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S U M M A R Y 

Full-wav eform inv ersion (FWI) of seismic data provides quantitativ e constraints on subsurface 
structures. Despite its widespread success, FWI of data around the critical angle is challenging 

because of the abrupt change in amplitude and phase at the critical angle and the complex 

w aveforms, especiall y in the presence of a sharp velocity contrast, such as at the Moho 

transition zone (MTZ). Fur ther more, the interference of refracted lower crustal (Pg) and upper 
mantle (Pn) arri v als with the critically reflected Moho (PmP) arri v als in crustal and mantle 
studies makes the application of conventional FWI based on linearized model updates difficult. 
To address such a complex relationship between the model and data, one should use an inversion 

method based on a Bayesian formulation. Here, we propose to use a Hamiltonian Monte Carlo 

(HMC) method for FWI of wide-angle seismic data. HMC is a non-linear inversion technique 
where model updates follow the Hamiltonian mechanics while using the gradient information 

present in the probability distribution, making it similar to iterative gradient techniques like 
FWI. It also involves procedures for generating distant models for sampling the posterior 
distribution, making it a Bayesian method. We test the performance and applicability of HMC 

based elastic FWI by inverting the non-linear part of the synthetic seismic data from a three- 
layer and a complex velocity model, followed by the inversion of wide-angle seismic data 
recorded by two ocean bottom seismometers over a 70 Ma old oceanic crustal segment in the 
equatorial Atlantic Ocean. The inversion results from both synthetic and real data suggest that 
HMC based FWI is an appropriate method for inverting the non-linear part of seismic data for 
crustal studies. 

Key words: Inverse theory; Probability distributions; Body waves; Crustal imaging; Wave- 
form inversion. 
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1  I N T RO D U C T I O N  

Seismic tomography methods based on matching of traveltimes of 
dif ferent seismic arri v als are commonl y used to determine large- 
scale velocity structures on both regional (Zelt & Smith 1992 ; Van 
der Voo et al. 1999 ; Korenaga et al. 2000 ; Hobro et al. 2005 ) and 
global (Dziewonski et al. 1977 ; Dziewonski 1984 ; Zhou 1996 ; Van 
der Hilst et al. 1997 ; Bijwaard et al. 1998 ) scales. The introduction 
of full-wav eform inv ersion (FWI) in the 1980s (Bamberger et al. 
1982 ; Lailly & Bednar 1983 ; Tarantola 1984a , b ) made it theo- 
retically possible to recover finer scale structures of the subsurface 
(Shaw & Orcutt 1985 ; Chapman & Orcutt 1985 ; Operto et al. 2004 ). 
Although this advancement came at the expense of increased com- 
putational requirements, the growth in computational capabilities 
in the last two decades has allowed rapid development in the appli- 
cations of FWI (Ravaut et al. 2004 ; Capdeville et al. 2005 ; Operto 
et al. 2006 ; Brossier et al. 2009 ; Fichtner et al. 2009 ; Virieux & 
1384 
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Full-wav eform inv ersion (FWI) is a local optimization technique 
for estimating high-resolution physical parameters of the subsur- 
face based on matching waveforms of the synthetic and observed 
data. The non-linear relationship of the misfit function with the 
model parameters makes FWI dependent on an appropriate initial 
model close enough to the final model to avoid cycle skipping of 
modelled waveforms (Bunks et al. 1995 ) and getting entrapped in 
local minima. The iterative inversion scheme of FWI implements 
gradient optimization methods to compute model updates, ideally 
defined as a product of the inverse Hessian (the second deri v a- 
tive of the misfit function with respect to the model parameters) 
and the gradient of the misfit function (Mora 1987 ; Pratt et al. 
1998 ; Virieux & Operto 2009 ). In this context, Newton and Gauss–
Newton methods (Pratt et al. 1998 ; Sheen et al. 2006 ; Askan et al. 
2007 ) of model updates are often considered impractical for realistic 
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roblems due to the high cost of computing the Hessian. On the other
and, inversion schemes based on either iterati vel y updating the
essian using quasi-Newton methods such as the limited-memory
royden–Fletcher–Goldfarb–Shanno (L-BFGS) method (Nocedal
980 ) or determining the gradient direction by replacing the Hes-
ian with a scalar parameter called step-length (Pica et al. 1990 ;
irieux & Operto 2009 ), have shown to provide reliable and stable

esults while also being computationally less demanding. 
Ov er the years, sev eral approaches hav e been dev eloped to mit-

gate the non-linearity of the misfit function. Several of these ap-
roaches included modification of the misfit functions (Fichtner
t al. 2008 ; Brossier et al. 2010 ; Bozda ̆g et al. 2011 ; Choi & Alkhal-
fah 2012 ; M étivier et al. 2016 ) implemented in both the time and
requency domains, with an increasing time window and frequency
andwidth of the inverted seismic data (Ravaut et al. 2004 ; Sears
t al. 2008 ; Brossier et al. 2009 ). These approaches also introduced
he concept of hybrid cross-correlation between the synthetic and
bserved data (Luo & Schuster 1991 ; Gee & Jordan 1992 ), source-
ncoded inversions (Krebs et al. 2009 ; Ben-Hadj-Ali et al. 2011 ;
hoi & Alkhalifah 2011 ) and hierarchical lay er -stripping strategies

Shipp & Singh 2002 ; Sirgue & Pratt 2004 ) for convergence to an
ptimum model. 

Another problem in FWI is associated with the non-linear be-
aviour of the amplitude and phase of seismic reflections around
he critical and post-critical incident angles. This non-linear charac-
eristic of the data arises due to the transformation of the reflection
oefficients into complex numbers starting from the critical angle
Aki & Richards 2002 ; Stein & Wysession 2009 ) in the presence of a
harp high-velocity contrast in the model, such as at the Moho transi-
ion zone (MTZ). As a result, waveforms at the critical angle become
he Hilbert transform of the incident wave (Choy & Richards 1975 ).
he additional interference of refracted lower crustal (Pg) and up-
er mantle (Pn) arri v als with the Moho reflections (PmP), and their
riplications results in v ery comple x wav eforms and could lead to an
naccurate estimation of elastic parameters while using FWI based
n the linearized model updates. As the inverse problem of finding
he model parameters is non-linear, its solution can be better repre-
ented with a probabilistic Bayesian formulation (Keilis-Borok &
anovskaja 1967 ; Press 1968 ; Backus & Gilbert 1970 ; Tarantola &
alette 1982 ; Mosegaard & Tarantola 1995 ; Tarantola 2005 ). 
Bayesian inversion based on Markov Chain Monte Carlo

MCMC; Metropolis et al. 1953 ) methods can estimate the model
nd its uncertainties by constructing the posterior probability dis-
ribution (PPD) of all the sampled models. The PPD associates un-
ertainties of all the sampled models in the framework of existing
rior kno wledge, allo wing us to quantify and determine statistical
roperties associated with all the model parameters. Bayes’ theorem
rovides a convenient basis for e v aluating this PPD by incorporat-
ng the prior probability distribution with a likelihood function of
he data. Over the years, several adaptations of MCMC methods
ave been used for uncertainty estimation of the model parameters
Cary & Chapman 1988 ; Sen & Stoffa 1991 ; Malinverno 2002 ;
ambridge et al. 2006 ; Hong & Sen 2009 ). The successful applica-

ion of these methods, along with rapid growth in the computational
acilities, has led to the development of advanced MCMC strate-
ies, such as using temperature ladders, as in parallel tempering
Marinari & Parisi 1992 ; Sambridge 2014 ) and trans-dimensional
ethods (Green 1995 ; Malinverno 2002 ; Bodin & Sambridge 2009 ;
iana Agostinetti et al. 2015 ; Bottero et al. 2016 ; Guo et al. 2021 ).
evertheless, the computational cost and necessity of sampling a

arge number of models for higher-dimensional problems remain
ritical factors in inverting large seismic data. This phenomenon is
nown as the curse of dimensionality. It explains the diminishing
erformance of an MCMC method with increasing dimensions of
he model parameters, making an unbiased Markov chain too long
or a suitable convergence (Backus 1988 ; Scales & Tenorio 2001 ). 

The above limitations of both inversion methods encourage us
o invert seismic data using a more appropriate non-linear inver-
ion technique. Based on sampling a particle in a multidimensional
hysical system using Hamiltonian mechanics, Hamiltonian Monte
arlo (HMC) is an MCMC method that uses the gradient infor-
ation in the probability distributions to generate less correlated

amples in the model space. As a result, it has a high sample ac-
eptance rate in comparison to the random walk MCMC method.
ntroduced initially for its application in lattice quantum chromo-
ynamics by Duane et al. ( 1987 ), HMC has found its use in many
elds, including machine learning and neural networks (Yang et al.
021 ), molecular simulations (Widom et al. 2014 ), quantum me-
hanics (Seah et al. 2015 ) and many more. It has also found its
se in the geophysical fields, including inversion of electrical re-
istivity data (Maiti et al. 2011 ), amplitude versus angle analyses
Sen & Biswas 2017 ), seismic source inversions (Fichtner & Simut ė
018 ), seismic tomography and FWI (Fichtner et al. 2019 ; Gebraad
t al. 2020 ; Fichtner et al. 2021 ). Ho wever , its application in solving
on-linear problems associated with the complexities of inverting
ide-angle seismic data remains untested. 
Here, we present an application of HMC based elastic FWI of

ide-angle seismic data. We test the algorithm by inverting seismic
ata from two groups of laterally homogeneous velocity profiles,
ollowed by the inversion of OBS data from the Atlantic Ocean. 

 T H E O RY  

.1 Bay esian infer ence 

ayes’ theorem relates prior information available on a model with
ata to construct the PPD and can be expressed as 

P ( m | d obs ) = 

P ( m ) P ( d obs | m ) 

P ( d obs ) 
, (1) 

here m and d obs represent the model and the observed data,
ith P ( A ) and P ( A | B ) representing the probability distribution

nd the conditional probability of A with respect to B, respec-
i vel y. P ( m | d obs ) is the PPD, P ( m ) is the prior probability of all
onstraints on the model parameters prior to any calculation and

P ( d obs | m ) is the likelihood function which represents the proba-
ility of the observed data d obs given the model m . The denominator
erm P ( d obs ) is known as the evidence or the marginal likelihood,
epresenting an integral of prior with the likelihood function over
n entire model space such that P ( d ) = 

∫ 
P ( m ) P ( d obs | m ) dm . As

he evidence P ( d obs ) remains a constant normalization factor for
he PPD, eq. ( 1 ) can be expressed as, 

P ( m | d obs ) ∝ P ( m ) P ( d obs | m ) . (2) 

.2 Hamiltonian Monte Carlo 

n the HMC method, the inverse problem of quantifying an n -
imensional model ( m ) is transformed into the sampling of particles
n a multidimensional physical system governed by the Hamiltonian
echanics (Neal 1993 , 1996 ) and defined in terms of the total en-

rgy referred to as the Hamiltonian H ( m , p ) , consisting of two
erms; potential energy U ( m ) and kinetic energy K ( p ) ), 

H ( m , p ) = U ( m ) + K ( p ) , (3) 
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where the n -dimensional vector p is the momentum of the particle. 
The n -dimensional vector m is the model sampled from the PPD and 
represents the position vector of the particle. The potential energy 
U ( m ) defines the energy associated with the position of this particle 
and can be expressed as, 

U ( m ) = −ln P ( m | d obs ) . (4) 

The kinetic energy K ( p ) of a particle due to its motion is ex- 
pressed in terms of an auxiliary n -dimensional momentum variable 
p such that 

K ( p ) = 

1 

2 
p T M 

−1 p , (5) 

where M is a symmetric and positive definite mass matrix of di- 
mension n × n and is analogous to a physical mass linking each 
variable pair of the position ( m ) and momentum ( p ) vector. To- 
gether, the position and momentum vectors ( m , p ) define the state 
of a particle inside the physical system of an n -dimensional model 
and momentum space, also called the phase space. 

Hamilton’s equations (eq. 6 ) govern the dynamics of the particle 
such that, 

d m 

dτ
= 

∂ H 

∂ p 
= M 

−1 p , 
d p 

dτ
= −∂ H 

∂ m 

= −∂U 

∂ m 

, (6) 

where τ is a time variable. Hamilton’s equations are conserv ati ve, 
and thus moving a particle from an initial state ( m , p ) over time 
τ results in the generation of a new state ( m τ , p τ ) corresponding 
to ne w v alues of potential and kinetic energies and an unchanged 
Hamiltonian. The initialization of HMC at every sample requires 
the generation of a random momentum vector from a multi v ariate 
Gaussian distribution with the covariance matrix M , thus defin- 
ing the initial state of the particle ( m , p ) . HMC uses Hamiltonian 
mechanics by propagating the particle towards the new states and in- 
corporates Bayesian inference by defining the potential and kinetic 
energies in terms of the probability distribution such that every 
state of the particle is sampled from a joint probability distribu- 
tion P ( m , p| d obs ) of position and momentum vector in the phase 
space. This joint probability distribution is also known as the canon- 
ical distribution and can be expressed in terms of Hamiltonian as 
P ( m , p| d obs ) = exp ( −H ( m , p )) . Following the construction of the 
joint probability distribution from the sampled states, the PPD of 
the sampled models can be constructed by marginalizing the mo- 
mentum component of the joint probability distribution (Betancourt 
2017 ). 

Theoreticall y, the anal ytical solution of Hamilton’s equa- 
tions would have all the proposed states accepted in the joint 
probability distribution P ( m , p| d obs ) . Ho wever , waveform in ver- 
sion of seismic data using HMC requires discretization of Hamil- 
ton’s equations using numerical integration schemes, which can 
preser ve the proper ties of the Hamiltonian system, including the 
time-re versibility, preserv ation of volume and phase space par- 
titioning (Neal et al. 2011 ). The integration schemes satisfying 
these properties are known as symplectic integrators (Simo et al. 
1992 ). We have used a symplectic leapfrog integrator in this 
study for the generation of new particle states with a step size ε
(Betancourt 2017 ) as, 

p i ( τ + 

ε

2 
) = p i ( τ ) − ε

2 

∂U 

∂ m i 

∣∣∣∣
τ

, 

m i ( τ + ε) = m i ( τ ) + ε
∂K 

∂ p i 

∣∣∣∣
τ+ ε/ 2 

, 

p i ( τ + ε) = p i ( τ + 

ε

2 
) − ε

2 

∂U 

∂ m i 

∣∣∣∣
τ+ ε

, (7) 

where i is the v ector inde x in the range (1, n ). A single sample 
w orkflo w of HMC for an n -dimensional initial model m can be 
described in a series of steps where first, a random n -dimensional 
momentum vector p is drawn from a multi v ariate Gaussian dis- 
tribution with zero mean and covariance M defining the particle 
initial state ( m , p ) for the initial Hamiltonian H ( m , p ) . The dis- 
cretized Hamilton’s equation integrates the initial state ( m , p ) over 
L leapfrog steps with step size ε to generate a new state ( m τ , p τ ) and 
computes a new Hamiltonian H ( m τ , p τ ) . Though highly accurate 
in their properties, implementing discretized symplectic integration 
schemes introduces errors in the Hamiltonian while moving from 

one state to another. To correct errors introduced by the discretiza- 
tion scheme at every iteration, the new state is accepted with a 
probability, 

P accept = min [1 , exp ( H ( m , p ) − H ( m τ , p τ ))] . (8) 

Upon the acceptance of the new state, the new m τ replaces the 
initial m position vector, which otherwise remains the same and 
follows the same iterative workflow with a ne wl y drawn random 

momentum vector. 

2.3 HMC based FWI 

In order to perform full-wav eform inv ersion of seismic data using 
HMC, we associate the data misfit function with the likelihood 
function and in turn, the potential energy. We define the likelihood 
function as, 

P ( d obs | m ) = 

1 √ 

(2 π ) N t ×N r | C d | 
exp 

(
− J d ( m ) 

2 

)
, (9) 

where N r and N t are the total number of receivers and trace length, 
C d is the data covariance matrix and | . | represents the determinant of 
the matrix. J d ( m ) = 

∑ N t 
i= 1 

∑ N r 
j= 1 �d i, j ( m ) T C 

−1 
d �d i, j ( m ) is the data 

misfit function (Mahalanobis 1936 ) with the data residual �d( m ) 
defined as a difference between synthetic data d syn and observed 
data d obs , such that �d( m ) = d syn − d obs . With this definition, we 
can link the gradient of the potential energy computed in the HMC 

(eq. 7 ) to the gradient of the data misfit function computed in FWI. 
Similarly, we define the prior probability as, 

P ( m ) = 

1 √ 

(2 π ) N z | C m 

| exp 

(
− J m 

( m ) 

2 

)
, (10) 

where N z is the number of model parameters and C m is the model 
covariance matrix of the form C m 

= σ 2 
m 

I , with σ m representing the 
model standard deviation. J m 

( m ) = ( m − m 0 ) T C 

−1 
m 

( m − m 0 ) /N z 

is the model misfit function between the current m and initial m 0 

model. 

2.4 Numerical implementation 

The numerical strategy of HMC requires the computation of proba- 
bility distributions and can be reduced to solving the forward prob- 
lem for the computation of the synthetic data and gradients of the 



HMC based elastic FWI 1387 

m  

m  

e  

t  

a  

h  

d  

a  

C
 

a  

f  

p  

a  

s

2

T  

i  

d  

s  

i  

p  

r  

v  

c  

e
 

c  

p  

m  

f  

o  

a  

p  

s  

c

w  

g  

a  

m  

f
 

i  

i  

t  

t  

a  

d  

d  

i  

a

w  

b  

b  

m  

a  

a  

t  

d
 

v  

a  

o  

ε  

n  

c  

i  

t  

o  

(  

T  

o  

b  

i  

a  

e  

a

3

F  

t  

s  

a  

a  

m  

i  

t  

w  

t  

s  

e  

s  

T  

n  

a  

t  

t  

d  

o

3

T  

(  

d  

l  

o  

v  

g  

i  

t  

m  

t  

b  

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/237/3/1384/7632782 by guest on 21 M

ay 2024
isfit function, similar to the conventional FWI. The numerical
odelling in this study uses a time-domain solution of the 2-D

lastic wave equation discretized in a fourth-order adaptation of
he staggered-grid finite difference approximation of the velocity
nd stress fields (Virieux 1986 ; Le v ander 1988 ) to perform laterally
omogeneous (1-D) updates of the velocity model. We actively up-
ate the P -wave velocity ( V p ) and update the S -wave velocity ( V s )
nd density using empirical relationships with V p (Hamilton 1978 ;
astagna et al. 1985 ; Fliedner et al. 1998 ). 
From eq. ( 4 ), we can compute the gradient of potential energy

s half of the summation of gradients of the model and data misfit
unction. Computation of gradients of the data misfit function is
erformed using the adjoint-state method by combining the forward
nd adjoint wavefield using time-reversed signals of the adjoint
ource (Liu & Tromp 2006 ; Plessix 2006 ; Fichtner et al. 2006 ). 

.5 Tuning parameters and tempered HMC variant 

he performance of HMC depends upon a careful selection of tun-
ng parameters for convergence and quantification of the posterior
istribution. These tuning parameters include leapfrog steps, step
ize and an appropriate estimate of the mass matrix. Numerical
ntegration with a considerable step size impedes the conserv ati ve
roperty of the Hamilton’s equations, resulting in lower acceptance
ates (Neal et al. 2011 ; Betancourt 2017 ). Therefore, a suitable
alue of step size ε is empirically chosen to reduce numerical inac-
uracies and drift arising due to the discretization of the Hamilton’s
quations. 

The mass matrix is another tuning parameter which plays a cru-
ial role in the convergence of the HMC algorithm and embodies
ropagation properties of the momentum vector in sampling new
odels from the model space. Hamilton’s equations can be trans-

ormed into a second-order ordinary differential equation (ODE)
f an undamped harmonic oscillation of the position vector under
n external force. Solving this ODE for uniform oscillations of the
osition (model) vector components to ef ficientl y sample the model
pace gives an estimate of the mass matrix as an inverse posterior
ovariance (Fichtner et al. 2019 ) such that, 

M = 

[
C 

−1 
m 

+ 

∂ 2 J d ( m ) 

∂ m 

2 

]
, (11) 

here the term ∂ 2 J d ( m ) /∂ m 

2 represents the Hessian computed at a
iven model m . Due to the computational limitations in generating
nd storing Hessian at every specific intervals, a first-order esti-
ation of Hessian is generated through the gradients of the misfit

unction for the computation of the mass matrix. 
The tempering of a probability distribution is a process of rescal-

ng an optimization function (Sambridge 2014 ). It can drastically
ncrease the performance of an MCMC method by better sampling
he flattened PPD. Gaussian-based distributions are very prone to
empering as their values are directly proportional to the size of vari-
bles. As such, this rescaling can become crucial, especially in real
ata applications where the original Gaussian-derived probability
istributions can become highly variable, even for a minor change
n the model parameters. A tempered probability distribution over
n original posterior distribution can be written as 

P T ( m | d obs ) = P ( m | d obs ) 
1 /T ∝ P ( m ) 1 /T P ( d obs | m ) 1 /T , (12) 

here T is the temperature of the tempered distribution and can
e applied separately to individual probability distributions (Sam-
ridge 2014 ). The initialization of HMC in this study is based on a
ethodology adapted from the works of Fichtner & Zunino ( 2019 )
nd Fichtner et al. ( 2021 ) in sampling states of an ef fecti ve nullspace
round the converging solution of the tempered likelihood distribu-
ion by defining a certain tolerance bound within a range of the
ecreasing Hamiltonian. 

The expanded discretization of the Hamilton’s equations can pro-
ide details of the sensitivity of a randomly drawn momentum vector
nd data misfit gradient on the model updates, where the sensitivity
f the random momentum vector and gradient are proportional to
M 

−1 and ε2 M 

−1 / 2 (Fichtner & Zunino 2019 ). While the large
umber of leapfrog steps in HMC can be optimized to generate less
orrelated samples, the computational requirements limit its value
n this study to only L = 1 or 2. Here, w e ha ve used L = 1 on a
est basis for both the synthetic and real data applications. Based
n this value, the step size is empirically chosen in the range ε ∈
0.01, 0.1) with the maximum value in the mass matrix equal to 1.
hese parameters ensure an e xtensiv e sampling of the model space
ver the total number of samples varying between 3500 and 5000
ased on the allocated cluster resources. Tuning of the step size is
mplemented through the variation of acceptance rate and is defined
s a product of αεoriginal , where α is a ratio of acceptance rate av-
raged over the empirically chosen 25–50 samples with an optimal
cceptance rate kept at 65 per cent. 

 S Y N T H E T I C  T E S T S  

or the sake of simplicity, we will abbreviate HMC based elas-
ic FWI with just HMC in the following sections. These synthetic
tudies aim to test the performance and applicability of the HMC
gainst the conventional FWI in addressing non-linearities in wide-
ngle seismic data due to sharp velocity contrasts in the velocity
odels. For this objective, we conduct synthetic tests with two 1-D

sotropic shallow velocity models representing acquisition geome-
ries of small-scale wide-angle seismic data. We use a Ricker source
avelet with a dominant frequency of 6.5 Hz to compute the syn-

hetic data. The marine acquisition geometry for both tests uses a
ingle source at a depth of 20 m with a total of 290 receivers spaced
quidistantly at an interval of 30 m at 30 m depth in an end-on
pread with a minimum source–receiver distance of 50 m (Fig. 1 ).
he real seismic data are emulated by adding a Gaussian random
oise with standard deviation, σ noise equal to 25 per cent of the mean
mplitude. We have used the data covariance as an identity matrix of
he form C d = σ 2 

d I , with a constant noise variance σ 2 
d = 1 . Given

he cluster resources, the inversion is performed on ∼20 indepen-
ent Markov chains for around 5000 samples with different values
f mass matrix and step size to obtain the optimum model. 

.1 Test-1: 1-D three layered velocity model 

he first test is performed on a three-layered 1-D velocity model
Fig. 1 b) to assess the applicability of HMC in inverting seismic
ata around the critical angle (Fig. 2 a). The true model is 10.0 km
ong and 2.0 km deep, with the seabed at 0.2 km depth. It consists
f two sharp interfaces at 0.2 km and 1.0 km depths with layer
elocities of 2.0 km s −1 and 3.0 km s −1 . The initial model (Fig. 3 a,
reen) follows the true model up to 0.4 km depth. Below this depth,
t increases linearly from a velocity of 2.0 km s −1 at 0.4 km depth
o 3.2 km s −1 at 2.0 km depth with a constant velocity gradient. The
odel is discretized at 0.01 km × 0.01 km grid interval leading

o a total model dimension of 1000 × 200 gridpoints. The offsets
etween 1.8 km and 6.0 km are used for the inversion, with a
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Figure 1. (a) 2-D laterally homogeneous model (Test-1), and the 1-D representations of (b) Test-1 and (c) Test-2. The star (white) represents a single source at 
a depth of 20 m, and triangles (yellow) represent receivers placed at an equidistant interval of 30 m at 30 m depth. 

Figure 2. (a) Resulting seismic data (normalized) from the 1-D velocity model (Fig. 1 b) with the selected data enclosed within the red box. (b) Comparison 
of the observed (black) and initial (red) seismic data, with the b lack bo x enclosing the data with the major residual difference (observed - synthetic). The inset 
plot shows the blow-up of the observed (black) and initial (red) seismic data at 3.1 km and 4.8 km offsets. 

Figure 3. Result of a three-layered velocity model (black) with an initial velocity model (green) for inverting seismic data with (a) FWI (blue) and (c) HMC 

mean (red) with the yellow fill representing an interval of three standard deviations. Panels (b) and (d) shows the respective variation of data misfit function of 
FWI and HMC chains with increasing iterations and samples. 
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critical angle offset around 2.5 km. Fig. 2 (b) shows the comparison 
of the observed (black) and initial synthetic (red) data from the 
true and initial velocity models. The initial synthetic data show an 
absence of refractions from the third layer due to a constant velocity 
gradient. Assuming the velocity model up to the 0.4 km depth is 
known, we perform 1-D model updates from 0.4 km to 2.0 km depth 
containing 160 V p model parameters for both FWI and HMC. The 
prior distribution is a Gaussian distribution (eq. 10 ) with a broad 
model standard deviation σ m of 1.0 km s −1 for efficient sampling of 
the model space performed through multiple independent chains. 

Fig. 3 (a) shows the result of FWI (blue), and Fig. 3 (c) shows the 
converged solution of HMC with the mean (red) and an interval of 
three standard deviations (yellow). The variation of data misfit as 
a function of iterations and samples for FWI and HMC are shown 
in Figs 3 (b) and (d), respecti vel y. From these figures, we observe 
that the final data misfits for both inversions are similar, but there 
is a difference in the inverted velocity models below 1.2 km depth, 
which indicates the presence of local minima. FWI converges to 
a local minimum, as it cannot completely recover the velocity in 
the third layer. The application of HMC provides better results than 
FWI by recovering both the long and short-wavelength structures 
of the velocity model, with partial recovery of the third layer due 
to minimal gradient information present in the observed seismic 
data. Comparison of the observed (black) and synthetic (red) data 
for both FWI and HMC are shown in Figs 4 (a) and (b), with the 
enclosed black box showing the large data residuals for the result 
of FWI compared to HMC. 

3.2 Test-2: 1-D complex velocity model 

We performed the second test on a 1-D complex velocity model 
(Fig. 1 c) to determine the applicability of HMC in inverting the 
seismic data (Fig. 5 a) with three different initial velocity models. 
The true model is 10.0 km long and 3.5 km deep, with the seabed 
at 0.45 km depth, and contains three major sharp interfaces around 
0.52 km, 1.5 km and 2.3 km depths. The initial models (green, blue, 
magenta; Fig. 6 a) follow the true model up to the depth of 0.52 km. 
Below this depth, the velocities increase linearly to 4.0 km s −1 
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Figure 4. Comparison of the observed (black) and synthetic (red) seismic data from the inversion results (Fig. 3 ) of (a) FWI and (b) HMC. The enclosed black 
box shows the seismic arri v als from the third velocity layer with the major residual difference present in FWI compared to HMC. The inset plot in (a) and (b) 
shows the blow-up of the observed (black) and synthetic (red) seismic data from FWI and HMC at 3.1 km and 4.8 km offsets. 

Figure 5. (a) Resulting seismic data (normalized) from the 1-D velocity model (Fig. 1 c) with the selected data enclosed within the red box. (b) Comparison 
of the observed (black) and initial (red) seismic data from the true and initial velocity Model 3, with the black box enclosing the data with the major residual 
difference. The inset plot shows the blow-up of the observed (black) and initial (red) seismic data at 4.8 km and 6.2 km offsets. 

Figure 6. (a) Initial velocity models used for the inversion of the seismic data from the complex layered velocity model (black). Different starting models are 
highlighted with different colours. (b) Results of FWI on the seismic data from the three initial velocity models shown in (a). Mean (red) of HMC after inverting 
the seismic data from the initial velocity Model 1 (c), Model 2 (d) and Model 3 (e) with the yellow fill representing intervals of three standard deviations. The 
results of FWI are shown in blue. 
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Model 1), 4.5 km s −1 (Model 2) and 5.0 km s −1 (Model 3) at 3.5 km
epth. The offsets used for the inversion of the seismic data are from
.0 km to 7.0 km, with the critical angle offsets around 2.3 km and
.7 km from the second and third layer high-velocity contrasts.
ig. 5 (b) compares the observed (black) and initial synthetic (red)
ata from the true and initial velocity Model 3. We use the same
 rid inter val as the previous test, leading to a total model dimension
f 1000 × 351 gridpoints. The 1-D model updates are performed
rom 0.45 km to 3.5 km depth containing 306 V p model parameters
or both the FWI and HMC, with a model standard deviation of
.0 km s −1 for sampling the model space through ∼20 independent
hains. 

Fig. 6 (b) shows the result of FWI for Model 1 (green), Model
 (blue) and Model 3 (magenta) and Fig. 7 (a) shows the variation
f their data misfit as a function of iterations. Figs 6 (c), (d) and (e)
how the solutions of HMC with a mean (red) and three standard
eviations (yellow) for Model 1, 2 and 3, respecti vel y. The v ariation
f their data misfit as a function of increasing samples is shown in
igs 7 (b), (c) and (d). The results of FWI of the seismic data from
odel 1 and Model 2 show only a partial recovery of the true ve-

ocity model (Fig. 6 b). In contrast, the FWI of the seismic data from
odel 3 does not converge due to a significant difference between
 2  
he initial and true velocity model. The HMC, on the other hand,
rovides a much better solution than the FWI for all three velocity
odels and recovers both short and long-wavelength structures of

he true velocity model, especially in the case of Model 3, where the
WI gives a very poor result. The comparison of observed (black)
nd synthetic (red) data from the solution of the FWI (Fig. 8 a) and
MC (Fig. 8 b) of Model 3 confirms this observation. These results

ndicate a degree of independence of the HMC on the initial velocity
odel for the convergence to an optimum model. 

 A P P L I C AT I O N  O F  T H E  H M C  T O  

I D E - A N G L E  O B S  DATA  

he results of synthetic tests show the potential of the HMC in
nverting seismic data sets with critically reflected arri v als. Here we
resent the application of the HMC to ocean bottom seismometer
OBS) data from the Atlantic Ocean. 

.1 Study area and OBS data set 

e use the OBS data that was acquired during the 2018 ILAB-
PARC seismic surv e y (Marjanovi ́c et al. 2020 ; Growe et al.
021 ) in the Atlantic Ocean over the crust formed at the
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Figure 7. (a) Variation of the data misfit functions with increasing iterations of FWI on the seismic data from the initial velocity models (Fig. 6 a). Variation of 
data misfit function with increasing samples of HMC (red) on the seismic data from the velocity (b) Model 1, (c) Model 2 and (d) Model 3. 

Figure 8. Comparison of observed (black) and synthetic (red) seismic data from the inversion results of (a) FWI and (b) HMC on Model 3 shown in Fig. 6 . 
The black box encloses the data with the major residual difference present in FWI compared to HMC. The inset plot in (a) and (b) shows the blow-up of the 
observed (black) and synthetic (red) seismic data from FWI and HMC at 4.8 km and 6.2 km offsets. 
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slow-spreading Mid Atlantic Ridge (MAR) with a full spreading 
rate of ∼46 mm yr −1 (M üller et al. 2008 ; Seton et al. 2020 ). An 
approximately 855 km long N–S seismic profile running parallel to 
the MAR at 18 ◦W was shot with a total of 50 OBSs deployed at 
an average interval of 14.2 km to record wide-angle seismic data 
covering 8–70 Ma crust (Wang & Singh 2022 ; Fig. 9 a). An air gun 
array consisting of 16 guns with a total volume of 4999 cubic inches 
was towed at 10 m depth below the sea level and shot at an approx- 
imate interval of 297.9 m (Fig. 9 c). Our study area is located over a 
70 Ma crustal segment at 2 ◦N, 18 ◦W (Fig. 9 b). 

We perform first-arri v al traveltime tomo graphy using the inver- 
sion methods of Van Avendonk et al. ( 1998 , 2004 ) to obtain a 
long-w avelength P -w av e v elocity structure of the subsurface that 
could serve as an initial velocity model for the waveform inversion. 
Before performing any operation, the OBS records were corrected 
for drift due to the oceanic currents and repositioned for the shots 
and OBSs locations (Marjanovi ́c et al. 2020 ; Wang & Singh 2022 ). 
The data were bandpass filtered from 3 Hz to 10 Hz to enhance the 
signal-to-noise ratio with a dominant frequency between 5 Hz and 
7 Hz. We picked around 2500 first arri v als (Pg, Pn) from OBS 1 to 
OBS 11 and assigned an empirically picking uncertainty of 30 ms 
and 50 ms to the Pg and Pn arri v als, respecti vel y, based on the qual- 
ity of the data and visual inspection of errors present in OBSs and 
shots locations, bathymetry, ray path computations and the picking 
errors (Wang & Singh 2022 ). The traveltime is computed using the 
shortest ray path method (Moser 1991 ), where the model is dis- 
cretized at a uniform horizontal and vertical grid spacing of 300 
m and 60 m. The inversion is performed using an LSQR method 
(Paige & Saunders 1982 ) b y iterati vel y minimizing the cost function 
defined by the traveltime residuals and picking uncertainties up to 
a pre-defined threshold value by updating the slowness model with 
the smoothing and damping constraints to avoid the generation of 
ar tefacts. The star ting model is constr ucted by generating a smooth 
1-D velocity profile of the slow-spreading MAR (White et al. 1992 ; 
Grev eme yer et al. 2018 ; Christeson et al. 2019 ) and hung below 
the basement to generate a smooth 2-D velocity model. We used a 
top-do wn in v ersion strate gy to obtain a smooth 2-D v elocity model 
from tomography by inverting the traveltime of Pg arri v als fol- 
lowed by joint inversion of the traveltimes of Pg and Pn arri v als 
(Fig. 10 b). The initial 2-D model for FWI was obtained from the 
tomography model after covering the regions with no ray coverage 
(Fig. 10 c). 

The OBS data in this study is taken from a profile north of the 
St. Paul fracture zone between OBS 5 and OBS 2, marked with 
the black rectangle on the bathymetric map (Fig. 9 ). The average 
seabed depth in the study area is ∼4.84 km, and the sediment 
thickness slightly increases from ∼595 m at OBS 5 to ∼775 m at 
OBS 2, with an average thickness of ∼582 m (Fig. 10 a). The OBS 

data is bandpass filtered from 3 Hz to 6 Hz for a numerically stable 
inversion on a uniform grid spacing of 49.65 m with a 3 ms time 
sampling rate. A 3-D to 2-D correction for geometrical spreading 
is applied to the processed data by multiplying the amplitudes of 
the observed data by the square root of the two-wa y tra veltime and 
convolving with the inverse square root of the two-way traveltime 
to correct for deviations in the resulting phase and amplitude (Pica 
et al. 1990 ; Shipp & Singh 2002 ). 

We specifically use the seismic data of OBS 2 and OBS 5 to test 
the application of the HMC in estimating the 1-D approximation of 
the velocity structure. The two OBSs are separated by 42.6 km. The 
Pg arri v als on the left-hand side of OBS 2 are observed from 7.65 km 

to 22.56 km, PmP reflections from 20.18 km to 27.34 km, and Pn 
arri v als from 25.85 km to 41.66 km (Fig. 11 b). The Pg arri v als on 
the right side of OBS 5 are observed from 6.01 km to 24.21 km, 
PmP reflections from 22.42 km to 32.86 km and Pn arri v als from 

24.51 km to 40.92 km (Fig. 11 a). We observe a slight increase in 
the slope of the Pn arri v als as we move north to south from OBS 2 
to OBS 5 and have chosen the data from 9.5 km to 42 km offset in a 
time window of 0.60 s from the arri v al time picks. For the inversion 
of real seismic data, we require a balancing of amplitudes between 
the observed and synthetic data for a correct computation of data 
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Figure 9. (a) Bathymetric map of the ILAB-SPARC seismic surv e y ov er an 8–70 Ma crust in the equatorial Atlantic Ocean marked with a red star on a globe 
inset. The seismic profile is shown with a blue line around 18 ◦W, with every tenth OBS marked with a red triangle. (b) The black rectangle shows the area used 
in this study for the application of HMC on OBS 2 and OBS 5, marked with red triangles. (c) The plot of the shot intervals (black) and their average (red) from 

shot point 1986 (35 km south of OBS 10) to 2589 (16.8 km north of OBS 1) of the ILAB-SPARC seismic surv e y with shot points 2343 and 2486 aligned with 
the position of OBS 5 and OBS 2 on the seabed. 

Figure 10. (a) Variation of the seabed and basement in the study area. (b) The velocity model from the first-arri v al traveltime tomo graphy. The MTZ is 
defined between the solid and dashed white line representing the velocity contours of 7.2 km s −1 and 7.8 km s −1 . (c) The modified initial velocity model after 
cov ering the low-v elocity anomalies below the MTZ with no ray coverage. The inverted triangles represent the location of OBS on the selected section of 
the ILAB-SPARC seismic surv e y. The gre y arrow shows the S–N direction of increasing model distance with the origin at OBS 5. The green and red bands 
represent the regions used for inverting the seismic data of OBS 5 and OBS 2, marked with green and red inverted triangles, respecti vel y. 
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isfit and its gradients. We perform this operation by normalizing
he synthetic and observed data with their maximum amplitudes in
he offset range from 9.5 km to 42 km. 

We estimated the source w avelet b y extracting the direct wave
rri v als of OBS 1 to OBS 10 in the near offsets range from −0.6 km
o 0.6 km. Then, these arri v als are corrected for normal moveout
sing a constant water velocity of 1.5 km s −1 and aligned together
o generate the stacked trace. The stacked trace is bandpass filtered
rom 3 Hz to 6 Hz, and a source wavelet of ∼0.75 s interval is
xtracted to avoid contamination from the sedimentary layers. This
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Figure 11. Seismic data gather of (a) OBS 5 (right-hand side) and (b) OBS 2 (left-hand side) with marked Pg (red), PmP (green) and Pn (blue) seismic arri v als. 
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source wavelet is verified by comparing the synthetic and observed 
data at near offsets. 

We performed seismic modelling on a 45.0 km long and 14.0 km 

deep velocity model discretized at a uniform grid spacing of 
49.65 m, leading to a total model dimension of 907 × 282 grid- 
points. We used a data covariance matrix based on an exponential 
correlation law (Bodin et al. 2012 ) with a constant noise variance 
σ 2 

d = 1 and a correlation factor of 0.25 to account for sparse ac- 
quisition geometry with a receiver interval of 297.9 m. A tempered 
likelihood with temperatures T ∈ [20 − 100] is used to flatten 
the variable likelihood function to increase the efficiency rate of the 
HMC. The prior distribution is a Gaussian distribution (eq. 10 ) with 
a model standard deviation σ m of { 750, 1000 } m s −1 for sampling 
the model space through 20–30 independent chains. 

4.2 Results 

We use the 1-D initial velocity model (Fig. 13 a, black) extracted 
by averaging the 2-D velocity model from 3.0 km to 10.0 km 

left of OBS 2. Figs 12 (a) and (b) show the comparison of ob- 
served (black) and synthetic (red) seismic data from the initial 
velocity model and the data residuals. We performed the HMC 

to estimate the model parameters from ∼5.5 km to 14.0 km 

depth containing 171 V p model parameters, keeping the rest of the 
model above unchanged. Fig. 13 (b) shows the results of the HMC 

mean (red), three standard deviations (yellow) and the maximum a 
posteriori (MAP) estimate (cyan) with the maximum probability. 
Fig. 13 (c) and (d) show the variation of the posterior probability of 
each chain and its normalized data misfit function with increasing 
samples. 

The result of HMC provides a good fit to the observed data, 
as can be seen from the comparison of the observed (black) and 
synthetic (red) seismic data (Fig. 14 a) from the estimated mean 
and the data residuals (Fig. 14 b). The mean velocity model shows 
a layered structure, marked by changes in velocity gradients. The 
thickness of these layers varies from ∼500 m to ∼1000 m. As the 
frequency bandwidth of the seismic data is from 3 Hz to 6 Hz, the 
thickness of these layers corresponds to half of the wavelength of 
these frequencies in the crust and upper mantle (Virieux & Operto 
2009 ). An increasing gradient around 10 km depth till the maximum 

velocity of 7.8 km s −1 indicates ∼0.7 km thick MTZ. We further 
discuss the details of this result in the next section. 

Fig. 16 (a) shows the initial 1-D velocity model (black) for OBS 

5 extracted by averaging the 2-D velocity model from 3 km to 
10 km right of OBS 5. Figs 15 (a) and (b) show the comparison of 
observed (black) and synthetic (red) data from the initial velocity 
model and the data residuals. Following the same strategy used in 
inverting OBS 2, we performed the HMC to estimate the model pa- 
rameters from ∼5.5 km to 14.0 km depth containing 173 V p model 
parameters, keeping the rest of the model unchanged. Fig. 16 (b) 
shows the results of the HMC mean (red) with three standard de- 
viations (yellow) and the MAP estimate (cyan). Figs 16 (c) and (d) 
show the variation of the posterior probability of each chain and its 
normalized data misfit function with increasing samples. 

Figs 17 (a) and (b) show the comparison of the observed (black) 
and synthetic (red) seismic data from the estimated mean and the 
data residuals. The resulting mean velocity model shows a slight 
decrease in the velocity in both the upper and lower crust from ∼6.3 
km to ∼9.8 km depth compared to the initial velocity model and 
a smooth variation of velocity around the MTZ from 10.1 km to 
11.2 km depth, indicating ∼1.1 km thick MTZ. 

5  D I S C U S S I O N  

While the estimated mean and standard deviation are used to char- 
acterize the centre and spread of model parameters in the sampled 
posterior distribution, HMC can also provide additional information 
on the statistical distribution of the model parameters. This informa- 
tion can be obtained from a scatter plot matrix of model parameters, 
where the diagonal plots showing the 1-D marginal distribution of 
model parameters provide information on the multimodality of the 
model parameters, and the off-diagonal plots showing 2-D marginal 
distribution provide information on the distribution and correlation 
of two model parameters at different depths. The scatter plot matrix 
computed from the posterior distribution of OBS 5 (Fig. 19 b) shows 
an approximated Gaussian distribution of the model parameters in 
the diagonal plots. Conversely, the presence of multiple peaks on 
the diagonal plots of the scatter plot matrix for OBS 2 (Fig. 19 a) 
indicates deviation from the assumed Gaussian distribution of the 
PPD. The off-diagonal plots of both matrices show a complex distri- 
bution, indicating the non-linear relationship of model parameters 
with each other. This variation can also be observed from a joint dis- 
tribution plot of velocities of OBS 5 (Fig. 20 b) and OBS 2 (Fig. 20 a) 
at depths of 8.0 km and 10.0 km, marking a shift from an approx- 
imated Gaussian to a non-Gaussian distribution of the posterior 
samples. The deviation from the Gaussian distribution of velocities 
observed in these plots could result from the computationally con- 
strained sampling of the model space affecting the convergence of 
the Markov chains, as discussed in the later parag raph. Alter nati vel y, 
it could also result from complex trade-offs of model parameters 
in the PPD, arising from the non-uniqueness of the inversion prob- 
lem, the limited data window used for inversion, and the laterally 
homogeneous assumption of the 2-D velocity model used in this 
study. 
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Figure 12. (a) Comparison of the observed (black) and the synthetic (red) seismic data from the initial velocity model of OBS 2 and (b) the data residuals 
plotted with an increasing data offset in the N–S direction. The black box marks the data with large data residuals. The inset plot in panel (a) shows the blow-up 
of the observed (black) and synthetic (red) seismic data at 13 km and 24 km offsets. 

Figure 13. (a) Plot of random models sampled on every independent chain. (b) Mean velocity model (red) and three standard deviations (yellow) from the 
HMC of the OBS 2 data and the MAP estimate (cyan). (c) Variation of the posterior probability of each chain and (d) its normalized data misfit function with 
increasing samples. 

Figure 14. Comparison of the observed (black) and synthetic (red) seismic data from (a) the estimated mean of the HMC on OBS 2 data and (b) the data 
residuals plotted with an increasing data offset in the N–S direction. The black box marks the data with a significant decrease in the data residual. The inset 
plot in (a) shows the blow-up of the observed (black) and synthetic (red) seismic data at 13 km and 24 km offsets. 

Figure 15. (a) Comparison of the observed (black) and synthetic (red) seismic data from the initial velocity model for OBS 5 and (b) the data residuals plotted 
with an increasing data offset in the S–N direction. The black box marks the data with large data residuals. The inset plot in (a) shows the blow-up of the 
observed (black) and synthetic (red) seismic data at 17 km and 22 km offsets. 
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Though the first arri v als of the final synthetics at both OBSs fit
he observed data (Figs 14 and 17 ), the presence of comparati vel y
arge misfits of the later arri v als in the time window of 0.6 s suggests
 degree of lateral heterogeneity present in the velocity model. Also,
he structures in the MTZ and upper mantle for both OBS 2 and OBS
 are constrained by the PmP and Pn seismic arri v als at offsets of
 20 km and are limited in resolution with the frequency bandwidth

f the data from 3 Hz to 6 Hz. Therefore, the 1-D approximations
f a 2-D velocity model at both OBSs should be interpreted with
aution. Fig. 18 shows the mean velocity models and three standard
eviations from the result of the HMC for OBS 2 and OBS 5. The
ean velocity model in the part of the upper crust up to ∼7.7 km

epth shows a slightly higher velocity from OBS 5 than the velocity
rom OBS 2. Below this depth, the velocity from OBS 5 is ∼0.50
m s −1 to 0.75 km s −1 lower than that from OBS 2. Fur ther more,
he velocity depth profile shows more layered structures from OBS
 than those observed from OBS 5. These differences could be due
o the mapping of 2-D structures into two 1-D models that are 20–
0 km apart. Assuming an increase in velocity gradient around the
0 km depth from 7.2 km s −1 to a maximum velocity of 7.8 km s −1 
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Figure 16. (a) Plot of random models sampled on every independent chain. (b) Mean velocity model (red) and three standard deviations (yellow) from the 
HMC of the OBS 5 data and the MAP estimate (cyan). (c) Variation of the posterior probability of each chain and (d) its normalized data misfit function with 
increasing samples. 

Figure 17. Comparison of observed (black) and synthetic (red) seismic data from (a) the estimated mean of the HMC on OBS 5, and (b) the data residuals 
plotted with an increasing data offset in the S–N direction. The black box marks the data with a significant decrease in the data residuals. The inset plot in (a) 
shows the blow-up of the observed (black) and synthetic (red) seismic data at 13 km and 24 km offsets. 

Figure 18. Blow-up of the result of the HMC from OBS 2 (purple) and 
OBS 5 (green) with a mean velocity model and three standard deviations. 
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as the MTZ, the thickness of the MTZ would be ∼1.1 km for OBS 

5 and ∼0.7 km for OBS 2, leading to a crustal thickness of ∼5.1 km 

for OBS 5 and ∼4.3 km for OBS 2. The higher velocity up to 7.7 km 

depth and the monotonous increase of velocity in the upper crust 
for OBS 5 might be related to ultramafic cumulates or an increase in 
serpentinization with depth. This interpretation would be consistent 
with a thick MTZ and a lower upper mantle velocity (7.8 km s −1 ). 
For OBS 2, the uppermost high-velocity gradient layer down to 
∼6.2 km depth might represent Layer 2A. The slightly low-velocity 
gradient layer down to ∼7.7 km depth might be due to the dike 
sequence and represent Layer 2B. The high-velocity gradient layer 
between ∼7.7 km and ∼8.4 km depth could be a transition from 

dike to gabbro. The nearly constant velocity below this depth down 
to the MTZ might be Layer 3 (gabbro). 
Str uctures with alter nate high and low-velocity la yers ha ve been 
observed by Guo et al. ( 2022 ) and interpreted as a result of in 
situ crystallization of the melt in the lower crust. How ever, w e do 
not observe such structures, possibly due to the 1-D approximation 
used here. Below the MTZ, the velocities of ∼8.3 km s −1 are rather 
high for a normal mantle velocity. The high mantle velocities of 
∼8.3 km s −1 were also observed by Vaddineni et al. ( 2021 ) and 
interpreted as a low degree of melting. In the upper mantle, both 
OBS results indicate the presence of low-velocity structures, which 
could be due to layering in the mantle or artefacts. Ho wever , the 
velocity structure for OBS 2 indicates that the crust is likely formed 
by a magmatic process (Wang & Singh 2022 ). These results can 
be further improved with a better probabilistic 2-D FWI of the 
OBSs while considering the lateral heterogeneity of the velocity 
model. 

The numerical w orkflo w of the HMC gives it an edge in gen- 
erating less correlated samples with increasing dimensionality of 
the inverse problem. The computation time for generating a sta- 
tistically independent sample in the HMC grows as a power of 
n 5/4 compared to n 2 in the standard Metropolis–Hastings algorithm 

(Neal et al. 2011 ) for n -dimensional parameters. To maintain this 
edge, tuning parameters play a crucial role in the efficiency and con- 
vergence of the HMC. The main computational cost of the HMC 

comes from the gradients computed L + 1 times over a trajectory 
length of L ε in e very iterati ve w orkflo w. This restriction se verel y 
limits the number of leapfrog steps for an efficient implementation 
of the algorithm. We performed numerical computations using the 
S-CAPAD/DANTE platform at IPGP with a single node consisting 
of 32–64 CPUs, each having 2/4 GB of memory and used L = 1 to 
maintain the computational efficiency of the HMC. Thus, the step 
size and the mass matrix are the only tuning parameters used in this 
study. The computational time of the HMC with leapfrog steps L = 

1 for the synthetic test-1 and test-2 with model dimensions of 1000 
× 200 and 1000 × 351 gridpoints, and 160 V p and 306 V p model 
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Figure 19. Scatter plot matrix computed from the posterior distribution of (a) OBS 2 and (b) OBS 5 at individual depths of 7.0 km, 9.0 km, 11.0 km and 
13.0 km. The diagonal plots show the 1-D marginal distribution of model parameters, representing the multi-modality of the solution. On the other hand, 
off-diagonal plots represent the 2-D distribution of model parameters at different pairs of depths, with darker shades indicating increasing density of the 
sampled model parameters. 

Figure 20. Joint distribution plots of (a) OBS 2 and (b) OBS 5 showing the deviation from the assumed Gaussian distribution of the PPD at depths of 8.0 km 

and 10.0 km. Red lines mark the mean velocities, while darker shades indicate increasing density of sampled velocities at the selected depths. 
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arameters takes ∼56 hr and ∼98 hr for sampling around 5000
odels. In contrast, the computational time of FWI in test-1 and

est-2 takes ∼25 min and ∼45 min for a total of 90 iterations. Sim-
larly, the HMC of both OBS data sets with model dimensions of
07 × 282 gridpoints and 171 V p and 173 V p model parameters
akes 48 hr to sample around 3500–5000 models. 

The value of step size ε is empirically chosen based on factors
f model updates associated with generating the random momen-
um variable and misfit gradient. We tune it at specific intervals
o maintain an appropriate acceptance rate. The remaining tun-
ng parameter, M (mass matrix), is inversely proportional to the
ensitivity of the momentum vector in generating random veloc-
ty models by sampling new states along the particle trajectory.
herefore, ef fecti vel y tuning the mass matrix can improve the con-
ergence rate by increasing the range of model updates sampled
n the HMC. Here, we have computed the diagonal mass matrix
t regular intervals using the first-order estimation of the inverse
osterior covariance and kept the maximum value of the mass
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Figure 21. Sample autocorrelation plot of a specific individual chain of HMC for (a) OBS 2 and (b) OBS 5 averaged over all model parameters. The individual 
lines represent the average autocorrelation coefficients computed between the mentioned model parameters. D
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matrix to 1.0, corresponding to the minimum permissible model 
updates. 

To assess the convergence of multiple chains, we computed the 
autocorrelation (Geyer 1992 ; Gelman et al. 2013 ) of the model 
parameters from the sampled PPD. In the context of MCMC, auto- 
correlation is a measure of independent samples and is indicative of 
the efficiency of the MCMC chain over an e xpansiv e model space. 
For this purpose, the ef fecti ve sample size ( N eff ) reflects the number 
of statistically independent samples present in the sampled posterior 
distribution and is estimated as 

N eff = 

N 

1 + 2 
∑ inf 

γ= 1 ρ( γ ) 
, (13) 

where N is the total number of samples and ρ( γ ) is the normalized 
autocorrelation function, computed as c ( γ )/ c (0) for the autocorrela- 
tion c ( γ ) at a sample lag γ . Here, we have computed the autocorre- 
lation of model parameters of an individual chain from the posterior 
samples of OBS 2 (Fig. 21 a) and OBS 5 (Fig. 21 b) starting from 

sample 500. We estimated the ratio of N eff / N as a representative 
of uncorrelated samples present in the PPD by summing the nor- 
malized autocorrelation function ρ( γ ) up to the lag where its first 
successive summed value becomes ne gativ e (Gelman et al. 2013 ; 
Fichtner et al. 2021 ). The average value of this ratio over the group 
of model parameters in our study varies from ∼0.005 to ∼0.02, 
indicating the presence of statistically one independent sample for 
every ∼50 to ∼200 samples. 

The results of the HMC on the synthetic and OBS data show its 
advantage in adequately sampling the posterior distribution. Com- 
pared to the FWI, the HMC shows considerable independence on the 
initial velocity model. We ha ve, how ever, not explored the extent 
of this independence on the initial velocity models. For practical 
purposes, the construction of PPD in this study uses the Gaus- 
sian probability distributions to sample the model and momentum 

variables and to determine the multivariate Gaussian likelihood 
function. These distributions are prone to tempering and might cre- 
ate a bias in the resulting PPD. Using the probability distributions 
based on more robust norms of kinetic energy (Livingstone et al. 
2019 ) and appropriate data misfit functions (Luo & Schuster 1991 ; 
Brossier et al. 2010 ; Bozda ̆g et al. 2011 ; M étivier et al. 2016 ) can 
increase the efficiency of the HMC. The constraints posed by the 
computational resources play a critical role in the e xtensiv e applica- 
bility of the algorithm and tuning strategies used in this study for the 
inversion of the observed seismic data using 1-D velocity models. 
Ho wever , the increased efficiency of the HMC with larger dimen- 
sional problems indicates its future potential in quantifying 2-D 
and 3-D laterally heterogeneous structures with a better numerical 
framework and high-performance computational facilities. 

6  C O N C LU S I O N  

FWI of the wide-angle seismic data in the presence of a high- 
velocity contrast (e.g. MTZ) is prone to converge to local minima 
due to the complex behaviour of reflection coefficients starting from 

the critical angle. The additional interference of different seismic 
arri v als and the inherent errors in the recorded seismic data in- 
crease the non-linearity of the inverse problem. In this study, we 
have presented the practical results of HMC based elastic FWI of 
wide-angle seismic data for understanding the nature of the lower 
crust and MTZ over a 70 Ma crustal segment in the equatorial At- 
lantic Ocean. The application w as successfull y tested against the 
limitations of FWI with the inversion of synthetic seismic data sets 
from two groups of 1-D velocity profiles using a time-domain finite 
difference solution of the 2-D elastic wave equation. The efficiency 
of the HMC in this study depends on an appropriate tuning strat- 
egy of the diagonal mass matrix and the empirically chosen step 
size limited by the computational constraints of the leapfrog steps 
L = 1. 

The application of HMC to OBS data from the equatorial Atlantic 
Ocean indicates the presence of a ∼1.1 km thick MTZ for OBS 

5 and ∼0.7 km thick MTZ for OBS 2. The presence of a high 
velocity in the upper cr ust, unifor m and lower velocity in the crust 
and relati vel y low velocity in the mantle, combined with a thick 
MTZ from OBS 5, suggests a gabbroic or partially serpentinized 
crust with MTZ probably composed of ultramafic cumulates with a 
cer tain deg ree of serpentinization. On the other hand, the presence 
of layered structures in the crust, overall high velocities in the crust 
and upper mantle and a relati vel y thin MTZ from OBS 2 suggest 
that the crust is formed by a magmatic process. 
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ichtner , A. & Simut ė, S., 2018. Hamiltonian Monte Carlo inversion of
seismic sources in complex media, J. geophys. Res., 123 (4), 2984–2999. 

ichtner , A. & Zunino, A., 2019. Hamiltonian nullspace shuttles, Geophys.
Res. Lett., 46 (2), 644–651. 

ichtner , A. , Bunge, H.-P. & Igel, H., 2006. The adjoint method in seismol-
ogy: I. Theory, Phys. Earth planet. Inter., 157 (1–2), 86–104. 

ichtner , A. , Kennett, B.L., Igel, H. & Bunge, H.-P., 2008. Theoretical
background for continental-and global-scale full-waveform inversion in
the time–frequency domain, Geophys. J. Int., 175 (2), 665–685. 

ichtner , A. , Kennett, B.L., Igel, H. & Bunge, H.-P., 2009. Full seismic wave-
for m tomog raphy for upper-mantle str ucture in the Australasian region
using adjoint methods, Geophys. J. Int., 179 (3), 1703–1725. 

ichtner , A. , Zunino, A. & Gebraad, L., 2019. Hamiltonian Monte Carlo
solution of tomographic inverse prob lems, Geoph ys. J. Int., 216 (2), 1344–
1363. 

ichtner , A. , Zunino, A., Gebraad, L. & Boehm, C., 2021. Autotuning
Hamiltonian Monte Carlo for efficient generalized nullspace exploration,
Geophys. J. Int., 227 (2), 941–968. 

liedner , M. , White, R. & Smallwood, J., 1998. Seismic velocity structure of
basalt flows, in SEG Technical Pr ogr am Expanded Abstracts, pp. 1178–
1181, Society of Exploration Geophysicists. 

rench , S. & Romanowicz, B.A., 2014. Whole-mantle radially anisotropic
shear velocity structure from spectral-element w aveform tomo graphy,
Geophys. J. Int., 199 (3), 1303–1327. 

ebraad , L. , Boehm, C. & Fichtner, A., 2020. Bayesian elastic full-waveform
inversion using Hamiltonian Monte Carlo, J. geophys. Res., 125 (3),
e2019JB018428. 

ee , L.S. & Jordan, T.H., 1992. Generalized seismological data functionals,
Geophys. J. Int., 111 (2), 363–390. 

elman , A. , Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A. & Rubin,
D.B., 2013. Bayesian Data Analysis, 3rd edn, Chapman and Hall/CRC. 

eyer , C.J. , 1992. Practical Markov Chain Monte Carlo, Stat. Sci., 7 (4),
473–483. 

reen , P.J. , 1995. Reversible jump Markov Chain Monte Carlo computation
and Bayesian model determination, Biometrika, 82 (4), 711–732. 

rev eme yer , I. , Ranero, C.R. & Ivandic, M., 2018. Structure of oceanic crust
and serpentinization at subduction trenches, Geosphere, 14 (2), 395–418.

rowe , K. et al. , 2021. Seismic structure of the St. Paul fracture zone and
late Cretaceous to Mid Eocene oceanic crust in the equatorial atlantic
ocean near 18 ◦W, J. geophys. Res., 126 (11), e2021JB022456. 

uo , P. , Singh, S.C., Vaddineni, V.A., V isser , G., Grev eme yer, I. & Saygin,
E., 2021. Nonlinear full wav eform inv ersion of wide-aperture OBS data
for Moho structure using a trans-dimensional bayesian method, Geophys.
J. Int., 224 (2), 1056–1078. 

uo , P. , Singh, S.C., Vaddineni, V.A., Grev eme yer, I. & Saygin, E., 2022.
Lower oceanic cr ust for med by in situ melt crystallization revealed by
seismic layering, Nat. Geosci., 15 (7), 591–596. 

amilton , E.L. , 1978. Sound velocity–density relations in sea-floor sedi-
ments and rocks, J. acoust. Soc. Am., 63 (2), 366–377. 

obro , J. , Minshull, T., Singh, S. & Chand, S., 2005. A three-dimensional
seismic tomographic study of the gas hydrate stability zone, offshore
Vancouver island, J. geophys. Res., 110 (B9), doi:10.1029/2004JB003477.

https://doi.pangaea.de/10.1594/PANGAEA.937195
http://dx.doi.org/10.1785/0120070079
http://dx.doi.org/10.1098/rsta.1970.0005
http://dx.doi.org/10.1111/j.1365-246X.1988.tb05899.x
http://dx.doi.org/10.1190/1.1441345
http://dx.doi.org/10.1190/1.3581357
http://dx.doi.org/10.1029/98JB02467
http://dx.doi.org/10.1111/j.1365-246X.2009.04226.x
http://dx.doi.org/10.1029/2011JB008560
http://dx.doi.org/10.1093/gji/ggv048
http://dx.doi.org/10.1093/gji/ggw272
http://dx.doi.org/10.1111/j.1365-246X.2011.04970.x
http://dx.doi.org/10.1190/1.3215771
http://dx.doi.org/10.1190/1.3379323
http://dx.doi.org/10.1190/1.1443880
http://dx.doi.org/10.1111/j.1365-246X.2005.02689.x
http://dx.doi.org/10.1111/j.1365-246X.1988.tb03879.x
http://dx.doi.org/10.1190/1.1441933
http://dx.doi.org/10.1111/j.1365-246X.1985.tb05142.x
http://dx.doi.org/10.1190/geo2010-0210.1
http://dx.doi.org/10.1111/j.1365-2478.2012.01079.x
http://dx.doi.org/10.1785/BSSA0650010055
http://dx.doi.org/10.1029/2019RG000641
http://dx.doi.org/10.1016/0370-2693(87)91197-X
http://dx.doi.org/10.1029/JB089iB07p05929
http://dx.doi.org/10.1029/JB082i002p00239
http://dx.doi.org/10.1002/2017JB015249
http://dx.doi.org/10.1029/2018GL080931
http://dx.doi.org/10.1016/j.pepi.2006.03.016
http://dx.doi.org/10.1111/j.1365-246X.2008.03923.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04368.x
http://dx.doi.org/10.1093/gji/ggy496
http://dx.doi.org/10.1093/gji/ggab270
http://dx.doi.org/10.1093/gji/ggu334
http://dx.doi.org/10.1029/2019JB018428
http://dx.doi.org/10.1111/j.1365-246X.1992.tb00584.x
http://dx.doi.org/10.1214/ss/1177011137
http://dx.doi.org/10.1093/biomet/82.4.711
http://dx.doi.org/10.1130/GES01537.1
http://dx.doi.org/10.1029/2021JB022456
http://dx.doi.org/10.1093/gji/ggaa505
http://dx.doi.org/10.1038/s41561-022-00963-w
http://dx.doi.org/10.1121/1.381747
http://dx.doi.org/10.1029/2004JB003477


1398 N. Dhabaria and S. C. Singh 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/237/3/1384/7632782 by guest on 21 M

ay 2024
Hong , T. & Sen, M.K., 2009. A new MCMC algorithm for seismic waveform 

inversion and corresponding uncertainty analysis, Geophys. J. Int., 177 (1), 
14–32. 

Keilis-Borok , V. & Yanovskaja, T., 1967. Inverse problems of seismology 
(structural re vie w), Geophys. J. Int., 13 (1–3), 223–234. 

Korenaga , J. , Holbrook, W., Kent, G., Kelemen, P., Detrick, R., Larsen, H.- 
C., Hopper, J. & Dahl-Jensen, T., 2000. Crustal structure of the southeast 
Greenland margin from joint refraction and reflection seismic tomogra- 
phy, J. geophys. Res., 105 (B9), 21 591–21 614. 

Krebs , J.R. , Anderson, J.E., Hinkley, D., Neelamani, R., Lee, S., Baumstein, 
A. & Lacasse, M.-D ., 2009. F ast full-wavefield seismic inversion using 
encoded sources, Geophysics, 74 (6), WCC177–WCC188. 

Lailly , P. & Bednar, J., 1983. The seismic inverse problem as a sequence 
of before stack migrations, in Proceedings of the Conference on Inverse 
Scattering, Theory and Application, Society for Industrial and Applied 
Mathematics, Expanded Abstracts, pp. 206–220. 

Le v ander , A.R. , 1988. Fourth-order finite-dif ference P-SV seismo grams, 
Geophysics, 53 (11), 1425–1436. 

Liu , Q. & Tromp, J., 2006. Finite-frequency kernels based on adjoint meth- 
ods, Bull. seism. Soc. Am., 96 (6), 2383–2397. 

Livingstone , S. , Faulkner, M.F. & Roberts, G.O., 2019. Kinetic energy choice 
in Hamiltonian/Hybrid Monte Carlo, Biometrika, 106 (2), 303–319. 

Luo , Y. & Schuster, G.T., 1991. Wa ve-equation tra v eltime inv ersion, 
Geophysics, 56 (5), 645–653. 

Mahalanobis , P.C. , 1936. On the generalized distance in statistics, Proc. 
Natl. Inst. Sci. India, 2, 49–55. 

Maiti , S. , Gupta, G., Erram, V.C. & Tiwari, R., 2011. Inversion of Schlum- 
berger resistivity sounding data from the critically dynamic Koyna region 
using the hybrid Monte Carlo-based neural network approach, Nonlin. 
Process. Geophys., 18 (2), 179–192. 

Malinv erno , A. , 2002. P arsimonious bayesian Markov Chain Monte Carlo 
inversion in a nonlinear geophysical prob lem, Geoph ys. J. Int., 151 (3), 
675–688. 

Marinari , E. & Parisi, G., 1992. Simulated tempering: a new Monte Carlo 
scheme, EPL (Europhys. Lett.), 19 (6), doi:10.1209/0295-5075/19/6/002. 

Marjanovi ́c , M. et al. , 2020. Seismic crustal structure and morphotectonic 
features associated with the chain fracture zone and their role in the 
evolution of the equatorial Atlantic region, J. geophys. Res., 125 (10), 
e2020JB020275. 
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