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Thermodynamic analog 
of integrate‑and‑fire neuronal 
networks by maximum entropy 
modelling
T. S. A. N. Simões 1*, C. I. N. Sampaio Filho 2, H. J. Herrmann 2,3, J. S. Andrade Jr. 2 & 
L. de Arcangelis 1

Recent results have evidenced that spontaneous brain activity signals are organized in bursts with 
scale free features and long‑range spatio‑temporal correlations. These observations have stimulated 
a theoretical interpretation of results inspired in critical phenomena. In particular, relying on 
maximum entropy arguments, certain aspects of time‑averaged experimental neuronal data have 
been recently described using Ising‑like models, allowing the study of neuronal networks under 
an analogous thermodynamical framework. This method has been so far applied to a variety of 
experimental datasets, but never to a biologically inspired neuronal network with short and long‑
term plasticity. Here, we apply for the first time the Maximum Entropy method to an Integrate‑and‑
fire (IF) model that can be tuned at criticality, offering a controlled setting for a systematic study of 
criticality and finite‑size effects in spontaneous neuronal activity, as opposed to experiments. We 
consider generalized Ising Hamiltonians whose local magnetic fields and interaction parameters 
are assigned according to the average activity of single neurons and correlation functions between 
neurons of the IF networks in the critical state. We show that these Hamiltonians exhibit a spin glass 
phase for low temperatures, having mostly negative intrinsic fields and a bimodal distribution of 
interaction constants that tends to become unimodal for larger networks. Results evidence that the 
magnetization and the response functions exhibit the expected singular behavior near the critical 
point. Furthermore, we also found that networks with higher percentage of inhibitory neurons lead 
to Ising‑like systems with reduced thermal fluctuations. Finally, considering only neuronal pairs 
associated with the largest correlation functions allows the study of larger system sizes.

Biological neural networks are highly complex systems, due to the large number of interacting degrees of freedom 
and the connectivity properties of its constituent elements. Neurons interact by generating action potentials (“fir-
ing” or “spiking”), with a biophysical mechanism first explained quantitatively by Hodgkin and Huxley in  19521. 
Their dynamics can be characterized by discretized time series of these firing patterns in binary  notation2. This 
description suggests an analogy with the binary spin states in Ising models. Indeed, Ising-like descriptions of 
brain activity can be traced back to fifty years ago, to the work by  Little3 and  Hopfield4, followed by the work of 
Amit et al.5, where the authors used a spin glass model to describe neural networks. More  recently6–13, generalized 
Ising models have been used to describe the dynamics of recordings from stimulated neuronal activity, using the 
so-called Maximum Entropy Modelling (MEM)  method14. The method consists in finding the least biased (or 
maximum entropy) probability distribution that is consistent with a given set of statistical measurements from 
the system under consideration but otherwise imposes no further  constraints15. When this method is applied to 
describe the individual firing rates and correlation functions between neurons, the resulting statistical description 
is equivalent to the one of a specific Ising model with frustrated  spins6,7. Therefore, the MEM approach can be 
interpreted as an effective mapping of the dynamics from an out-of-equilibrium, multi-component system into 
a “Hamiltonian”  one9, specified by relatively few parameters when compared to the full set of possible states of 
the system in question, allowing to apply the framework of thermodynamics. Outside the scope of neuroscience, 
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this method has been used to construct novel statistical  models16, and to study geographic distributions of 
 species17, protein  structures18,19, gene mutation  effects20, the collective behavior of flocks of  birds21 and their 
diversity  distribution22, correlations in eye movements while watching  videos23 or reading  texts24, and to con-
duct urban-oriented studies such as flood risk  assessment25, analyzing urban mobility  patterns26 and property 
valuations in real estate  markets27. In turn, within the context of neuroscience, MEM has been mostly used to 
analyse experimental data of neuronal recordings, such as visual inputs from cells of a  salamander6,9,10,28,29 and 
rat  retina30, numerical simulations from a phenomenological model of retinal ganglion  cells31, responses from 
hippocampus place cells in rodent  brains11,13, synchronized and desynchronized neuronal activity from the 
primary visual cortex of anaesthetised cats and awake  monkeys32, in vivo and in vitro neuronal activity from 
cortical tissue of  rodents33 and the nervous system of the nematod  C. Elegans 12, an organism whose pattern of 
connectivity between all its 302 neurons is well  known34.

Overall, these studies have given insights regarding  collective6 and functional  characteristics28 of biological 
neural networks, as well as helping unraveling the information content of neuronal  responses9,10 and its analogous 
thermodynamic  properties10. Particularly, it was shown that the thermal fluctuations present in these Ising sys-
tems tend to diverge with system size,7,10,12,32,33 a sign of critical behaviour. However, experimental measurements 
in real networks can pose challenges that may impact the relevance and range of applicability of the conclusions 
drawn using the MEM method. For instance, contemporary neuronal recording techniques are restricted by 
the duration and sampling rate of the  recordings29,35 and a precise association between which neuron generated 
which spike is an open problem, known as “spike sorting”36, possibly affecting the accuracy of the measured 
correlation  functions37. Furthermore, precise estimations of the fraction of excitatory and inhibitory neuronal 
populations in real systems are also often difficult to  obtain38. To mitigate these challenges, numerical models can 
offer a more controlled environment for studying neuronal activity, allowing one to systematically change many 
parameters of choice, tuning the activity state, make systematic size studies which do not rely on subsampling, 
and generate many equivalent independent samples, thus producing statistically relevant data. However, this 
method has never been applied to data generated by biologically inspired neuronal network models reproducing 
the fundamental features of neuronal activity in the resting state.

In this context, we apply the MEM method to spontaneous neuronal activity generated by an Integrate-
and-fire (IF) model implemented on a scale-free network with short- and long-term  plasticity39. This IF model 
implements the main features of neuronal activity, as firing at threshold, refractory period, as well as long- and 
short-term plasticity for synaptic connections. In particular, short-term plasticity models the recovery of synaptic 
resources and relies on a tuning parameter that regulates the dynamical state of the  system39. At appropriate 
values of the tuning parameter, the model generates bursts of firing activity with characteristic spatio-temporal 
statistics, known as neuronal avalanches, first observed in 2003, in acute slices of rat  cortex40, displaying sizes 
S and durations D that are power-law distributed, as P(S) ∝ S−1.5 and P(D) ∝ D−2 , suggesting that biological 
neural networks operate near a critical point, as proposed in previous numerical and analytical  studies41,42, and 
is consistent with the divergence of thermal energy fluctuations observed in relatively small Ising-like models 
constructed from experimental neuronal data using the MEM  method7,10,12,32. Results suggest that the brain might 
act between a quiescence-like state and a state of hyperactivity, possibly offering several biological advantages 
such as optimal information transmission and  storage43. Signs of criticality have been observed in a wide variety 
of animals, including  humans44–46,  monkeys47,  cats32,  salamanders48,  turtles49,  worms12, and  fish50, a hallmark 
of  universality41.

Our aim here is to apply the MEM approach to neuronal activity data generated by the IF neuronal network 
in the critical state. In particular, we construct, using the MEM method mentioned above, fully-connected 
Ising models of frustrated spins with local fields and interaction constants which allow the average spin state to 
reproduce the average local neuronal activity, as well as the two-point correlation functions in the two models. 
We will investigate how the parameters of the Ising model and its thermodynamics properties change with the 
size and connectivity of the neuronal network. Additionally, we examine how different fractions of inhibitory 
neurons may influence the associated Ising models. We also consider partially-connected spin networks with 
only a subset of the total pairwise interactions, associated with the strongest neuronal pairwise correlations, to 
be able to analyse networks of sizes larger than the ones typically considered so far in the  literature35. The aim is 
to implement the mapping of the neuronal model into a thermodynamic framework, which may open the way 
to novel insights into brain functions.

The manuscript is organized in four sections. The first one gives a general presentation of Results, in particular 
the firing dynamics generated by the IF model, the mapping of the IF model into an Ising-like model using the 
MEM method and a study of its associated properties. In the following sections, we present a general Discussion 
followed by the Conclusions. In the final section, we describe the details of all methods, namely the IF model 
implementation and the MEM method.

Results
We consider scale-free neural networks of different size N ∈ [20, 500] with short- and long-term plasticity, as 
well as a refractory mechanism, where neurons remain inactive for a single timestep immediately after firing 
(see “Methods”). Together with plastic adaptation, the refractory mechanism has been shown to play a crucial 
role in the appearance of critical behaviour and in shaping the topology of the  network51. All measurements are 
performed on networks in the critical state. This is done by appropriately tuning the neurotransmitter recovery 
parameter δurec (see “Integrate-and-fire model” in Methods) and verifying that the distributions of neuronal 
avalanche sizes P(S) ∝ S−τS and durations P(D) ∝ D−τD decay as power laws with exponents τS = 1.5 and 
τD = 2 (see Fig. S1 in Supplementary Information), characteristic of the mean field self-organized branching 
 process52, and consistent with both numerical and experimental  observations39,40,46. Initially, we consider only 
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fully-excitatory networks. Later, we will also consider networks with a fraction pin > 0 of inhibitory neurons. 
The time evolution of a system with N = 120 neurons in the critical state is shown in the raster plot of Fig. 1.

First, we analyse the firing statistics of the IF model networks. Then, we apply the MEM method to map the 
dynamics of the IF model networks of size N ∈ [20, 120] into a pairwise Ising model, defined by N “local fields” 
hi and N · (N − 1)/2 “interaction constants” Jij , and study its thermodynamical properties. More specifically, 
this mapping is achieved by using the so-called Boltzmann Machine (BM) algorithm. This learning algorithm 
searches for the set of parameters hi and Jij that best fit the pairwise Ising model to the data of the IF model 
by comparison with the average local activities 〈σi〉 and correlation functions Cij generated by each model (see 
“Maximum entropy modelling” in Methods).

Firing statistics
To measure the IF network firing statistics, we consider a time bin �tb = 5 timesteps. We assign a binary value 
σ k
i ∈ {−1, 1} to each neuron at each time bin according to the following rule: σ k

i = 1 if neuron i fired at least once 
during the k-th time bin, σ k

i = −1 if the neuron i was inactive during the whole time bin k. We then calculate 
the average local activity 〈σi〉 of the N neurons over Nb time bins, defined as

as well as the average two-point activity 〈σiσj〉 between all N · (N − 1)/2 pairs of neurons i and j

From these quantities we can also define the two-point correlation functions Cij,

(1)�σi� =
1

Nb

Nb
∑

k=1

σ k
i ,

(2)�σiσj� =
1

Nb

Nb
∑

k=1

σ k
i σ

k
j .

(3)Cij =
〈

(σi − �σi�) · (σj − �σj�)
〉

= �σiσj� − �σi��σj�,

Figure 1.  Time series for a system at criticality with N = 120 neurons. The top raster plot presents the time 
evolution of the firing states of N = 120 neurons over a certain number of timesteps, from a fully-excitatory 
IF network in the critical state. A coloured dot indicates that the respective neuron fired during that timestep, 
while an absence of a dot means it was inactive. The alternating green and blue colours are just a visual aid to 
distinguish between different avalanches. The bottom raster plot is a zoom-in of the top one, where the coloured 
shaded areas indicate avalanches of size S > 1 and duration D.
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where 〈σi〉 is closely related to the firing rate ri = (�σi� + 1)/2�tb of neuron i9, whereas Cij quantifies the ten-
dency for neurons i and j to fire together in the time interval �tb . Notice that, although likely related, the Cij are 
completely distinct from the synaptic strengths wij . For instance, the Cij are defined for each pair i and j and are 
symmetric by definition ( Cij = Cji ), whereas wij are not. For all simulations we use Nb = 107.

In Fig. 2 we show the distributions of 〈σi〉 and Cij obtained from Nc different neural network configurations 
(see Fig. S1 in Supplementary Information for the respective avalanche statistics), for systems with different 
number of neurons N. We vary Nc according to N so that the total number of neurons considered NNc ∼ 10,000 . 
The average local activity 〈σi〉 is negative for all neurons (Fig. 2a–c), implying that firing is a relatively rare event 
when considering individual neurons. Moreover, the distribution becomes narrower and shifts towards more 
negative values as the system size increases. In Fig. 2d–f, we show that the correlation functions are small, but 
mostly non-zero for all neuron pairs, with their distributions peaked near zero, becoming sharper as the system 
size N increases. It is also noteworthy that, in experimental studies of the vertebrate  retina6, even weak pairwise 
correlations have been shown to likely become statistically significant in large networks, influencing the dynam-
ics at the scale of the whole network.

Another useful quantity that characterizes the firing dynamics is the probability P(K) to observe K ∈ [0,N] 
neurons firing simultaneously within a time bin �tb,

where δK ,Kk is the Kronecker delta function and Kk =
∑N

i

(

σ k
i + 1

)

/2 counts the number of neurons firing 
during the k-th time bin. In Fig. 3 we plot the probability (4) for several networks of different size N. For all 
N, P(K) is well fitted by an exponential distribution in an intermediate regime. The exponential factor of the 
distributions consistently decreases as N increases, indicating that it is more likely to observe concurrent firing 
between neurons in larger networks.

Results of the Boltzmann machine learning
Next, we consider Ising models with pairwise interactions for different system sizes N = {20, 40, 80, 120} . The 
interaction constants and local magnetic fields are fitted to reproduce the temporal averages of the correlation 
functions and local activities generated by the IF model, using the Boltzmann Machine (BM) algorithm (see 
“Maximum entropy modelling” in Methods). Each spin i can either be in the up-state ( σi = +1 ) or down-state 
( σi = −1 ), defining a particular spin configuration σ = {σ1, σ2, ..., σN } . The Ising Hamiltonian H(σ ) is given by

(4)P(K) =
1

Nb

Nb
∑

k=1

δK ,Kk ,

Figure 2.  Distributions of the average local activity 〈σi〉 and of the correlation functions Cij in IF networks. 
Average local activity 〈σi〉 (a–c) and correlation functions Cij (d–f), calculated as averages over Nb = 107 time 
bins. Distributions are obtained for sizes N = {40, 120, 500} , for Nc ∼ 10,000/N different fully-excitatory 
networks.
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with hi and Jij the fitting parameters, acting as local fields on spin i and interaction constants between spins i and 
j, respectively. When appropriate, we use the superscript (IF) and (BM) to distinguish between measurements 
using the IF model and those obtained with the BM using Monte Carlo. More specifically, 〈...〉(IF) indicates an 
average over time bins in the IF model while 〈...〉(BM) is an average over spin configurations of the Ising model.

In Fig. 4 we present the values of {hi} and the distributions of the interaction constants {Jij} , fitted to reproduce 
the temporal averages {�σi�(IF)} and {�σiσj�(IF)} of fully-excitatory IF networks of size N, tuned to the critical state.

More specifically, Fig. 4a–d show ranked plots of the fields hi , where h1 ( hN ) corresponds to the spin associ-
ated with the neuron that fired the most (least) in the IF model. The fields hi are mostly negative for all N. This is 

(5)H(σ ) = −
N
∑

i

hiσi −
N
∑

i

N
∑

j<i

Jijσiσj ,

Figure 3.  Probability P(K) of observing K neurons firing simultaneously during a time bin �tb = 5 timesteps. 
Results are averaged over Nc different fully-excitatory IF networks configurations of size N. Nc varies with N as 
in Fig. 2. For each configuration, P(K) is estimated by averaging over Nb = 107 bins. Error bars are given by the 
standard error, and most of them are smaller than the symbol size.

Figure 4.  Sets of learned fields hi and interaction constants Jij of the Ising model reproducing the time averages 
of the IF model. Plots of the fields hi (a–d), sorted by the average local activity 〈σi〉(IF) of the associated neuron 
i, in order of decreasing 〈σi〉(IF) , and distributions of the interaction constants Jij (e–h), learned by the BM to 
reproduce the average local activity 〈σi〉 and two-point correlation functions Cij of a fully-excitatory IF neural 
network at criticality, with N = {20, 40, 80, 120} neurons.
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not surprising considering that a neuron in the IF model fires rarely, as discussed in previous sections, and the 
negative fields are a consequence of this sparse activity. We note, however, that, as the system size N increases, 
an increasingly larger fraction of spins have positive hi , corresponding to the spins associated with the most 
active neurons. In Fig. 4e–h we plot the distributions of the learned interaction constants Jij . The distributions 
are bimodal, with the absolute maximum near zero and the second one at positive Jij . However, the height of the 
second peak appears to decrease with the system size N, suggesting that the limiting distribution when N → ∞ 
becomes consistent with a normal distribution centered around zero. It is interesting to recall that random, 
normally distributed Jij characterize the so-called Sherrington-Kirkpatrick (SK)  model53,54, an Ising-like model 
which has been shown to exhibit both ferromagnetic and spin glass  phases53. Unlike the SK model, however, 
the learned Ising models exhibit high heterogeneity in the distribution of the fields hi , and, since the learning 
technique fits simultaneously both the fields and interaction constants, the inference of the {Jij} should not be 
considered numerically decoupled from that of the {hi}.

To test the quality of the learning process, in Fig. 5 we compare the {�σi�(BM)} and {C(BM)
ij } of the Ising-like 

model with the neural network data of the IF model {�σi�(IF)} and {C(IF)
ij }.

As described above (by virtue of Eqs. (16) and (17), in the “Methods” section), if the learning is successful, 
these quantities should be identical since these are precisely the constraints imposed in the learning procedure. 
The validity of this method is confirmed for both 〈σi〉 and Cij , for all N, with all points following closely the 
bisector y = x.

An interesting quantity to assess the predictive power of the model are the three-point correlation functions 
Tijk between all N · (N − 1) · (N − 2)/6 triplets of neurons i, j and k,

where the averages 〈...〉 are defined analogously as in Eqs. (1) or (3). In Fig. 6 we compare the triplets between the 
IF and the Ising models, for systems with N = {20, 40, 80, 120} considered previously.

Even though the Tijk are not constrained by the learning procedure, the generalized Ising model still captures 
their systematic qualitative behaviour. Unlike 〈σi〉 and Cij , however, the triplets appear to be consistently over-
estimated by the Ising model, when compared to their IF model counterpart. We note that this behaviour was 
also seen in experimental recordings from stimulated neurons in a salamander  retina7, albeit to a less significant 
degree.

Another useful measure to assess how well the Ising-like model describes the IF model data is the probability 
for simultaneous firing P(K) within a small time window, as defined in Eq. (4). In the Ising model, the sum over 
time bins in Eq. (4) is replaced by a sum over spin configurations generated by Monte Carlo simulation, where 

(6)
Tijk =

〈

(σi − �σi�) ·
(

σj −
〈

σj
〉)

· (σk − �σk�)
〉

=
〈

σiσjσk
〉

− �σi�
〈

σjσk
〉

−
〈

σj
〉

�σiσk� − �σk�
〈

σiσj
〉

+ 2�σi�
〈

σj
〉

�σk�,

Figure 5.  Quality test for the BM learning process. Comparison between the average local activity 〈σi〉 (a–d) 
and correlation functions Cij (e–h) of the Ising-like model (y-axes) and IF model network (x-axes), for system 
sizes N = {20, 40, 80, 120} . The blue dashed lines are the bisector y = x . Results are averages over Nb = 107 
time bins for the IF model (IF), and over Mc = 3 · 106 spin configurations for the Ising model (BM). Error bars 
are given by the standard error, and are smaller or equal to the symbol size.
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K now counts the number of up-spins in a single configuration in the Monte Carlo evolution. We compare this 
quantity between the IF and Ising models in Fig. 7 for systems of size N = {20, 40, 80, 120}.

The Ising model seems to predict the P(K) correctly only when K is very small, of the order K/N � 0.10 , 
with noticeable discrepancies seen also for this range of K, particularly for the probability of no activity ( K = 0 ), 
in systems of size N > 20 . For larger K, there is an intermediate range where the Ising model underestimates 
P(K), followed by a region in which P(K) is greatly overestimated. This effect seems to increase with the system 
size N. This particular behaviour was also observed when training a pairwise Ising model to reproduce the time 
averages of stimulated neuronal activity from a salamander  retina9.

Thermodynamics of the pairwise Ising models
Having mapped the neural network to a pairwise Ising model, we can start to analyse its properties. Given a 
system with N spins, for each spin configuration we can measure the magnetization M(σ ) =

∑N
i σi and the 

energy E(σ ) = −H(σ ) =
∑N

i hiσi +
∑N

i

∑N
j<i Jijσiσj . From the fluctuations of these quantities, according to 

the fluctuation-dissipation theorem, we can calculate the susceptibility χ and the specific heat Cv of the Ising 
system as a function of temperature T,

where 〈...〉 indicates an average over spin configurations generated by Monte Carlo simulations and the Boltz-
mann constant kB is set equal to one. By changing T, one can probe the thermodynamic properties of these spin 

(7)χ =
1

T
·
(〈

M2
〉

− �M�2
)

,

(8)Cv =
1

T2
·
(〈

E2
〉

− �E�2
)

,

Figure 6.  Predictive capability of the Ising model for the three-point correlation functions Tijk . Comparison 
between the three-point correlation functions Tijk of the Ising-like model (y-axes) and the IF model network 
(x-axes), for system sizes N = {20, 40, 80, 120} . The blue dashed lines are the bisector y = x . Results are averages 
over Nb = 107 time bins for the IF model (IF), and over Mc = 3 · 106 spin configurations for the Ising model 
(BM). Error bars are given by the standard error, and are smaller or equal to the symbol size.

Figure 7.  Predictive capability of the Ising model for the probability of simultaneous firing P(K). Comparison 
between the simultaneous firing/up-state probability P(K) of the Ising-like model (red) and the IF model 
network (blue), for system sizes N = {20, 40, 80, 120} . Results are averaged over Nb = 107 time bins for the IF 
model (IF), and over Mc = 3 · 106 spin configurations for the Ising model (BM). Error bars are given by the 
standard error, and most are smaller or equal to the symbol size.
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systems. We start from a random spin configuration and thermalize it as described in the “Methods” section. 
Notice, however, that the MEM method only claims that the Ising model is representative of the IF model for 
T = 1 ≡ T0 , since that is the temperature used during the BM learning procedure. Since there is no evident anal-
ogy between the control parameter of the learned Ising models, T, and that of the IF model, δurec , temperatures 
T  = T0 have no obvious physical meaning in these learned Ising models, besides being a useful parameter to 
check if T0 has a particular thermodynamic  role10.

In Fig. 8 we plot the average magnetization per spin m = �M�/N , the susceptibility χ and the specific heat 
Cv as a function of the temperature T for systems of size N = {20, 40, 80, 120} . For each N, we consider five Ising 
systems with distinct parameters learned from different IF networks of identical size at criticality, to assess the 
sample-to-sample variations for IF networks with different specific connectivities between the neurons.

The striking result is that all quantities exhibit the behavior expected close to a critical transition. The magneti-
zation takes negative values at low temperatures, because of the majority of negative local fields, and tends to zero 
for high temperatures with a behavior that becomes steeper for increasing system sizes. The maxima of the sus-
ceptibility and specific heat appear near the “default” temperature T0 = 1 associated with the IF model neuronal 
data, and their height increases with N, indicating that the neural networks tend to maximize thermodynamic 
fluctuations. This phenomenon, where fluctuations diverge with increasing system size, is a hallmark of a system 
operating near a critical  point55. Looking now at different network configurations of the same size N, we can 
clearly detect large variations across configurations. Particularly, for different IF networks with the same N, the 
maximum value of the susceptibility χ varies by a factor ∼ 2 for sizes N = {20, 40} and ∼ 1.5 for N = {80, 120}.

Another interesting result is the cloud of random values observed for T < 1 for all thermodynamic quantities. 
This may be an indication that, for low temperatures, the Ising model transitions into a spin-glass phase. Since 
this phase usually exhibits complex energy  landscapes54, thermal fluctuations in this temperature regime might 
not be sufficient to drive the system away from the randomly chosen initial configuration and into the ground 
state. Indeed, starting with all σi = −1 as initial configuration for the Monte Carlo simulations removes this 
effect entirely (see Fig. S3 Supplementary Information).

Subnetworks
In experiments, neuronal recordings are usually performed over a subset of neurons out of the total  population9,13. 
As such, it is of practical interest to study how network subsampling might affect the analysis. A very recent 
 study13 shows that the properties of firing statistics change with the spatial distribution of the subsampled 
neuronal patch. Taking this into account, we will consider two types of subnetworks, also studied in the afore-
mentioned work: a subset of neurons that are spatially close together (Fig. 9a), or picked at random positions 
(Fig. 9b). For the former case, we select the neurons that are closest to the center of the cubic lattice.

In Fig. 10 we plot the results of the simultaneous firing probability P(K) and triplets Tijk measured in subnet-
works of n = 40 neurons in systems with N = 500 total neurons, for both spatial distributions described previ-
ously. We also compare these quantities with the predictions of the corresponding Ising models. The learning 
efficiency for the parameters of these models is similar to the cases using full networks, as assessed by inspecting 
the constrained temporal averages, 〈σi〉 and Cij (see Fig. S4 in Supplementary Information).

As in the case of entire networks, the Ising models fail to predict P(K) for large K, with even larger discrepan-
cies (Fig. 10). For the IF network, the P(K) distribution decays exponentially for both subnetworks, as for the 
entire network case. Analogously, the probability P(K) for the learned Ising models shows an initial exponential 
decay for low K, for both spatial distributions. Conversely, at K/n ≈ 0.35 , the behaviour of P(K) for the Ising 
model is slightly different between the two spatial distributions. For the local case, the probability for observing 

Figure 8.  Thermodynamic functions of Ising models associated with fully-excitatory IF networks of different 
system sizes N. Average magnetization per spin m (a), susceptibility χ (b) and specific heat Cv (c) as a function 
of the temperature T ∈ [0.1, 3.0] , for systems with N = {20, 40, 80, 120} spins. Different curves with the same 
colour and symbol correspond to Ising systems with parameters fitted to different IF network configurations 
with the same size N but different specific connectivities. The vertical dashed lines indicate T = T0 = 1 , the 
“default” temperature used in the BM learning procedure to fit the respective Ising parameters to each IF 
network. The cloud of random values observed for T < 1 suggests the presence of a spin-glass phase, where 
the thermal energy is insufficient to drive the system away from the initial random spin configuration. Results 
are averages over Mc = 3 · 106 spin configurations. Error bars are given by the standard error and are overall 
smaller or equal to the symbol size.
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Figure 9.  Schematic representations of IF model subnetworks with different spatial distribution. Subnetworks 
(green) with neurons closely packed together (a) or picked at random positions (b). Subnetworks have n = 40 
neurons in a system of size N = 500.

Figure 10.  Predictive capability of the Ising model for IF model subnetworks. Comparison between Monte 
Carlo sampling of the Ising model (BM) and the neural network data (IF) of the probability P(K) (a,b) and 
triplets Tijk (c,d), for subnetworks with n = 40 neurons, with a local (a,c) and random (b,d) spatial distribution, 
in a system with N = 500 neurons. The blue dashed lines in the bottom plots are the bisector y = x . Results are 
averaged over Nb = 107 time bins for the IF model (IF), and over Mc = 3 · 106 spin configurations for the Ising 
model (BM). Error bars are given by the standard error, and are overall smaller or equal to the symbol size.
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simultaneously up-spins reaches a second local maximum at K/n ≈ 0.75 . Notice, however, that this is a small 
effect, magnified by the logarithmic scale. On the other hand, for the random case, a plateau in P(K) of the Ising 
model is observed in the intermediate regime of K, followed by a subsequent decay. These differences between 
the IF and Ising model, compared to the full network case (Fig. 7), could be due to the fact that we are neglect-
ing influences from neurons that are not included in the subnetworks, and therefore not encoded in the Ising 
model parameters.

The behavior of the triplets is similar to the case of entire networks (Fig. 6), wherein the triplets are system-
atically overestimated by the Ising model. We note also that overall the triplets have much smaller values, when 
compared to the ones found for the full network with N = 40 . Similar results were found for both P(K) and the 
Tijk for subnetworks of larger size n = 80 in the same IF network with N = 500 (see Fig. S5 in Supplementary 
Information). The fact that both cases of spatial distributions yield Ising models with similar accuracy in repro-
ducing the original IF model data is unexpected, as this is seemingly in contrast to recent experimental studies 
on mouse  brains13, where the generalized Ising model predicted better the results from subgroups of ∼ 100 neu-
rons that were spatially clustered together. It should be noted, however, that the experimental study pertains to 
stimulated neuronal activity due to visual stimuli, whereas our model simulates spontaneous neuronal  activity39, 
in the absence of any external stimulation.

Networks with inhibitory neurons
Inhibitory neurons hamper propagation of neuronal activity, consequently affecting the dynamics of the 
 network56,57. Increasing the percentage pin of inhibitory neurons in a neural network moves the system into a 
subcritical  regime57. A way to keep the system close to the critical state when pin > 0 is by increasing the value 
of the tuning parameter δurec . Here we consider systems of size N = 80 and pin > 0 , in the critical state (see 
Fig. S2 in Supplementary Information), and study how the presence of inhibition might affect the properties of 
the associated Ising-like models. The agreement of the average local activities and correlation functions between 
the Ising model and the IF networks with inhibitory neurons is as good as for fully-excitatory ones (see Fig. S6 
in Supplementary Information).

In Fig. 11 we show the distributions of fields hi and interaction constants Jij learned from data of IF networks 
with pin = {0%, 10%, 20%} inhibitory neurons.

The distribution of fields hi (Fig. 11a) for pin > 0 exhibits a tail towards negative values, which becomes 
more pronounced as pin increases. Interestingly, these hi are associated with excitatory neurons (see Fig. S7 in 
Supplementary Information). A possible explanation is that, in the IF network, the neurons with the smallest 
average local activity 〈σi〉 are not necessarily inhibitory neurons, but rather neurons with incoming connections 
from inhibitory ones, which in turn are more likely to be excitatory since pin < 50% . This indicates that the {hi} 
do not encode the information about whether a neuron is excitatory or inhibitory. In Fig. 11b we see that the 
peak of the distributions of the interaction constants Jij , decreases with pin , with a more pronounced tail towards 
negative Jij observed for pin = 20% . Interestingly, the presence of the second peak of P(Jij) at positive Jij seems 
to be robust with respect to changes in pin.

In Fig. 12 we plot as a function of the temperature T the thermodynamic functions m, χ and Cv of the Ising 
systems with the parameters of Fig. 11. For increasing pin , the magnetization does not go to zero at high T in 
the observed range of temperatures (Fig. 12a), indicating a higher tendency for spins to be in the down state 
( σi = −1 ) than for the fully excitatory case in the paramagnetic phase, which could stem from the inhibitory 
neurons. This is consistent with the observation of stronger negative fields hi for pin = 20% , as seen in Fig. 11a. 
In Fig. 12b,c, we see that the values of the maxima of χ and Cv decrease with pin , while their position with respect 

Figure 11.  Distributions of the learned fields hi and interaction constants Jij of a Ising model for neural 
networks with different fractions of inhibitory neurons pin . Fields hi (a) and interaction constants Jij (b) 
associated with IF networks with pin = {0%, 10%, 20%} and N = 80 , obtained after NBM = 60,000 iterations of 
the BM.
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to the temperature remains unchanged. This suggests that introducing inhibition in the IF networks reduces 
thermal fluctuations in the associated Ising model.

Partially‑connected pairwise Ising models
One of the main disadvantages of BM learning is its intense CPU time  demand35,58, restricting the network sizes 
one could potentially analyse. To try to circumvent this problem, we will consider Ising models with pruned 
 links28, whereby we remove the couplings associated with the weakest correlated pairs of neurons. Specifically, 
we set Jij = 0 if the corresponding C(IF)

ij  is below a certain threshold, defined as a fraction of the largest measured 

correlation function, i.e. if C(IF)
ij < ηmax

(

C
(IF)
ij

)

 , where η ∈ [0, 1] sets the threshold. Thus, the BM only needs to 
learn a subset of the total number of couplings Jij , possibly accelerating the convergence process and consequently 
allowing the study of networks larger than the ones considered so far. Furthermore, an obvious speed-up is also 
achieved by making use of the fact that a subset of the {Jij} are zero, and therefore can be disregarded in the double 
sum of Eq. (5) during the Monte Carlo simulations. We will consider three thresholds η ∈ {0.10, 0.15, 0.20} , using 
a fully-excitatory system of size N = 180 in the critical state. Computing only a fraction of the interaction terms 
allowed to obtain the BM results for the N = 180 system in a less or comparable CPU time with respect to the 
one required by the N = 120 systems where we considered the full set {Jij} , with a greater CPU speed-up achieved 
the larger the threshold η is.

Figure 12.  Thermodynamic functions of Ising-like models associated with IF model networks with different 
fractions of inhibitory neurons pin . Average magnetization per spin m (a), susceptibility χ (b) and specific 
heat Cv (c) as a function of the temperature T ∈ [0.1, 3.0] , simulated using the learned parameters shown in 
Fig. 11 for different fractions of inhibitory neurons pin = {0%, 10%, 20%} and N = 80 . As in Fig. 8, the cloud of 
random values for T < 1 suggests the presence of a spin-glass phase. Results are averaged over Mc = 3 · 106 spin 
configurations. Error bars are given by the standard error and are overall smaller or equal to the symbol size.

Figure 13.  Quality test for the BM learning process with a partially-connected Ising model. Comparison 
between the correlation functions Cij of the partially-connected Ising-like model (y-axes) and IF model 
network (x-axes), for a fully-excitatory system at criticality of size N = 180 and three different thresholds 
η = {0.10, 0.15, 0.20} for the removal of the Jij . If C(IF)

ij < ηmax(C
(IF)
ij ) (grey dots), the corresponding interaction 

constant is set to Jij = 0 . The vertical dashed lines indicate the value ηmax(C
(IF)
ij ) , with the corresponding 

approximate percentage of removed Jij reported at the right of this line. The blue dashed lines are the bisector 
y = x . Results are averaged over Nb = 107 time bins for the IF model (IF), and over Mc = 3 · 107 spin 
configurations for the Ising model (BM). Error bars are given by the standard error, and are smaller or equal to 
the symbol size.
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In Fig. 13 we present the comparison between the correlation functions of the IF model and the partially-
connected Ising model for the three different thresholds. We see that, even though more than 40% couplings 
Jij have been removed in the Ising model for the lowest threshold considered, η = 0.10 , and more than 70% for 
the largest one, η = 0.20 , the overall data are still reconstructed by the partially-connected Ising model, with 
a decrease in quality of the fit for the lowest Cij (grey dots in the plots) since they were not considered in the 
learning process of the BM. On the other hand, all 〈σi〉 are well predicted by the Ising model (see Fig. S8 in Sup-
plementary Information) since we fit all the N = 180 fields {hi}.

In Fig. 14 we plot the learned fields and the distributions of the learned non-zero interaction constants of the 
partially-connected Ising model for the three different thresholds η . While the set of fields {hi} remains qualita-
tively similar for the three thresholds η , with a majority of negative fields as in the case of the fully-connected Ising 
models, the distributions of the non-zero Jij change significantly with η , with the peak at positive Jij increasing 
and the one at Jij ≈ 0 decreasing as we remove progressively more Jij . Since we remove only the Jij associated 
with the smallest correlation functions Cij , this seemingly indicates that the second peak at Jij > 0 also seen in 
the distributions for the fully-connected Ising models (Fig. 4) is associated with the subset of the largest Cij.

As usual, we can also analyze how the Ising model might predict quantities that are not being constrained 
by the BM algorithm. In Fig. 15 we present the comparison between the tree-point correlation functions Tijk 
measured in the partially-connected Ising model and the IF model. As in the fully-connected case, the Ising 
model consistently overestimates the values of Tijk . The quality of the fit for the smallest threshold considered, 
η = 0.10 , is comparable to the fully-connected Ising models (Fig. 6). However, as η increases, the quality of the 
fit worsens, particularly for the smallest T (IF)

ijk .
Next, we present in Fig. 16 the results for the probability P(K) of simultaneous firing. The predictive capabil-

ity of the partially-connected Ising model for small K is similar to that of fully-connected ones (Fig. 7), while 
significant differences can be seen for large K. As the threshold η is increased, the Ising model seems to predict 
larger simultaneous activity at the scale of the whole network, where K ≈ N , indicated by a local maximum in 
P(K). This seems to indicate that the small Jij that we are disregarding encode the information concerning the 
large K regime of P(K) .

Finally, in Fig. 17 we plot the thermodynamic functions m, χ and Cv versus temperature T for the partially-
connected Ising systems, considering the three cases η = {0.10, 0.15, 0.20} . For all quantities results are quite 
robust with respect to η , taking into account that there is a difference of ≈ 31.9% of removed Jij between the 
smallest and largest thresholds η considered. The tendency for the susceptibility χ and specific heat Cv to diverge 

Figure 14.  Sets of learned fields hi and non-zero interaction constants Jij of the partially-connected Ising model. 
Plots of the fields hi (a–c), sorted by the average local activity 〈σi〉(IF) of the associated neuron i, in order of 
decreasing 〈σi〉(IF) , and distributions of the non-zero interaction constants Jij (d–f), that reproduce the respective 
data of the Ising model presented in Fig. 13 for the three different thresholds η = {0.10, 0.15, 0.20} , for a fully-
excitatory system at criticality of size N = 180.
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with N is also still clearly visible when comparing to the results for a smaller system size with N = 120 (black 
symbols), which in turn considers the full set {Jij}.

Discussion
In this study we apply for the first time the Maximum Entropy Modelling (MEM) method to neuronal activity 
data generated by a numerical model containing the fundamental biological features of living networks and 
able to tune the system at criticality. Indeed, it has been widely proposed in the literature that the brain could be 
considered as a system acting close to a critical point, however in the majority of previous papers this feature was 
not taken in account clearly. The advantage of the numerical study is the possibility to have a clear knowledge of 
the state of the neuronal system, to control the percentage of inhibitory neurons and to implement artificially, 
by considering subnetworks, the subsampling limitation in experimental measurements. We mapped the local 
and pairwise information of IF complex neural networks into Ising models with frustrated spins. Independently 
of the system size N, the local fields hi are mostly negative (Fig. 4a–d) and the distribution of interaction con-

stants Jij (Fig. 4e–h) is bimodal for small systems, but tends to a normal distribution centered around zero as N 

Figure 15.  Predictive capability of the partially-connected Ising model for the three-point correlation functions 
Tijk . Comparison between the three-point correlation functions Tijk of the partially-connected Ising-like model 
(y-axes) and the IF network (x-axes), for the three thresholds η = {0.10, 0.15, 0.20} , for a fully-excitatory system 
at criticality of size N = 180 . Results are averaged over Nb = 107 time bins for the IF model (IF), and over 
Mc = 3 · 107 spin configurations for the Ising model (BM). Error bars are given by the standard error, and most 
are smaller or equal to the symbol size.

Figure 16.  Predictive capability of the partially-connected Ising model for the probability of simultaneous 
firing P(K). Comparison between the simultaneous firing/up-state probability P(K) of the Ising-like model (red) 
and the IF model network (blue), for the three thresholds η = {0.10, 0.15, 0.20} , for a fully-excitatory system 
at criticality of size N = 180 . Results are averaged over Nb = 107 time bins for the IF model (IF), and over 
Mc = 3 · 107 spin configurations for the Ising model (BM). Error bars are given by the standard error, and most 
are smaller or equal to the symbol size.
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increases. These Ising systems display a spin glass phase at low temperatures, independently of N (Fig. 8), and the 
susceptibility and specific heat tend to diverge with the system size, with a maximum near T = T0 = 1 , the effec-
tive temperature used in the BM learning to fit the IF network neuronal data. This is an indication that the Ising 
model analogs of the IF networks operate near a critical point. Furthermore, at least for N ≤ 120 , the height of 
the maximum in the susceptibility is sensible to changes in the details of the connectivity of the network (Fig. 8b). 
We remark that the Ising models do not predict well unconstrained quantities such as the three-point correlation 
functions (Fig. 6) and the probability of simultaneous firing even for whole networks (Fig. 7). This discrepancy 
is enhanced when considering only a subset of the neurons (Fig. 10), likely due to inputs from neurons outside 
the subnetwork which are not considered in the MEM mapping. This indicates that additional caution should be 
taken when analysing real neural networks using the MEM approach, which often consider only a subset of the 
total neuronal population. The presence of inhibitory neurons in the IF networks leads to reduced thermal fluc-
tuations in the associated Ising models, evidenced by a decrease of the maxima near the critical point (Fig. 12).

We have to stress that, as verified in the present case, the potential of the MEM approach is limited by its CPU 
time demand when considering large system sizes , as the computation time complexity increases as ∝ N2 since 
the Ising model is fully-connected and has high heterogeneity in the distributions of the fields hi and interaction 
constants Jij . To circumvent this issue, we considered a partially-connected Ising model with only a subset of the 
total pairs of interaction constants {Jij} obtained considering only the largest correlation functions measured in 
the IF network, allowing to study a system of size N = 180 (Figs. 13, 14, 15, 16 and 17). Similar MEM procedures 
allow the study of much larger sizes, such as the so-called restricted Boltzmann  Machine59 or a random projection 
 model60, but the resulting maximum entropy distributions from these approaches are no longer analogous to that 
of an Ising model, and the thermodynamical interpretation is no longer  applicable35. A very recent  study61 shows 
that it might be possible to consider large networks considering only connections which contain the maximum 
mutual information among all pairs of neurons. As future developments, we remark that the IF model allows 
the investigation of systems off criticality by appropriately tuning the short-term plasticity parameter. The study 
of neuronal systems at and off criticality has recently revealed intriguing behavior typical of thermodynamic 
systems, as the Fluctuation-Dissipation  relations62,63. This approach can then be used to study thermodynamic 
properties of networks in the sub- and supercritical state, brain states associated with pathological  conditions64.

Methods
Integrate‑and‑fire model
The model considers N neurons placed randomly inside a cubic space of side L = 3

√
N/ρ , where ρ = 0.01657 is 

the density of the neurons. Connections are directed and weighted, with dynamic synaptic strengths wij ∈ [0, 1] 
between pre- and post-synaptic neurons i and j. Each neuron has at least one incoming connection, and the 
distribution of out-going degrees kout ∈ [2, 20] is a power law, i.e. P(kout) ∝ k−2

out , following experimental meas-
urements in functional  networks65. The probability that two neurons are connected decays exponentially with 
their euclidean distance r, P(r) ∝ e−r/r0 , where r0 = 5 is a characteristic  length66. Neurons can be excitatory or 
inhibitory, with fraction pin . We implement synaptic plasticity, in which the strengths wij can change dynamically 
with time. We consider both short-term and long-term plasticity (STP and LTP for short, respectively), so we 
separate the synaptic strengths wij(t) = ui(t)gij into the two components ui(t) and gij . STP refers to the modi-
fication of synaptic strengths on a short timescale, of the order of milliseconds, and we denote by ui(t) ∈ [0, 1] 
the normalized amount of neurotransmitters available to neuron i at time t, representing the so-called readily 
releasable pool of neurotransmitter  vesicles67. On the other hand, LTP is a Hebbian-like process which strength-
ens or weakens connections strengths gij ∈ (0, 1] depending on their usage over time, acting on much longer 
timescales, ranging from minutes to hours or even  years68, so we regard this term as constant compared to the 
timescale of the dynamics. Each neuron i is characterized by a membrane potential vi . A neuron i will fire at 

Figure 17.  Thermodynamic functions of partially-connected Ising models associated with an IF model network 
with N = 180 . Average magnetization per spin m (a), susceptibility χ (b) and specific heat Cv (c) as a function 
of the temperature T ∈ [0.1, 3.0] , simulated using the learned parameters shown in Fig. 14 for the three different 
thresholds η = {0.10, 0.15, 0.20} , for a fully-excitatory IF network at criticality of size N = 180 . The black 
symbols show the results for a learned Ising model associated with an IF network of size N = 120 , considering 
the full set {Jij} . As in Figs. 8 and 12, the cloud of random values for T < 1 suggests the presence of a spin-glass 
phase. Results are averaged over Mc = 3 · 106 spin configurations. Error bars are given by the standard error and 
are overall smaller or equal to the symbol size.
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some time t when its potential vi surpasses a threshold vc = 1 . Activity will then propagate to all post-synaptic 
neurons j with incoming connections from i according to the following  equations39:

where + and − stands for excitatory and inhibitory pre-synaptic neuron, respectively, and δu = 0.05 represents 
the fractional amount of neurotransmitter released at each neuronal  firing69. The timestep unit corresponds 
roughly to the joint interval of synaptic and axonal delay, i.e. the time interval between the generation of the 
action potential at the pre-synaptic neuron and the membrane potential change at the post-synaptic one, and is of 
the order of 10  milliseconds70. We set a minimum value vmin = −1 for the membrane potential of each neuron, to 
prevent the possibility of a vi being systematically decreased to overly negative values when pin > 0 . After firing, 
a neuron enters into a refractory period of a single timestep tr = 1 during which it is incapable of receiving or 
eliciting any activity. To keep the activity ongoing, we implement a small external stimulation. Namely, at every 
timestep, even during avalanches, a voltage input δv = 0.1vc is added to a randomly chosen neuron. From Eq. 
(10) we see that the amount of synaptic resources gradually depletes as a neuron fires, eventually rendering it 
incapable of transmitting further signals. In real systems, this is counteracted by a recovery mechanism, where 
the readily releasable pool is slowly recharged over the span of  seconds71. We assume a separation of  timescales72, 
and recharge simultaneously the ui of all neurons by a certain amount δurec only at the end of every avalanche, 
ui(t) → ui(t)+ δurec . By changing the value of δurec one can adjust the dynamical state of the  system39,57. Before 
performing any measurements, we let the dynamics evolve for a certain number of timesteps in order to shape the 
distribution of strengths gij by LTP. We start by setting them uniformly distributed in the interval gij ∈ [0.04, 0.06] . 
According to the rules of Hebbian  plasticity73,74, if some neuron i frequently stimulates another neuron j, then 
the synapse from i to j will be strengthened. In this case, we increase the strength of the synapses gij proportion-
ally to the voltage variation induced in the post-synaptic neuron j due to i as gij(t + 1) = gij(t)+ δgj , where 
δgj = β|vj(t + 1)− vj(t)| and β = 0.04 sets the rate of this adaptation. On the other hand, synapses that are rarely 
active tend to weaken over  time74. Therefore, at the end of each avalanche, we decrease all terms gij by the aver-
age increase in strength per synapse, gij(t + 1) = gij(t)− 1

Ns

∑

δgj where Ns is the number of synapses. In real 
networks, synapses that weaken consistently are eventually pruned. To avoid modifying the scale-free structure 
of the network, We modify the strengths gij either for a fixed number Naval = 104 of avalanches or until a strength 
gij first reaches a minimum value gmin = 10−5 , where we then set that strength to gij = gmin.

Maximum entropy modelling
The binarization of the IF model firing dynamics introduces the notion of the probability PIF(σ ) to observe, 
during a time bin of duration �tb , any of the 2N possible patterns of firing states σ = {σ1, σ2, ..., σN } in a network 
of size N, with each σi ∈ {−1, 1} . We are interested in defining this PIF(σ ) in a way that is consistent with the 
expectation values of the average local activities 〈σi〉 and two-point activities 〈σiσj〉 measured in the IF model 
for a given network. This surmounts to finding a probability distribution P(σ ) that maximizes the  entropy14 
S = −

∑

σ
P(σ ) ln[P(σ )] , where 

∑

σ
 indicates a sum over all possible outcomes of σ , while subject to the con-

straints �σi� =
∑

σ
σiP(σ ) and �σiσj� =

∑

σ
σiσjP(σ ) . Solving this problem using the method of Lagrangian 

 multipliers15 (see Supplementary Information for the derivation) yields the distribution of spin states of a gen-
eralized Ising model at unit  temperature7,

where {hi} and {Jij} are the Lagrangian multipliers, H(σ ) is the Hamiltonian or energy function and Z is the parti-
tion function, whose sum runs over all 2N possible configurations of spin states σ . This prompts us to interpret 
this maximum entropy description as a mapping from the temporal averages of the neuronal network to that of 
a fully-connected spin lattice. Under this conceptual view, hi is analogous to a local external field acting on spin 
i, whereas Jij is an interaction constant between spins i and j. The task is now to find the values of hi and Jij that 
reproduce the measured expectation values from the IF model. This is a particular example of the inverse Ising 
 problem14, also known as Boltzmann Machine (BM)  learning14, which consists in inferring the Hamiltonian of 
a certain complex multi-component system from its observed statistics. In principle, each parameter hi and Jij 
can be determined from the derivative of the logarithm of the partition function (13), �σi� = ∂

∂hi
ln[Z] and 

�σiσj� = ∂
∂Jij

ln[Z] . However, the number of terms in Z grows exponentially with N, as 2N , and an analytical 

(9)vj(t + 1) = vj(t)± vi(t)ui(t)gij ,

(10)ui(t + 1) = ui(t) · (1− δu),

(11)vi(t + 1) = 0,

(12)P(σ ) =
1

Z
e−H(σ ),

(13)Z =
∑

σ

e−H(σ ),

(14)H(σ ) = −
N
∑

i

hiσi −
N
∑

i

N
∑

j<i

Jijσiσj .
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approach becomes intractable when N � 20 . To proceed, notice that we are trying to describe an empirical 
distribution PIF(σ ) , as observed from the measured temporal averages of the IF model, using the analytical 
description P(σ ) , as given by Eq. (12). We want to choose the {hi} and {Jij} that minimize the loss in information 
when using P(σ ) as a proxy for PIF(σ ) . Specifically, this means we want the set of {hi} and {Jij} that minimize the 
so-called Kullback-Leibler  divergence14 between these distributions,

From the minimum condition equations one can show that ∂DKL

∂hi
= 0 =⇒ �σi�(IF) = �σi�(BM) and 

∂DKL

∂Jij
= 0 =⇒ �σiσj�(IF) = �σiσj�(BM) , where �σi�(IF) ≡

∑

σ
σiPIF(σ ) are the empirical averages measured in 

the IF model and �σi�(BM) ≡
∑

σ
σiP(σ ) are the ones estimated from the Ising distribution (12), and analogously 

for the 〈σiσj〉 . Therefore, a suitable method to search for the fields hi and interaction constants Jij of the Hamil-
tonian (14) is the following iterative  scheme7,

where ηh(x) = 2ηJ (x) ∝ x−α are decreasing learning rates, with α = 0.4 for N ≤ 40 , α = 0.6 if 40 < N ≤ 120 , 
and α = 1.0 otherwise. We set a smaller learning rate for the {Jij} since their number ( ∼ N2 ) is much larger when 
compared to the {hi} (N), so we update their values at a slower rate to avoid divergences during the learning 
procedure. At each iteration x, the data sets {�σi�(IF)} and {�σiσj�(IF)} generated by the IF model are compared to 
those estimated by sampling the distribution (12), {�σi�(BM)} and {�σiσj�(BM)} , using the sets of fields {hi(x)} and 
coupling constants {Jij(x)} . We start with hi(x = 1) = �σi�(IF) and Jij(x = 1) = 0 and then iterate Eqs. (16) and 
(17) typically until x = NBM ∼ 60000 . At each iteration, {�σi�(BM)} and {�σiσj�(BM)} are estimated from Monte 
Carlo simulations, using the Metropolis  algorithm55, by averaging over Mc = 3 · 105 spin configurations. We 
disregard the first 150N configurations for systems with N ≤ 120 , or up to 105N2 configurations for the N = 180 
case, in order to reduce correlations with the initial state, and use only every 2N-th configuration for averaging, 
to reduce autocorrelations. At the end of the learning routine, we study the generalized Ising models with the 
set of fitted parameters {hi} and {Jij} by sampling the distribution (12), averaging over an increased amount of 
spin configurations Mc = 3 · 106 for systems with N ≤ 120 , or up to Mc = 3 · 107 configurations for the system 
with N = 180 , to reduce error bars.

Data availibility
The datasets generated and analyzed during the current study are available from the corresponding author on 
reasonable request.
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