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Preponderance of generalized 
chain functions in reconstructed 
Boolean models of biological 
networks
Suchetana Mitra 1,2,6, Priyotosh Sil 2,3,6, Ajay Subbaroyan 2,3,6, Olivier C. Martin 4,5* & 
Areejit Samal 2,3*

Boolean networks (BNs) have been extensively used to model gene regulatory networks (GRNs). The 
dynamics of BNs depend on the network architecture and regulatory logic rules (Boolean functions 
(BFs)) associated with nodes. Nested canalyzing functions (NCFs) have been shown to be enriched 
among the BFs in the large-scale studies of reconstructed Boolean models. The central question we 
address here is whether that enrichment is due to certain sub-types of NCFs. We build on one sub-
type of NCFs, the chain functions (or chain-0 functions) proposed by Gat-Viks and Shamir. First, we 
propose two other sub-types of NCFs, namely, the class of chain-1 functions and generalized chain 
functions, the union of the chain-0 and chain-1 types. Next, we find that the fraction of NCFs that 
are chain-0 (also holds for chain-1) functions decreases exponentially with the number of inputs. We 
provide analytical treatment for this and other observations on BFs. Then, by analyzing three different 
datasets of reconstructed Boolean models we find that generalized chain functions are significantly 
enriched within the NCFs. Lastly we illustrate that upon imposing the constraints of generalized chain 
functions on three different GRNs we are able to obtain biologically viable Boolean models.

Keywords Gene regulatory networks, Boolean networks, Update rules, Chain function, Nested canalyzing 
function, Relative enrichment

Cellular decision making processes are governed by intricate gene regulatory networks (GRNs)1. Extensive efforts 
have been dedicated in the pursuit of understanding their underlying structure and  dynamics2–7. The discrete 
state framework of ‘logical modeling’ pioneered by Stuart  Kauffman8,9 and René  Thomas10,11, stands out as a 
simple and effective way to mimic the dynamic behaviour of GRN. In the Boolean formalism, the state of the 
nodes (genes or other biological entities) are simplified to two different states—‘off ’ or ‘on’.

In order to replicate key steady-state dynamical behaviour in living systems such as fixed points, Kauffman 
explored Random Boolean networks (RBNs)8. RBNs are defined by the inclusion of interactions (directed edges) 
between nodes (genes) chosen at random, accompanied by the assignment of random logical update rules at 
these nodes. However, extensive studies of biological networks, aided by recent advances in collection of large-
scale data, have revealed that the network architectures of GRNs are far from being random, both in terms of 
their topology and the logic  rules4,6,7,12,13. Since the beginning of the present century, there has been a significant 
surge in employing the Boolean framework to reconstruct GRNs from experimental biological  data14–20. This 
trend has been propelled by the advancement in sequencing technology and increased computational capabili-
ties, allowing not only the reconstruction of networks but also in the reproduction of gene expression patterns.

Deeper investigations into the use of Boolean functions (BFs) has unveiled that specific classes of functions, 
such as unate functions (UFs)21, canalyzing functions (CFs)2 and nested canalyzing functions (NCFs)3,22 exhibit 
distinct properties that inherently render them more suitable to be regarded as biologically meaningful when 
compared to random BFs. Notably, some of us in our previous work have shown that two classes of BFs, namely 
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NCFs and read-once functions (RoFs) exhibit unexpected  prevalence13 within a compiled reference biological 
dataset of 2687 BFs derived from reconstructed Boolean models of biological systems despite their theoretical 
fraction within the space of all BFs being minuscule. We also showed that NCFs and RoFs have the ‘simplest 
logic’ with respect to the complexity measures ‘average sensitivity’23 and ‘Boolean complexity’24 respectively. In 
a more recent work, some of us have also shown that biologically meaningful logics have distinct effect on the 
structural features of the state transition graph when compared to random  logics25 .

In this study, our focus centers on two specific sub-types of NCFs. One is known as the chain function class 
that was introduced by Gat-Viks and Shamir in  200326. They argued for the ubiquity of these functions in biologi-
cal networks. Furthermore, in the same year, Kauffman et al.3 provided a simplified definition of the chain func-
tion class based on the canalyzing input values. Their work revealed that out of the 139 rules (or BFs) compiled 
by Harris et al.27, 132 were NCFs and amongst those 107 were chain functions. In 2011, Akutsu et al.28 proposed 
an alternative definition of chain functions based on the Boolean expression, where the variable signs and the 
subsequent operators are strictly interdependent and governed by a control pattern that is a sequence of ‘0’ and 
‘1’. In our current work, we present an equivalent definition of Akutsu et al.28, but without having to introduce 
their control pattern. We also introduce a novel sub-type of NCFs, comprised of the duals of the functions in the 
class of chain functions. To distinguish the class of chain functions from this new class, we refer to the former as 
chain-0 functions or ChF0 , and the latter one as chain-1 functions or ChF1 . We then term the union of these two 
classes as ‘generalized chain functions’ and denote it by ChFU . We first derive a formula to count the number of 
functions of a k-input ChF0 (or ChF1 ). Then we investigate the fraction of ChF0 and ChF1 within NCFs. Next we 
assess the presence of functions from these two classes in more extensive and contemporary datasets derived from 
reconstructed biological Boolean networks (BNs). For this analysis, we utilize three reference biological datasets: 
(a) BBM benchmark  dataset29 which is the most recent and largest repository of regulatory logic rules from which 
we extract 5990 BFs, (b) MCBF  dataset13, comprising of 2687 BFs, compiled previously by some of us from 88 
published biological models, and (c) Harris  dataset27, comprising of 139 BFs. Furthermore, we demonstrate the 
practical utility of these special sub-types of NCFs in the context of model selection. In prior  work30, we have 
shown that confining BFs to NCFs can yield a substantial reduction in the space of plausible models. However, 
in that work we showed that even for networks with 18 nodes, the search space remained sufficiently vast (even 
when restricting to NCFs), making exhaustive search infeasible. Therefore we ask whether the generalized chain 
functions can further curtail the space of potential candidate models. To do so, we perform a comprehensive 
case study using three biological  models31–33, and finally use relative stability as a constraint to select for models 
within ensembles that employ chain functions.

Methods
Boolean models of gene regulatory networks
A Boolean model of a GRN consists of nodes and directed edges where nodes correspond to genes and directed 
edges correspond to the regulatory interactions between  them2,8,9. Genes in a BN are either in an upregu-
lated (‘on’) or downregulated (‘off ’) state. In a BN with N nodes, we denote the state of the ith gene at time t 
by xi(t) , where i ∈ {1, 2, . . . ,N} and xi(t) ∈ {0, 1} . The state of the network at time t can be given by a vector 
X(t) = (x1(t), x2(t), . . . , xN (t)) . The temporal dynamics of a BN are dictated by the BFs (or logical update rules 
or regulatory logic) along with an update scheme (synchronous2 or asynchronous11 are among the most common 
and popular update schemes). In the synchronous update scheme all nodes of the BN are updated simultaneously. 
Mathematically, this may be expressed as xi(t + 1) = fi(x

(1)
i (t), x

(2)
i (t), . . . , x

(k)
i (t)) ∀i ∈ {1, 2, . . . ,N} , where fi 

is the BF that acts on the k inputs to node i, j ∈ {1, 2, . . . , k} and x(j)i (t) ∈ {x1(t), x2(t), . . . , xi(t)} . This type of 
local dynamics takes the network from the state X(t) to the state X(t + 1) . Such a scheme leads to two kinds 
of emergent dynamics. In the first, the system reaches a state which on the next (and subsequent) update is left 
unchanged, corresponding to a fixed point attractor. In the second, the system cycles infinitely through a fixed 
set of states on successive updates, corresponding to a cyclic attractor. The states that converge to an attractor 
(including the attractor itself) comprise its basin of attraction. In multi-cellular organisms, one considers that 
the fixed point attractors provide the gene expression patterns characteristic of different cellular  types2.

Representations and properties of Boolean functions
Truth table and output vector
A BF f with k inputs (which we also refer to as a k-input BF) can be specified via a truth table with k + 1 columns 
and 2k rows, where the first k columns correspond to the states of the input variables and the (k + 1) th column 
corresponds to the output values. Each row of the truth table is a unique combination of the states of k input 
variables with the (k + 1) th entry corresponding to the output value associated with that input combination. 
The output column of the BF can also be considered as a binary vector with 2k elements. The bias P of a BF is 
the number of 1s in its binary output vector. More explicitly, the bias of a BF with k inputs is the number of its 2k 
possible input configurations that lead to an output equal to 1. Biologically, it is the number of possible ways in 
which k transcription factors come together so as to activate a target gene. It is sometimes convenient to specify 
that output vector via the integer whose binary decomposition is given by the entries of that vector. Note that 
for a k-input BF there are 22k distinct BFs possible since the vector has 2k entries.
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Boolean function expression
A k-input BF can also be represented as a Boolean expression that combines Boolean variables ( xi ∈ {0, 1} ) with 
the logical operators conjunction (or AND or ∧ ), disjunction (or OR or ∨ ) and negation (or NOT or xi ). For 
illustration x1 ∧ (x2 ∨ x3 ) and ( x3 ∧ x1 ∧ x2) ∨ (x3 ∧ x1 ∧ x2) are cases of 3-input BFs.

Operations on Boolean functions

• Negation of variables: Given a k-input BF f, one can consider the modified function where some of the 
input variables are negated. There are 2k possible negation operations if we include the negation of none of 
the inputs. Such a negation may or may not lead to a new BF but preserves the bias of the BF. For example if 
f1 = x1 ∧ (x2 ∨ x3) and f2 = x1 ∧ (x2 ∨ x3) , then one function can be obtained from the other by negating 
the variable x1.

• Permutation: Given a k-input BF f, a permutation operation is performed by permuting the variables in the 
BF’s logical expression. There are k! possible permutation operations when one includes the identity permu-
tation. Such an operation may or may not lead to a new BF but it preserves the bias of the BF. For example if 
f1 = x1 ∧ (x2 ∨ x3) and f2 = x2 ∧ (x1 ∨ x3) , then one function can be obtained from the other by permuting 
the variables x1 and x2.

• Complementation: Given a k-input BF f, a complementation operation replaces the 0s and 1s of the output 
column of the truth table with 1s and 0s respectively. In terms of the Boolean expression, this is equivalent to 
negating all the variables and changing the ∧ and ∨ operators to ∨ and ∧ operators respectively. For example, 
the BFs f1 = x1 ∧ (x2 ∨ x3) and f2 = x1 ∨ (x2 ∧ x3) are complements of each other.

The notions of symmetry in Boolean functions and the properties therein have been previously explored in 
several works and have also been shown to have consequences for the network  dynamics34–36.

Theory
Nested canalyzing functions

Definition 1 (NCF) A k-input BF is nested canalyzing3,37 with respect to a permutation σ on its inputs {1, 2, . . . , k} 
if:

where x = (x1, x2, . . . , xk) . In the above equation, a1, a2, . . . , ak are the canalyzing input values and b1, b2, . . . , bk 
are the canalyzed output values for inputs xσ(1), . . . , xσ(k) in the permutation σ of the k inputs. In other words 
the inputs are xσ(1), . . . , xσ(k) where xσ(1) = a1 leads to the output b1 and so on. The inputs xσ(i) can be said to 
be canalyzing in ai which could be either 0 or 1. Here, ak and bk are the complements of the Boolean values ak 
and bk , respectively.

Alternatively, NCFs can be represented succinctly via the following Boolean  expression38:

where Xσ(i) ∈ {xσ(i), xσ(i)} and ⊙ ∈ {∧,∨}.
The Boolean expression in Eq. (1) may also be written to regroup the successive OR and AND logical 

operators:

or, if the first logical operator is an AND:

Definition 2 (Layer) Given a k-input NCF f with respect to a permutation σ on its inputs {1, 2, . . . , k} , we can 
make explicit the consecutive canalyzing output values as follows:

f (x) =







b1 if xσ(1) = a1,
b2 if xσ(1) �= a1, xσ(2) = a2,
b3 if xσ(1) �= a1, xσ(2) �= a2, xσ(3) = a3,
.
.
.

bk if xσ(1) �= a1, xσ(2) �= a2, . . . , xσ(k) = ak ,

bk if xσ(1) �= a1, xσ(2) �= a2, . . . , xσ(k) = ak .

(1)f (x) = Xσ(1) ⊙ (Xσ(2) ⊙ (Xσ(3) ⊙ . . . (Xσ(k−1) ⊙ Xσ(k)) . . .))

(2)f (x) = Xσ(1) ∨ . . . ∨ Xσ(k1) ∨ (Xσ(k1+1) ∧ . . . ∧ Xσ(k2) ∧ (Xσ(k2+1) ∨ . . . ∨ Xσ(k3) ∨ (. . .)))

(3)f (x) = Xσ(1) ∧ . . . ∧ Xσ(k1) ∧ (Xσ(k1+1) ∨ . . . ∨ Xσ(k2) ∨ (Xσ(k2+1) ∧ . . . ∧ Xσ(k3) ∧ (. . .)))
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where, bi+1 = bi for all i ∈ {1, 2, . . . , n} and x = (x1, x2, . . . , xk) . Note that in Definition 1 the subscripts of bi label 
the canalyzing input, and that in Definition 2 the subscripts label the layer number. The consecutive canalyzing 
inputs giving the same canalyzed output are grouped into what is referred to as a layer39. The number of inputs 
present in a layer can be termed the layer-size and the number of layers is called the layer-number. Hereafter, we 
will denote the layer-size of the ith layer as mi , the layer-size of the last layer being mlast . In the notation of Eq. 
(4), m1 = k1,m2 = k2 − k1, . . . ,mlast = kn − kn−1.

(Note that bi in both Definitions 1 and 2 represents the canalyzed output but they have different subscripts in 
order to highlight the change in canalyzed output upon changing the layer in Definition 2).

An equivalent definition of the layer can be provided based on the logical expression of a NCF. Specifically, 
each successive set of inputs followed by the same type of operators (‘∧ ’ or ‘ ∨ ’) constitutes a distinct layer (see 
Eqs. (2) and (3)). In other words, in the expression of a NCF, whenever the operator flips from AND ( ∧ ) to OR 
( ∨ ) or vice-versa, a new layer begins (including the preceding variable of the flipped operator). For example, 
given the NCF x1 ∧ x2 ∧ (x3 ∨ x4) , we immediately observe that it has two layers with m1 = m2 = 2.

Relationship between bias, operators and layers
We now formalize the relationship between the bias and the sequence of operators in the Boolean expression 
(see Eq. (1)) for NCFs. In Nikolajewa et al.38, the authors encoded the sequence of operators in the Boolean 
expression of k-input NCF (see Eq. (1)) with k − 1 bits, but did not relate their encoding to the bias P of the 
NCF. This relationship between the bias and operator sequence was implicitly first used in Subbaroyan et al.13 
but was not stated explicitly. The bias P of a k-input NCF can be expressed via its binary representation with k 
bits where the least significant bit is 1 since NCFs have odd  bias13,38. The first (k − 1) bits of this binary string 
encode the operator sequence that appears in the associated Boolean expression of NCFs (see Eq. (1)) such 
that the bits 0 and 1 encode the operators ‘ ∧ ’ and ‘ ∨ ’ respectively. We explain the relationship in more detail 
in SI text, Property 1.1. Let us illustrate this relation via an example. Consider a 4-input NCF with bias P = 5 . 
The associated binary string representation of P is 0101. The Boolean expression for a 4-input NCF with P = 5 
is Xσ(1) ∧ (Xσ(2) ∨ (Xσ(3) ∧ Xσ(4))) where Xσ(i) ∈ {xσ(i), xσ(i)} . The operator sequence for this expression is 
(∧,∨,∧) (starting from the outermost operator to the innermost one), while the initial (k − 1) bits of the binary 
representation are 010. For any NCF, both the layer-number and the layer-size of each layer is uniquely deter-
mined by the pair {k, P} . The case of mlast is particularly interesting and will be useful in explaining several of 
our results. Some of these properties are as follows: 

1. For all P  = 1 , mlast is independent of k (see SI text, Property 1.2), i.e., it is not affected by the leading zeroes 
in the binary string of length k representing P.

2. The value of mlast for any k-input NCF with bias P = 4t + 3 and bias P′ = 4t + 5 are equal for any t ∈ N0 
(see SI text, Property 1.3).

3. All bias P (  = 1 ) values of a k-input NCF with mlast = m can be expressed as P = S · 2m+1 + 2m ± 1 for some 
S ∈ N0 (see SI text, Property 1.4)

Number of NCFs for a given number of inputs
Li et al.39,40 provided a formula for calculating the number of NCFs for any number of inputs k. Here, we present 
that formula in our notation. The number of k-input NCFs with bias P is given by:

The set {m1,m2, . . . ,mlast} is uniquely determined for any k and P as explained above. The total number of NCFs 
for a particular k can be obtained by summing Eq. (5) over all odd biases as follows:

(4)f (x) =







b1 if xσ(1) = a1,
b1 if xσ(1) �= a1, xσ(2) = a2,
.
.
.

b1 if xσ(1) �= a1, xσ(2) �= a2, . . . , xσ(k1) = ak1
b2 if xσ(1) �= a1, xσ(2) �= a2, . . . , xσ(k1) �= ak1 , xσ(k1+1) = ak1+1

.

.

.

b2 if xσ(1) �= a1, xσ(2) �= a2, . . . , xσ(k2) = ak2
.
.
.

bn if xσ(1) �= a1, xσ(2) �= a2, . . . , xσ(kn−1+1) = akn−1+1

.

.

.

bn if xσ(1) �= a1, xσ(2) �= a2, . . . , xσ(kn) = akn
bn if xσ(1) �= a1, xσ(2) �= a2, . . . , xσ(kn) = akn ; where kn = k

(5)|NCF|k,P =
2k · k!

m1!m2! . . .mlast !
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Note that the layer-number and layer-length of each layer is invariant under complementation of the NCF as 
one can obtain the binary string representation of 2k − P by replacing the 0 bits by 1 and vice versa in the binary 
string representation of P.

Chain functions
Chain functions were first introduced by Gat-Viks and  Shamir26. They were found to be a sub-type of  NCFs3,28. 
We begin with a definition given in Akutsu et al.28 and then move on to an alternative version which is of impor-
tance to us and then finally to the definition of Kauffman et al.3 (based on canalyzing inputs).

Definition 3 (Akutsu et al.28) A function f is a chain function with the control pattern 
c2 = c3 = . . . = ck1 = 0, ck1+1 = 1, ck1+2 = . . . = ck2 = 0, ck2+1 = 1, . . . and input variable states of the form 
x1, x2, . . . , xk if and only if it has either of the following two forms:

where the former and the latter expressions correspond to c1 = 1 and c1 = 0 respectively.

This expression points out some unique properties of the chain functions: 

1. Every time a control variable takes the value 1, a new layer (for definition of layer see Definition 2) begins.
2. At all but the last layer, a positive variable is followed by an AND ( ∧ ) operator, whereas a negative variable 

is followed by an OR ( ∨ ) operator.

We now define chain functions using the binary representation of the bias instead of the control pattern in the 
following manner.

Definition 3∗ Consider a bias P such that the first k − 1 significant bits of the k-bit binary representation of P 
are v1 = v2 = . . . = vk1 = 0, vk1+1 = vk1+2 = . . . = vk2 = 1, vk2+1 = . . . = vk3 = 0, . . . . A k-input BF with the 
ordered input variables x1, x2, . . . , xk , is a chain function with that bias if and only if:

Similarly, when the first k − 1 significant bits of the k-bit binary representation of P are 
v1 = v2 = . . . = vk1 = 1, vk1+1 = vk1+2 = . . . = vk2 = 0, vk2+1 = . . . = vk3 = 1, . . . , a function will be a chain 
function with bias P if and only if:

The relationship between the binary representation of the bias P and the layer structure of a chain function 
expression can be understood as follows. Consider a k-input chain function with bias P (P is odd since chain 
functions are a sub-type of NCFs, which have odd bias). Suppose, the binary representation of P is given by:

Then, the associated expression of a chain function will be of the following form

where, m1 = k1 , m2 = k2 − k1 , m3 = k3 − k2 , ..., and mlast = k − kn−1 . Note that other similar expressions where 
exactly one variable in the last layer is negated are also chain functions for the same bias P. Let us illustrate this via 
a specific example of a 6 input chain function with bias 7 with respect to an ordering on its inputs {x1, x2, . . . , x6} . 
The 6 bit binary representation of the integer 7 is ‘000111’ and therefore v1 = v2 = v3 = 0 and v4 = v5 = 1 . Then, 
the expression of the associated chain function could be any of the following:

(6)

|NCF|k =
∑

1 ≤ P ≤ 2k − 1,

P odd

|NCF|k,P =
∑

1 ≤ P ≤ 2k − 1,

P odd

2k · k!

m1!m2! . . .mlast !

=
∑

1 ≤ P < 2k−1,

P odd

2k+1 · k!

m1!m2! . . .mlast !

f =x1 ∨ . . . ∨ xk1 ∨ (xk1+1 ∧ . . . ∧ xk2 ∧ (xk2+1 ∨ . . . ∨ xk3 ∨ (. . .))),

f =x1 ∧ . . . ∧ xk1 ∧ (xk1+1 ∨ . . . ∨ xk2 ∨ (xk2+1 ∧ . . . ∧ xk3 ∧ (. . .)))

f = x1 ∧ . . . ∧ xk1 ∧
(
xk1+1 ∨ . . . ∨ xk2 ∨

(
xk2+1 ∧ . . . ∧ xk3 ∧ (. . .)

))

f = x1 ∨ . . . ∨ xk1 ∨
(
xk1+1 ∧ . . . ∧ xk2 ∧

(
xk2+1 ∨ . . . ∨ xk3 ∨ (. . .)

))

PBin = 00 . . . 0
︸ ︷︷ ︸

m1

11 . . . 1
︸ ︷︷ ︸

m2

00 . . . 0
︸ ︷︷ ︸

m3

. . . 11 . . . 1
︸ ︷︷ ︸

mlast−1

1

(7)
f = x1 ∧ . . . ∧ xk1∧

︸ ︷︷ ︸
m1

(xk1+1 ∨ . . . ∨ xk2∨
︸ ︷︷ ︸

m2

(xk2+1 ∧ . . . ∧ xk3∧
︸ ︷︷ ︸

m3

(. . . (xkn−1+1 ∨ . . . ∨ xk
︸ ︷︷ ︸

mlast

))))
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In the last layer, there are mlast variables connected by mlast − 1 operators. Therefore, the ‘last’ variable x6 which is 
not followed by any operator can be either positive or negative. Thus, f1 and f2 are consistent with the definition 
of chain functions. Note that f3 and f4 in the above equations may appear inconsistent with the definition of chain 
functions in that the operators associated with the positive variables x5 and x4 respectively are both ∨ operators. 
However, since all the variables in this last layer are connected by the ∨ operator, one is allowed to exchange 
variables along with their sign within that layer without altering the resulting BF. In this manner, the positive 
variables may be moved to the last position, thereby restoring the apparent inconsistency between f3 and f4.

Lastly, Kauffman et al.3 defined the chain functions as a specific constraint on the canalyzing inputs of the 
NCFs as follows:

Definition 4 (Kauffman et al. 2003) A k-input chain function is a k-input NCF where the first (k − 1) canalyzing 
input values are 0. The last input is canalyzing in both 0 and 1.

Henceforth, we will refer to these chain functions as ChF0 since their canalyzing input values are 0. That 
viewpoint opens up other options for constraining NCFs. In particular, it is natural to consider having the first 
( k − 1 ) canalyzing input values be 1 instead of 0; we then obtain a new sub-type of NCFs as will now be presented.

Introduction of chain-1 functions

Definition 5 A k-input chain-1 function ( ChF1 ) is a k-input NCF where the first k − 1 canalyzing input values 
are 1 and the last input is canalyzing in both 0 and 1.

Just as for ChF0 functions, one can provide multiple equivalent definitions of chain-1 functions. Here we provide 
one analogous to that in Definition 3*.

Definition 6 A k input chain-1 function with bias P, where the first k − 1 significant bits of the k-bit binary 
representation of P are v1 = v2 = . . . = vk1 = 0, vk1+1 = vk1+2 = . . . = vk2 = 1, vk2+1 = . . . = vk3 = 0, . . . , with 
the ordered input variables x1, x2, . . . , xk is given by

Similarly, when the first k − 1 significant bits of the k-bit binary representation of P are 
v1 = v2 = . . . = vk1 = 1, vk1+1 = vk1+2 = . . . = vk2 = 0, vk2+1 = . . . = vk3 = 1, . . . , the chain function will 
be of the form

Clearly, the Boolean expressions of ChF1 are similar to those of ChF0 and one can obtain a ChF0 from a ChF1 
and vice versa by either flipping the sign of all the variables (negating all the variables) or flipping all the opera-
tors (i.e., replacing ∧ with ∨ and vice versa). By definition, both classes ChF0 and ChF1 are subsets of NCF and 
thus have odd bias. From k = 3 onwards, they also form completely disjoint classes (see SI text, Property 2.1). 
We will refer to the union of ChF0 and ChF1 as generalized chain functions or ChFU . Figure 1 is a schematic for 
the intuitive understanding of the chain-0, chain-1 and generalized chain functions.

Reference biological datasets used for statistical analyses
In this section, we describe the 3 reference biological datasets containing the BFs that are used to quantify the 
abundance and enrichment of the ChF0 , ChF1 , ChFU and non-ChFU NCF types.

• BBM benchmark dataset: This dataset was adapted from the BBM benchmark  dataset29, which consisted 
of 219 models of Boolean GRNs. Of these, we selected only the manually reconstructed ones, amounting to 
total 134 models. From those 134 models consisting of 6045 BFs, we extracted 5990 BFs (regulatory logic 
rules) when restricting to cases having at most 10 inputs.

• MCBF dataset: This dataset was published in Subbaroyan et al.13. This was downloaded from the Github 
repository https:// github. com/ asama llab/ MCBF. It consists of 2687 BFs recovered from 88 manually recon-
structed discrete models of Boolean GRNs. Here as well we restricted ourselves to BFs with at most 10 inputs 
per BF, leading to 2682 BFs.

• Harris dataset: This dataset is published in Harris et al.3,27. It consists of 139 BFs. This dataset has only BFs 
with 5 or less inputs and has been used exhaustively.

f1 =x1 ∧ x2 ∧ x3 ∧ (x4 ∨ x5 ∨ x6)

f2 =x1 ∧ x2 ∧ x3 ∧ (x4 ∨ x5 ∨ x6)

f3 =x1 ∧ x2 ∧ x3 ∧ (x4 ∨ x5 ∨ x6)

f4 =x1 ∧ x2 ∧ x3 ∧ (x4 ∨ x5 ∨ x6)

f = x1 ∧ . . . ∧ xk1 ∧
(
xk1+1 ∨ . . . ∨ xk2 ∨

(
xk2+1 ∧ . . . ∧ xk3 ∧ (. . .)

))

f = x1 ∨ . . . ∨ xk1 ∨
(
xk1+1 ∧ . . . ∧ xk2 ∧

(
xk2+1 ∨ . . . ∨ xk3 ∨ (. . .)

))

https://github.com/asamallab/MCBF
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Figure 1.  Relationship between layers, operators, variable signs and Boolean string representation of bias. The two 
circuit diagrams in (a) correspond to chain-0 ( f0 ) and chain-1 ( f1 ) functions respectively with bias P < 2k−1 and with 
a odd number of layers, where k = kn . Rounded rectangular boxes with alternating colors correspond to successive 
layers. The schematics below the expressions of f0 and f1 denote the interactions driving the output of the BF. Here, 
the ‘green’ and ‘red’ arrows indicate ‘activatory’ (positive) and ‘inhibitory’ (negative) regulation respectively. The black 
arrows indicate regulation of either nature. Top part of (b) corresponds to the logic circuit diagram of the generalized 
chain function with bias P < 2k−1 and with an odd number of layers. Here, Xi ∈ {xi , xi} for all i ∈ {1, 2, . . . , kn} 
with the constraint that the sign of all the variables in a given colored layer be the same (but altering from one layer to 
the next), with the exception of last layer. Note that in chain-0 (and chain-1) functions, only one input in the last layer 
( i ∈ {kn−1 + 1, . . . , kn} ) can be either xi or xi (as is explained in the Methods section) and is hence denoted by Xi . 
The input kn was chosen to be capitalized arbitrarily. The Boolean expression form of the function is provided below 
the circuit diagram and layers are colored accordingly. The associations of operators and binary representation of the 
bias ( PBin ) are shown ( ∧ with 0 and ∨ with 1). mi correspond to the layer-size of the ith layer for all i ∈ {1, 2, . . . , kn}.
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In both the MCBF and BBM benchmark datasets, the number of BFs for any number of inputs greater than 10 
was too low to draw meaningful inferences from statistical significance tests and hence we did not include such 
cases in our study.

Relative enrichment and associated p-values
The NCFs have been shown to be enriched in the space of all BFs and even within UFs and  RoFs13. To test whether 
the enrichment of the NCF itself is due to its sub-types, namely, ChF0 , ChF1 or ChFU , we adapt relative enrich-
ment and associated statistical significance test presented in Subbaroyan et al.13. Note that this significance is 
unrelated to the least significant bit spoken about earlier. Consider a type of BF T and one of its sub-types, say 
Ts . We are interested in relative enrichment of the sub-type Ts within its englobing type T when considering a 
particular biological dataset. For instance we can examine the case where T = NCF and Ts = ChF1 (or any sub-
type of NCF). We define the relative enrichment for a given number of inputs k by ER = (fs,1/f1)/(fs,0/f0) where 
fs,1 and f1 are the fraction of BFs belonging to ChF1 and NCF respectively in the considered biological dataset, 
and fs,0 and f0 are the fractions of all k-input BFs belonging to ChF1 and NCF respectively ( f1 and f0 are both 
fractions of the NCF however, within the given dataset and within all possible k-input functions respectively). 
The type Ts is relatively enriched within T only if ER > 1 , and not relatively enriched otherwise. However, the 
relative enrichment may be due to chance and must be shown to be statistically significant as we explain in the 
following section. In typical cases the biological dataset will have an over representation of BFs of type T and Ts 
but by considering the relative enrichment we can test the hypothesis that this last enrichment is driven solely 
by the property of being in T; if the relative enrichment of Ts within T is statistically inconsistent with the value 
1, then we can reject the hypothesis. In particular, if ER is large, then there must be other factors than ‘belonging 
to T’ driving this relative enrichment.

Statistical significance and p-values
Our null hypothesis H0 corresponds to assuming that although there is a selection for T the elements that are 
drawn within T have a uniform probability, that is members of Ts are not more probable than the other elements 
of T. Consider then drawing a sample of BFs size M under H0 . If it leads to MT elements in T as in the reference 
biological dataset, the distribution of the number of elements in Ts is known. Specifically, the probability to have 
m elements in Ts is given by:

where fR is the ratio of the sizes of Ts and T. The desired p-value is then just the sum of all such probabilities 
under the condition that m is larger or equal to the number of Ts elements in the reference biological dataset. 
The code for computing these p-values is available in our GitHub repository.

Model selection using relative stability
Biologically meaningful types of BFs that occupy an extremely small fraction in the space of all BFs (such as 
ChFU ) can severely restrict the number of Boolean models for a given network structure—each node of the 
network may be constrained to belong to that type. We use the methodology developed in Zhou et al.31 and Sub-
baroyan et al.30 to generate a set of biologically plausible ensemble of models starting from a GRN with signed 
interactions and cell states (biological fixed points). That procedure involved applying several constraints on the 
truth table: (1) fixed point constraints; (2) biologically meaningful BFs; (3) BFs that obey the signs of the interac-
tions in the network architecture. Constraint (1) ensures that all the models in the resulting ensemble recover the 
expected biological fixed points (fixed points that correspond to the cell states). However, this constraint does not 
guarantee the absence of spurious attractors. Constraint (2) restricts the type of BFs to biologically meaningful 
ones such as NCFs or  RoFs13. In this work, we impose the ChF0 , ChF1 and ChFU functions as our biologically 
meaningful types of BFs for different biological models. Constraint (3) forces the imposed biologically meaning-
ful BFs to obey the signs of the interactions that have been observed experimentally. This procedure enables the 
generation of biologically plausible ensembles on which we can perform model selection using relative stability 
constraints as we explain later.

Relative stability and the mean first passage time
The relative stability of a pair of cell states (attractors) quantifies the propensity to transition from one cell state 
to the other versus in the opposite direction. Several measures of relative stability have been introduced in the 
 literature30,31,41 of which the Mean First Passage Time (MFPT) captures best the directional aspect of state transi-
tions. Here we succinctly present the mathematical framework proposed by Zhou et al.31 to define the relative 
stability of a pair of cell states. To begin, those authors extend the Boolean dynamics to render them stochastic. 
Mathematically, this change is specified by an 2N × 2N transition matrix (N being the number of nodes in the 
network):

where T and P are the matrices representing the deterministic and stochastic components of the dynamics 
respectively. Tlm are the entries of the deterministic matrix T , such that Tlm = 1 if updating the state m via BFs 
F = {f1, f2, . . . , fN } gives the state l (here l, m ∈ {0, 1, . . . , 2N − 1} and 0 otherwise). Plm are the entries of the 

(
MT

m

)

(fR)
m
(
1− fR

)MT−m

(8)T
∗ = (1− η)NT+ P
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perturbation matrix P such that Plm is the probability that a noise η alone drives the transition from state m to 
state l. To be explicit, Plm is defined via:

where d(l,m) is the Hamming distance between l and m. (Note that the Hamming distance between two distinct 
states of the network quantifies how different their gene expression patterns are; since values are Boolean, the 
distance between distinct states ranges from 1 to N, where 1 and N correspond to highly similar and different 
network states respectively). In brief, if the noise ( η ) does not alter the state of the network, then one applies the 
deterministic dynamics. The number of steps along a state space trajectory starting at state m and terminating 
at the first occurrence of l in a stochastic process is called the first passage time from state m to l. Its average over 
a large number of trajectories is then the MFPT from m to l and is denoted by Mlm . We use a stochastic method 
proposed in Subbaroyan et al.30 to compute the MFPT. If u and v denote 2 biological fixed points (cell states), 
then the MFPT Muv is the average of the number of time steps taken over a large number of trajectories starting 
at state v and evolved iteratively under the above-mentioned dynamics till state u is reached. Finally, Zhou et 
al.31 define the relative stability of cell state u compared to cell state v via:

RSMFPT (u, v) > 0 if cell state u is more stable than cell state v and this condition is denoted by the inequality 
u > v . This inequality is also referred to as the ‘hierarchy’ associated with the pair of cell states. In this work, the 
noise intensity parameter value η is set to 0.05; furthermore, 3000 state space trajectories of the first passage times 
are averaged over to obtain our estimates of each MFPT. Note that it has been previously  shown30 that MFPTs 
and the hierarchies of pairs of cell states obtained using MFPT are relatively insensitive to small deviations of 
noise values from 0.01.

Biological models used to illustrate model selection
As case studies to illustrate model selection using relative stability (via MFPTs), we choose the 3 GRNs explained 
below.

• Pancreas cell differentiation model: The Pancreas cell differentiation  network31 is a reconstructed GRN 
that controls the differentiation of cells in the pancreas. This model consists of 5 genes and 13 edges. This 
Boolean model has 3 fixed points corresponding to the cell types: Exocrine, β/δ cell progenitor and α/PP cell 
progenitor (see SI Table S1).

• Arabidopsis thaliana root stem cell niche (RSCN-2010 model): The RSCN-2010 Boolean model (model A 
in Azpeitia et al.32) is a reconstructed Boolean GRN that controls the differentiation of cells in the root stem 
cell niche (RSCN) of Arabidopsis thaliana. The RSCN is located in the root tip of the plant. The 2010 BN 
has 9 nodes and 19 edges. The BF at each gene of this model is provided in SI Table S2. This Boolean model 
has 4 fixed points corresponding to the cell types: Quiescent center (QC), Vascular initials (VI), Cortex-
Endodermis initials (CEI) and Columella epidermis initials (CEpI) (see SI Table S3). The BF for the AUX 
node for all our computations derived from this model is the same as the one provided in Velderrain et al.42.

• Arabidopsis thaliana root stem cell niche (RSCN-2020 model): The RSCN-2020 Boolean  model33 is the latest 
reconstructed Boolean GRN that controls the differentiation of cells in the root stem cell niche (RSCN) of 
Arabidopsis thaliana. The 2020 BN has 18 nodes and 51 edges. The BF at each gene of this model is provided 
in SI Table S4. This model has 6 biological fixed points corresponding to the cell types: Quiescent center (QC), 
Cortex-endodermis initials (CEI), Peripheral Pro-vascular initials (P. Pro-vascular PD), Central Pro-vascular 
initials (C. Pro-vascular PD), Transition domain (C. Pro-vascular TD2) and Columella initials (Columella 
1) (see SI Table S5).

Relative stability constraints for three biological GRNs
Using relative stability constraints derived from the published literature (as inequalities), we impose that Boolean 
models in the biologically plausible ensemble satisfy those constraints. Provided below are the known relative 
stability constraints for the 3 different biological models considered here. For the Pancreas cell differentia-
tion model, the 3 relative stability  constraints31 are: (1) Exocrine < α/PP progenitor; (2) Exocrine < β/δ cell 
progenitor; and (3) α/PP progenitor < β/δ cell progenitor. For the RSCN-2010 model, the 3 relative stability 
 constraints32,42 are: (1) QC < VI; (2) QC < CEI; and (3) QC < CEpI. For the RSCN-2020 model, the 6 relative 
stability  constraints30,33 are: (1) QC < CEI/EndodermisPD; (2) QC < P.ProvascularPD; (3) QC < C.ProvascularPD; 
(4) QC < C.ProvascularTD2; (5) QC < Columella1; and (6) C.ProvascularPD < C.ProvascularTD2. For each of 
the 3 biological models, we perform an exhaustive search over their biologically plausible ensembles for models 
that obey the above expected relative stability constraints. Additionally, we ‘select’ a model only if the sum over 
the sizes of the basin of attraction of the biological fixed points for that model is at least as large as that same sum 
for the original Boolean model to penalize models having spurious attractors.

Plm =

{

ηd(l,m)(1− η)N−d(l,m) if l �= m
0 if l = m

(9)RSMFPT (u, v) =
1

Muv
−

1

Mvu
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Results
Properties of chain-0 and chain-1 functions
We now introduce some properties of the chain-0 ( ChF0 ) and chain-1 ( ChF1 ) functions based on the 3 opera-
tions on BFs described in Methods. These properties will be useful in counting the number of k-input ChF0 (or 
ChF1 ) with bias P as we shall see in the following section. We explain these properties here for ChF0 only, but 
they hold true for ChF1 as well. 

1. A permutation of any chain-0 function is a chain-0 function. Permuting a ChF0 shuffles the subscripts of the 
variables in its Boolean expression. Such an operation preserves the sequence of the operators ( ∧ , ∨ ) and of 
the signs ( xi versus xi ) in that Boolean expression, thereby resulting in a ChF0.

2. Negating variables in a chain-0 function may or may not produce a chain-0 function. A negation operation 
performed on any set of variables that are not in the last layer of a ChF0 does not result in a ChF0 since the 
signs of the negated variable and the operator following it become inconsistent with the definition of the 
ChF0 . For the last layer, if variables are linked by ∧ (or ∨ ) operator, then at least mlast − 1 variables must be 
positive (or negative). Thus only some negations in that layer may lead to a ChF0 (see Methods).

3. The complement of a chain-0 function is a chain-0 function. The complementation operation simultane-
ously flips both the signs of all the variables (positive variables become negative and vice versa), and also 
the conjunction and disjunction operators ( ∧ operators are replaced by ∨ and vice versa). Such an operation 
preserves the sign-operator relations that characterize the ChF0.

4. ChF0 and ChF1 form disjoint classes within the NCFs if and only if k ≥ 3 (see SI text, Property 2.1 for proof, 
see Fig. 2a for illustration).

5. Permuting variables within the same layer does not alter the function (this is of course with exception of the 
last layer).

Counting the number of chain-0, chain-1 and generalized chain functions
Gat-Viks and Shamir have provided a formula to count the number of ChF0 for a given number of inputs based 
on a recursive  approach26. We take a different approach and first count the number of k-input ChF0 at bias P, 
using which we count the number of ChF0 by summing over all odd biases. To count the number of k-input ChF0 
for a given bias P, we need to compute all permutations and negations of a reference chain-0 function that yield 
all the distinct ChF0 with bias P (this suffices to obtain all ChF0 with bias P as all NCFs with bias P form a single 
equivalence class under permutations and negations of  variables13). The number of ways to permute k variables 
in Eq. (7) that lead to distinct ChF0 is the multinomial coefficient k!

m1!m2!...mi !...mlast !
 , where mi is the layer-size of 

the ith layer. The number of negations (including the identity operation) of a ChF0 that lead to distinct ChF0 s 
is 1+mlast . Now for each permutation there are 1+mlast possible negations, therefore the number of k-input 
ChF0 for a given bias P is:

Using Eq. (10), the total number of k-input ChF0 is given by,

(10)|ChF0|k,P =
k! (1+mlast)

m1!m2! . . .mlast !

Figure 2.  Fraction of chain-0 (or chain-1) functions within NCFs for different number of inputs. (a) Venn 
diagram of the space of ChF0 , ChF1 within the NCFs. k = 1 is not shown as ChF0 , ChF1 , ChFU and NCFs are 
identical. For k = 2 , the ChF0 and ChF1 do not completely overlap, and all NCFs are ChFU s. For k ≥ 3 the ChF0 
and ChF1 sets become disjoint. (b) The fraction of ChF0 (or ChF1 ) within NCFs (y-axis) is plotted as a function 
of the number of inputs k (x-axis). The y-axis has a logarithmic scale. The linear trend (in the semi-log plot) 
suggests that the fraction of ChF0 (or ChF1 ) in NCF is an exponentially decreasing function of k.
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We verify that the number of k-input ChF0 as given by the Eq. (11) matches with the numbers obtained by 
computationally enumerating the k-input ChF0 functions (see https:// github. com/ asama llab/ GenChF for code) 
and also the numbers provided by Gat-Viks and  Shamir26 (Gat-Viks and Shamir provide values upto k = 6 ). P 
is odd because ChF0 have odd bias. Furthermore, the factor 2 in this equation accounts for a complementary 
function with bias 2k − P associated with each ChF0 with bias P < 2k−1 since the layer-number and layer-size 
are invariant under complementation for any NCF. The total number of BFs belonging to the class ChFU for 
k ≥ 3 is then given by:

since |ChF0|k = |ChF1|k (see SI text, Property 2.2) and for k ≥ 3 , ChF0 and ChF1 form disjoint sets. Note, for 
k ≤ 2 (see SI text, Property 2.1),

The fraction of chain-0 and chain-1 within NCFs decreases exponentially with the number of 
inputs
The fraction of NCFs occupied by ChF0 for different number of inputs is yet to be explored systematically. To 
begin, we compute the fraction of NCFs that are in ChF0 for k ∈ {1, 2, . . . , 30} using exhaustive enumeration. As 
expected, this fraction appears to diminish exponentially as k grows as shown by the linear trend in the semi-log 
plot in Fig. 2b. Furthermore, the generalized chain functions ( ChFU ) also show this trend since the cardinality 
of that class of functions is a factor 2 larger than that of ChF0 for all k ≥ 3 (see SI text, Property 2.2). The fraction 
of NCFs belonging to a k-input ChF0 can be written in the following form (see SI text, section 3 for derivation):

Since mlast ≥ 2 for all k ≥ 2 , one has C ≥ 3 . Since mlast is at most k for any k, C ≤ k + 1 . From this it follows 
that the fraction 1/2k accounts for the observed exponential decrease. Exhaustive computation up to k = 30 
suggests that C converges at large k towards a value ≈ 3.2588913532709 . As the cardinality of ChF0 is equal to 
that of ChF1 (see SI text, Property 2.2), all the results obtained for ChF0 are equally valid for ChF1 . Note that this 
exponential decrease has important implications for restricting the space of biologically plausible models as we 
will demonstrate in later sections.

Bias-wise fractions of chain-0 and chain-1 functions within NCFs
To study the behaviour of how the fractions of ChF0 (or ChF1 ) and NCFs within all BFs, and with respect to one 
another, vary with bias (P) for a given number of inputs (k), we plot the fraction of: (1) NCFs within all BFs (see 
SI Fig. S1); (2) ChF0 within all BFs (see SI Fig. S2); and (3) ChF0 within NCFs (see Fig. 3). Of these, the fraction 
ChF0 within NCFs (see Fig. 3) showed several interesting features. Note that since the cardinality of ChF0 is 
equal to that of ChF1 (see SI text, Property 2.2) for a given k and P, all results obtained for ChF0 are equally valid 
for ChF1 . We list below our observations and will explain them with the following simple and elegant formula 
derived using Eqs. (5) and (10):

The observations are as follows: 

1. fCN (k, P) = fCN (k, P + 2) whenever P = 4t + 3 for any t ∈ N0 . In other words, those particular pairs of 
consecutive biases (starting from P = 3 ) have equal fCN (k, P) . This implies that for any k, the mlast for con-
secutive biases (see Eq. (13)) are equal. This is indeed the case as we prove in SI text, Property 1.3.

2. Since mlast determines fCN (k, P) , biases with equal mlast also have equal fCN (k, P) . For example, using SI 
text, Property 1.3 , mlast = 2 for P = 3, 5, 11, 13, 19, 21 . . . . This explains why several biases in Fig. 3 have the 
same fCN (k, P).

(11)
|ChF0|k =

∑

1 ≤ P < 2k−1,

P odd

2 · k! (1+mlast)

m1!m2! . . .mlast !

(12)
|ChFU |k = |ChF0|k + |ChF1|k =

∑

1 ≤ P < 2k−1,

P odd

4 · k! (1+mlast)

m1!m2! . . .mlast !

|ChFU |k = |NCF|k

|ChF0|k

|NCF|k
=

1

2k
C

where C =

∑

1 ≤ P < 2k−1,

P odd

1+mlast
m1!m2!...mlast !

∑

1 ≤ P < 2k−1,

P odd

1
m1!m2!...mlast !

(13)fCN (k, P) =
|ChF0|k,P

|NCF|k,P
=

|ChF1|k,P

|NCF|k,P
=

1+mlast

2k
.

https://github.com/asamallab/GenChF


12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6734  | https://doi.org/10.1038/s41598-024-57086-y

www.nature.com/scientificreports/

3. fCN (k, P) is maximum when P = 1 or 2k − 1 for a given k and it is minimum when P = 3, 5, 11, 13, 19, 21, . . . . 
For k ≥ 2 , we know that 2 ≤ mlast ≤ k . So, fCN (k, P) is maximum (respectively minimum) when mlast = k 
(respectively mlast = 2 ). mlast = k iff P = 1 or P = 2k − 1 since mlast = k corresponds to a ChF0 (or ChF1 ) 
with a single layer. The maximum value of fCN (k, P) is then (1+ k)/2k . However mlast = 2 for several values 
of P (see SI text, Property 1.4). The minimum value of fCN (k, P) is (1+ 2)/2k = 3/2k (when k ≥ 2 ) and 
(1+ 1)/21 = 1 (when k = 1).

4. fCN (k + 1,P �= 1) = 1
2
fCN (k, P �= 1) and fCN (k + 1,P = 1) = 1

2k+1 + 1
2
fCN (k, P = 1) . From Eq. (13), it is 

easy to see that fCN (k + 1,P �= 1) = 1
2
fCN (k, P �= 1) since mlast for P  = 1 remains invariant for any k (see SI 

text, property 1.2). However, when P = 1 , mlast = k and so fCN (k, P = 1) = (1+ k)/2k . Note that the result 
does hold for P = 2k − 1 . Replacing k by k + 1 in this equation, fCN (k + 1,P = 1) = 1

2k+1 + 1
2
fCN (k, P = 1)

.

Preponderance and enrichment of chain-0, chain-1 and generalized chain functions in various 
reference biological datasets
We now shift our focus to quantifying the preponderance of ChF0 , ChF1 and ChFU in various biological datasets 
of regulatory logic rules.

BBM benchmark dataset
We first consider the case of the BBM benchmark  dataset29. When we quantify the fraction of odd and even bias 
BFs for a given number of inputs (k), we find that the fraction of BFs with odd bias are overwhelmingly larger 
compared to the fraction of BFs with even bias (see Fig. 4a). Next, we compute the fraction of NCFs for each k 
and find that it is enriched for all k as shown in Fig. 4b. Both of these observations are in line with previous studies 
on the fraction of odd bias BFs and the fraction of NCFs in reference biological  datasets13. Lastly, for a k-input BF 
belonging to the sub-types of NCFs, namely, ChF0 , ChF1 , ChFU and non-ChFU NCF, we compute their fraction 

Figure 3.  Bias-wise fraction of chain-0 (or chain-1) within NCFs. For a given number of inputs (k), the fraction 
of ChF0 (or ChF1 ) in NCFs (y-axis) is plotted as a function of the bias ( 1 ≤ P ≤ 2k − 1 for odd P) (x-axis). 
Subplots correspond to different number of inputs k = 3, 4, 5 and 6.



13

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6734  | https://doi.org/10.1038/s41598-024-57086-y

www.nature.com/scientificreports/

within the NCFs (shown by the bars in Fig. 4c and SI Table S6), their relative enrichments within the NCFs (see 
SI Table S7) and the associated statistical significance of those enrichments (see ∗ in Fig. 4c and SI Table S8 for 
exact values). We find that ChF1 is relatively enriched for all values of k except at k = 2 . However, this is not 
the case for ChF0 which is not enriched for several values of k ( k = 3, 4, 5 and 9). The union of these two types, 
ChFU , is significantly enriched for all k > 2 . These results suggest that the generalized chain function, ChFU , 
consisting of both ChF0 and ChF1 types perhaps constitutes a biologically more meaningful type than either the 
ChF0 or ChF1 separately. Note that at k ≤ 2 since all NCFs are also generalized chain functions, it is meaningless 
to compute a relative enrichment or statistical significance.

MCBF and Harris datasets
Repeating the above-mentioned set of analyses for the MCBF dataset, we find that for a given number of inputs, 
the fraction of the ChF1 type within NCFs is typically larger than that of the ChF0 and non-ChFU NCF types 
within the NCFs (see SI Fig. S3(a) and SI Table S9). In fact, ChF1 is relatively enriched within NCFs for all values 
of k except k = 2 , whereas ChF0 is relatively enriched only when k = 6, 7, 8 (see SI Fig. S3(a) and SI Table S10). 
Furthermore, ChFU is relatively enriched within NCFs for all k ≥ 3 , but only those enrichments where k > 3 are 
statistically significant (see Methods). The complete set of values for the statistical significance associated with 

(a) (b)

(c)

Even bias
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NCF Theoretical fractions within NCF

Theoretical fractions of NCF
ns : p > 0.05

* : p ≤ 0.05
** : p ≤ 0.01
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Figure 4.  Fractions of various sub-types within NCFs in the BBM benchmark dataset. (a) In-degree 
distribution of BFs in the BBM benchmark dataset up to k ≤ 10 inputs. The frequencies of odd bias are much 
larger than the frequencies of even bias. (b) The fraction of NCFs in the dataset for various number of inputs. 
The enrichment of NCFs (within all BFs) for any number of inputs is very large and also statistically significant 
in the BBM benchmark dataset. (c) This sub-figure shows the fractions of ChF0 , ChF1 , ChFU and non-ChFU NCF 
within NCFs, in theory and in the BBM benchmark dataset as dots and colored bars respectively. The relative 
enrichments of ChF1 s and ChFU s within NCFs are statistically significant for k > 2.
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the relative enrichments is provided in SI Table S11. These results obtained using the MCBF dataset are largely 
in agreement with those of the BBM benchmark dataset.

We now revisit an older dataset of BFs, namely the one published by Harris et al.3,27. In this dataset, we find 
that for any given number of inputs, the fraction of ChF0 within NCFs is larger than the corresponding fractions 
of ChF1 and non-ChFU NCF types (see SI Fig. S3(b) and SI Table S12). Furthermore, the ChF0 BFs are relatively 
enriched within NCFs and the enrichments are statistically significant (see SI Tables S13 and S14 respectively). 
ChF1 on the other hand is not relatively enriched within NCFs. The generalized chain functions, ChFU , are 
enriched for k = 3, 4, 5 but those enrichments are statistically significant only for k = 4, 5 . These results are not 
so concordant with those arising from the BBM benchmark dataset in which the relative enrichment of ChF0 is 
not statistically significant for k = 3, 4, 5 , whereas it is so for ChF1 . It is appropriate to note here that Kauffman 
et al.3 had observed that a significant fraction of the BFs in that dataset were NCFs and that most of those NCFs 
were ChF0.

In sum, the generalized chain functions (or ChFU ) comprise a special sub-type of NCFs that are quite consist-
ently relatively enriched within NCFs across distinct reference biological datasets and are thereby able to reconcile 
the discrepancies observed in the relative enrichments of ChF0 and ChF1 within NCFs therein.

Model selection using generalized chain functions
In this section, we explore the implications of using generalized chain functions as a constraint in a model 
selection framework. To do so, we consider 3 biological models, one Pancreas cell differentiation model and two 
Arabidopsis thaliana root development models (see Methods).

First, we apply the framework described in Methods using the generalized chain functions ( ChFU ) as our 
biologically meaningful type of BF (as opposed to the generally utilized NCF). The number of allowed BFs at 
each node of these models (pancreas cell differentiation, RSCN-2010, RSCN-2020) are given in SI Table S15, 
Table 1 and SI Table S16 respectively. The numbers of models obtained for these three cases are 3600, 60 and 
645120 respectively. We remark here that in the RSCN-2020 GRN, no ChFU satisfied both fixed point and sign 
conforming constraints at the ARF10 node and so for that node we restricted our choice to NCFs, leading to 
4 BFs at ARF10. Note that if we restrict our choice of BFs to NCFs for all nodes in all 3 biological models, we 
would have got 3600, 1275 and 25019245440 (2.5× 1010) . Clearly, the resulting number of biologically plausible 
models is severely reduced (particularly for models having nodes with large number of inputs) compared to the 
case where NCFs are used as a constraint. This allows us to exhaustively search these ensembles for models that 
satisfy the relative stability constraints provided in Methods.

Next, we impose known relative stability constraints (see Methods) to shrink the space of biologically plausi-
ble models further. We utilized the synchronous update scheme to check which of the models satisfied the relative 
stability constraints for model selection. Using the MFPT as our relative stability measure, we find that: (1) 19 
models satisfy the expected hierarchies (which is the stability hierarchies of the fixed point attractors) for the pan-
creas cell differentiation GRN with no spurious attractors. (2) 16 models satisfy the expected hierarchies for the 
RSCN-2010 GRN with no spurious attractors. (3) For the RSCN-2020 GRN, no model satisfied all the expected 
hierarchies. However, we found that 82355 models violated exactly one hierarchy, namely, ‘C.ProvascularPD < 
C.ProvascularTD2’ of which 28453 did not have any spurious attractors. This result is still a major improvement 
over the original Boolean model proposed by García-Gómez et al.33 which violated 2 expected hierarchies (‘C.
ProvascularPD < C.ProvascularTD2’ and ‘QC < CEI/EndodermisPD’) and furthermore had a spurious cyclic 
attractor. In all, for the RSCN-2020 GRN, about 4.4% of models that formed our biologically plausible ensemble 
using ChFU yielded improved models.

We have thus demonstrated the utility of generalized chain functions as a biologically meaningful type that 
can severely restrict the space of biologically plausible models and yet can yield models that satisfy conditions 
on relative stability.

Table 1.  Nodewise enumeration of the number of BFs that satisfy biological constraints for the RSCN-2010 
GRN. ‘Nodes’ are the names of the nodes in the network and k is the associated number of inputs to that node. 
The columns ChF0 , ChF1 and ChFU give the number of chain-0, chain-1 and generalized chain functions that 
satisfy biological fixed point constraints and sign conforming constraints at each node of the RSCN-2010 
GRN. Imposing ChFU leads to 60 Boolean models.

Nodes k ChF0 ChF1 ChFU

PLT 1 1 1 1

AUXIN 1 1 1 1

ARF 1 1 1 1

AUXIAA 1 1 1 1

SHR 1 1 1 1

SCR 4 5 0 5

JKD 2 1 0 1

MGP 3 1 0 1

WOX5 5 12 0 12
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Discussion and conclusions
In this work, we have addressed the question of whether there are certain sub-types of NCFs that drive the 
enrichment of the NCFs in reconstructed Boolean models of biological networks. Starting with a known sub-
type of NCF, namely the chain functions (or chain-0 functions), we propose two other types, specifically, its 
dual class—the chain-1 functions, and its union with the chain-1 functions, the generalized chain functions. 
We first derive an analytical formula to count these functions for a given number of inputs and a given bias. 
Using this we show that the fraction of chain-0 (or chain-1) functions decreases exponentially within NCFs as 
the number of inputs increases. Furthermore, our formula can explain several features of the pattern observed 
between the fraction of chain-0 (or chain-1) functions in NCFs and the bias, for a fixed number of inputs. We 
then test for enrichment of the chain-0, chain-1 and generalized chain function within NCFs in a large dataset 
of reconstructed Boolean models (the BBM benchmark dataset): the result is that generalized chain functions 
are indeed highly enriched. In fact, using 2 other datasets of regulatory logics, namely, the MCBF and the Harris 
dataset, the same result holds. In addition, we demonstrate how generalized chain functions can severely con-
strain the space of biologically plausible models using 3 different biological models. Lastly, we perform model 
selection on those models using known relative stability constraints and are able to zero in on a smaller subset 
of models that are more biologically plausible.

Since their introduction by Gat-Viks and  Shamir26, the chain-0 functions have hardly received any attention. 
Kauffman et al.3 identified that chain-0 functions were the sub-type of NCFs for which all the canalyzing input 
values are 0 and those authors showed its preponderance in the dataset of Harris et al.27. Akutsu et al.28 put for-
ward the Boolean expression framework associated with chain-0  functions28, making explicit the dependence 
of logical operators ( ∧ , ∨ ) on the signs of the variables preceding it. Surprisingly, its dual class had never been 
proposed nor explored as a potentially biologically relevant type. Our work builds on all these works, piecing 
together several concepts pertaining to various representation of chain functions in a systematic manner, thereby 
providing insights into the nature of chain-0 (and chain-1) functions and the space they occupy within NCFs. 
Why are generalized chain functions preponderant in biological datasets? For one, the justifications for an enrich-
ment of chain-0 functions given by Gat-Viks and  Shamir26 also apply to chain-1 functions. Furthermore, we may 
speculate that a somewhat qualitative justification lies in that generalized chain functions have lower complexity 
than general NCFs when using the framework of Kauffman et al., because of the very simple dependence of the 
operator following a variable and its sign (except for the last variable). The caveat here is that having that simpler 
description is dependent on the way one represents the functions, so for instance when using the representations 
of Gat-Viks and Shamir or of Akutsu et al., the aforementioned simplicity is no longer apparent. One may also 
speculate that rather than being subject to a direct selection (e.g., for simplicity), chain functions are selected 
for indirectly, likely through their possible modulation of network dynamics. Indeed, network dynamics are 
subject to strong selection pressures, be-it for robustness or evolvability. It is also likely that the enrichment of 
chain functions is due to evolutionary constraints, for instance, selection for logic rules that lower or minimize 
protein production costs. Therefore, our results should have implications for understanding how molecular logic 
rules are shaped by evolutionary forces.

Although these results provide novel insights, it is appropriate to make explicit some limitations in this work. 
Firstly, we have seen that chain-0 functions were enriched in the Harris dataset, however, when considering 
much larger datasets such as the BBM benchmark dataset and MCBF dataset, there are multiple values of the 
number of inputs where there is no such enrichment. Similarly, the chain-1 functions are enriched in the BBM 
benchmark dataset and MCBF dataset, whereas they are not enriched in the Harris dataset. With more data, we 
may expect that several other sub-types of NCFs may also contribute to the enrichment of NCFs. Furthermore, 
there is likely to be an (un)conscious subjective bias on BF logic when reconstructing Boolean models, and so we 
cannot exclude that such a bias is responsible for the enrichments found. Secondly, the generalized chain func-
tions can be so severely restrictive that it may be impossible to find corresponding BFs that satisfy both the fixed 
point and sign-conforming constraints as we found in the RSCN-2020 model. Lastly, relying only on “biologically 
meaningful” BFs can sometimes be too stringent. Cases wherein activatory or inhibitory regulation of a gene 
by a transcription factor may depend on the presence or absence of other transcription factors do exist—auxin 
response factors serve as good  examples43. In such scenarios, it might be better to take a probabilistic approach to 
selecting BFs in the model selection framework, allowing for such exceptions with a low probability. In a broader 
perspective, automated methods of reconstruction, for still a long time, will require the intervention of biologists 
to check whether the set of models that are output are faithful to biological knowledge.

Our findings also invite several directions for future work. One is to quantify properties of the generalized 
chain functions that distinguish them from other NCFs and are likely responsible for their being so prevalent 
in these biological reference datasets. Another is to analytically tackle the question of whether the ratio of the 
number of the chain functions to that of the NCFs for a large number of inputs follows a rigorous exponential 
behaviour.

Data and code availability
All data and codes needed to reproduce the results in this manuscript are deposited in GitHub and are available 
at: https:// github. com/ asama llab/ GenChF.
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