]), hence having a O(κ ·n) receiver-to-sender (and overall) communication. In contrast,
we give two protocols, including one based on dual execution which achieves communication
independent of κ (and smaller concrete communication for databases with small entries).

– Eventually, our last contribution, a “batchable” ring-OLE-based malicious PSI in the standard
model with low communication, is unique to our work.

1.3 Structure of the Paper

We provide preliminaries in Section 2 (additional preliminaries are given in Appendix A of the Sup-
plementary Material), and a detailed technical overview of our contributions in Section 3. Section 4
covers our ROM-based semi-honest and malicious protocols. Due to space limitation, our second ma-
licious protocol, based on dual execution, is deferred to Appendix B of the Supplementary Material.
Section 5 covers our standard model PSI and Appendix C provides a detailed comparison of our
protocols to a PSI protocol of [PSZ14].

2 Preliminaries

Notation. Throughout the paper we use the following notations: we let κ, λ denote the computational
and statistical security parameters, respectively. We write [1,m] to denote a set {1, 2, . . . ,m}. For
a vector x we define by xi its i-th coordinate. Given distribution ensembles {Xn}, {Yn}, we write
Xn ≈ Yn to denote that Xn is computationally indistinguishable to Yn.
We typically write Fq to denote a field with and arbitrary subfield Fp, where p is a prime power
and q = pt. We use Rp = Fp[X]/F(X) for the ring over the field Fp where F (x) is some polynomial,
and also denote Rq = Fpt [X]/F(X). Note that all operations in our paper are field/ring operations not
modular arithmetic.
PSI functionality. A private set intersection (PSI) protocol allows two parties to compute the
intersection of their input sets while concealing all other information. We typically denote by n the
input set sizes. For completeness, the ideal functionalities for PSI (in the semi-honest and in the
malicious settings) are given in Appendix A of the Supplementary Material.
Pseudorandom correlation generators (PCG). Pseudorandom correlations generators have been
introduced in a recent line of work [BCGI18,BCG+19b,BCG+19a]. A PCG allows to compress long cor-
relations into short, correlated seeds that can later be locally expanded into pseudorandom instances
of the target correlation. Slightly more formally, a PCG for a target correlation C (which samples
pairs of long correlated strings (y0, y1)) is a pair (Gen,Expand) of algorithms such that Gen(1λ) out-
puts a pair of short, correlated keys (k0, k1) and Expand(σ, kσ) outputs a long string ỹσ. Correctness
states that (ỹ0, ỹ1) are indistinguishable from a random sample from C, while security states that
given k1−σ, ỹσ looks like a random sample from C conditioned on satisfying the target correlation
with Expand(1− σ, k1−σ), for σ = 0, 1.

A PCG does not in itself provide a protocol to efficiently generate long pseudorandom correlations.
To get the latter, one must combine a PCG with a distributed key generation protocol, which allows
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two parties to obliviously run Gen(1λ) such that each party gets one of the keys. Fortunately, for
most PCGs of interest (and in particular, for all PCGs we use in this work), there exists very efficient
low-communication distributed setup protocols [BCG+19a, BCG+20b]. Combining a PCG with a
distributed setup protocols allows to securely instantiate (with low communication) functionalities
that distribute instances of the target correlation. In this work, we will directly rely in a black-box
way on such functionalities, and use known protocols to instantiate them. We now expand on the two
main functionalities we use in this work.

PARAMETERS:

– 2 parties, a sender and receiver, an integer n, the size of the output vector.
– A finite field Fq where q = pr, p is a power of prime, r an integer.

FUNCTIONALITY:

– Depending on the parties:
• If the sender is corrupted then wait for A to send 2 vectors u ∈ Fn

p ,v ∈ Fn
q ; samples

∆←r Fq and computes w := ∆ · u+ v.
• If the receiver is corrupted then wait for A to send w ∈ Fn

q , ∆ ∈ Fq; samples u ←r Fn
p

and computes v := w −∆ · u.
• Otherwise, samples u ∈ Fn

p ,v ∈ Fn
q ,∆←r Fq and computes w := ∆ · u+ v.

– The functionality sends u ∈ Fn
p , v ∈ Fn

q to sender and ∆ ∈ Fq , w := ∆ · u+ v to receiver.

Fig. 1. Ideal functionality (n, p, q)−Fsvole of subfield vector-OLE

Subfield Vector-OLE. We described the subfield vector-OLE correlation in the technical overview
(see Section A.4). We represent on Figure 1 the ideal functionality that distributes a subfield VOLE
correlation. In our concrete instantiations, we will instantiate this functionality using the efficient
protocol of [BCG+19a]. The latter provides a general template which can be instantiated under
various flavors of the LPN assumption, and provides a conservative choice under LPN for quasi-cyclic
choice. A variant of LPN that leads to a considerably more efficient protocol, when plugged in the
template of [BCG+19a], was recently put forth in the work [CRR21] (we note that our communications
estimate are oblivious to the underlying variant: only the computational costs depends on the LPN
flavor).

Subfield Ring-OLE. Recently, a new PCG construction was described in [BCG+20b] for the ring-OLE
correlation. The ring-OLE correlation over a ring Rq is the following correlation: {((x0, z0), (x1, z1)) |
x0, x1, z0 ←r Rq, z1 ← x0.x1−z0}. In this work, we rely on a slight variant of the ring-OLE correlation,
where x0 is instead sampled from a subring Rp of Rq. We represent the corresponding variant of the
ideal functionality on Figure 9. We note that the protocol of [BCG+20b] to instantiate the ring-OLE
functionality can be adapted to handle the subfield ring-OLE functionality in a straightforward way.

3 Technical Overview

Our starting point is the classical KKRT protocol [KKRT16], which combines Cuckoo hashing with a
batch related-key oblivious pseudorandom function (BaRK-OPRF). We assume some familiarity with
the KKRT protocol in this technical overview. For completeness, we provide a high level overview
of KKRT, the notion of BaRK-OPRF (batch related-key oblivious pseudorandom function), and its
communication costs in Appendix A.7 of the Supplementary Material. Our construction will also
rely on a functionality that distributes subfield vector-OLE correlation (the sVOLE functionality):
Alice gets (u,v), and Bob gets (∆,w = ∆u+ v). Such correlation can be distributed with very low
communication using pseudorandom correlation generators; we provide more details in Appendix A.4
of the Supplementary Material.

3.1 A New sVOLE-Based PSI for Databases with Small Entries

Subfield-VOLE leads to a simple and natural construction of BaRK-OPRF. Let ℓ be the bitlength of
Alice’s inputs, and let x = (x1, · · · , xn) be the inputs of Alice, viewed as elements of F2ℓ . We assume
for simplicity that ℓ divides κ, the computational security parameter. Alice and Bob use an sVOLE
protocol (e.g. [CRR21]) over the field F2κ , with subfield F2ℓ ; let (u,v) be the output of Alice, and
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(∆,w) be the output of Bob. Recall that w = ∆ · u+ v. Alice sends z = x− u to Bob, who defines
the BaRK-OPRF keys to be ∆ and (K1, · · · ,Kn) = ∆ ·z+w. The BaRK-OPRF is defined as follows:
F∆,Ki(y) = H(i,Ki − ∆ · y) (all operations are over F2κ). Eventually, Alice outputs (H(i, vi))i≤n.
Observe that

H(i, vi) = H(i, wi −∆ui) = H(i,Ki −∆(zi + ui))

= H(i,Ki −∆ · xi) = F∆,Ki(xi)

The use of sVOLE, rather than OT extension as in the original KKRT BaRK-OPRF, has two
main advantages: first, the bitwise AND is now replaced by a field multiplication. In particular, this
means that we do not need anymore to use error-correcting codes, and that y ·∆ retains the entire
entropy of ∆. In other words, it suffices for ∆ to be κ-bit long to achieve κ bits of security for the
construction (in contrast, KKRT had to use around 5κ bits). Second, and most importantly, the use
of subfield VOLE allows us to completely decorrelate the size of u from that of ∆, something which
can fundamentally not be achieved with the INKP OT extension. Concretely, this means that u only
needs to mask the input vector x of Alice. If x ∈ Fn

2ℓ , then so do u and z: the communication now
depends solely on the input size.

In total, our BaRK-OPRF communicates ℓ · n bits, plus the cost of distributing the seeds for the
sVOLE generator. Using the protocol of [BCG+19a] to distribute the seeds4, the cost is logarithmic
in n, hence its effect on the overall communication vanishes for large enough n.

Combining the new OPRF with permutation-based hashing. Plugging our new BaRK-OPRF
into KKRT, and using the same parameters for Cuckoo hashing, leads to a protocol with total
communication (1.3 · ℓ + 3 · (λ + 2 log n))n + o(n) bits (where the o(n) terms capture the costs of
distributing the PCG seeds). Concretely, for n = 220 and ℓ = 32 (resp. 64), this already brings the
cost down, from 1008n bits to 282n bits (resp. 324n bits). However, this can be further improved using
the well-established notion of permutation-based hashing [PSSZ15]. Concretely, in permutation-based
hashing, an item x is written as xL||xR, where xL is log(1.3n)-bit long. The item x is inserted by
mapping xR to the bin xL ⊕ f(xR), where f is a k-wise independent hash function, for some large
enough k. This guarantees that no collision occurs, because if two items x, x′ end up mapping the
same value to the same bin, this means that xR = x′

R and xL ⊕ f(xR) = x′
L ⊕ f ′(x′

R), hence x = x′.
When multiple hash functions are used, as in Cuckoo hashing, the index of the hash function must
be appended to xR.

Interestingly, our use of sVOLE is crucial to enabling a permutation-hashing-based optimization:
the latter only provides savings when the communication involves a O(ℓ · n) component (which nei-
ther KKRT nor any modern OKVS-based PSI has). In our protocol, however, it further reduces the
communication to (1.3 · (ℓ− log(1.3n) + 1) + 3 · (λ+ 2 log n))n+ o(n) bits, which gives 275n bits for
n = 220 and 32-bit items, or 317n bits for 64-bit items. In itself, this is a really small communication
improvement. However, it has an important consequence: it implies that the Alice-to-Bob communi-
cation is now completely dominated by the Bob-to-Alice communication. Concretely, this means that
we can easily afford to use a much higher number of bins (which is 1.3n currently) if it can allow us
to reduce the number of hash functions (which is 3). This brings us to our last optimization.

Packing multiple items per bin with generalized Cuckoo hashing. In this last optimization,
our goal is to reduce the number of hash functions used in the Cuckoo hashing protocol, from 3
to 2, by increasing the number of bins to compensate. Unfortunately, this does not work directly
with standard cuckoo hashing even while using a reasonably small stash since the cost of handling
the stash is high, and nullifies all communication benefits of using two hash functions in the first
place. Instead, we use a different approach: we add one degree of freedom to the Cuckoo hashing
parameters, by allowing bins to contain multiple items. This generalization of Cuckoo hashing is not
new: it has been studied in details in several works [DW07, W+17], because it comes with a much
nicer cache-friendliness than standard Cuckoo hashing.

In (d, k)-Cuckoo hashing, n items are mapped to (1+ε)·n bins using k hash functions, and each bin
is allowed to contain up to d items. Allowing more items per bins significantly improves the efficiency;
for example, (3, 2)-Cuckoo hashing is known to perform strictly better than standard (1, 3)-Cuckoo
hashing in terms of occupancy (i.e., the total number of slots N = d · (1 + ε) · n which must be used

4 This protocol uses a length-t reverse VOLE protocol as a blackbox, which we instantiate with the construc-
tion of [ADI+17].
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to guarantee a o(1) failure probability). Based on existing analysis of this variant [W+17], it seems
reasonable to expect that (3, 2)-Cuckoo hashing already achieves a strictly smaller failure probability
compared to (1, 3)-Cuckoo hashing, with a smaller number of bins.

We relied on extensive computer simulations on small values of n (from 256 to 2048) to select
parameters, and extrapolated from these results parameters for larger values of n. More precisely,
we ran 107 experiments with (3, 2)-Cuckoo hashing for n ∈ {28, 29, 210} (we also experimented with
211, but with a smaller number of experiments) with c · n bins for various values of c. Even for a
value as low as c = 0.65 and values of n as low as 29, our experiments never reported any insertion
failure, indicating that the empirical failure probability should already be way below 2−20. Since the
theoretical failure probability is known to scale as O(1/nδ) for some constant δ with reasonably small
constant factors, we extrapolate that for large enough values of n, e.g. n ≥ 218, the failure probability
should be well below 2−40.

Alternative hashing variants. Alternatively, when allowing multiple items per bins, we can con-
sider other hashing variants. Two natural choices are two-choice hashing [PRTY19], where each bin
can have up two d items and each item is placed in the least-full of two bins, and simple hashing,
where a single hash function is used to map the items to bins (standard results show that, when
hashing n items to O(n) bins this way, the maximum load with be of the order of log n/ log log n
with high probability). As we will see, these choices of hashing lead to various communication versus
computation tradeoffs in our protocols, and the optimal choice also depends on the database size.

A membership BaRK-OPRF. There remains a non-trivial task: to use some of the above hashing
variants, we need a protocol to handle hashing with up to d items per bins. Intuitively, denoting
xi = (x

(1)
i , · · · , x(d)

i ) the d entries of the bin i, we want to construct a new kind of membership OPRF
(similar in spirit to the notion of multi-point OPRF in the literature), where Bob obtains F∆,Ki(y)

and Alice obtains the set F∆,Ki(xi) = {F∆,Ki(x
(j)
i )}j≤d. This implies that F∆,Ki(y) ∈ F∆,Ki(xi) if

and only if y is equal to any entry of xi, and F∆,Ki
(y) looks pseudorandom to Alice otherwise.

Going back to the BaRK-OPRF, recall that for a bin i where Alice placed xi and Bob placed
yi, Alice computes H(i, vi) and Bob computes H(i,Ki − ∆yi) = H(i,∆ · (xi − yi) + vi). Here, we
view the xi − yi term as Pxi(yi), where Pxi = X − xi is a degree-1 polynomial with root xi. This
view suggests a natural generalization of this approach, where the Pxi

polynomials are replaced by
higher degree polynomials. Define Pxi

to be the polynomial
∏d

j=1(X − x
(j)
i ), and let (cj,i)0≤j≤d−1

denote its coefficients: Pxi
(X) = Xd +

∑d−1
j=0 cj,i ·Xj . Our new membership BaRK-OPRF is a direct

generalization of the BaRK-OPRF from Section 3.1, which we sketch below.

Our construction. Let m be the bitlength of Alice’s inputs inside the bins, and let (x1, · · · ,xN)
be the inputs of Alice in each of the N bins, where the inputs in each bin are viewed as length-d
vectors of elements of F2m . We assume for simplicity that m divides κ, the computational security
parameter. Alice and Bob use d sVOLE protocol (e.g. [CRR21]) over the field F2κ , with subfield F2m ,
with the same value ∆.5 Let (uj,vj)j≤d be the outputs of Alice, and (∆, (wj)j≤d) be the output of
Bob. Recall that wj = ∆ · uj + vj.

For each xi, let (c0,i, · · · , cd−1,i) be the coefficients of the polynomial Pxi
(omitting the coefficient

of Xd, which is always 1). Let cj denote the vector (cj,i)i≤N for j = 0 to d − 1. Alice sends zj =
cj − uj for j = 0 to d − 1 to Bob, who defines the membership BaRK-OPRF keys to be ∆ and
Ki = (kj,i)0≤j≤d−1 = (∆ ·zj,i+wj,i)0≤j≤d−1 for i = 1 to N . Define the following degree-d polynomial
P∆,Ki

over Fq: P∆,Ki
(X) = ∆ · Xd +

∑d−1
j=0 kj,i · Xj . The OPRF is defined as follows: F∆,Ki

(y) =
H(i, P∆,Ki

(y)) (all operations are over F2κ). Eventually, for each bin i, Alice sets her d tuple of outputs
to be F∆,Ki

(xi) = {H(i,
∑d−1

j=0 vj,i · (x
(k)
i )j}k≤d. Observe that, since kj,i = ∆zj,i + wj,i = ∆cj,i + vj,i

for all i, j, we have H(i, P∆,Ki
(y)) = H

(
i,∆ ·

(
yd +

∑d−1
j=0 cj,iy

j
)
+
∑d−1

j=0 vj,iy
j
)
, which is equal to

H
(
i,∆ · Pxi

(y) +
∑d−1

j=0 vj,iy
j
)
. Therefore, if there exists k ∈ {1, · · · , d} such that y = x

(k)
i , we have

Pxi
(y) = 0, and H(i, P∆,Ki

(y)) = H(i,
∑d−1

j=0 vj,i · (x
(k)
i )j) ∈ F∆,Ki

(xi). On the other hand, whenever
Pxi

(y) ̸= 0, then the ∆ ·Pxi
(y) term in the hash makes the output pseudorandom from the viewpoint

of Alice, under the correlation robustness of the hash function.
5 Note that all known sVOLE protocols allow Bob to choose the value of ∆, hence Bob can enforce the use

of the same ∆ across all instances.
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Tying up loose ends. Using the new construction from the previous Section, together with (3, 2)-
Cuckoo hashing, leads to a total communication of (0.65·3(ℓ−log(0.65n)+1)+2·(λ+2 log n))n+o(n)
bits, where the o(n) corresponds to the cost of setting up the PCG seeds. For n = 220 and 32 bits
items, this gives 148n bits of communication. We mention a few remaining details. First, in the
construction of membership BaRK-OPRF, Alice and Bob need to invoke d = 3 length-N sVOLE. In
fact, it suffices to invoke a single length-3N sVOLE, and to cut the output in three equal length parts,
to obtain the necessary correlation. This means that the concrete cost of distributing the sVOLE seeds
remains that of generating a single sVOLE (e.g. ≈ 0.7n bits for n = 220).

Second, in the above, we overlooked an important subtlety: a bin can possibly contain less than
d items. In KKRT, this was handled by adding dummy items to empty bins. We use instead a more
efficient approach with a negligible extra cost called a variant of our OPRF (details in section 4).

3.2 Malicious Security

We then turn our attention to maliciously secure PSI. Here, it is well known that Cuckoo hashing
and two-choice hashing are not usable. Consequently, we focus on simple hashing as our choice of the
underlying hash technique. Using maliciously secure subfield-VOLE, which can be implemented very
efficiently [BCG+19a, CRR21], we enhance our membership BaRK-OPRF to the malicious setting,
with a minimal overhead. Then, we apply two standard methods to achieve security against malicious
adversaries in our PSI protocol:

First method: direct approach. The first method increases the PRF output length to κ. Using the
analysis of [RS21], this suffices to allow for extracting the input of a malicious sender. However, this
makes the communication depend linearly on κ, which severely harms communication complexity.

Second method: dual execution. To recover a κ-independent communication complexity, we then turn
our attention to the dual execution technique [RR17]. Here, the idea is simple: the parties will invoke
the malicious BaRK-OPRF twice, exchanging their roles. Then, the sender sends, for each entry x of
his database, a value of the form PRFA(x)⊕PRFB(x), where PRFA(x) is obtained by the sender when
invoking the BaRK-OPRF functionality as sender, and PRFB(x) is the PRF output obtained when
invoking the functionality as receiver. Here, it becomes possible to extract the input set of each party
simply from its call as receiver to the BaRK-OPRF functionality, which does not require to increase
the output length of the OPRF. The price to pay is that the protocol now uses two calls to the BaRK-
OPRF. Concretely, the total communication becomes (2·N ·d(ℓ−log(N))+(λ+log n))n+o(n), where
N is the number of bins, d the maximum load of a bin, and ℓ the input size (e.g. for n = 220, one can
choose N = n/10 and d = 47, see [RR17, Figure 5]). For small database entries, this outperforms all
known malicious PSI protocols.

3.3 An Efficient PSI in the Standard Model

In our last construction, we use a different functionality: we rely on the subfield ring-OLE functionality
(given on Figure 9), that generates a subfield ring-OLE correlation over the rings Rp = Fp[X]/F(X),
Rq = Fpt [X]/F(X), and F (X) is some polynomial of degree 2n + 1 (more generally, when the two
parties have sets of different size n and m, F will be of degree n + m + 1). At a high level, the
functionality Fsole distributes to Alice (a, sA) ∈ Rp × Rq and (b, sB) ∈ (Rq)

2 to Bob such that
ab = sA + sB . Our protocol makes a single black-box call to this functionality. Consider two parties,
a sender Alice and a receiver Bob, where Alice has a set A = {x1, x2, . . . , xn} ∈ Fn

p and Bob has a
set B = {y1, y2, . . . , yn} ∈ Fn

p . Define pA :=
∏n

i=1(X − xi) ∈ Rp and pB :=
∏n

i=1(X − yi) ∈ Rp. Let
I := A ∩ B denote the target output. The protocol computes the common roots of pA and pB , i.e.,
gcd(pA, pB).

By revealing appropriate linear combination of their shares and their input polynomials, Alice and
Bob will “derandomize” this correlation, allowing Alice to learn the polynomial u = pAb0+pBb

′
0, where

b0, b
′
0 are two uniformly random degree-n polynomials known by Bob (this also requires revealing the

high-order coefficients of b, to reduce the degree-2n random polynomial b to a degree-n random
polynomial b0). Using some standard lemmas about polynomials (Lemma 8 and Lemma 9), the
polynomial u can be factored as gcd (pA, pB) · pR, where with high probability, pR has no common
root with pA. This allows Alice to compute the intersection I = A ∩B as I = {xi ∈ A : u(xi) = 0}.
Concretely:
– Alice computes and sends tA = a− pA to Bob.
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– Bob sets s′B ← sB − tAb. Then, Bob decomposes b as b = b0 + b1 ·Xn (where b0, b1 are degree-n
polynomials), sets s′B ← sB − tAb, and picks a random degree-n polynomial b′0 over Rq. He sends
b1 and tB ← s′B + pBb

′
0 to Alice.

– (Output) Alice sets u← tB − pAb1 ·Xn + sA; note that u = pAb0 + pBb
′
0. Alice outputs the set

I = {x ∈ A | u(x) = 0}.
We prove that this construction achieves “augmented semi-honest security”, a strengthening of

honest-but-curious corruption where the adversary is allowed to change the corrupted parties’ inputs.
Furthermore, we securely realize the functionality Fsole using the PCG-based protocol of [BCG+20b],
which is secure under the ring-LPN assumption. Instantiating the subfield ring OLE this way allows
to import a powerful feature of the PCG of [BCG+20b], which is its programmability : when generating
a ring-OLE correlation, the receiver can ensure that her output a remains identical across multiple
instances of the protocol with different parties. Using this programmability feature, we show that our
protocol can be batched : a single O(ℓ · n)-size client message encoding her database A can be reused
with N different servers with databases Bi, allowing her to learn A ∩Bi using a single message from
each server afterwards.

Achieving malicious security. We then turn our attention to security against malicious adversaries.
Our upgrade introduces only a minimal communication overhead to the protocol, independent of the
set sizes n. At a high level, the main issues that can occur in the malicious setting is when Alice sets
pA = 0, or when Bob sets pBb′0 = 0. Indeed, since Alice gets u = pAb0+pBb

′
0, if pA = 0, she can learn

Bob’s entire input set pB . On the other hand, if pBb′0 = 0, Bob forces the output to be A.
We handle both issues separately. The second issue is intuitively simpler to handle, since when

Bob carries out this attack, Alice will notice that her output is exactly her set A. This suggests a
simple way around: if Alice notice at the end of the protocol that the output is equal to A, she
aborts the protocol. Of course, a honest Bob could have an input B with A ⊆ B, in which case this
modification would harm correctness. But there is a simple way around: prior to the protocol, Alice
and Bob can just agree on a reserved dummy item d (we will pick d = 1 in the protocol, but this
choice is arbitrary), which is guaranteed to be in neither databases. If database entries are elements
of a field Fp′ , this can simply be done by choosing any slightly larger field Fp of size |Fp| ≥ |Fp′ |+ 1,
reserving one element of Fp to encode d, and mapping the elements of Fp′ to the remaining elements.
Then, Alice and Bob execute the protocol on inputs A ∪ {1} and B, which guarantees that B does
not contain A.

For the first issue, Bob must check before sending tB = s′B + pBb
′
0 that Alice did not set pA to be

0 when computing tA = a − pA. Intuitively, this will be done by letting Bob check that pA(x) ̸= 0,
for an appropriate input x. This, however, must be done with some care, since learning pA(x) could
leak information to a corrupted Bob. We handle this issue by reserving a second element of Fp (hence
we now need |Fp| ≥ |Fp′ | + 2), which we assume w.l.o.g. to be 0, which should again be in neither
set. Then, Alice will define the encoding of her set to be the degree-n polynomial pA such that
pA(map(a)) = 0 for every a ∈ A, and pA(0) = 1. Then, we let Bob first send b1, without sending tB .
Afterwards, Bob computes s′B ← sB − tAb and Alice computes s′A ← sA − pAb1 ·Xn. Observe that if
both parties behave honestly, s′a + s′b = ab − tAb − pAb1 ·Xn = ab − ab + pAb − pAb1 ·Xn = pAb0.
To enforce pA ̸= 0, we will check that the above equation holds for some nonzero pA. Crucially, since
both pA and b0 have degree at most n, no reduction modulo F(X) occurs in the right hand side of
the equation. This implies that we can simply check that the equation holds for the reserved input
x = 0 (since a honest pA is guaranteed to satisfy pA(0) = 1 ̸= 0). To check this, we let Alice send
s′A(0) to Bob, who checks that s′A(0) = b0(0)− s′B(0); if the check fails, Bob aborts the protocol.

4 PSI from Subfield-VOLE

4.1 A new membership batched OPRF

Our BaRK-OPRF allows the sender to hold a set of keys (ki)i≤N such that each key is assigned
with a tuple of d input elements of the receiver and then the receiver learns a PRF output on each
element in this tuple corresponding with the same key. More formally, denoting xi = (x

(1)
i , · · · , x(d)

i )

consisting of d entries, the sender gets F (i, y) and the receiver obtains a set {F (i, x
(j)
i )}j≤d such that

F (i, y) ∈ {F (i, x
(j)
i )}j≤d if and only if y is equal to any entry of xi, and F (i, y) looks pseudorandom

to the receiver otherwise.
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PARAMETERS:

Fp is a finite field. There are 2 parties, a sender and a receiver with input set
X = {x1,x2, . . . ,xN} ⊆ Fp where xi = (x

(1)
i , · · · , x(d)

i ).

FUNCTIONALITY:
– Wait for input (sender, id) from the sender and (receiver, id,X) from the receiver. The function-

ality samples a PRF F then ∀x ∈ xi outputs F (i, x) to the receiver for i ∈ [1, N ].
– When the sender inputs any (i, y) ∈ [1, N ]× Fp, functionality gives F (i, y) to the sender.

Fig. 2. Ideal functionality Foprf

Main construction. Assume that the receiver inputs the set of n = Nd elements: X = {x1,x2, . . . ,xN} ⊆
Fp where xi = (x

(1)
i , · · · , x(d)

i ) . First, the sender and the receiver invoke the Fsvole protocol of dimen-
sion n, with their roles reversed, to get a random sVOLE correlation. Specifically, the receiver learns
a pair of vectors (u,v) where u ∈ Fn

p , v ∈ Fn
q , the sender gets ∆ ∈ Fq and w := ∆ · u+ v. Denoting

u = (u1,u2, . . . ,uN) where (uj,i)1≤j≤d are d entries of vector ui. This notation is the same for v,w.
Consider xi and its associated polynomial as Pxi

(X) =
∏d

j=1(X − x
(j)
i ) = Xd +

∑d
j=1 cj,i · Xj−1

where cj,i ∈ Fp for i ∈ [1, N ], j ∈ [1, d].
Now, the receiver defines ci := (cj,i)j≤d, c := (c1, c2, . . . , cN), and then ∀i ∈ [1, N ] sends to the

sender zi := ci−ui ∈ Fd
p. Above, the ui are masks for the coefficients ci of (the polynomial associated)

xi. Indeed, ui are distributed uniformly at random in the subfield Fp, then the vector zi is a uniformly
random over Fn

p from the viewpoint of the sender. The two parties will run a coin flipping protocol to
get a random value t← Fq. For i ∈ [1, N ], the receiver defines the PRF output on each input x ∈ xi

as F (i, x) = H
(
i|t|x ,

∑d
j=1 vj,i · xj−1

)
.

On the other hand, after receiving the vectors zi, for i ∈ [1, N ], the sender defines the vector
ki := wi +∆ · zi. As a consequence, for any input (i, y) ∈ [1, N ] × Fp, its PRF output is computed
as: F (i, y) = H

(
i|t|y , ∆ · yd +

∑d
j=1 kj,i · yj−1

)
.

Correctness and Security. To see why PRF output is defined as above. Observe that ki :=
wi +∆ · zi = vi +∆ · ci. Then, we have

∆ · yd +
d∑

j=1

kj,i · yj−1 = ∆ · yd +
d∑

j=1

(vj,i +∆ · cj,i) · yj−1

= ∆ · (yd +
d∑

j=1

cj,i · yj−1) +

d∑
j=1

vj,i · yj−1 = ∆ · Pxi
(y) +

d∑
j=1

vj,i · yj−1

so if y ∈ xi then Pxi
(y) = 0 which leads to F (i, y) ∈ {F (i, x

(j)
i )}j≤d.

Theorem 1. The protocol Πoprf (Figure 3) instantiated with random oracles H,H′, securely realizes
the ideal functionality of Foprf (Figure 2) against a malicious setting in the Fsvole hybrid model.

Proof. Corrupted sender. The Sim interacts with the sender as follows:

– Sim emulates Fsvole, waits for sender to send ∆,w.
– Sim samples uniformly hr ← Fq and then sends hr to A.
– After receiving hs, Sim samples uniformly vectors (zi)1≤i≤N instead of zi := ci − ui.
– Sim samples uniformly tr ← Fq and programs H′(tr) := hr.
– On behalf of receiver, Sim sends zi and tr to A.
– Sim computes ki = wi +∆zi. Whenever A queries H(i|t|y, q) where q = ∆ · yd +

∑d
j=1 kj,i · yj−1

and H(i|t|y, q) has not been previously queried, Sim emulates Foprf with (i, y) being the input of
sender, Sim samples uniformly a value as F (i, y) and programs

H

i|t|y,∆ · yd +
d∑

j=1

kj,i · yj−1

 := F (i, y)

This simulation is indistinguishable from the real world by the following hybrids:

– Hybrid 0. The same as the real protocol with a honest receiver and Fsvole is executed honestly.
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PARAMETERS:

– Given Fp ⊆ Fq where Fq ≈ O(2κ), H : {0, 1}∗ × Fq → {0, 1}v and H′ : Fq → Fq are random
oracles.

– The sender has no input and the receiver inputs a set X = {x1,x2, . . . ,xN} ⊆ Fp where
xi = (x

(1)
i , · · · , x(d)

i ) and n = Nd.

PROTOCOL:

1. The sender and the receiver invoke to the Fsvole of dimension n in the Fq over the Fp with
the inverse role. The receiver gets two random vectors u ∈ Fn

p ,v ∈ Fn
q and the sender receives

∆ ∈ Fq, w := ∆u + v ∈ Fn
q . Denoting u = (u1,u2, . . . ,uN) where ui = (cj,i)1≤j≤d. This

denotation is the same for v,w.
2. The receiver samples tr ← Fq and sends hr := H′(tr) to the sender.
3. The sender samples ts ← Fq and sends hs := H′(ts) to the receiver.
4. The receiver determines the associated polynomial for each xi as

Pxi(X) =

d∏
j=1

(X − x
(j)
i ) = Xd +

d∑
j=1

cj,i ·Xj−1

where cj,i ∈ Fp for i ∈ [1, N ], j ∈ [1, d].
5. Denoting ci := (cj,i)1≤j≤d; c := (c1, c2, . . . , cN), the receiver computes zi := ci−ui ∈ Fd

p, and
then sends zi and tr to the sender.

6. The sender aborts if H′(tr) ̸= hr.
7. The sender sends ts to the receiver, the receiver aborts if H′(ts) ̸= hs and both parties define

t = ts ⊕ tr.
8. The receiver outputs the PRF values on the input x ∈ xi for i ∈ [1, N ] as

F (i, x) = H

(
i|t|x ,

d∑
j=1

vj,i · xj−1

)

9. For i ∈ [1, N ], the sender defines ki = wi +∆zi. For any input (i, y) ∈ [1, N ]× Fp, the sender
computes the PRF output by below formula

F (i, y) = H

(
i|t|y , ∆ · yd +

d∑
j=1

kj,i · yj−1

)

Fig. 3. Our batch BaRK-OPRF Πoprf based on subVOLE

– Hybrid 1. The same as hybrid 0 except the Sim emulates Fsvole, receives ∆,w from the A.
– Hybrid 2. On behalf of receiver, Sim samples hr ← Fq and sends it to A instead of hr := H′(tr)

where tr is sampled in Fq. Then before sending the value tr to A, Sim samples tr ← Fq and
programs H′(tr) := hr. The probability of abort when H′(tr) has been queried previous is negligible
O(1/Fq) = O(2−κ) since tr is sampled uniformly. This hybrid has an identical distribution.

– Hybrid 3. Sim samples uniformly vectors (zi)1≤i≤N from Fp as opposed to zi := ci − ui. Since ui

is distributed uniformly at random and ci is arbitrary vector in Fp then this hybrid is indistin-
guishable from the previous hybrid.

– Hybrid 4. After receiving ts from A. Sim computes ki = wi + ∆zi and t := tr ⊕ ts. Whenever
A queries H(i|t|y, q) where q = ∆ · yd +

∑d
j=1 kj,i · yj−1 and H(i|t|y, q) has not been previously

queried, Sim emulates Foprf with (i, y) being the input of sender, Sim samples uniformly a value
as F (i, y) and programs

H

i|t|y,∆ · yd +
d∑

j=1

kj,i · yj−1

 := F (i, y)

Sim will abort if there exists (i, y) such that H(i|t|y, q) has been previously queried. Since ts being
an arbitrary value fixed by A from the beginning and tr is uniformly sampled before sending then
t have an uniformly distribution over Fq ≈ O(2κ) which leads to a negligible probability of abort.

Corrupted receiver. The Sim interacts with the receiver as follows:

– Sim emulates Fsvole functionality, waits for the receiver to send u,v.
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– Sim samples uniformly hs ← Fq and then sends hs to A.
– After corrupted receiver sends (zi)1≤i≤N , Sim defines ci := zi + ui. From ci, Sim extracts the set

X = {xi}i≤N .
– After receiving tr from A, Sim samples uniformly t ∈ Fq, defines ts := t − tr and programs

H′(ts) := hs then sends ts to A.
– Sim emulates Foprf with X being the input of receiver then Sim samples a sequence of uniformly

random values which defined as {F (i, x) | ∀x ∈ xi}i≤N . Sim programs

H

i|t|x ,

d∑
j=1

vj,i · xj−1

 := F (i, x)

This simulation is indistinguishable from the real world by the following hybrids:

– Hybrid 0. The same as the real protocol with a honest sender and Fsvole is executed honestly.
– Hybrid 1. The same as hybrid 0 except the Sim emulates Fsvole, receiving u,v from the A.
– Hybrid 2. On behalf of sender, Sim samples hs ← Fq and sends it to A instead of hs := H′(ts)

where ts is sampled in Fq. After receiving tr from A, Sim samples t← Fq and defines ts := t⊕ tr.
Sim programs H′(ts) := hs then sends ts to A. The probability of abort when H′(ts) has been
queried previous is negligible O(1/Fq) = O(2−κ) since t is sampled uniformly and tr is an arbitrary
value. This hybrid has an identical distribution.

– Hybrid 3. After receiving (zi)i≤N from A, Sim computes ci = zi + ui for all i ∈ [1, N ].
Now for each i ∈ [1, N ], Sim defines the polynomial Pxi

(X) = Xd +
∑d

j=1 cj,i · Xj−1 and then
extracts a set xi which includes all the root of Pxi

. Formally,

xi = {x ∈ Fp | Pxi
(x) = 0}

This hybrid can not be distinguished with the previous since Sim only extracts set.
– Hybrid 4. Sim emulates Foprf with X = {xi}i≤N being the input of receiver then Sim samples a

sequence of uniformly random values over {0, 1}v which defined as {F (i, x) | ∀x ∈ xi}i≤N .
For each x ∈ xi, Sim aborts if any H(i|t|x, q) where q :=

∑d
j=1 vj,i · xj−1 has been made by A.

The probability of aborting is negligible since t is uniformly distributed over Fq ≈ O(2κ). Sim
programs

H

(
i||t||x ,

d∑
k=1

v(i−1)d+k · xk−1

)
:= F (i, x)

Since the F (i, x) is sampled uniform then this hybrid is indistinguishable with previous one.
– Hybrid 5. Sim will abort protocol if corrupted receiver is able to learn the PRF value on a element

which is not in any set xi for i ∈ [1, N ]. This means that the A made a query H (i|t|x, h) such
that x ∈ Fp \ xi for i ∈ [1, N ] and h = ∆ · yd +

∑d
j=1 kj,i · xj−1. Observe that

∆ · yd +
d∑

j=1

kj,i · xj−1 = ∆ · Pxi
(x) + vj,i · xj−1

Since ∆ is distributed uniformly over Fq in the viewpoint of A and Pxi
(x) ̸= 0 for x /∈ xi then

the probability of aborting is negligible at most O(1/2q). This concludes the proof.

Note that the output v of H is chosen depending on the concrete structure of PSI and the target
setting (semi-honest or malicious). This parameter is detailed in the section 4.2 for a semi-honest
setting and the section 4.3 for a malicious setting.

4.2 A new semi-honest PSI from mOPRF

A variant of BaRK-OPRF. We now propose a variant of our BaRK-OPRF to deal with the case
when the size of each tuple input is not necessarily equal to d. This means that the receiver now can
divide the input set to N tuples xi and each tuple has less than or equal to d items. Meanwhile, the
sender is not allowed to learn about how many exactly items are in each tuple. This functionality can
be obtained from our BaRK-OPRF plus a small extra cost, i.e, a subfield VOLE of length N over the
subfield F2.
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The idea is as follows. The receiver’s input set X = {x1,x2, . . . ,xN} ⊆ Fp where xi = (x
(1)
i , · · · , x(ji)

i ),
ji ≤ d. The polynomial associated to {xi}i≤N will be expressed as a polynomial of degree d:
Pxi

(X) =
∏ji

j=1(X − x
(j)
i ) =

∑d+1
j=1 cj,i ·Xj−1 where cj,i ∈ Fp.

As a result, the set of the coefficients of Pxi
(X) = (c1,i, c2,i, . . . , cd+1,i}. We remark that, compared

to the associated polynomial in our original BaRK-OPRF which has a constant coefficient of degree
d of 1, in our variant version this coefficient will equal 0 or 1 since the degree of Pxi

(X) is less than
or equal to d. So, it requires (d + 1) masks for this polynomial instead of d, but the mask for the
coefficient of degree d only needs to be in F2. For each tuple, we require an additional value ui ∈ F2,
so in total we need an additional subfield VOLE of length N over the subfield F2.

More formally, the sender and receiver invoke a subfield VOLE of length n over the subfield Fp

as before (all the notations in figure 3 are reused), and additionally invoke another subfield VOLE
instance over the subfield F2 of length N with an inverse role, while the receiver gets u′ ∈ FN

2 ,
and v′ ∈ FN

q the sender holds ∆ ∈ Fq (∆ is the same for each time invoking subfield VOLE) and
w′ := ∆ · u′ + v′. The receiver sends to the sender vectors zi as before, and an extra vector z′

defined as z′i := cd+1,i − u′
i for i ∈ [1, N ]. The receiver outputs on input x ∈ xi are computed as

F (i, x) = H(i|t|x , v′i · xd +
∑d

j=1 vj,i · xj−1). On the other hand, the sender defines their PRF values
on input (i, y) where i ∈ [1, N ], y ∈ Fp as F (i, y) = H(i|t|y , (w′

i +∆z′i) · yd +
∑d

j=1 kj,i · yj−1).

Main construction of a new PSI. The sender and the receiver have two input sets X =
{x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}. Assume that all of these elements have the bit-length ℓ.
Intuitively, our BaRK-OPRF is constructed from subVOLE to handle the case when having multiple
items per bin. Then this specialized BaRK-OPRF can combine with some hashing techniques to form
an efficient PSI protocol. In the next part 4.2, we discuss these types of hashing. Our PSI protocol
is described in Figure 4; it builds upon the protocol of [KKRT16] using GCH and BaRK-OPRF. For
simplicity, we describe our protocol directly with generalized Cuckoo hashing; adapting the protocol
to other variants is immediate. We elaborate on our protocol below. In our protocol, the receiver first
uses (d, k)-Cuckoo hashing to map his input set Y to a table with N bins, note that the bit-length
of the values stored in a bin is ℓ − logN insted of ℓ. Depending on the size of n, we use one of two
approaches to handle the bins which are not full (the threshold was chosen empirically to optimize
communication).
– If n ≥ 220, the variant of our BaRK-OPRF (using an additional subfield VOLE over F2) is used;

for such sizes, the concrete cost of implementing the additional sVOLE vanishes.
– Otherwise, when n < 220, the receiver adds dummy items to bins such that each bin contains

exactly d items. To avoid collisions between the dummy items and the elements in the same bin
of the sender, we pad an extra bit to all items in the following way: i|x|b where i is the index of
hash function corresponding with the stored value x while b = 1 if x is a dummy item added and
b = 0 otherwise.

In both case, the sender computes k · n PRF evaluations and sends (shuffled) to the receiver, who
compares them with his OPRF outputs, and outputs the intersection set. To reduce the computational
cost in this step, the sender can send separately each set Hi (i ∈ [1, k]) which contains the PRF outputs
of each x ∈ X with the related bin hi(x). Then for each element, the receiver only needs to search
for one set (among k sets Hi) of n items instead of k · n.

Alternative hashing methods. There are two hashing schemes that can be fit into our PSI struc-
ture.

2-choice hashing [PRTY19] is a variant of Cuckoo hashing where one item x is assigned to one
of two bins h1(x) or h2(x). However, there is no restriction on the number of items per bin and an
item is put in a bin which already has fewer items. [PRTY19] proposes both theoretical references
and heuristic parameters for 2-choice hashing, which require only a small number of dummy items.
Let us assume we have n items and 2 hash functions; using 2-choice hashing allows to map n items to
N bins in time O(n log n) where each bin contains at most L = ⌈n/N⌉ + 1 items with a probability
1−O(1/N)L−1.

Simple hashing uses one hash function h to map an item x to bin h(x). For security, the number
of items per bin can leak some information then it requires padding each bin with dummy items until
having an equal number of items per bin. With very high probability, for N = O(n log n) bins, the
maximum possible items per bin is O(log n). The percentage of the occupation of dummy items is
higher than others. However, simple hashing avoids ambiguities about where an item can be placed,
a property which is crucial in the malicious setting.
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PARAMETERS:

– The sender and the receiver have respectively input sets X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn},
all elements of bit-length ℓ.

– A (d, k)-generalized Cuckoo hashing (GCH) scheme mapping n items to N bins by k hash functions
h1, h2, . . . , hk : {0, 1}∗ → [N ] where Nd > n and d = O(1) (see Section 4.2).

PROTOCOL:

1. The receiver uses (d, k)-Cuckoo hashing with k hash functions to map the elements in Y to the table B
consisting of N bins, where each bin i has ji ≤ d items.
Denote yj,i is an element in Y assigned to position j of bin i and its stored value in table B is y′

j,i.
2. Depending on the size of n, there are two alternatives:

(a) n ≥ 220, the sender and receiver invoke our variant of Πoprf where the receiver uses the input set
YB = {y1,y2, . . . ,yN} defined as follows:
– yi = {r1,i, r2,i, . . . , rji,i}.
– rj,i = t ∥ y′

j,i where t is index of a hash function such that ht(yj,i) = i.
(b) n < 220, the sender and receiver directly invoke the Πoprf where the receiver uses the input set

YB = {y1,y2, . . . ,yN} defined as follows:
– yi = {r1,i, r2,i, . . . , rd,i}.
• For j ≤ ji: rj,i = t ∥ y′

j,i ∥ 1 where t is index of hash function such that ht(yj,i) = i.
• Otherwise, rj,i = t ∥ dummy value ∥ 0 where t←r [1, k].

3. The receiver obtains n instances OPRF:

Y ′ = {PRF(i , ri,j) | i ∈ [1, N ] , j ≤ ji}

4. The sender uses the k hash functions to map the n element in X to the N bins. Let xt denote the value
stored at bin ht(x) when mapping x for t ∈ [1, k].

5. The sender computes the sets of k · n PRF outputs:
(a) For n ≥ 220: Ht = {PRF(ht(x) , t ∥ xt) | x ∈ X} for t ∈ [1, k].
(b) For n < 220: Ht = {PRF(ht(x) , t ∥ xt ∥ 1) | x ∈ X} for t ∈ [1, k].
Then the sender randomly permutes and sends each set to the receiver.

6. The receiver finds the intersection:
– if y ∈ Y is mapped to the position j of bin i by function ht then check whether PRF(i, ri,j) ∈ Ht

(ri,j is defined depending on n).
– Outputs the intersection set.

Fig. 4. Our new semi-honest PSI protocol from BaRK-OPRF

Parameters. In this section, we discuss concrete parameters used in our new PSI semi-honest
protocol. We use κ = 128 and λ = 40. The protocol contains several parameters:

The length of OPRF output. The output domain of PRF would be {0, 1}v where v = λ + 2 log2(n)
guarantees a 2−λ bound on the collision probability of PRF outputs among the two size-n sets.
Furthermore, communicating the hashes can be reduced to communicating only ≈ λ + log n bits
per hash, using a heuristic technique of [TLP+17] that directly leads to an optimization of our PSI
protocol.

The size of Fp and Fq in BaRK-OPRF. After using permutation-based hashing, each element is
mapped to a bin with a stored value in this bin, the bit-length reduces from ℓ to ℓ− logN . The input
set of BaRK-OPRF in PSI protocol constructs from stored values concatenating with some extra bits.
Then the bit-length of an input element of BaRK-OPRF is computed as ℓ− logN + 1 if n ≥ 220 or
ℓ− logN + 2 otherwise, i.e, the size of q = 2ℓ−logN+1 or q = 2ℓ−logN+2 respectively.

Generalized Cuckoo hashing. We use a (d, k)-general cuckoo hashing scheme without stash. The
parameters are chosen such that the failure probability is 2−λ. When d = 1, k = 3 these parameters
are identical with KKRT except for the number of bins increases slightly to N = 1.3n which is a
trade-off to obtain no stash. Even with the higher number of bins, our PSI protocol significantly
outperforms KKRT.
To minimize the overall communication, we set k = 2 to reduce the cost of sending k ·n PRF outputs.
We used a Python script to simulate randomly assigning n values to N = c · n bins using (d, 2)-
Cuckoo hashing, for several values of d and c, and for n = 29, 210, 211, 212. For a value of c as low
as 0.65, we never observed any insertion failure over 107 trials for each values of n (for n = 212, we
could only do 106 trials), when using d = 3 items per bins. For d = 2, the failure probability became
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noticeable already for c ≈ 1. Based on known theoretical analysis of (d, k)-Cuckoo hashing, the failure
probability is known to scale inverse polynomially with n. Therefore, we expect that for reasonably
large values of n (e.g. n ≥ 218), our parameters should guarantee a failure probability significantly
below 2−40.

2-choice hashing. Following the analysis of [PRTY19], we set the number N of bins to n/3, and the
maximum load d = L + 1 to 4. This guarantees a failure probability which we empirically estimate
to be 1/NL−1, which is below 2−40 for all values of n above 214.

Simple hashing. Eventually, for simple hashing, we set arbitrarily the number of bins N to n/10,
and derive the corresponding value of d from Figure 5 in [RR17]. We note that the parameters
for simple hashing are much less heuristic that the other two, in that concrete bound can actually
be achieved which are relatively close to the heuristic (computer-estimated) bounds. For example,
[PRTY19] experimentally observes that for a 2−40 failure probability, setting d = 47 suffices when
using N = n/10 bins. Using a standard Chernoff bound, it is in fact straightforward to prove formally
that d = 49 already suffices to reach this failure probability, which is very close to the experimental
bound. In contrast, experimental bounds in more complex hashing variants are typically much more
distant from provable bounds. The choice of N = n/10 is entirely arbitrary: any smaller N leads
to better communication, but requires using higher values of d, leading to worse computation (due
to the need to perform N polynomial interpolations with degree-d polynomial). This allows for a
smooth tradeoff between communication and computation, where better computational power can
be used to further reduce the communication. At the extreme end of the spectrum, using N = 1
and d = n requires one expensive degree-n polynomial interpolation, but can achieve extremely low
communications, e.g. 93n bits of communication for ℓ = 32 and n = 220.
Efficiency. We compare the communication of our protocols, using three hashing methods, on Ta-
ble 1. Regarding computation, we provide a breakdown of the computation costs of our protocols
in Appendix C of supplementary material. Briefly, though, compared to the protocol of [RS21], and
when using a standard choice of parameters for our protocol (e.g. n = 220, and using generalized
Cuckoo hashing with d = 3 and N = 0.65n), our protocol requires essentially a length-1.9n VOLE
(with a small subfield), 0.65n degree-3 polynomial interpolations (roughly 3n multiplications over a
small field), and computing n hashes. In contrast, the enhanced version of [RS21] (using the OKVS
of [GPR+21] and the VOLE of [CRR21]) will require solving a linear system to set up an OKVS (this
requires on the order of (1.3 log n+λ)3 multiplications over F2128 , plus O(λn) operations), computing
a length-1.3n VOLE (over F2128), and computing 2n hashes. The cost of the VOLE dominates that of
performing n hashes, so for sufficiently large set sizes (n≫ 220), the protocol of [RS21] should become
roughly 30% more efficient than our protocol computation-wise. For smaller sets (e.g. n ≈ 216), the
cost of setting up the OKVS becomes more significant, requiring around 20n field multiplications over
F2128 , hence the computational efficiency of our protocol becomes roughly on par with that of [RS21].
Of course, real runtimes can vary due to e.g. cache misses, so these estimations should only be viewed
as a first order approximation indicating that the computational efficiency of our protocols is close
to that of [RS21] (but likely slightly larger).
In terms of computation, the main computational overhead comes from performing N polynomial
interpolations of only degree-d polynomials. Based on our analysis, to achieve 2−λ = 2−40 probability
of insertion failure, the following parameters can be chosen:
– N = 0.65n and d = 3 for generalized Cuckoo hashing (GCH),
– N = 0.33n and d = 4 for two-choice hashing,
– N = n/10 and d ≈ 46 for simple hashing.

As the above illustrates, the cost of performing N polynomial interpolations will be very small for
GCH, two-choice hashing, but becomes higher for simple hashing (though performing n/10 degree-46
interpolations remains reasonably fast).

4.3 A malicious PSI from mOPRF

In this section, we propose a maliciously secure PSI protocol based on our BaRK-OPRF (section
4.1) and simple hashing combining a permutation-based hash function. The PSI protocol is shown
in figure 5 and its security against a corrupted adversary is proven in theorem 2. The estimated
overhead communication cost of this PSI is Nd(ℓ − logN) + (κ + log n)n + o(n). Observe that the
PSI protocol in section 4.2 is insecure against malicious settings since the general hashing scheme
does not allow the simulation in ideal world. To handle this we use simple hashing schemes with only
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one permutation-based hash function. This protocol is constructed from the natural approach used
recently in [PRTY19, PRTY20, CM20, RS21], i.e, Alice (a sender) and Bob (a receiver) invoke the
Foprf then Bob gets the PRF values on his input and Alice enables to compute the PRF on any input
so Alice computes on her input after that she sends these PRF values to Bob; Bob compares and
outputs the intersection.

PARAMETERS:

– Alice (sender) and Bob (receiver) have respectively input set X = {x1, x2, . . . , xn} ∈ Fp and Y =
{y1, y2, . . . , yn} ∈ Fp, all elements of bit-length ℓ.

– A random hash functions h : {0, 1}∗ → [N ].
– A Permutation-based hashing Perh,X maps a set X to table BX consisting of N bins such that each bin

has d slots where Nd > |X|, and d = O(1). Denote Per(x) := (i, x′) where x′ is the stored value of x in
bin i which defined by h and x then Per−1(i, x′) = x.

PROTOCOL:

1. Bob uses Per to map Y to BY , for each empty slot in each bin BY [i], put here a dummy item of length
ℓ− logN .

2. Alice sends (sender, id) and Bob sends (receiver, id,BY) to Foprf then
– Bob receives the Y ′ = {F (i, y′) | y′ ∈ BY [i]}i≤N .

3. For each x ∈ X, Alice queries x to Foprf with corresponding input (i, x′) such that Per(x) = (i, x′), then
Alice gets F (i, x′). Alice sends to Bob

U = {F (i, x′) | x ∈ X ∧ Per(x) = (i, x′)}

4. Now for each y ∈ Y , Per(y) = (i, y′), if F (i, y′) ∈ U then Bob outputs y as an element in the intersection.

Fig. 5. Our malicious PSI protocol based on Foprf

Intuitively, in a malicious setting, when the sender is corrupted, the simulation needs to extract
the sender’s input set X from the queries to Foprf and the set U . Denote F (y) := F (i, y′) where
Per(y) = (i, y′) and the set of all elements queried to Foprf is X ′ where n′ = |X ′|. The extraction
procedure is that X = {x ∈ Fp | x ∈ X ′ ∧ F (x) ∈ U}. Observe that if there exist two distinct
elements x1, x2 ∈ X ′ such that F (x1) = F (x2) ∈ U then more than one element is extracted to X.
The probability of existing collision is 2−v+2 logn′

then one approach to avoid collision is choosing
v = 2κ. However, when v = 2κ, the overhead communication cost significantly increases.
Therefore, another approach is that Sim only extracts elements x ∈ X ′ if its PRF is distinct and
appears in U , i.e, x ∈ X ′ such that F (x) ∈ U and ∄x′ ∈ X ′ where F (x) = F (x′). [RS21] proposed
this simulation and claimed that if the output domain of PRF v = κ then this simulation is correct
and can not be distinguishable from the real protocol. We point out the proof of [RS21] has a gap
and show that the output of PRF should be κ+ log n.

Indeed, if there exist some x1, x2 ∈ X ′ such that F (x1) = F (x2) then Sim only needs to extract
x1, x2 when one of them is in Y . Let assume x1 ∈ Y , the probability of F (x2) = F (y) for some y ∈ Y
is 2−v+log (nY ) since Y is first fixed before the function F is sampled. [RS21] shows nY = O(κ) then
the security can hold if v = κ. However, this should be v = κ+ log nY since nY = O(poly(κ)) instead
of O(κ). In particular, PSI protocols in [RS21] are targeted on large input set because of the usage
of vector OLE.

Theorem 2. The PSI protocol on Figure 5 securely realizes the ideal functionality Fpsi (figure 8)
over the field Fp for set size n and malicious set size nX = n, nY = Nd with statistical security
against malicious adversaries in Foprf hybrid model.

Proof. Alice is corrupted. Sim interacts with Alice as below:

– Sim emulates Foprf , extracts the set X ′ containing all elements queried to Foprf . Then Sim defines
a set

X∗ = {x ∈ X ′ | ∄x′ ∈ X ′, x ̸= x′ : F (x) = F (x′)}
– From the set U , Sim defines

X := {x ∈ X∗ | F (x) ∈ U}
then inputs X to Fpsi and obtains the set X ∩ Y .
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The simulation is indistinguishable from the real protocol by following hybrids:

– Hybrid 0. The same as real protocol. Bob is honest with his input Y and Foprf is executed perfectly.
– Hybrid 1. Sim emulates the functionality Foprf , receiving the queries (i, x′) from A. For each query

(i, x′), Sim determines an element x such that Per(x) = (i, x′) then let X ′ be the set containing
of all such elements. Sim defines

X∗ = {x ∈ X ′ | ∄x′ ∈ X,x ̸= x′ : F (x) = F (x′)}

– Hybrid 2. After A sends the set U , on behalf of Bob, Sim gets U then defines the set

X := {x ∈ X∗ | F (x) ∈ U}

Sim will abort if there exist two distinct values x1, x2 ∈ X ′ such that F (x1) = F (x2) and one of
them being in Y . Since Y is first fixed and then the function F is sampled then w.l.o.g assume
x1 ∈ Y , the probability of F (x2) = F (y) for some y ∈ Y is nY /2

v which is negligible when
v = κ+ log(nY ).
Observe that X∗ can have more than n elements but |X| is always less than n since |U | = n and
X∗ contains only elements with distinct PRF values.

– Hybrid 3. Sim inputs X to Fpsi and obtains the set X ∩ Y . Sim outputs it as the output of a
honest Bob.

Bob is corrupted. Sim interacts with Bob as below:

– Sim emulates Foprf functionality. Sim gets BY being the input set of receiver to Foprf and then
Sim samples a uniformly random sequence Z = {Zi,y′}i≤N as the output PRF value of the set
BY , where Zi,y′ corresponds to y′ ∈ BY [i].

– From BY , Sim extracts Y , inputs Y being the receiver’s input to Fpsi, receiving I = X ∩ Y .
– Sim sends to Bob a set U containing of
• The set of |I| values: {Zi,y′ |y ∈ I ∧ Per(y) = (i, y′)}.
• n− |I| uniformly random values in {0, 1}v \ Z.

The simulation can not distinguish from the real protocol by following hybrids:

– Hybrid 0. The same as real protocol except Sim emulates Foprf functionality. Sim gets a set BY as
the input set of Bob to Foprf and then Sim samples a uniformly random sequence Z = {Zi,y′}i≤N

as the output PRF value of the set BY , where Zi,y′ ∈ {0, 1}v corresponds to y′ ∈ BY [i].
– Hybrid 1. Sim computes the set

Y = {Per−1(i, y′) | ∀y′ ∈ BY [i], i ∈ [1, N ]}

Note that |Y | ≤ Nd since corrupted Bob is only allowed to input up to Nd elements to Foprf . Sim
inputs Y to Fpsi on behalf of receiver, receiving I = X ∩ Y .

– Hybrid 2. Sim sends to Bob the set U of n elements consisting of
• The set of |I| values: {Zi,y′ |y ∈ I ∧ Per(y) = (i, y′)}.
• n− |I| uniformly random values in {0, 1}v \ Z.

The simulation can not be distinguishable from the real protocol since the output of F is pseu-
dorandom over {0, 1}v while {0, 1}v \ Z = O(2κ). This concludes the proof.

In general, the malicious PSI (figure 5) has a communication cost that depends on the security
parameter κ and is dominated by κn. We now present a new PSI protocol that is secure in malicious
setting via a dual execution while its communication cost only depends on the statistic parameter λ
and the set size n. The idea of using a dual execution has been used in [RR17] but when combining
this with our BaRK-OPRF it achieves efficient results, i.e, the total communication cost is only
2Nd(ℓ− logN)+n(λ+ log n)+ o(n). The detailed construction of dual PSI is shown in the appendix
B of supplementary material.
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5 A standard PSI from subfield-ring OLE
In this section, we describe a new PSI protocol, which builds upon a (simple variant of) a pseudoran-
dom correlation generator for the ring-OLE correlation [BCG+20b]. Our protocol enjoys a number
of important features: it is in the standard model, achieves malicious security at essentially no cost,
has low communication (competitive even with the best maliciously secure PSI protocols in the ran-
dom oracle model), and reasonable computation (albeit superlinear in n). Our protocol can also be
generalized to a powerful notion of batch non-interactive PSI, where (after a small logarithmic-cost
preprocessing step with each server) a client can broadcast a single encoding of his database, and then
obtain the intersection with any of the server databases at any time after receiving a single message
from this server. We believe that this functionality itself is of independent interest.

5.1 Semi-Honest Batch Non-Interactive PSI from Subfield Ring-OLE

We describe a new PSI scheme in the semi-honest model. Our protocol enjoys two interesting features:
(1) it is in the standard model, and (2) it is a batch non-interactive protocol, a useful communication
pattern which we describe afterwards. The full construction is represented on Figure 5.1.

Theorem 3. The PSI protocol on Figure 5.1 securely realizes the ideal functionality Fpsi (Figure 8)
over the field Fp with set size n and malicious set size n′ = nX = nY = 2n, with statistical security
against augmented semi-honest adversaries in the Fsole hybrid model.

Proof. We first show that the protocol is correct with probability at least 1− n2/q = 1− 2−λ using
q = λ+ 2 log n. It follows from the description of the protocol that u = pAb0 + pBb

′
0, where b0, b

′
0 are

uniformly random degree-n polynomials over Rq. Then x ∈ A ∩ B implies pA(x) = 0 ∧ pB(x) = 0,
which implies u(x) = 0. In the other direction, it holds by Lemma 8 that the probability that pA and
b′0 share a common root (i.e. gcd(pA, b′0) ̸= 1) is at most n2/q. Then,

x ∈ I =⇒ pA(x) = 0 ∧ U(x) = 0

=⇒ pA(x) = 0 ∧ pB(x) · b′0(x) = u(x)− pA(x) · b0(x) = 0

=⇒ pA(x) = 0 ∧ pB(x) = 0 (since gcd(pA, r
0
B) = 1 and b′0 ̸= 0 w.h.p),

hence I ⊆ A ∩B, which concludes the proof.
We now turn our attention to security. We use the following fact: given any set S, denoting by

pS ∈ Rp the polynomial whose set of roots is S, it holds that

u = pA · b0 + pB · b′0 = pA∩B ·
(
pA\B · b0 + pB\A · b′0

)
,

where pA\B , pB\A ∈ R2
p are two polynomials of degree at most n and gcd(pA\B , pB\A) = 1.

Alice is corrupted. We describe a simulator Sim which emulates Bob:

– (Setting up the correlation) Sim emulates the functionality Fsole: when Alice queries Fsole, Sim
samples and sends two random polynomials (a, sA)←r Rp ×Rq.

– (Client set encoding) upon receiving tA, Sim defines pÃ = a − tA and obtains the roots Ã of pÃ
(note that Bob is ‘augmented semi-honest’, so pÃ is well-formed, but Ã might differ from A). Sim
queries the PSI functionality Fpsi on behalf of Alice with input set Ã and obtains Ã ∩B.

– (Server-to-client message) Sim generates a random degree-n polynomial b1 ∈ Rq and picks v ←r

Rq. Sim sets u← pÃ∩B · v and tB ← u+ pÃb1 ·Xn − sA. Sim sends (b1, tB) to Alice.

We prove that the simulated protocol is indistinguishable from an honest execution through a sequence
of hybrids: in the first game, Sim simulates Fsole honestly, and behaves as a honest Bob (using pB)
otherwise. Sim also extracts pÃ from tA = a − pÃ and queries A to the PSI functionality on behalf
of Alice in the ideal world, obtaining Ã ∩B. This game is perfectly indistinguishable from an honest
execution of the protocol. Then, in the second game, Sim computes tB as pÃ∩B · v + pÃb1 ·Xn − sA,
where v, b1 are uniformly random degree-n polynomials over Rq.

It remains to show that the second game is indistinguishable from the first game. Recall that
u = pÃ∩B ·

(
pÃ\B · b0 + pB\Ã · b′0

)
when the parties play honestly, but Alice uses input Ã. From

the viewpoint of Alice, both b0 and b′0 are distributed as uniformly random degree-n polynomials
over Rq. By Lemma 9, this implies that pÃ\B · b0 + pB\Ã · b′0 is distributed as a uniformly random
degree-n polynomial v ∈ Rq. By construction, u = tB − pÃb1 · Xn + sA, hence tB is distributed as
pÃ∩B ·v+pÃb1 ·Xn−sA where v is a random degree-n polynomial over Rq. This concludes the proof.
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Bob is corrupted. We describe a simulator Sim which emulates Bob:

– (Setting up the correlation) Sim emulates the functionality Fsole: when Bob queries Fsole, Sim
samples and sends two random polynomials (b, sB)←r R2

q.
– (Client set encoding) Sim sends a uniformly random polynomial tA ←r Rq.
– (Server-to-client message) Upon receiving (b1, tB), Sim computes w ← tB − sB + tAb and defines

B̄ to be the set of roots of w (since Bob is augmented semi-honest, w = pBb
′
0 has at least n roots).

Sim queries B̄ to Fpsi on behalf of Bob in the ideal world, and gets B̄∩A. Sim outputs Ī ← B̄∩A.

tA is distributed exactly as in the honest protocol by construction. It remains to show that Sim’s
simulated output Ī is the same as the honest output Ĩ = A ∩ B̃ with overwhelming probability,
where B̃ is the input used by Bob when computing w = pB̃b

′
0 (which can differ from Bob’s real

input B). This follows from Lemma 8: since Bob is (augmented) semi-honest, w = pB̃b
′
0 where b′0 is a

uniformly random degree-n polynomial, hence by Lemma 8, gcd(pA, b′0) = 1 with probability at least
1−n2/q. Therefore, with probability at least 1−n2/q = 1− 2−λ (using q = λ+2 log n), it holds that
Ī = A ∩ B̄ = A ∩ (B̃ ∪ roots(b′0)) = A ∩ B̃ = Ĩ. This concludes the proof.

Above, “augmented semi-honest security” refers to a strengthening of honest-but-curious corrup-
tion where the adversary is allowed to change the corrupted parties’ inputs. This is a standard
strengthening of semi-honest security, which has been argued to better capture real-world secu-
rity [HL10]. It will also facilitate upgrading security to the malicious setting later on.

Batch non-interactivity. To securely realize the functionality Fsole, we rely on the PCG-based
protocol of [BCG+20b] (using a straightforward adaptation to the subfield setting), which is secure
under the ring-LPN assumption. Interestingly, instantiating the subfield ring OLE this way allows to
import a powerful feature of the PCG of [BCG+20b], which is its programmability : when generating
a ring-OLE correlation, the receiver can ensure that her output a remains identical across multiple
instances of the protocol with different parties.

This feature enables the following communication structure: after a short (logarithmic-communication)
interaction with N servers, a client, playing the role of Alice with input set A, can broadcast a sin-
gle compact encoding of her dataset to all the servers (with input sets B1 · · ·BN ). Afterwards, each
server Bi can at any time send a single message mi to Alice, from which she can recover A ∩ Bi

without further interaction. To our knowledge, this batch non-interactive communication pattern was
never achieved by any prior proposal; we believe that it can make our protocol appealing in realistic
scenarios.

More concretely, after a logarithmic-communication preprocessing phase where Alice sets up PCG
seeds with each of servers, Alice broadcasts the value tA = a− pA to everyone, which communicates
2n log p ≈ 2ℓn bits. This message can be seen as a compact public encoding of her dataset (it is
only twice as large as Alice’s set). Afterwards, each server can complete the protocol of Figure 5.1
by sending a single message (b1, tB) to the receiver, of length 3n log q ≈ 3(λ + 2 log n)n, from which
the receiver can locally recover X ∩Xi. Furthermore, using the encoding technique of [TLP+17], the
λ+2 log n term can be reduced to λ+log n (the improvement is based on the observation that for an
appropriate ordering, n random elements of a set of size 2λ+2 logn are on average at distance 2λ+logn

for each other, hence the cost of transmitting them can be reduced to essentially λ+log n per element
by sending the distance between consecutive elements instead).

Efficiency. The communication cost of protocol (Figure 5.1) is n · (2 log p + 3 log q) + o(n) bits
of communication. Here, the size of the subfield Fp depends only on the bitsize ℓ of the items in
the sets A and B, hence we can set log p = ℓ. As we will see in the analysis, log q must be set to
log q ≈ λ + 2 log n to guarantee λ bits of statistical security. This leads to a total communication of
n · (2ℓ+ 3λ+ 6 log n) + o(n) bits, which is reduced to n · (2ℓ+ 3λ+ 3 log n) + o(n) with the encoding
of [TLP+17]. The o(n) term above captures the cost of distributing the PCG seeds of the subfield
ring-OLE (we discuss the concrete value of o(n) later on, for our maliciously secure version of the
protocol).

Regarding computation, the computational cost scales as O(n log2 n) due to the fast polynomial
interpolations, or as O(n log n) when using cyclotomic rings. We provide a concrete analysis of the
computational cost of the maliciously secure version of our protocol in Section 5.2.
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PARAMETERS:

– Two rings Rp = Fp[X]/F(X) ⊆ Rq = Fpt [X]/F(X), where F (X) has degree 2n+ 1.
– The sender (Alice) and receiver (Bob) have respective input sets A = {a1, a2, . . . , an} ⊂ Fp

and B = {b1, b2, . . . , bn} ⊂ Fp.
– A subfield ring-OLE in the ring Rq over the subring Rp.

PROTOCOL:

1. (Setting up the correlation) Alice and Bob encode their sets to pA =
∏n

i=1(X − ai),
pB =

∏n
i=1(X−bi) respectively, and invoke Fsole to generate a subfield ring-OLE correlation over

Rp,Rq: Alice receives (a, sA) ∈ Rp×Rq and Bob receives (b, sB) ∈ R2
q such that sA+sB = ab.

2. (Broadcasting the client set encoding) Alice computes and sends tA = a− pA to Bob.
3. (Server-to-client message) Bob sets s′B ← sB − tAb. Then, Bob decomposes b as b =

b0 + b1 ·Xn (where b0, b1 are degree-n polynomials), sets s′B ← sB − tAb, and picks a random
degree-n polynomial b′0 over Rq. He sends b1 and tB ← s′B + pBb

′
0 to Alice.

4. (Output) Alice sets u← tB − pAb1 ·Xn + sA; note that u = pAb0 + pBb
′
0. Alice outputs the

set I = {x ∈ A | u(x) = 0}.

Fig. 6. Augmented semi-honest PSI protocol based on ring-OLE

5.2 Maliciously Secure PSI in the Standard Model

In this section, we upgrade the security of our protocol to the malicious setting. Our upgrade intro-
duces only a minimal communication overhead to the protocol, independent of the set sizes n. The
full protocol is represented on Figure 5.2.

Theorem 4. The PSI protocol on Figure 5.2 securely realizes the ideal functionality Fpsi (Figure 8)
over the field Fp with set size n and malicious set size n′ = nX = nY = 2n, with statistical security
against malicious adversaries in the Fsole-hybrid model.

Proof. We first consider the case where Alice is corrupted. The simulator Sim behaves as follows:

– He waits for the adversary to send (a, sA) to Fsole and receives tA from Alice. Sim defines pA ←
a− tA and computes Ã = {x ∈ Fp′ | pA(map(x)) = 0}, and inputs Ã to the PSI functionality on
behalf of Alice, receiving Ã ∩B.

– He picks a uniformly random degree-n polynomial b1 over Rq and sends b1 to Alice.
– Upon receiving y from Alice, Sim computes s′A ← sA − pAb1 ·Xn. Then, if either (1) pA(0) ̸= 1

or (2) y ̸= s′A(0), Sim aborts on behalf of Bob. Otherwise, Sim simulates tB as in the augmented
semi-honest model, picking v ←r Rq and setting tB ← pÃ∩B · v + pAb1 ·Xn − sA. Sim sends tB
to Alice.

The analysis of this simulator is similar to the analysis in the augmented semi-honest model, up
to two distinctions: first, the extracted polynomial pA is not guaranteed to be of degree n anymore –
but this corresponds to a malicious adversary using a set of larger size n′ ≤ 2n, which is allowed by
the functionality. Second, we must show that Sim correctly emulates the behavior of an honest Bob
when deciding to abort based on the checks (1) and (2). We show that the simulation is statistically
close to the behavior of an honest Bob. To do so, we consider three cases:

Case 1: y = s′A(0) and pA(0) = 1. In this case, Sim does not abort. We show that an honest Bob
would not abort either:

s′A(0) + s′B(0) = sA(0) + sB(0)− (pA(0)(b1 ·Xn)(0) + tA(0)b(0))

= sA(0) + sB(0)− (pA(0)(b1 ·Xn)(0) + (a(0)− pA(0))b(0))

= a(0)b(0)− (pA(0)(b1 ·Xn)(0) + (a(0)− pA(0))b(0))

= −(b1 ·Xn)(0) + b(0)

= b0(0),

hence Bob does not abort.

Case 2: pA(0) ̸= 1. In this case, check (1) of Sim causes an abort. We show that when this is the
case, Bob would abort as well with high probability, i.e., that y ̸= b0(0)− s′B(0). Indeed,

b0(0)− s′B(0) = b0(0)− sB(0) + tA(0)b(0)
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= b0(0)− a(0)b(0) + sA(0) + tA(0)b(0)

= b0(0)− a(0)b(0) + sA(0)− pA(0)b(0) + a(0)b(0)

= b0(0) · (1− pA(0)) + sA(0),

Hence if Alice manages to send y = b0(0)− s′B(0), it implies that (y− sA(0)) · (1− pA(0))
−1 = b0(0).

The left hand side is a value known to Alice, but the right hand side is the constant coefficient of b0,
which is a uniformly random independent element of Fq. The probability that Alice does not cause
an abort is therefore bounded by 1/q < 1/2λ, hence Bob aborts with probability at least 1− 1/2λ.

Case 3: pA(0) = 1 but y ̸= s′A(0). In this case, check (2) of Sim causes an abort. As we saw in Case 1,
it holds that s′A(0) = b0(0)− s′B(0), hence y ̸= b0(0)− s′B(0), hence Bob necessarily aborts.

Overall, Sim’s emulation of Bob in the pA check phase is 1/2λ-close to the honest game, which
concludes the proof.

We now turn our attention to the case where Bob is corrupted. The simulator Sim behaves as
follows:

– He waits for the adversary to send (b, sB) to Fsole and sends a uniformly random tA ←r Rp on
behalf of Alice.

– Upon receiving b1 from Bob, Sim defines b0 ← b− (b1 ·Xn) (note that b0 might not be a degree-n
polynomial) and sets s′B ← sB − tAb. He sends y ← b0(0)− s′B(0) to Bob.

– Upon receiving tB from Bob, Sim computes w ← tB − sB + tAb and defines the set B̄ = {x ∈
Fp′ | w(map(x)) = 0}. Sim queries B̄ to Fpsi on behalf of Bob in the ideal world, and gets B̄ ∩A.
Sim checks whether tB(1)− s′B(1) ̸= 0. It outputs Ī ← B̄ ∩A if this holds, and aborts otherwise.

The analysis is identical to that of the augmented semi-honest model (note that |B̄| ≤ 2n by
construction), up to Sim’s check that tB(1)−s′B(1) ̸= 0. We show that with overwhelming probability,
Sim aborts if and only if the honest Bob aborts at this stage. Recall that Bob aborts if u(1) = 0.
Then

u(1) = tB(1)− pA(1)(b1 ·Xn)(1) + sA(1)

= tB(1) + sA(1) since pA(1) = 0

= tB(1) + a(1)b(1)− sB(1)

= tB(1) + a(1)b(1)− s′B(1)− tA(1)b(1)

= tB(1) + pA(1)b(1)− s′B(1)

= tB(1)− s′B(1) since pA(1) = 0,

hence Sim aborts iff Bob aborts. This concludes the proof.

Efficiency. Our malicious protocol has minimal communication overhead over our augmented semi-
honest protocol. The main overhead stems from starting from a slightly larger field in which two
elements can be “reserved elements”. If p′ is a prime power and ℓ ≈ log p′, the price to pay is therefore
increasing ℓ to log p where p is the smallest prime power above p′ + 2. While an exact expression
would be rather tedious, for any reasonable input size this cost should be negligible (the simplest
strategy is to pick p′ = 2ℓ and p = 2ℓ+1, in which case ℓ is increased by one bit, but much better
encoding methods exist). Therefore, the communication remains n · (2ℓ+3λ+6 log n) + o(n) bits, or
n · (2ℓ+ 3λ+ 3 log n) + o(n) with the encoding of [TLP+17]. We provide a more concrete analysis of
the o(n) term (setting up the ring-OLE) in the malicious setting in the appendix A.5.

Computation cost. Note that our standard model protocol shares with our other protocols the feature
of having a communication independent of κ. Our protocol requires more computation compared to
the best ROM-based protocols, due to its use of polynomial interpolation. However, it still allows for
very fast PSI computation (we estimate a few seconds to compute the intersection between databases
of size 220, on one core of a standard laptop). Concretely, the protocol requires only

– a single degree-n polynomial interpolation, one FFT over a polynomial ring with degree-2n poly-
nomials, and 3 multiplications of degree-n polynomials for the receiver, and

– a single degree-n polynomial interpolation, one FFT as above, 2 multiplications of degree-n poly-
nomials, and a single n-multipoint polynomial evaluation for the sender.
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PARAMETERS:

– A field Fp′ and two rings Rp = Fp[X]/F(X) ⊆ Rq = Fpt [X]/F(X), where F (X) has degree 2n+1
and |Fp′ | ≤ |Fp| − 2. map is an efficient (and efficiently invertible) injective mapping, with
map(Fp′) ⊆ Fp \ {0, 1}.

– The sender (Alice) and receiver (Bob) have respective input sets A = {a1, a2, . . . , an} ⊂ Fp′

and B = {b1, b2, . . . , bn} ⊂ Fp′ .
– A subfield ring-OLE in the ring Rq over the subring Rp.

PROTOCOL:

1. (Setting up the correlation) Alice and Bob encode their sets to pA = c · (X−1) ·
∏n

i=1(X−
map(ai)) with c = −(

∏n
i=1(−map(ai)))

−1 (note that this guarantees pA(0) = 1 and pA(1) = 0)
and pB =

∏n
i=1(X−map(bi)) respectively. Alice and Bob invoke Fsole to generate a subfield ring-

OLE correlation over Rp,Rq: Alice receives (a, sA) ∈ Rp ×Rq and Bob receives (b, sB) ∈ R2
q

such that sA + sB = ab.
2. (Broadcasting the client set encoding) Alice computes and sends tA = a− pA to Bob.
3. (Server-to-client message) Bob sets s′B ← sB − tAb. Then, Bob decomposes b as b =

b0 + b1 ·Xn (where b0, b1 are degree-n polynomials), and sets s′B ← sB − tAb. He sends b1 to
Alice.

4. (Checking pA) Alice computes s′A ← sA − pAb1 · Xn. Alice sends y ← s′A(0) to Bob. If
y ̸= b0(0)− s′B(0), Bob aborts. Else, Bob picks a random degree-n polynomial b′0 over Rq and
sends tB ← s′B + pBb

′
0 to Alice.

5. (Output) Alice sets u← tB − pAb1 ·Xn + sA; note that u = pAb0 + pBb
′
0. If u(1) = 0, Alice

aborts; otherwise, Alice computes the set I = {x ∈ A | u(map(x)) = 0} and outputs I.

Fig. 7. Maliciously secure PSI protocol in the Fsole-hybrid model

Furthermore, both polynomial interpolations only have to be performed over a field F, of size |F| ≈
2ℓ where ℓ is the bit size of the set items (e.g. 32 or 64 bits), and the multipoint evaluation is
over a field of size λ + 2 log n bits. This stands in stark contrasts with previous state of the art
protocols [PRTY19] that relied on polynomial interpolation (on top of using the ROM), where the
interpolations and multipoint evaluations had to be performed over a very large field F of size |F| ≈
2400. By using a cyclotomic ring, the FFTs and polynomial multiplications are much faster than the
interpolations. On Table 1.1, we compare our protocol to the current fastest maliciously secure PSI
protocols [PRTY20,RT21b,RS21].
On the attacks of [AMZ21]. We note that constructing maliciously secure PSI protocols using an
algebraic approach, along the lines of our protocol, is known to be non-trivial and error prone. Indeed,
previous works [GN19] used a similar approach based on polynomial manipulation, OLEs, and the
lemmas 8, 9, to build a malicious PSI protocol. However, their protocol was found to be insecure in
a recent preprint, which described powerful concrete attacks on this proposal [AMZ21]. Intuitively,
the key technical difficulties revolve in both cases around how to handle null polynomials (pA = 0 or
pB = 0). In our specific context, it turns out that our direct use of ring-OLE enables relatively elegant
and simple (in hindsight) strategies to enforce nonzero polynomials. Our modification has almost no
impact on the communication or the computation of our protocol, essentially giving us malicious
security for free (though we note that we still require an additional round of communication). It is
not, however, completely clear how to adapt our strategy to the setting of OLE-based algebraic PSI
in [GN19]. We believe that this provides further support for the intuition that ring-OLE is the right
primitive to build PSI protocols using this algebraic approach (beyond its direct advantage in terms
of communication efficiency).
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Supplementary Material

A Additional Preliminaries

In this appendix, we provide further preliminaries, including necessary preliminaries for our second
construction, described in Section 5.

A.1 Ideal Functionalities and Security Model

The ideal functionality of PSI in the semi-honest and malicious settings are shown on Figure 8. In
the semi-honest setting, the size of a corrupted party’s input set is fixed to n, while in the malicious
setting, the functionality allows a malicious party to use a possibly larger set of bounded size n′ > n.
Since PSI is a special case of secure computation, the security analysis of a two-party PSI protocol is
performed via the standard simulation paradigm, recalled below.

PARAMETERS:

– An arbitrary field F, n, nX , nY public parameters for honest parties and corrupt parties respec-
tively where n ≤ nX , nY .

– There are two parties, a sender with a input set X ⊆ F and a receiver with a input set Y ⊆ F.

FUNCTIONALITY:

– Wait for sender to send the input set X, if |X| > nX and the sender is malicious or if |X| ̸= n
and the sender is honest then abort.

– Wait for receiver to send the input set Y . If |Y | > nY and the receiver is malicious or if |Y | ̸= n
and the receiver is honest then abort.

– The functionality outputs the intersection X ∩ Y to one party.

Fig. 8. Ideal functionality of PSI Fpsi

Semi-honest security. Let viewΠ
1 (X,Y ) and viewΠ

2 (X,Y ) be the view of P1 and P2 in the protocol
Π, outΠ(X,Y ) be the output of P2 in the protocol, and f(X,Y ) be the output of P2 from the ideal
functionality. The protocol Π is semi-honest secure if there exist PPT simulators Sim1 and Sim2 such
that for all inputs X,Y,(

viewΠ
1 (X,Y ), outΠ(X,Y )

)
≈ (Sim1(1

κ, X, n), f(X,Y )) ;

viewΠ
2 (X,Y ) ≈ Sim2 (1

κ, Y, n, f(X,Y ))

Malicious Security. Let f be a two-party functionality and Π be a secure protocol for computing f .
The protocol Π is said to be secure against malicious adversary if for all non-uniform PPT adversary
A in the real model, there exists a non-uniform PPT adversary S in the deal model satisfying:

IDEAL(f,S,i)(X,Y ) ≈ REAL(Π,A,i)(X,Y )

where i ∈ {1, 2} index of corrupted party. IDEAL(f,S,i)(X,Y ) is the output pair of the honest party
and the adversary S in the ideal model, REAL(Π,A,i)(X,Y ) is defined as the output pair of the honest
party and the adversary A from the real execution of Π.

A.2 Learning Parity with Noise

Our protocols are built on top of pseudorandom correlation generators (PCGs). State of the art con-
structions of PCGs rely on various flavors of the learning parity with noise (LPN) assumption. Since
we make a black-box use of PCGs, our work is essentially oblivious to the underlying assumptions.
However, for the sake of completeness, we recall the assumptions which we build upon below. We
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note that, for our second contribution, we build upon the PCG of [BCG+20b]. The latter uses a
relatively new flavor of the ring-LPN assumption, over a polynomial ring where the polynomial splits
completely; however, in this work, we do not need this new flavor, and instead rely solely on the (rel-
atively well-established) standard ring-LPN assumption over a polynomial ring with an irreducible
polynomial.

We define the LPN assumption over a ring R with dimension k, number of samples n, w.r.t. a
code generation algorithm C, and a noise distribution D:

Definition 5 (Dual LPN). Let D(R) = {Dk,n(R)}k,n∈N denote a family of efficiently sampleable
distributions over a ring R, such that for any k, n ∈ N, Im(Dk,n(R)) ⊆ Rn. Let C be a probabilistic
code generation algorithm such that C(k, n,R) outputs a matrix H ∈ Rk×n. For dimension k = k(λ),
number of samples (or block length) n = n(λ), and ring R = R(λ), the (dual) (D,C,R)-LPN(k, n)
assumption states that

{(H,b) | H ←r C(k, n,R), e←r Dk,n(R),b← H · s}
c
≈ {(H,b) | H ←r C(k, n,R),b←r Rn}.

The dual LPN assumption is also called syndrome decoding assumption in the code-based cryp-
tography literature. The dual LPN assumption as written above is equivalent to the primal LPN
assumption with respect to G (a matrix G ∈ Rn×n−k such that H ·G = 0), which states that G ·s+e
is indistinguishable from random, where s←r Rn−k and e←r Dk,n(R); the equivalence follows from
the fact that H (̇G · s+ e) = H · e.

The standard LPN assumption refers to the case where H is a uniformly random matrix over F2,
and e is sampled from Berr(F2), where r is called the noise rate. Other common noise distributions
include exact noise (the noise vector e is a uniformly random weight-rn vector from Fn

2 ; this is
a common choice in concrete LPN-based constructions) and regular noise (the noise vector e is a
concatenation of rn random unit vectors from F1/r

2 , widely used in the PCG literature [BCGI18,
BCG+19b,BCG+19a]).

Known constructions of subfield-VOLE use various flavors of the dual LPN assumption with
regular noise over a finite field. For example, the work of [BCGI18] suggests relying on an LDPC
code, while [BCG+19a] uses quasi-cyclic codes, and [CRR21] uses a new family of codes, called Silver
codes.

In this section, we recall the Ring-LPN assumption, which was first introduced in [HKL+12] to
build efficient authentication protocols. Since then, it has received some attention from the cryptogra-
phy community [LP15], due to its appealing combination of LPN-like structure, compact parameters,
and short running times. Below, we also provide a definition of Module-LPN, which generalizes Ring-
LPN in the same way that the more well-known Module-LWE generalizes Ring-LWE.

A.3 Ring-LPN

We now define the Ring-LPN assumption, a variant of the dual LPN assumption over polynomial
rings, first introduced in [HKL+12] The assumption has been used in multiple works since. Ring-LPN
is the natural “ring analog” of LPN, in the same way that ring-LWE is the ring analog of LWE.

Definition 6 (Ring-LPN). Let R = F[X]/(F (X)) for some field F and degree-N polynomial
F (X) ∈ Z[X], and let m, t ∈ N. Let HWt be the distribution over Rp that is obtained via sampling
t noise positions A ← [0..N)t as well as t payloads b ← Zt

p uniformly at random, and outputting
e(X) :=

∑t−1
j=0 b[j] ·XA[j]. The R-LPNp,q,t problem is hard if for any PPT adversary A, it holds that

|Pr[A((ai, ai · s+ ei)
m
i=1) = 1]− Pr[A((ai, ui)

m
i=1) = 1]| ≤ negl(λ)

where the probabilities are taken over the random choices of the values a1, . . . , am, u1, . . . , um ← Rp,
s, e1, . . . , em ← HWt and the randomness of A.

A.4 Pseudorandom Correlation Generators

In our new protocol, we will reuse the KKRT template, but replace the BaRK-OPRF with a subfield-
VOLE-based construction. Doing so enables several new optimizations of the scheme, which we de-
scribe afterwards. We start by recalling the notion of pseudorandom correlation generator, and that
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of subfield vector OLE. A pseudorandom correlation generator is a pair of algorithm (Gen,Expand),
where Gen distributes a pair of small seeds (s0, s1), and Expand(i, si) stretches a seed into a long
pseudorandom string. Informally, a PCG for a target correlation satisfies two properties:

– Correctness. Given (s0, s1) ←r Gen(1κ), the pair (x0, x1) = ((Expand(0, s0),Expand(1, s1)) is
indistinguishable from a random sample from the target correlation.

– Security. Given s0, the string x1 = Expand(1, s1) is indistinguishable from a uniformly random
string sampled conditioned on satisfying the right correlation with Expand(0, s0). The converse
property holds as well.

In addition, a PCG should satisfy some shortness conditions: the seeds (s0, s1) should be significantly
smaller than a sample from the target correlation.

A subfield vector oblivious linear evaluation generator (sVOLE generator) is a PCG for the
following two-party correlation: Alice gets a pair of random vectors (u,v), and Bob gets a ran-
dom scalar ∆ and the vector w = ∆ · u + v, where v,w ∈ Fn for some field F, ∆ ∈ F, and
u ∈ (F′)n, where F′ is a subfield of F. Efficient PCGs for the sVOLE correlation have been designed
in [BCG+19b,BCG+19a,CRR21], with seed sizes logarithmic in n, and the latest protocol of [CRR21]
achieve extremely impressive efficiency features (around 300ms to generate an sVOLE correlation of
length 107 on one core of a standard laptop; using this sVOLE to achieve OT extension results in
a protocol using 37% less computation and ∼ 1300× less communication than the standard IKNP
protocol).

In the paper, we sometimes slightly abuse the notion of PCG, and use formulations such as “Alice
and Bob use a PCG protocol”. What this means is the following: Alice and Bob use some dedicated
two-party computation protocol to distributively and securely generate seeds (s0, s1) ←r Gen(1κ),
such that Alice gets s0 and Bob gets s1; then, Alice and Bob locally expand these seeds into a
pseudorandom instance of the target correlation. Efficient protocols for distributing PCG seeds have
been introduced in [BCG+19a], and typically have communication linear in the seed length – that is,
logarithmic in n.

A.5 Subfield Ring-OLE

In a recent work [BCG+20b], a new PCG construction was described for the ring-OLE correlation.
The ring-OLE correlation over a ringRq is the following correlation: {((x0, z0), (x1, z1)) | x0, x1, z0 ←r

Rq, z1 ← x0.x1 − z0}. The main motivation in [BCG+20b] was that, when the ring is a polynomial
ring where the polynomial splits fully into n linear factors, such a correlation can be locally converted
into n instances of an OLE correlation over a large field, which is very useful for secure computation of
arithmetic circuit. We note that our work will actually directly rely on the ring-OLE correlation over a
polynomial ring, and we do not need the polynomial to split. This allows to build the necessary PCG
from a much more conservative assumption. We note that the work of [BCG+20b] also describes
a maliciously secure protocol to distribute the seed of this PCG which, combined with the PCG,
leads to a maliciously secure protocol to instantiate the ideal functionality for malicious ring-OLE
correlation.

In this work, we rely on a slight variant of the ring-OLE correlation: given the ringRq = Fpt [X]/F(X)
for some polynomial F (X), we consider the subfield ring-OLE correlation, where x0 is instead sam-
pled from the ring Rp = Fp[X]/F(X) (that is, the coefficients of x0 are sampled from the subfield Fp

instead of the field Fq = Fpt). We represent the corresponding variant of the ideal functionality on
Figure 9. We note that the protocol of [BCG+20b] to instantiate the ring-OLE functionality can be
adapted to handle the subfield ring-OLE functionality in a straightforward way.

Theorem 7 ( [BCG+20b]). If the ring-LPN assumption holds over R = F[X]/(F (X)) where F
is a degree-N polynomial, there exists a maliciously secure protocol instantiating the functionality 9
over R, with communication logarithmic in N .

Cost of ring-OLE. The work of [BCG+20b] provides a concrete formula for computing the cost
of ring-OLE. Their protocol assumes a one-time setup procedure, which can be reused indefinitely
for any number of ring-OLE setups, similar to the one-time setup of OT extension protocols. As is
common in PSI papers, we ignore this one-time cost in our estimations. The total cost of setting up a
ring-OLE is computed as 2[ct(log n/t+log p)+34(ct)2 log n/t+(ct)2(2κ+3) log(2n/t)+13(ct)2 log p]
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PARAMETERS:

– The security parameter κ, the subringRp = Fp[X]/F(X), the ringRq = Fpt [X]/F(X) where F (x)
has the degree of n, p is a power prime and t is arbitrary integer.

– There are two parties, a sender and a receiver.

FUNCTIONALITY:

1. If all the parties are honest:
– Sample uniformly random x0 ←r Rp, x1, z1 ←r Rq, let z0 = x0 · x1 + z1.
– Output (x0, z0), (x1, z1) to the sender and the receiver respectively.

2. One party is corrupt:
– If the sender is malicious:

Waiting for the input x0 ∈ Rp and z0 ∈ Rq from the adversary. Sample x1 ←r Rq and
compute z1 = x0 · x1 − z0. Output (x1, z1) to the receiver.

– If the receiver is malicious:
Waiting for the input (x1, z1) ∈ R2

p from the adversary. Sample x0 ←r Rp and compute
z0 = x0 · x1 − z1. Output (x0, z0) to the sender.

Fig. 9. The ideal functionality Fsole of a malicious subfield-ring OLE of length n in Rq over the subring Rp

in [BCG+20b], where c, t are parameters related to the underlying ring-LPN assumption and κ is a
computational security parameter, which we set to 128. In our setting, using the irreducible ring-LPN
assumption and targeting 128 bits of security, we can use e.g. c = 4 and t = 14 according to the
analysis of [BCG+20b].

A.6 Useful Lemmas about Polynomials

Our standard model protocol will rely on encoding the input sets as polynomials: the set X =
{x1, x2, . . . , xn} is encoded as the coefficients of P (X) =

∑n
i=0(X − xi). Encoding and decoding can

be performed in O(n2) field operations by Lagrange interpolation and Horner evaluation. For large
values of n, the work of [MB72] requires O(n log2 n) arithmetic operations where the interpolation
and evaluation are reducible to a recursive use of polynomial divisions.

Private set intersection can be reduced to simple arithmetic operations on the polynomial encoding
of the sets. This was observed in previous works [KS05,GS19,GN19]. The reduction builds upon simple
lemmas, which we state below (we also consider, and prove, a slight generalization of these lemmas).

Lemma 8. Let F (X) be a degree-n polynomial, q = pt where p is a prime, P (x) ∈ Rp = Fp[X]/F(X)
be an arbitrary polynomial of degree n and R(x) ∈ Rq = Fpt [X]/F(X) be a uniformly random polyno-
mial of degree n. Then

Pr[gcd(P (x), R(x)) ̸= 1] ≤ n2/q.

Proof. gcd(P (x), R(x)) = 1 iff P (x) and R(x) share no common root. A random polynomial over Rp

of degree n has at most n roots, which are distributed uniformly; hence, each root of R(x) is equal
to a root of P (x) with probability at most 1− n/q. Therefore:

Pr[gcd(P (x), R(x)) ̸= 1] = 1− Pr[gcd(P (x), R(x)) = 1]

= 1− (1− n/q)n ≤ n2/q (union bound).

Lemma 9 ( [BMR20]). Given Fp be a finite field of prime order p. Fix any p = O(poly(λ)). Let
P (x), Q(x) ∈ Fp[x] be two arbitrary polynomials of degrees α1 and α2 respectively. Let R1(x), R2(x)
be two polynomials sampled independently and uniformly at random over Fp[x], of degrees β1, and β2

respectively, where n = α1 + β1 = α2 + β2 ≤ α1 + α2. Let S(x) = P (x) · R1(x) +Q(x) · R2(x) ∈ Fp.
Then S(x) = gcd(P (x), Q(x)) · U(x), where U(x) is an uniformly random polynomial of degree at
most n over Fp[x].

A.7 The KKRT Protocol

In this section, we provide a high level overview of the KKRT protocol [KKRT16]. At a high
level, it combines Cuckoo hashing with a batch related-key oblivious pseudorandom function (BaRK-
OPRF). A BaRK-OPRF is a protocol between a receiver, Alice, and a sender, Bob, where Alice
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has inputs (x1, · · · , xn). Bob receives one global key ∆ and n local keys (K1, · · · ,Kn), and Al-
ice learns (F∆,K1

(x1), · · · , F∆,Kn
(xn)). In KKRT, the BaRK-OPRF has the following structure:

F∆,Ki(xi) = H(i,Ki ⊕ (∆ ∧ Enc(xi))), where

– H is a hash function, modeled as a random oracle (or satisfying a tailor-made Hamming correlation
robustness assumption),

– Enc is the encoding procedure of a suitable good error-correcting code,
– ∆ ∧ Enc(xi) denotes the bitwise AND of ∆ and Enc(xi).

The intuition underlying the security is that for any value x ̸= xi, Enc(x) and Enc(xi) differ
on many positions (because the code has high minimum distance), hence Ki ⊕∆ ∧ Enc(x) contains
a lot of entropy, even given Ki ⊕ ∆ ∧ Enc(xi). Under a suitable assumption on the hash function,
H(Ki ⊕∆ ∧ Enc(x)) therefore looks random even given F∆,Ki(xi), for any x ̸= xi. Note that to turn
this intuition into a proof, the authors of KKRT introduced a formal notion of Hamming correlation
robustness. However, their definition has a flaw which makes it impossible to instantiate (there is a
simple attack on any instantiation, even with a random oracle). When analyzing the security of our
variant, we will provide a (more involved) corrected notion of correlation robustness, and formally
prove that it is satisfied by a random oracle.

The above construction can be instantiated quite efficiently using the IKNP oblivious transfer
extension [IKNP03]. It does not, however, directly imply a PSI protocol: since the keys Ki are distinct
for each input, it can only help comparing items in the same position. To obtain a PSI protocol, KKRT
uses hashing to map the datasets to bins, and reduce the intersection computation to a bin-by-bin
comparison. With a naive hashing strategy, this would lead to a maximum of log n/ log log n items
per bin (for datasets of size n), which would still induce a significant overhead (since all pairs of items
of Alice and Bob in the same bin must be compared).

To achieve better efficiency, the authors use Cuckoo hashing with a stash. In Cuckoo hashing, the
items are mapped into c · n bins (where c > 1 is usually a small constant) using d hash functions
(h1, · · · , hd), such that each item x is mapped to the bin number hi(x) for some i ≤ d, and every
bin contains at most a single item. The insertion follows a simple greedy procedure: x is inserted
at the h1(x) location, and if an item y was already present, it is evicted and re-inserted at its next
“authorized” location, h2(y), possibly evicting an item in turn. The process continues until insertion
succeeds, or some threshold number of items have been evicted. If an item fails to be inserted, it is
added to a special stack, called the stash.

Using Cuckoo hashing, Alice maps her dataset X to a length-cn vector (x1, · · · , xcn) (possibly
adding dummy items in bins that remained empty), and runs the BaRK-OPRF protocol with Bob,
obtaining (F∆,Ki(xi))i≤cn. Then, Bob maps his own dataset Y to the c·n bins, this time using all hash
functions h1, · · · , hd (that is, every y ∈ Y is mapped to the bins (h1(y), · · · , hd(y))), and computes
F∆,Ki

(y) for all items y in the i-th bin, for i = 1 to c ·n. In the end, Bob randomly shuffles and sends
to Alice all these PRF evaluations. Alice computes the intersection with her own PRF evaluations,
and learns X ∩ Y .

KKRT also showed how to handle the items for which insertion failed (which are stored in the
stash). However, the work of [PSZ18] heuristically analyzed the failure probability of generalized
Cuckoo hashing with k ≥ 2 hash functions, using large scale simulations and extrapolations. Based
on their extrapolations, they determined that using as little as 3 hash functions and N = 1.3 · n
bins suffices to guarantee a statistical failure probability below 2−40 (i.e., a stash size s = 0 with
probability at least 1− 2−40) for large enough set sizes (around n = 220).

Cost of KKRT. Using the heuristic parameters of [PSZ18] to get rid of the stash, the communication
of KKRT consists in executing a BaRK-OPRF on c·n inputs, and sending dn = 3n hashes. The BaRK-
OPRF requires around 6κn bits of communication, where κ is a computational security parameter
(typically, κ = 128). The factor 6 overhead mainly comes from the fact that ∆∧Enc(x) must retain ≈ κ
bits of entropy, hence a large-ish value of ∆ is required. Sending the 3n hashes costs 3 · (λ+2 log n) ·n
bits of communication, where λ is a statistical security parameter (typically, λ = 40 is the most
common choice). Indeed, the hash outputs can be truncated to λ+2 log n bits while maintaining the
probability of collisions between the hashes of any pair (x, y) ∈ X×Y of distinct elements below 2−λ.
For n = 220, this leads to the claimed 1008n bits of overall communication.
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B Dual PSI from mOPRF

Intuitively, we execute Foprf twice while Alice and Bob have the same role. The main idea behind our
approach is as follows:

– Alice with the input set X invokes Foprf as a receiver to learn the set of PRF values of each
element in X. Denote FA(x) for all x ∈ X. While Bob queries Y to Foprf to get FA(y).

– Alice and Bob follow exactly the previous steps with the roles reversed. While Bob with input set
Y can only get the set of PRF values FB(y). Alice queries X to Foprf and obtains FB(x) for all
x ∈ X.

– Alice computes the set E = {F (x) := FA(x)⊕FB(x) | x ∈ X} and sends it to Bob. Bob computes
F (y) for all y ∈ Y then check whether it is in E or not. Formally, Bob outputs

{y ∈ Y | F (y) ∈ E}

Informally, there are two crucial properties to guarantee the correctness of this construction:

– Since Alice only knows FA(x) for x ∈ X and for x /∈ X the PRF value FA(x) is pseudorandom in
the view of Alice; Alice only can obtain the correct value of F (x) for x ∈ X. Similarly, Bob can
compute correctly only F (y) for y ∈ Y .

– The outputs of PRF are pseudorandom, with a high probability

∀x ∈ X,∀y ∈ Y : F (x) = F (y)⇔ x = y

For security, this scheme can be proven against a malicious adversary since it is possible to extract
the input set of both sender and receiver based on Foprf ideal functionality. We leave the detailed
construction in Figure 10 and the formal proof in the theorem 10. It requires the output domain
of PRF is v = λ + 2 log(Nd) ≈ λ + 2 log n so that the probability of existing two distinct elements
x ∈ X and y ∈ Y such that F (x) = F (y) is negligible 2−λ where |X|, |Y | ≤ Nd.

PARAMETERS:

– Alice (sender) and Bob (receiver) have respectively input set X = {x1, x2, . . . , xn} ∈ Fp and Y =
{y1, y2, . . . , yn} ∈ Fp, all elements of bit-length ℓ.

– A random hash functions h : {0, 1}∗ → [N ].
– A Permutation-based hashing Perh,X maps a set X to table BX consisting of N bins such that each bin

has d slots where Nd > |X|, and d = O(1). Denote Per(x) := (i, x′) where x′ is the stored value of x in
bin i which defined by h and x then Per−1(i, x′) = x.

PROTOCOL:

1. Preprocessing phase.
– Alice and Bob use Per to map their own set to BX ,BY respectively.
– For each empty slot in each bin BX [i] and BY [i], put here a dummy item of length ℓ− logN .

2. Alice sends (receiver, id,BX) and Bob sends (sender, id) to Foprf then
– Alice receives the X ′ = {FA(x) | x ∈ X} where FA(x) := PRF (Per(x)).
– For each y ∈ Y , Bob queries Per(y) to Foprf and get FA(y).

3. Similarly, Alice sends (sender, id) and Bob sends (receiver, id,BY) to Foprf then
– Bob receives the Y ′ = {FB(y) | y ∈ Y } where FB(y) := PRF (Per(y)).
– For each x ∈ X, Alice queries Per(x) to Foprf and get FB(x).

4. Alice now sends to Bob the set
E = {FA(x)⊕ FB(x) | x ∈ X}

Now for each y ∈ Y , if FA(y)⊕ FB(y) ∈ E then Bob outputs y as an element in the intersection.

Fig. 10. Our second malicious PSI protocol based on Foprf via dual execution

Theorem 10. The PSI protocol on Figure 10 securely realizes the ideal functionality Fpsi (figure
8) over the field Fp for set size n and malicious set size nX = n, nY = Nd with statistical security
against malicious adversaries in Foprf hybrid model.



Improved PSI for Sets with Small Entries 33

Proof. Alice is corrupted. Sim interacts with Alice as below:

– When A plays the role of receiver in Foprf , Sim emulates Foprf to get BX . Sim samples a uniformly
random sequence Z = {Zi,x′}i≤N as the output PRF values of the set BX , where Zi,x′ corresponds
to x′ ∈ BX [i].

– From BX , Sim extracts X∗ = {Per−1(i, x′) | ∀x′ ∈ BX [i], i ∈ [1, N ]}.
– When A plays the role of sender in Foprf , Sim defines a set X̃ containing of all elements x such

that Per(x) has been queried to Foprf ; Sim samples a uniformly random values as {FB(x)}x∈X̃

and give them to A.
– On behalf of Bob, Sim receives the set E from A, Sim defines the set

X = {x ∈ X∗ ∩ X̃ | Per(x) = (i, x′) ∧ FB(x)⊕ Zi,x′ ∈ E}

Sim sends X to Fpsi functionality, receiving I := X ∩ Y .

This simulation can not distinguish from the real protocol by the following hybrids:

– Hybrid 0. The same as real protocol, Bob is honest with the input set Y, and Foprf is implemented
honestly.

– Hybrid 1. Sim emulates Foprf then functionality then
• When Alice is a receiver in Foprf , Sim learns BX which is the input set of Alice and then Sim

samples a uniformly random sequence Z = {Zi,x′}i≤N as the output PRF values of the set
BX , where Zi,x′ ∈ {0, 1}v corresponds to x′ ∈ BX [i].
• When Alice is a sender in Foprf , Sim defines a set X̃ containing of all elements x such that
Per(x) has been queried to Foprf ; Sim samples a uniformly random values as {FB(x)}x∈X̃ and
give them to A.

This hybrid is indistinguishable from the previous hybrid since the the outputs of PRF are pseu-
dorandom.

– Hybrid 2. Sim computes a set

X∗ = {Per−1(i, x′) | ∀x′ ∈ BX [i], i ∈ [1, N ]}

Note that, |X∗| ≤ Nd.
– Hybrid 3. On behalf of Bob, Sim gets the set E sending from Alice. Sim defines the set

X = {x ∈ X∗ ∩ X̃ | Per(x) = (i, x′) ∧ FB(x)⊕ Zi,x′ ∈ E}

This hybrid will abort if there exist some x1, x2 ∈ X such that

FB(x1)⊕ Zi,x′
1
= FB(x2)⊕ Zi,x′

2

Observe that {Zi,x′}i≤N is first fixed for elements in X∗ and then the function FB is sampled.
Therefore, the probability of aborting is bounded to (Nd)2/2v which is negligible O(2−λ) when
v = λ+ 2 log n. This deduces that |X| ≤ n.

– Hybrid 4. Sim inputs X to Fpsi functionality, receiving X ∩ Y and then outputs it as the output
of honest Bob.

Bob is corrupted. Sim interacts with Bob as below:

– Similarly, Sim plays the role of Foprf to get Ỹ ,BY then Sim samples a uniformly random sequence
T = {Ti,y′}i≤N as the output PRF values of the set BY , where Ti,y′ ∈ {0, 1}v corresponds to
y′ ∈ BY [i] .

– From BY , Sim extracts Y ∗ = {Per−1(i, y′) | ∀y′ ∈ BY [i], i ∈ [1, N ]}.
– Sim emulates Fpsi functionality with input set Y := Y ∗ ∩ Ỹ , receiving I := X ∩ Y .
– Sim sends to Bob the set containing of
• FA(y)⊕ Ti,y′ for y ∈ I.
• n− |I| uniformly random values in {0, 1}v \ T .

This simulation is indistinguishable from the real protocol by the following hybrids:

– Hybrid 0. The same as real protocol, Alice is honest with the input set X, and Foprf is implemented
honestly.
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– Hybrid 1. Sim emulates Foprf functionality then
• When Bob is a sender in Foprf , Sim extracts the set Ỹ such that for y ∈ Y , Per(y) has been

queried to Foprf ; Sim give to Bob a uniformly random sequences defined as {FA(y)}y∈Ỹ .
• When Bob is a receiver in Foprf , Sim learns BY which is the input set of Bob and then Sim

samples a uniformly random sequence T = {Ti,y′}i≤N as the output PRF values of the set
BY , where Ti,y′ ∈ {0, 1}v corresponds to y′ ∈ BY [i] .

– Hybrid 2. From BY , Sim computes a set

Y ∗ = {Per−1(i, y′) | ∀y′ ∈ BY [i], i ∈ [1, N ]}

Sim emulates Fpsi functionality with input set Y = Ỹ ∩ Y ∗, receiving I := X ∩ Y .
– Hybrid 3. Sim sends to Bob the set E containing of
• T = {FA(y)⊕ Ti,y′ | ∀y ∈ I}.
• n− |I| uniformly random values in {0, 1}v \ T .

This hybrid is indistinguishable from the real protocol since in the view of Bob E consists of the
XOR of pseudorandom values and a arbitrary values. This concludes the proof.

C The OT-Based PSI of PSZ14

For completeness, we recall in this Appendix a PSI protocol of [PSZ14, Section 5], which is particularly
relevant to our approach. In essence, this protocol combines an OT-based secure equality test with a
standard hash-based approach. While this protocol had initially much higher communication than its
later competitor [KKRT16], recent advances in pseudorandom correlation generators (which we exploit
in this paper) have enabled the construction of silent OT extension protocols [BCG+19a, CRR21]
which can be used to make this protocol considerably more competitive. For the sake of comparing
this protocol to our new proposals, we work out its parameters with silent OT extension here.

C.1 Description of the Protocol

OT-based equality test. The core component of the protocol is a private equality test (PEQT)
which allows two parties with respective inputs x, y of length ℓ to learn whether x = y, and nothing
more. The protocol proceeds as follows:

– The sender with input x picks ℓ pairs of random strings (si0, s
i
1)i≤ℓ and computes x′ ←

⊕
i s

i
xi

.
He sends x′ to the receiver

– The sender and the receiver execute ℓ parallel instances of string-OT, where the selection bits
of the receiver with input y are the bits y1, · · · , yℓ. The receiver obtains (siyi

)i≤ℓ and computes
y′ ←

⊕ℓ
i=1 s

i
yi

.
– If x′ = y′, the receiver decides that x = y; otherwise, she decides that x ̸= y.

Using silent OT extension, executing ℓ random OT hash vanishing communication (which ap-
proaches 0 when amortized over multiple PEQT). Then, to derandomize the random OTs into OTs
with selection bits y1, · · · , yℓ, the receiver must send exactly ℓ bits. Eventually, sending x′ costs λ bits
(assuming the OTs are on λ-bit strings). Hence, ignoring the vanishing cost, each PEQT will have
amortized communication ℓ+ λ.

Private set inclusion. The above PEQT can be extended to a private set inclusion test: assume
that the sender has now an input set X = {x1, · · · , xn}. Then the sender and the receiver simply
execute the above protocol, but the pairs of random strings (si0, s

i
1)i≤ℓ are now n · λ-bit long each.

Given a bit b and i ≤ ℓ, us denote each of the n λ-bit long substrings of sib by (si,1b , · · · , si,n). The
sender sets x′

j ←
⊕

i s
i,j

xj
i

for j = 1 to n, and the receiver sets y′ ←
⊕

i s
i
yi

. Eventually, the sender
sends all of the x′

j to the receiver in a random order. The receiver outputs y ∈ X if one of the x′
j is

a substring of y′. Observe that this is essentially performing n PEQT in parallel, while hiding which
of the elements of X was equal to y. The total (amortized) communication is now ℓ+ n · λ.



Improved PSI for Sets with Small Entries 35

Hash-based PSI from PEQT. Equipped with the above protocol, the PSI proceeds as follows: the
sender and the receiver map their items into bins, using for example Cuckoo hashing on the receiver
side, and simple hashing on the sender side (as in KKRT16).

For each bin, and for each item in the bin on the receiver side, the receiver will execute a private
set inclusion with the sender, as above, with the following tweak: the length of the random strings is
increased from λ+ 2 log n, where n is now the number of items in the sets of each party. The sender
does not send the x′

j shuffled for each bin: rather, the sender accumulates all the x′
j across all bins,

shuffles then randomly, and sends the shuffled values all at once (this allows to mask the load of each
bin on the sender side).

C.2 Communication Costs

The total communication of this protocol is given by

ℓ ·N + (λ+ 2 · logN) · k · d+ o(ℓ ·N),

where o(ℓ · N) is the communication cost of setting up the silent OT extension (the protocol
requires (ℓ− logN +2) ·N oblivious transfers in total), k is the number of hash functions and d is the
maximum load of a bin on the receiver side. For large values of n, the o(ℓ ·N) term vanishes; however,
for small values of n, its impact on the communication is significantly higher than the impact of the
o(n) term in our protocol (since we need much shorter VOLEs).

Note that here, an important difference with our approach is that d influences the sender-to-
receiver communication: unlike with our method, therefore, it is impractical to use values of d above
1. As for the KKRT protocol, if hashing with a stash is used, a dedicated protocol must be used to
handle the stash, and the most efficient solution is typically to choose parameters guaranteeing that
there will be no stash with high probability. In consequence, in our estimations, we choose k = 3,
d = 1, and set the number of bins to N = 1.3, which by the analysis of [PSZ18] suffices to guarantee
a 2−40 failure probability. We also apply the technique of [TLP+17] to reduce the λ+2 log n term to
λ+ log n, and the Phasing method to reduce ℓ to ℓ− logN + 2 (the two bits are required to indicate
the index of the hash function, since we use three hash functions). This way, the total communication
becomes

(1.3(ℓ+ 2− logN) + 3 · (λ+ logN)) · n+ o(ℓ · n).
We compare this communication cost to our new protocols on Table 3. As the table shows, PSZ14 pro-
vides a competitive alternative to RS21, but is still outperformed by our new protocols on essentially
all parameters, by up to 40%.

Table 3. Comparison of the communication cost of our new PSI protocol with
the PSZ14 protocol using silent OT extension (with all relevant optimizations
applied to PSZ14).

n = 214 n = 216 n = 220 n = 224

RS21 [RS21] enhanced 257n 207n 197n 196n

PSZ14 [PSZ14] + sOT, ℓ = 64 275n 245n 240n 246n
PSZ14 [PSZ14] + sOT, ℓ = 48 253n 224n 219n 225n
PSZ14 [PSZ14] + sOT, ℓ = 32 231n 203n 199n 205n

Ours (ℓ = 64, GCH) 246n 220n 210n 209n
Ours (ℓ = 48, GCH) 215n 189n 179n 178n
Ours (ℓ = 32, GCH) 184n 158n 148n 147n

Ours (ℓ = 64, 2CH) 214n 190n 183n 185n
Ours (ℓ = 48, 2CH) 193n 169n 162n 164n
Ours (ℓ = 32, 2CH) 171n 148n 141n 142n

Ours (ℓ = 64, SH, N = n/10) 332n 302n 284n 276n
Ours (ℓ = 48, SH, N = n/10) 261n 230n 209n 198n
Ours (ℓ = 32, SH, N = n/10) 191n 158n 133n 120n



36 Dung Bui and Geoffroy Couteau

C.3 Computational Costs

It remains to compare the (enhanced) protocol of PSZ14 to ours computation-wise.

Receiver computation. In our protocol, receiver computation boils down to

– Setting up the VOLE correlation
– Hashing his input set into bins
– Interpolating N degree-d polynomials
– Computing d ·N hashes

In contrast, in PSZ14, the receiver computation boils down to

– Setting up the (ℓ− logN + 2) ·N random OTs
– Hashing his input set into bins
– Computing N hashes

Let us first compare the correlation setups. Using [CRR21], computing 10 million random OTs on
one core of a standard laptop takes 300ms. We note that silent OT extension requires in particular
setting up a subfield VOLE first, and then hashing the outputs with a correlation-robust hash function
to obtain OTs (a la [IKNP03]). The cost of this final hashing step was estimating to take roughly a
third of the total computation time in [CRR21], hence setting up a length-10 millions subflied VOLE
should be roughly 1.5 times faster.

For n = 220 and ℓ = 48 (to take a middle ground for the parameters), our protocol requires a
length-dN VOLE, which (using N = 0.65n, d = 3) should therefore take significantly less than 50
milliseconds on a laptop similar to the one used in [CRR21]. In contrast, the PSZ14 protocol requires
(ℓ− logN +2) ·N ≈ 40 ·n random OTs (using N = 1.3n), which should take about 1200 milliseconds
on the same laptop (more than 20 times more than the VOLE cost in our protocol).

The cost of computing the N hashes using a hash function built from fixed-key AES takes a few
dozen milliseconds on the laptop of [CRR21], and is dominated by the cost of setting up the VOLE
/ silent OT correlations (since the latter involve computing significantly more hashes with fixed-key
AES anyway). The cost of hashing into the bins is identical in both our protocol and PSZ14, and
should again be largely dominated by the cost of setting up the VOLE/OT: it requires inserting n
items into N bins using Phasing [PSSZ15], which boils down to computing around n hashes, which
can be implemented with a very fast hash function (since it needs not be a cryptographically strong
hash function). Eventually, using generalized Cuckoo hashing, our protocol requires interpolating
0.65 · n degree-3 polynomials, which boils down to computing 5 · 0.65n = 3.25n multiplications over
the field F2ℓ−log N+1 = F230 . While we do not have benchmarks for this cost, it should again be largely
dominated by the cost of performing n fixed-key AES evaluations.

While the above are approximate estimations and real runtimes would significantly differ (due to,
e.g., cache misses), it should be clear that the dominant cost is that of setting up the VOLE/OT,
and that this cost is an order of magnitude higher for the protocol of PSZ14. Therefore, we estimate
that our protocol should require significantly less computation than that of PSZ14 (our back-of-the-
envelope calculation suggests an order of magnitude, though of course it can vary significantly).

Sender computation. The sender costs are identical to the receiver costs in both protocols, up to
one difference: the sender must compute k · dN = 3.9n hashes in our protocol, and k · N = 3.9n in
PSZ14 (using the simple hashing scheme), where k is the number of hash functions (2 in our protocol,
3 in PSZ14). In addition, the sender in our protocol must also interpolate k · N = 1.3n degree-d
polynomial. Hence, the added cost (compared to the receiver computation) is 1.9n hashes and 3.25n
multiplications in our protocol, and 2.6n hashes in PSZ14. Since the cost of computing 0.7n hashes
is likely larger than that of computing 3.25n multiplications over F230 , the computational gap should
be similar to or larger than the receiver case.
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