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Abstract Global atmospheric models rely on parameterizations to capture the effects of gravity waves
(GWs) on middle atmosphere circulation. As they propagate upwards from the troposphere, the momentum
fluxes associated with these waves represent a crucial yet insufficiently constrained component. The present
study employs three tree‐based ensemble machine learning (ML) techniques to probe the relationship between
large‐scale flow and small‐scale GWs within the tropical lower stratosphere. The measurements collected by
eight superpressure balloons from the Strateole 2 campaign, comprising a cumulative observation period of
680 days, provide valuable estimates of the gravity wave momentum fluxes (GWMFs). Multiple explanatory
variables, including total precipitation, wind, and temperature, were interpolated from the ERA5 reanalysis at
each balloon's location. The ML methods are trained on data from seven balloons and subsequently utilized to
estimate reference GWMFs of the remaining balloon. We observed that parts of the GW signal are successfully
reconstructed, with correlations typically around 0.54 and exceeding 0.70 for certain balloons. The models show
significantly different performances from one balloon to another, whereas they show rather comparable
performances for any given balloon. In other words, limitations from training data are a stronger constraint than
the choice of the ML method. The most informative inputs generally include precipitation and winds near the
balloons' level. However, different models highlight different informative variables, making physical
interpretation uncertain. This study also discusses potential limitations, including the intermittent nature of
GWMFs and data scarcity, providing insights into the challenges and opportunities for advancing our
understanding of these atmospheric phenomena.

Plain Language Summary Part of the atmosphere's large‐scale circulation results from motions that
are not resolved, or partly resolved, by weather or climate models. These include internal gravity waves, with
horizontal scales from a few to hundreds of kilometers. The main sources occur in the troposphere, such as flow
over mountains and cloud development. Their three‐dimensional propagation induces major aggregated impacts
in the stratosphere and mesosphere, forcing key aspects of the circulation. This forcing is accounted for in
climate models by “parameterizations,” that mimics the effect of the unresolved waves based on the large‐scale,
resolved flow. These parameterizations necessarily retain crude approximations and introduce significant
uncertainty in the models. For gravity waves (GWs), sources are a major uncertainty. This study makes use of
the high‐altitude balloon campaign Strateole 2 (October 2019–February 2020). Eight balloons circled Earth at
heights around 18–20 km, providing unique observations of the GWs. These are used as targets for machine
learning (ML) methods that take as inputs the information from outputs of a numerical weather prediction model
describing the large‐scale flow. The successes and difficulties of ML provide insights which can guide
improvements of parameterizations, such as the most informative large‐scale variables for estimating the
unresolved waves.

1. Introduction
Climate models and Numerical Weather Prediction models resolve a widening range of atmospheric processes as
computing power increases, enabling finer spatial resolution. Subgrid‐scale processes persist nonetheless, and
efforts to improve and constrain them better are essential. Internal gravity waves constitute one of these subgrid‐
scale processes, with important implications for the circulation and variability of the middle atmosphere (Fritts &
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Alexander, 2003). Motivations for improved modeling of the stratosphere includes climate (e.g., Kremser
et al., 2016; Solomon et al., 2010) but also predictability on shorter time scales (Butchart, 2022; Vitart &
Robertson, 2018).

Gravity waves occur on scales ranging from a few to several hundreds of kilometers. An important effect stems
from their vertical propagation: gravity waves are responsible for vertical transfers of momentum from lower
layers (troposphere: denser and with more gravity wave sources) to upper layers (stratosphere and beyond), where
they constitute an essential driver of the overall circulation (Fritts & Alexander, 2003). A significant part of the
spectrum of gravity waves has been and remains unresolved in global models, requiring these effects to be
represented by parameterizations (Kim et al., 2003). Models display sensitivity to these, calling for coordinated
efforts to better constrain these parameterizations from both observations and high‐resolution modeling (Alex-
ander et al., 2010).

A global comparison of observed, resolved and parameterized gravity wave momentum fluxes (GWMFs) was
carried out by Geller et al. (2013), highlighting significant discrepancies. Although GWs parameterizations are
now used routinely in climate models, their validation against in situ observations remains a challenge. There
exist global observations derived from satellite observations (e.g., Ern et al., 2018), but there are limitations on the
wavelengths that can be observed, and significant assumptions are needed to indirectly deduce important
quantities like the momentum fluxes from temperature fluctuations, using polarization relations (Alexander
et al., 2010; Ern et al., 2014). For these reasons superpressure balloons have been highlighted as a valuable and
accurate source of information on GWMF (Geller et al., 2013). A downside of superpressure balloon observations
is their very sparse sampling of the lower stratosphere: despite a broad coverage of the Southern Ocean (Jew-
toukoff et al., 2015) and of the equatorial belt (Corcos et al., 2021), each balloon flight provides only local in-
formation: one time series along its trajectory.

There are fundamental difficulties in validating parameterizations of gravity waves: the purpose of a parame-
terization is to provide the forcing to the large‐scale which is missing because of unresolved processes. Ideally,
one would wish to know what this forcing should be and validate this outcome of parameterizations. Unfortu-
nately, this forcing cannot be directly observed. Validating parameterizations by the realism of the climatology
and variability of the atmospheric circulation in global models constitutes a first step, but is not a severe test and
allows for compensating errors between parameterized processes (Plougonven et al., 2020). More stringent tests
involve comparisons to observations (de la Camara et al., 2014; Trinh et al., 2016). Recently, direct comparisons
between observed and parameterized gravity waves have been carried out on the scale of daily variations rather
than at the level of general statistical characteristics (Lott et al., 2023). The large‐scale environment was described
using the ERA5 reanalyzes (Hersbach et al., 2020), providing the background fields necessary to emulate the
parameterization of convectively generated waves of Lott and Guez (2013), which is the parameterization used in
the climate model of IPSL (Institut Pierre Simon Laplace, Boucher et al. (2020)). The comparison was quite
encouraging, with the GWMFs having the right order of magnitude, and an appropriate intermittency.

An essential aspect, and fundamental issue, to keep in mind when comparing observed and modeled GWMFs is
their strong intermittency: in time series of GWMF, one commonly finds short, intense peaks corresponding to a
strong gravity wave event, surrounded by considerably weaker values. This has been highlighted in the long “tail”
of the Probability Density Function (PDF) of the GWMF (Alexander et al., 2010; Hertzog et al., 2012), and
quantified in simulations and observations (Ern et al., 2022; Plougonven et al., 2013; Wright et al., 2013). This
intermittency further contributes to making the parameterization of gravity waves a challenging task.

For the improvement of parameterizations in general (not only those of gravity waves), machine learning (ML)
methods provide an array of possibilities. These have been explored in different directions:

• Machine learning can enable the emulation of parameterizations, leading to significant computational time
savings (Chantry et al., 2021; de Burgh‐Day & Leeuwenburg, 2023).

• Machine learning can help to capture the relationship between large‐scale fields and the unresolved process, as
illustrated in the case of convection by Gentine et al. (2018). For exploration, the data set used as the truth
came from a higher‐resolution simulation, not from observations; obtaining observationally based knowledge
of the effects to be parameterized remains a major challenge.
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• Machine learning can be used to explore the relationship between the large‐scale flow and the resulting small‐
scale waves, as has been done for orographic waves over Northern Japan (Matsuoka et al., 2020). Again, both
the target and the inputs are modeled fields, but at different resolutions.

• As a precursor to a data‐driven parameterization that would have learned from observations, a ML‐based
emulator of a parameterization for gravity waves has been used in a climate model, including under
climate change conditions (Espinosa et al., 2022).

The purpose and scope of the present study is to probe the relationship between the large‐scale flow and gravity
waves in the Tropics, using ML approaches to address fundamental issues: what fraction of the GWMF can be
determined from knowledge of the large‐scale flow, and what fraction remains as stochastic? Which large‐scale
variables are most informative, and do they match with our common understanding of underlying gravity wave
parameterizations? The present study belongs to the third category outlined above for the uses of ML (the purpose
is not to produce a new parameterization, nor to emulate an existing one). With similar goals, Amiramjadi
et al. (2023) used ML methods to probe the relationship between the large‐scale flow and gravity waves, for non‐
orographic waves in the mid‐latitudes and using waves resolved in a reanalysis as a target. In contrast, the present
study aims at observedmomentum fluxes in the Tropics, where the Strateole 2 campaigns provide a wealth of new
observations (Corcos et al., 2021; Haase et al., 2018).

The paper is organized as follows: Section 2 provides an overview of the data and ML algorithms used in this
study. Section 3 presents the performances of ML methods in reconstructing the reference GMWFs. Section 4
discusses the factors that influence the performances and addresses the limitations of ML methods. Finally,
Section 5 concludes the study with key takeaways and future directions.

2. Data and Methodology
2.1. Data

We use in situ observations collected from eight superpressure balloon flights (altitude between 18.5 and 20 km)
during the Strateole‐2 mission from November 2019 to February 2020 (Corcos et al., 2021). As in Corcos
et al. (2021), momentum fluxes (MFs) were computed from raw balloon measurements following the procedure
described in Vincent and Hertzog (2014). Essentially, the pressure and horizontal wind time series are first
projected in the time‐frequency domain thanks to a continuous wavelet transform (Torrence & Compo, 1998).
The pressure observations inform on the vertical displacements of the balloon, which are related to those of air
parcels, assuming that the balloon behaves as a perfect isopycnic tracer. The time‐frequencyMF decomposition is
then derived from the wavelet cross‐spectrum of the horizontal winds and air‐parcel vertical displacements.
Segments polluted by non‐geophysical artifacts (e.g., depressurization events) are discarded.

For our analysis, and following Corcos et al. (2021), we considered gravity wave MFs integrated over two
frequency bands: a high‐frequency (HF) band (i.e., short periods, ranging from 15 min to 1 hr) and wide‐
frequency (WF) band (i.e., long periods, ranging from 15 min to 1 day). For the sake of readability, in all that
follows we focus on the HF band, unless explicitly stated. It is assumed that the observed waves propagate
upwards, which is a valid assumption for the majority of waves. Additionally, we also differentiate between
eastward‐propagating waves that yield positive MF in the zonal direction (eastward) and westward‐propagating
waves that produce negative MF (westward). We use these MFs as a reference for the true target MFs. Then, we
pair them with large‐scale flow input information from ERA5, such as wind velocity (u and v), temperature
(temp), total precipitation (tp) and logarithm of surface pressure (lnsp). These fields are retrieved for each balloon,
from fields at a resolution of 1° × 1°, at the grid point closest to the balloon position. Additionally, the same input
variables have been retrieved in the vicinity of a 5 by 5 horizontal square centered on the grid point closest to the
balloon; in the present study, only total precipitation in this extended area around the balloon will be used. In the
vertical, the ECMWF model comprises a total of 137 levels. Four levels are retained in the present study, to
succinctly describe the vertical wind profile from the surface to balloon flight level (see Table 1).

The inputs and the targets are interpolated and averaged into 1‐hr time resolution. The three ML models are
trained using 3‐hr time averaging data, and their performance will be evaluated based on daily averaging time
resolution, as presented in Lott et al. (2023). Table 1 presents the finalized large‐scale flow variables utilized for
training ML models.
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2.2. Methodology

In this study, three tree‐based ensemble ML methods are considered: random forest (RF) introduced in Brei-
man (2001), extremely randomized trees also known as extra‐trees (ET) by Geurts et al. (2006), and Adaptive
Boosting or Adaboost regressors by Freund and Schapire (1997). These algorithms construct multiple decision
trees, and the final prediction is determined by aggregating the individual decision tree predictions.

It is worth mentioning that alternative approaches, such as deep neural networks (LeCun et al., 2015), along with
various network architectures like convolutional neural networks (Krizhevsky et al., 2012) and recurrent neural
networks (Hochreiter & Schmidhuber, 1997), were also carried out in the numerical experiment. However, the
performances of these methods are not comparable to the presented tree‐based algorithms, as these models
typically require a large amount of observations to achieve comparable results. The limitations and concerns
regarding the models, the large‐scale input variables, the target observations, and the nature of the relation be-
tween the large‐scale and small‐scale flow will be discussed later in Section 4.3.

2.2.1. Decision Tree

The decision tree algorithm (Breiman et al., 1984) is the foundational building block of the primary ML methods
used for our predictions. They are widely used for nonlinear prediction problems due to their efficiency and
interpretability. To construct a decision tree, the training data is recursively partitioned into small hyperrectangular
regions of the formsR1= {X≤α} andR2= {X>α} for someERA5 input variableX (wind velocity or precipitation,
for instance) and threshold α. At each step, we recursively split the input space into hyperrectangular regions that
are as pure as possible. Purity refers to the homogeneity of the training target y (GWMF) within each region, and
Total Within Sum of Squares (TWSS) is utilized as the impurity measure in this study. Specifically, a split is
performed at any input variable X at threshold α if it minimizes the following TWSS criterion:

∑
y of R1

( y − μ1)
2
+ ∑

y of R2

( y − μ2)
2,

where

• R1 and R2 are the left and right regions of the split
• μ1 and μ2 are the average targets within region R1 and R2 respectively.

Any new observation must belong to one of these regions, and its prediction is determined by averaging the target
values of all the neighboring observations within that block. Constructing an optimal tree is generally challenging,
and the tree's structure, such as its depth and the minimum size of regions allowed to split, are hyperparameters
that need to be optimized. Figure 1 below provides an example of a simple decision tree trained on 100 obser-
vations of precipitation and zonal wind velocity to predict absolute GWMF.

2.2.2. Random Forest

Random forest (RF) is a powerful ensemble learning method that aims at minimizing variance across a collection
of decision trees by averaging their predictions (Breiman, 2001). The term “random” signifies the deliberate
characteristic of constructing individual trees using different bootstrap samples (sampling observations with

Table 1
Large‐Scale Input Data for Training ML Models

Name Notation Description

Zonal, meridional wind velocity (m s− 1) and
temperature (K)

uj, vj and tempj With vertical level j ∈ {0, 2, 9, 19} (km), where 0 is the surface and 19 is the balloon's
level

Total precipitation (m) tp At center of horizontal grid points

Mean & standard deviation of precipitation (m) tpmean and tpsd Over horizontal grid points

Solar zenith angle (°) sza At the location of the balloon

Log surface pressure (log(hPa)) lnsp At the surface level

Note. Note that most of these variables are interpolated from ERA5 reanalysis data, except for the Solar zenith angle, which is obtained directly from balloon
observations.

Journal of Geophysical Research: Atmospheres 10.1029/2023JD040281
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replacement) and exploring only a small, randomly selected, subset of the complete input features. This approach
effectively decorrelates the individual trees, resulting in a reduction of prediction variance. Additionally, the
construction of each individual tree using only a small subset of input features enables random forest to handle
high‐dimensional data effectively. The key hyperparameters in a random forest are the number of trees, tree
complexity, and the number of randomly selected features used in building the individual trees. Fine‐tuning these
hyperparameters is essential to optimize the performance of the method.

2.2.3. Extremely Randomized Trees

Extremely randomized trees or Extra‐trees (ET) operates similarly to RF approach, with the distinction that each
tree is constructed using the complete training data, and each split is performed at random values using a random
subset of input features (Geurts et al., 2006). This results in a high degree of independence among the trees and
can occasionally yield remarkable results compared to the random forest method.

2.2.4. Adaptive Boosting

Adaptive boosting (Adaboost) combines weak learners to create a strong predictive model (Freund & Scha-
pire, 1997). Weak learners refer to predictive models that perform slightly better than random guesses, and simple
decision trees with only a few splits (stumps) are used as weak learners in this study. During each iteration,
Adaboost combines an individual stump by using a weighted sum, where the weight assigned to the current stump
is determined based on its overall performance in predicting the target variable. Additionally, the weights
associated with the individual training data points are adjusted manually based on their prediction accuracy,
giving more attention or weight to points with poor predictions in the next iteration. Adaboost is well known for
its ability to mitigate overfitting (Rätsch et al., 2001) and has achieved significant success in various prediction
challenges (see e.g., Bossan et al., 2015; ZEWEICHU, 2019).

2.2.5. K‐Fold Cross‐Validation

K‐fold cross‐validation is the most commonly used model selection technique in ML. It involves dividing the
training data intoK parts or folds, namely F1,…, FK, then a model is trained onK − 1 folds, and it is tested on the
remaining one. This process is repeated K times and the final performance is the average performance over all the
K different testing folds. In this study, K‐fold cross‐validation is used to prevent overfitting and to select the best
possible hyperparameters of each ensemble method. More precisely, if fθ is the considered method (random
forest, for example) with a hyperparameter θ ∈ Θ, then the optimal hyperparameter θ* is defined by,

θ∗ = argmin
θ∈Θ

1
K
∑
K

k=1
∑

(xi,yi)∈Fk

( fθ (xi) − yi)
2
. (1)

Figure 1. An example of a simple decision tree built using precipitation and wind velocity to predict absolute gravity wave
momentum flux (GWMF). The left side is the partition cell representation of the tree on the right side. The data points are
both colored and sized according to their corresponding GWMF values.
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In our study, θ consists of the depth of the decision trees (maximum number of splits performed from the root node
to the leaves), the size of random subsets of the ERA5 input features to be considered when building individual
trees, and the number of decision trees used in each ensemble learning method. All these keys are tuned using 10‐
fold cross‐validation.

2.3. Training

We first train ML models with an extensive set of ERA5 inputs. Subsequently, we refine these inputs to a more
manageable subset (see Table 1 below) using importance feature scores, which will be described in Section 3.
Moreover, in order to reduce the influence of extreme values on the target and increase its normality, the Box‐Cox
transformation (Box & Cox, 1964) is performed on the GWMF y to obtain the transformed target ỹ:

ỹ =
yλ − 1
λ

.

In the experiment, the exponent λ = 0.6 is chosen based on the performance of models trained on the corre-
sponding transformed target data. The predictions given by ML models are then reverted using the inverse
transformation:

y = (1 + λỹ)1/λ.

Moreover, to predict any GWMFs (absolute, eastward, or westward GWMFs of HF or WF case) of any given
balloon, the ML models are trained using data from the seven other balloons. The models are fine‐tuned using a
10‐fold cross‐validation method to optimize their performances.

Finally, the resolutions used for the data (see Section 2.1) reflect the phenomena we aim to estimate. From large‐
scale information as described from reanalyzes at a resolution of 1° × 1° and hourly in time, it is only reasonable
to estimate GWMFs averaged over a comparable timescale (1 hr). As the balloons drift at velocities typically 10 to
20 m s− 1, this corresponds to sampling over a spatial area of several tens of kilometers. The final choice for the
specific setting used has been also guided by the motivation to make comparison with the results of Lott
et al. (2023) possible.

The targeted gravity waves, as observed by the balloons, cover the whole range of intrinsic frequencies. The high
frequency band (HF, see Section 2.1) may a priori be more difficult to predict from ML because it is expected to
be more intermittent (Corcos et al., 2021), so that sampling will be a more severe issue than for the WF band. On
the other hand, higher frequency waves propagate more vertically and are shorter‐lived, both factors contributing
to a stronger causal relationship between local conditions below the balloons and observed gravity waves at
balloon level. As it has turned out that this second factor is more important, we focus hereafter on HF waves as the
target, while the WF cases are detailed in Supporting Information S1.

2.4. Evaluation Metric

An important aspect in any comparison of models to observations is the choice of a metric to evaluate the per-
formance of the models. We explain here why, in line with Lott et al. (2023), we use correlation between modeled
and observed values as our metric. The current study is in line with studies that have compared parameterized and
observed gravity waves (e.g., Geller et al., 2013). In such comparisons, the first aim is naturally to compare mean
momentum fluxes, yet over the past decade the importance of having a realistic variability has been emphasized
(Alexander et al., 2010). This has highlighted the notion of intermittency (Hertzog et al., 2012) and quantification
of the distribution of momentum fluxes when comparing parameterizations to observations (Bushell et al., 2015;
de la Camara et al., 2014). These comparisons, however, concern the overall statistics, not a direct comparison of
observed and parameterized variations on a case‐to‐case basis. Obtaining an appropriate observational data set
and gathering the corresponding large‐scale variables for such a case‐to‐case comparison has required significant
work and has been achieved for the comparison of Lott et al. (2023). These data sets provide a unique opportunity
to investigate the co‐variability of observed GWMF and estimations from the large‐scale flow, whether based on
parameterizations (Lott et al., 2023) or on ML techniques presented in this study. This is why we here focus on
this co‐variability, quantified by the correlation. It is expected that the averaging effect of tree‐based algorithms
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may lead to underestimation of the target, especially when dealing with rare extreme values such as GWMFs.
Obtaining appropriate intermittency of the reconstructed GWMFs will require further efforts, and directions for
these efforts are discussed in the perspectives (Section 5).

3. Results
This section reports the correlations of ML methods in reconstructing various types of observed GWMFs. The
numerical study is carried out using sklearn.ensemble module in Python (Pedregosa et al., 2011). In
general, the three ML models exhibit very comparable performances on any given balloon. In contrast, the
performance of the ML models varies significantly from one balloon to another. At their best, ML models can
achieve an encouraging level of correlation larger than 0.7. The average performance over all balloons and data
exceeds 0.5. The worst performance is found for westward GWMF for a specific balloon, with correlation down
to 0.2. Overall, the performances of MLmodels are sensitive to the choice of balloons and the types of GWs being
considered (eastward, westward or absolute GWMFs). The numerical results for HF waves are presented in the
following subsections, while the WF cases are presented in Supporting Information S1.

3.1. Overall Performances

Three examples of observed and predicted GWMFs of the HF case are presented in Figure 2 below. Each subplot
displays the eastward component of the GWMFs in the positive part and the westward ones in the negative part. It
can be observed that the models effectively capture the fluctuations of the observed momentum fluxes, partic-
ularly on balloon 2. However, the models struggle to fully estimate the amplitudes of high‐peak events, especially
for balloons 3 and 7. Overall, the performances of all MLmodels are quite similar; however, there are cases where
one outperforms the others. For example, Adaboost appears to do a slightly better job on balloon 2 than the other
two models in capturing the amplitudes of the high‐peak events. It is worth noting that balloon 2 presents overall
the best performance for the ML models, balloon 7 illustrates a typical average case, and balloon 3 is the most
challenging one to predict: this is suggested visually in Figure 2, and is confirmed quantitatively in Table 2.

Figure 2. Observed and predicted time series of high‐frequency east and westward GWMFs of the best, worst and medium cases: balloon 2, 3, and 7, respectively. The x‐
axis label “Day” indicates the number of days since the individual balloon was launched, with 0 corresponding to the moment of launch.
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A feature of the reconstructed GWMF is that the peak values are generally underestimated, as can be seen even for
balloon 2 in Figure 2. This is partly expected given that tree‐based models involve averaging from numerous
decision trees, some of which are insufficiently informed to capture extreme occurrences of GWMFs. To
document the relationship between the reconstructed and observed GWMFs, scatterplots are displayed in
Figure 3. These illustrate how the reconstruction captures well the variations of GWMFs, especially for rather
weak variations. In contrast, for occurrences of larger MFs, the observed values cover a range of values that are
not captured by theML approaches. The scatterplots illustrate that those occurrences are rare, and the training data
certainly constitutes a limiting factor. It is not clear that it may be possible to capture, in a deterministic way, these
extremes. It is worth noting that ML approaches do generally capture the peaks of the GWMF when they occur,
but the amplitudes mostly remain underestimated.

Figure 4 presents boxplots of Pearson's correlation coefficients between predicted and true GWMFs of the HF
case. First, choosing the best model is challenging due to the variability in the boxplot positions, which depends
on the choices of balloons and GWMF types. For instance, on balloon 2, the correlation boxplot of Adaboost is
higher than the other two methods for the absolute and westward cases but lower than Random Forest for the
eastward case. However, these differences are generally insignificant compared to the variations observed be-
tween different balloons. Second, ML models demonstrate strong performance on balloons 2, 6, and 8 across all
types of momentum fluxes, and they also excel in predicting the eastward momentum flux of balloon 1.
Nevertheless, balloons 3, 4, 5, and 7 pose greater challenges, with the most difficult being the westward
component of GWMF on balloon 3. Finally, the ML models generally outperform the gravity wave drag scheme

Table 2
Average Correlation Coefficients Between Predicted and Observed High‐Frequency GWMFs in 24 hr Time Resolution

Flight Alt Start End
Duration/ Absolute Eastward Westward

DOF RF ET AB RF ET AB RF ET AB

01_STR1 20.7 12/11/19 28/02/20 107/53 0.56 0.57 0.58 0.67 0.69 0.67 0.38 0.37 0.43

02_STR2 20.2 11/11/19 23/02/20 103/51 0.70 0.67 0.74 0.67 0.62 0.65 0.60 0.63 0.70

03_TTL3 19.0 18/11/19 28/02/20 101/33 0.45 0.48 0.49 0.41 0.49 0.43 0.21 0.23 0.18

04_TTL1 18.8 27/11/19 02/02/20 67/22 0.44 0.43 0.47 0.47 0.48 0.44 0.35 0.33 0.37

05_TTL2 18.9 05/12/19 23/02/20 79/19 0.51 0.56 0.55 0.39 0.48 0.35 0.35 0.40 0.50

06_STR1 20.5 06/12/19 01/02/20 57/10 0.72 0.74 0.75 0.64 0.65 0.70 0.68 0.72 0.57

07_STR2 20.2 06/12/19 28/02/20 83/16 0.51 0.53 0.48 0.46 0.49 0.42 0.44 0.45 0.32

08_STR2 20.2 07/12/19 22/02/20 77/12 0.74 0.76 0.72 0.71 0.71 0.68 0.66 0.66 0.64

Note. In each case, by using decorrelated time as the degree of freedom (DOF), t‐test statistics can provide the significance of
each correlation with the convention: italic boldface = 99%, boldface = 95%, italic = 90%, and normal font = below 90%
significant. For any given type of GWMF, the underlined correlations indicate the best performance of ML method on that
target.

Figure 3. Scatterplots of predictions against observed (true) gravity wave momentum flux corresponding to the time series of Figure 2. Only the predictions of Adaboost
are presented for balloon 2, 3 and 7 (from left to right). The lower groups represent the westward fluxes, while the upper groups denote the eastward ones. The red line
serves as the reference 1:1 line.
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of the IPSL model (Lott et al., 2023), except for balloon 3 (east and westward) and balloon 4. Moreover, Table 2
provides the statistical significance of the correlations presented in Figure 4.

3.2. Which Large‐Scale Inputs Are Informative for ML Models?

The tree‐based ensembleMLmodels employed in this study are not only proficient in predicting GWMFs but also
offer valuable insights into the importance of large‐scale input information during their training process. Each
method exploits the feature importance (decrement of impurity measure at each split) of its individual decision
trees for determining the overall feature importance, resulting in a ranking of input features from most to least
important. Figure 5 showcases the ranking of the top 5 input features for all ML methods and GWMF types of the
HF case.

Generally, the high‐ranking inputs consist of variables that describe precipitation and wind velocity at and below
the balloon's level. It is important to note that different models may not rank input features in the same way for a
given target (as seen along the rows), due to the variations in the way individual trees are grown. However, the
three models concur on the strongly impactful input features; for example, wind velocity at the balloon's level
(u19) ranked first in the eastward case (second row) for all models. This suggests that the wind velocity sur-
rounding the balloons is the most informative large‐scale variable for predicting eastward GWMFs. Furthermore,
the few most significant inputs show a similar preference in both absolute and eastward GWMFs within the same
model, as demonstrated in the columns of the first and second rows. For instance, standard deviation and average
total precipitation (tp_sd and tp_mean) are identified as impactful inputs in random forests, while surface zonal
wind velocity (u0) is deemed the most important one in extra trees.

Figure 4. The boxplots display the correlations between predicted and observed high‐frequency gravity wave momentum
fluxes obtained from 50 runs of machine learning methods as shown in Table 2. For each balloon, moving from left to right,
the three boxplots correspond to the Random Forest, Extra Trees, and AdaBoost methods, respectively. The dashed
horizontal red lines indicate the performance of the parameterization of the IPSL model (Lott et al., 2023).
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4. Discussion
While the results of the machine‐learning models are generally encouraging, deficiencies and cases with poor
performances were also found. The main motivation for this study being to probe the relationship between the
large‐scale and the unresolved process, these somewhat negative results are also of interest and can provide useful
insights. Possible explanations for the main difficulties encountered are discussed below.

4.1. Why Are Westward GWMFs More Challenging?

Figure 4 displays the performances of the ML models and those of the parameterization used in the IPSL climate
model. Balloon 4 constitutes an exception, for which the parameterization systematically performs better than the
ML methods. Leaving balloon 4 aside, ML approaches unambiguously outperform the parameterization for the
absolute momentum fluxes. For the eastward momentum fluxes, ML approaches generally perform better or are
similar to the parameterization. In contrast, both ML approaches and the parameterization have poorer perfor-
mances for westward MF, and with greater variability for both: for five balloons, ML outperforms clearly the
parameterization, whereas for two balloons (including balloon 4) the parameterization clearly outperforms the
ML. The present section discusses possible reasons for this difficulty in reproducing the westward momentum
fluxes.

Figure 6 displays the Probability Density Function of winds for three balloons as blue curves: balloon 2 has flown
in winds that include a majority of westward, strong winds. Like balloon 1, it traveled near 10°S in easterly flow
for a significant portion of its flight. In contrast, balloons 3 and 7 have flown in weaker winds, with a mild
dominance of westerly winds. Also plotted in Figure 6 are conditional PDFs of the zonal winds, conditioned on

Figure 5. The boxplots show the five most important features given by different machine learning models (by column) on different types of targets (by row). Each
boxplot is obtained from the same 50 simulations as displayed in Figure 4.
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the intensity of the absolute GWMF. The purpose is to detect if strong values of GWMF were associated to
specific wind conditions. For balloon 2, strong GWMF values were found mostly for moderate to strong easterly
winds, and this distribution is insensitive to the quantile chosen for the GWMF (90th, 95th or 99th percentile). For
balloon 7, the distribution is somewhat sensitive to the quantile chosen. Finally, for balloon 3, the conditional
distribution of zonal wind dramatically changes when it is restricted to the 99th percentile. This detects a
particularly intermittent time series, with variability dominated by one extreme event, as seen from Figure 2.
These findings contribute to explaining the poor performances for balloon 3: the variability of GWMF was
dominated there by one (or very few) extreme events, occurring in a specific condition with very weak winds
(close to zero, less than 5 m s− 1). In contrast, the good performances for balloon 2 occur in a case with less
intermittency, for which large GWMF are found in strong (easterly) winds.

From Table 2, Figure 4 and the trajectories of the balloons (Corcos et al., 2021), it appears that drifting with
easterly winds may constitute a favorable factor (balloon 2), but neither a sufficient one (the correlation for
westward momentum fluxes for balloon 1, which has a similar trajectory, is moderate, 0.43 at most) nor a
necessary one: balloons 6 and 8 generally drift eastward, but good performances are found for the ML recon-
struction of the westward MF (0.66 and 0.72 respectively).

Another aspect that influences the performances is the geographical location, and more specifically the latitude of
the balloons. Figure 7 displays the PDF of latitude for the eight balloons, distinguishing those for which the ML
reconstruction of westward MF is satisfactory (balloons 1, 2, 6 and 8, full lines) from those for which it remains
challenging (balloons 3, 4, 5 and 7). Here again, one does not isolate a necessary condition, but the balloons for
which reconstruction remains challenging are those that remain closest to the equator. This is consistent with the
general expectation that dynamics is more complicated near the Equator, although it is not completely clear why
this should matter for a small‐scale process such as convectively generated gravity waves. It may be that it is not
the dynamics itself that is intrinsically more difficult to capture at the Equator: it may be the input variables that

Figure 6. Conditional densities of zonal wind given different values of high‐frequency westward gravity wave momentum
fluxes. Here, q(0.9), q(0.95) and q(0.99) are the 90%, 95%, and 99% quantiles of the absolute value of high‐frequency
westward GWMFs, respectively.
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are poorer, less accurate, very close to the Equator. It is known indeed that significant errors, in particular in the
wind, are present in the reanalyzes very near the Equator (Baker et al., 2014; Ern et al., 2023; Podglajen
et al., 2014) and the errors are enhanced within a few degrees of the Equator (roughly between 8°S and 8°N).

4.2. Why Are Some Balloons Easier to Predict Than Others?

Figure 7 indicates that the predictability of the observed GWMFs is influenced by the balloons' position, spe-
cifically, their distances from the equator. Balloons that traveled farther from the equator, primarily south (except
for balloon 6, which also explored farther to the north), were found to be easier to predict. This tendency is
observed for balloons 1, 2, 6, and 8 which are the well‐predicted balloons. In contrast, the challenging balloons
spent most of their time flying within a few degrees of the equator, where the atmospheric conditions are not well
described by ERA5 data.

4.3. Exploring Potential Reasons for Unsatisfactory Cases

Several factors are expected to limit the ability to estimate the observed GWMFs from inputs describing the large‐
scale flow:

A. Part of the relationship between the large‐scale flow and a subgrid‐scale process such as gravity waves is
non‐deterministic, or stochastic: for given values of the large‐scale fields, a range of different realizations of
the subgrid‐scale process is possible. It depends on the process: orographic gravity waves are likely more
predictable than convective processes for instance.

B1. The estimate of GWMFs from superpressure balloons is very local and samples only along its trajectory. This
is only partly mitigated by the hourly averaging. The GWMFs time series certainly remain sensitive to the
specific location of the balloon. At present, it is difficult to estimate this sensitivity. Investigations with
virtual balloons in high‐resolution simulations shall be informative on this issue.

B2. A second concern regarding the target used for the ML is the observational error present in the estimates of
the GWMFs from balloon measurements. These estimates are regarded as accurate because several variables
are measured simultaneously and because of the quasi‐Lagrangian nature of the measurements (Geller
et al., 2013; Vincent & Hertzog, 2014). There remains nonetheless observational error.

Figure 7. The trajectories of the balloons during the whole flight (a), and their latitude probability density function (b) and (c). Dashed lines correspond to balloons that
pose challenges in prediction.

Journal of Geophysical Research: Atmospheres 10.1029/2023JD040281

HAS ET AL. 12 of 18

 21698996, 2024, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JD

040281 by U
niversité Paris D

escartes, W
iley O

nline L
ibrary on [24/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



C1. Concerns are also present for the input variables, and in particular it is known that the description of the
equatorial dynamics is challenging, with significant errors remaining present in the reanalysis especially for
wind (Podglajen et al., 2014).

C2. Another concern regarding input variables is that we may have omitted variables that could have been
informative.

In our study, we mitigated the concern of omitting informative variables (C2.) by initially training ML models on
a large set of ERA5 inputs, then selectively reducing them to a reasonably small subset, as described in Sec-
tion 2.1. This approach ensures that essential ERA5 inputs are not inadvertently omitted. Furthermore, fine‐tuning
the hyperparameters of the models enhances their predictive capacity. Regarding the concern of large‐scale
variables (C1.), a sensitivity test to the error of ERA5's wind is described at the end of Section 5 (Key messages).

In addition, we observe that all the balloons often flew over many convective processes, and the high‐peak events
often correspond to deep convective systems, as illustrated for selected cases in Figure 8 below. On 12 January
2020, balloon 2 was flying in an area of convection (upper panels (a1) and (a2)), which is likely responsible for the
highest peaks in its GWMF time series. Interestingly, for balloon 2, almost all events correspond very well with
precipitation as described by ERA5 (first column of Figure 9). On the contrary, there is only one big event that
happened for balloon 3 around 29 January 2020 (lower left panel (b)). However, the ML models failed to capture

Figure 8. Brightness temperature from NOAA/NCEP GPM_MERGIR product (Janowiak, 2017), positions, and the corresponding observed gravity wave momentum
fluxes at the high‐peak events of balloon 2 (top), balloon 3 (lower left) and balloon 7 (lower right).
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it, as it appears to be absent from the ERA5 input variables (not reflected in precipitation nor winds as shown in
the second column of Figure 9). This is also true for other challenging balloons, such as the 4th and 5th. Regarding
balloon 7, the large‐scale flow variables provide partial information for the high‐peak events, resulting in partial
success in the model's predictions.

5. Conclusion and Perspectives
5.1. Key Messages

The relationship between the large‐scale atmospheric flow and gravity waves in the lower stratosphere has been
investigated using ML approaches. This relationship is accounted for in global models through parameteriza-
tions. ML approaches allow us to revisit these in several ways, notably investigating how much of the subgrid‐
scale signal may be estimated deterministically, and which are the key variables for that purpose.

Estimates from superpressure balloon measurements were chosen as the target observations for GWMF. The first
campaign of the Strateole 2 project (Haase et al., 2018) consisted of eight balloons flying an average of about
85 days each around the globe in the equatorial band. The quasi‐Lagrangian nature of the balloons allows an
accurate estimate of GWMFs (Geller et al., 2013), the latter being a key quantity for parameterizations (Alexander
et al., 2010). Analysis of the GWMF estimated from measurements in this first campaign has highlighted and
confirmed convection as the main source of gravity waves in this region, especially for waves with high fre-
quencies (periods shorter than 1 hr); see Corcos et al. (2021).

The description of the large‐scale flow environment was provided from the ERA5 reanalysis, along with vertical
profiles co‐located with each balloon at each time. These variables included wind, pressure, temperature, and
precipitation. The latter being a noisy and uncertain field, values of total precipitation were retrieved in a
500 × 500 km2 area around each balloon location, and was generally described by the mean and standard de-
viation over this area.

TheMLmodels used are tree‐based methods: random forests, extremely randomized trees, and adaptive boosting.
Other methods were also investigated, as sensitivity experiments, without yielding major improvements. For each
method, seven out of eight balloons were used for training, and the last balloon was used for testing.

The main results obtained from these investigations are as follows:

Figure 9. Time series of absolute GWMFs and the most informative ERA5 inputs in daily time resolution. The clear correspondence between precipitation and gravity
wave momentum flux of balloon 2 can be visually observed in column (a). In contrast, this is not the case at all for balloon 3 as shown in column (b), and it partially
presents in column (c) of balloon 7.
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• Based on the information provided by the large‐scale flow data from ERA5, ML methods can reconstruct the
observed GWMFs with correlations exceeding 0.7 in certain cases (balloon 2, 6, and 8), which is encouraging.
Overall, the majority of the correlations are statistically significant at least at the 95% level, except for a few
cases, as indicated in Table 2. The performances of ML methods, however, vary considerably from one
balloon to another, with correlations down to 0.4 for some other balloons, and even down to 0.2 in one case.
The overall average correlation for the HF case is 0.54, while a slightly lower average correlation of 0.49 is
obtained in the WF case. In general, the correlations for WF waves are slightly weaker than those for HF
waves (refer to Supporting Information S1 for details).

• The variations in performance are much larger between different balloons, than they are for a given balloon
between ML approaches. This suggests that the performances are limited by the data sets, not by the choice of
ML approach. The tree‐based methods proved generally efficient, but there is not an overwhelming preference
for one of them. Adaptive boosting frequently performed a bit better, but all three failed to capture the intensity
of the (very intermittent) peaks in GWMF.

• The most informative explanatory variables are those describing the precipitation and the zonal wind at and
below the balloon's level. It is indeed an advantage of tree‐based methods to provide information about the
usefulness of the different inputs, for example, through the Gini importance (Hastie et al., 2001). The
importance of precipitation is consistent with the convective generation of the waves (Corcos et al., 2021; Lott
& Guez, 2013). The importance of winds is consistent with the general understanding of the generation and
propagation of waves (Kim et al., 2003); the relevance of wind at the balloon level is reminiscent of previous
findings (Amiramjadi et al., 2023; Plougonven et al., 2017).

• The ML methods were more efficient at reconstructing the part of GWMF associated with high‐frequency
waves (periods shorter than an hour) than the whole spectrum. This is consistent with the local character of
the explanatory variables provided as inputs: high‐frequency waves will be shorter‐lived and propagate more
vertically.

• Different decompositions of the GWMF were used: absolute, eastward and westward GWMF. Interestingly,
the performances significantly differed between these. The most difficult to reconstruct was found to be
westward GWMF. Reasons for this likely include limitations of the data set, to be further discussed below.

However, there are still parts where the large‐scale flow variables are not informative enough in the estimation.
There are cases where high peaks are present in the observed target, which indicates interesting events; however,
large‐scale flow inputs fail to describe them. As a result, the models failed to reconstruct such events in GWMFs
(balloon 1 and 3, for example).

In addition, we have also implemented ML models by replacing ERA5's winds with balloon‐observed winds at
the balloon's level. This tests the sensitivity to errors in the input variables, for the variables for which we have
direct observations, and which is known in the reanalysis to include significant error. The results suggest there is
some sensitivity, but it is not extensive. Overall, the performances on some challenging balloons such as balloon 3
and 5 are significantly improved when using observed winds instead of ERA5's winds. In contrast, the perfor-
mance on balloon 8 drops quite a bit compared to the model with ERA5's winds. Overall, the models utilizing
observed wind achieve an average correlation of 0.53 in the HF case and 0.47 in theWF case. These results can be
found in Supporting Information S1.

5.2. Perspectives

Although the ML approaches have performed well, and nearly always better than the parameterization, there are
clear limitations to the current investigation, calling for further research. The very strong sensitivity of the
performances to the balloon that is left out and then used for testing is a clear indication that we lack data: the
results strongly depend on the split of the data for training and testing, the performances are far from convergence.
This is consistent with the strong intermittency of the GWMF (Hertzog et al., 2012; Plougonven et al., 2013) and
with the illustrative time series of Figure 2: for each balloon, GWMF are dominated by a few events, such that
even with 680 days of balloon measurements, only a few handfuls of GWMF peaks are described. This is too little
for data‐driven methods. This also explains why clear distinctions between the different methods are not found:
the MLmethods do their best but still lack data to clearly separate a better method for this problem, if there is one.

Ways forward include:
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• Obtaining more observations to use as the target, keeping the same framework for the ML. Additional ob-
servations would come from the second Strateole 2 campaign (in 2021) and from Loon balloons (Köhler
et al., 2023; Schoeberl et al., 2017). The additional Strateole data would enhance the data by less than a factor 2
and is therefore not expected to suffice to make a dramatic change. The Loon data would come with other
difficulties as the observations were not made for research purposes and come with their own challenges.

• Additional data could be provided not for the targets, but for the explanatory variables. A first step could be
including additional input variables from the reanalyzes. However, preliminary attempts have not suggested
significant gains from the most evident additional culprits. A second step would consist of providing much
more detailed and more accurate information about the background flow: this could be obtained from satellite
observations, such as the observations of brightness temperatures from geostationary satellites shown in
Figure 8. This would constitute a very interesting new study but in a profoundly new framework and with
different aims: to fully use the information available from satellites would a priori require providing maps (or
images, or 2D fields) as input variables (more akin to Matsuoka et al. (2020), although their inputs were from
models, not observations). The ML used would need to be reassessed (Matsuoka et al. (2020) used neural
networks, for instance). Such a study would be of great interest because the performance of the ML methods
would much less be tainted by the uncertainty (or errors) present in the inputs that serve to describe the
background. Additionally, much more detailed information would be provided about the background flow,
allowing the ML methods to tap into a greater reservoir of potentially relevant information, and hence
providing more precise answers regarding the relationship of the large‐scale flow to the gravity wave signal.
However, if the outcome of such an exercise would be of interest fundamentally, it would be more removed
from the framework in which current parameterizations operate.

• A shortcoming of the present ML approaches is that they underestimate the peak values for GWMF (see
Figures 2 and 3). This is expected, given the averaging involved in tree‐based method and the limited number
of strong events present in the training data. However, this implies that the distribution of reconstructed
momentum fluxes misses the tail of intense, rare events, which are known to matter for atmospheric gravity
waves (de la Camara et al., 2016; Hertzog et al., 2012). One way to overcome this would be to aim not at a
deterministic reconstruction of the momentum fluxes, but at reconstructing a probability density function of
these. This change of framework, equivalent to changing from a deterministic to a stochastic parameterization,
would in fact be more consistent for three reasons: first, given some large‐scale conditions, there are certainly
several different small‐scale configurations with different resulting gravity waves that can occur. Second, for
any given realization of the small‐scale flow corresponding to large‐scale conditions, our observed values
depend on the specific sampling by the balloon. At present, we do not fully know how sensitive the observed
GWMFs are to this sampling. Finally, the estimate of GWMFs from the observed balloon measurements
involves assumptions and methodological choices, and there is as always an observational error in the esti-
mates for GWMF. Given that the ML methods do capture rather well the occurrence of larger values, using
MLmethods to reconstruct a PDF of likely fluxes, rather than a single, deterministic value, could give room to
better represent the observed GWMF, although only in a probabilistic way.

• A fourth way forward consists in applying similar investigations on data sets where more data is available,
albeit at the cost of more uncertainty on the realism of the data. High‐resolution models such as global
convection permitting simulations (Stephan et al., 2019) provide a wealth of information on the resolved
gravity wavefield, and many studies have repeatedly highlighted the ability of models to simulate efficiently
many features of the observed gravity wavefield (Plougonven & Teitelbaum, 2003; Preusse et al., 2014;
Stephan et al., 2019; Wu & Eckermann, 2008). Model output from global simulations would provide amounts
of data for which the sampling limitations of the Strateole balloons would not be present. The downside is the
limitations of model data, relative to observations, and the need for strategies to validate which aspects of the
simulations are realistic.

Data Availability Statement
Balloon data used in this study are presented in Haase et al. (2018) of the STRATEOLE 2 mission. The ERA5
input variables are described in Hersbach et al. (2020) and can be obtained from the COPERNICUS open access
hub. The machine learning (ML) algorithms implemented in our analysis are available in the scikit-learn
Python library (Pedregosa et al., 2011). Finally, the source codes for implementing ML methods in our analysis
are made available at Zenodo GitHub repository Has (2024).

Journal of Geophysical Research: Atmospheres 10.1029/2023JD040281

HAS ET AL. 16 of 18

 21698996, 2024, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JD

040281 by U
niversité Paris D

escartes, W
iley O

nline L
ibrary on [24/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



References
Alexander, M., Geller, M., McLandress, C., Polavarapu, S., Preusse, P., Sassi, F., et al. (2010). Recent developments in gravity‐wave effects in

climate models and the global distribution of gravity‐wave momentum flux from observations and models. Quarterly Journal of the Royal
Meteorological Society, 136(650), 1103–1124. https://doi.org/10.1002/qj.637

Amiramjadi, M., Plougonven, R., Mohebalhojeh, A. R., & Mirzaei, M. (2023). Using machine learning to estimate nonorographic gravity wave
characteristics at source levels. Journal of the Atmospheric Sciences, 80(2), 419–440. https://doi.org/10.1175/jas‐d‐22‐0021.1

Baker, W. E., Atlas, R., Cardinali, C., Clement, A., Emmitt, G. D., Gentry, B. M., et al. (2014). Lidar‐measured wind profiles: The missing link in
the global observing system. Bulletin America Meteorology Social, 95(4), 543–564. https://doi.org/10.1175/2010JAS3455.1

Bossan, B., Feigl, J., & Kan, W. (2015). Otto group product classification challenge. Kaggle. Retrieved from https://kaggle.com/competitions/
otto‐group‐product‐classification‐challenge

Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y., Bastrikov, V., et al. (2020). Presentation and evaluation of the IPSL‐
CM6A‐LR climate model. Journal of Advances in Modeling Earth Systems, 12(7), e2019MS002010. https://doi.org/10.1029/2019ms002010

Box, G. E., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society: Series B, 26(2), 211–252. https://doi.org/
10.1111/j.2517‐6161.1964.tb00553.x

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/a:1010933404324
Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. Wadsworth International Group.
Bushell, A. C., Butchart, N., Derbyshire, S. H., Jackson, D. R., Shutts, G. J., Vosper, S. B., & Webster, S. (2015). Parameterized gravity wave

momentum fluxes from sources related to convection and large‐scale precipitation processes in a global atmosphere model. Journal of the
Atmospheric Sciences, 72(11), 4349–4371. https://doi.org/10.1175/jas‐d‐15‐0022.1

Butchart, N. (2022). The stratosphere: A review of the dynamics and variability.Weather and Climate Dynamics, 3(4), 1237–1272. https://doi.org/
10.5194/wcd‐3‐1237‐2022

Chantry, M., Hatfield, S., Dueben, P., Polichtchouk, I., & Palmer, T. (2021). Machine learning emulation of gravity wave drag in numerical
weather forecasting. Journal of Advances in Modeling Earth Systems, 13(7), e2021MS002477. https://doi.org/10.1029/2021ms002477

Corcos, M., Hertzog, A., Plougonven, R., & Podglajen, A. (2021). Observation of gravity waves at the tropical tropopause using superpressure
balloons. Journal of Geophysical Research: Atmospheres, 126(15), e2021JD035165. https://doi.org/10.1029/2021jd035165

de la Camara, A., Lott, F., & Hertzog, A. (2014). Intermittency in a stochastic parameterization of nonorographic gravity waves. Journal of
Geophysical Research: Atmospheres, 119(21), 11905–11919. https://doi.org/10.1002/2014JD022002

de la Camara, A., Lott, F., Jewtoukoff, V., Plougonven, R., & Hertzog, A. (2016). On the gravity wave forcing during the southern stratospheric
final warming in LMDz. Journal of the Atmospheric Sciences, 73(8), 3213–3226. https://doi.org/10.1175/JAS‐D‐15‐0377.1

de Burgh‐Day, C. O., & Leeuwenburg, T. (2023). Machine learning for numerical weather and climate modelling: A review. Geoscientific Model
Development, 16(22), 6433–6477. https://doi.org/10.5194/gmd‐16‐6433‐2023

Ern, M., Diallo, M. A., Khordakova, D., Krisch, I., Preusse, P., Reitebuch, O., et al. (2023). The quasi‐biennial oscillation (QBO) and global‐scale
tropical waves in aeolus wind observations, radiosonde data, and reanalyses. Atmospheric Chemistry and Physics, 23(16), 9549–9583. https://
doi.org/10.5194/acp‐23‐9549‐2023

Ern, M., Ploeger, F., Preusse, P., Gille, J., Gray, L. J., Kalisch, S., et al. (2014). Interaction of gravity waves with the QBO: A satellite perspective.
Journal of Geophysical Research: Atmospheres, 119(5), 2329–2355. https://doi.org/10.1002/2013JD020731

Ern, M., Preusse, P., & Riese, M. (2022). Intermittency of gravity wave potential energies and absolute momentum fluxes derived from infrared
limb sounding satellite observations. Atmospheric Chemistry and Physics, 22(22), 15093–15133. https://doi.org/10.5194/acp‐22‐15093‐2022

Ern, M., Trinh, Q. T., Gille, P. P. J., Mlynczak, M., Russell, J., & Riese, M. (2018). GRACILE: A comprehensive climatology of atmospheric
gravity wave parameters based on satellite limb soundings. Earth System Science Data, 10(2), 857–892. https://doi.org/10.5194/essd‐10‐857‐
2018

Espinosa, Z. I., Sheshadri, A., Cain, G. R., Gerber, E. P., & DallaSanta, K. J. (2022). Machine learning gravity wave parameterization generalizes
to capture the QBO and response to increased CO2. Geophysical Research Letters, 49(8), e2022GL098174. https://doi.org/10.1029/
2022gl098174

Freund, Y., & Schapire, R. E. (1997). A decision‐theoretic generalization of on‐line learning and an application to boosting. Journal of Computer
and System Sciences, 55(1), 119–139. https://doi.org/10.1006/jcss.1997.1504

Fritts, D., & Alexander, M. (2003). Gravity wave dynamics and effects in the middle atmosphere. Reviews of Geophysics, 41(1), 1003. https://doi.
org/10.1029/2001RG000106

Geller, M., Alexander, M., Love, P., Bacmeister, J., Ern, M., Hertzog, A., et al. (2013). A comparison between gravity wave momentum fluxes in
observations and climate models. Journal of Climate, 26(17), 6383–6405. https://doi.org/10.1175/JCLI‐D‐12‐00545.1

Gentine, P., Pritchard, M., Rasp, S., Reinaudi, G., & Yacalis, G. (2018). Could machine learning break the convection parameterization deadlock?
Geophysical Research Letters, 45(11), 5742–5751. https://doi.org/10.1029/2018GL078202

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees.Machine Learning, 63(1), 3–42. https://doi.org/10.1007/s10994‐006‐
6226‐1

Haase, J., Alexander, M., Hertzog, A., Kalnajs, L., Deshler, T., Davis, S., et al. (2018). Around the world in 84 days. EOS, 99. https://doi.org/10.
1029/2018EO091907

Has, S. (2024). Reconstructing GWMF using ml and input from ERA5 [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.10699282
Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning. Springer New York Inc.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., et al. (2020). The ERA5 global reanalysis. Quarterly Journal

of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803
Hertzog, A., Alexander, M., & Plougonven, R. (2012). On the probability density functions of gravity waves momentum flux in the stratosphere.

Journal of the Atmospheric Sciences, 69(11), 3433–3448. https://doi.org/10.1175/jas‐d‐12‐09.1
Hochreiter, S., & Schmidhuber, J. (1997). Long short‐term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.

8.1735
Janowiak, J. B. X. P. J. (2017). NCEP/CPC l3 half hourly 4km global (60S–60N) merged IR V1. In A. Savtchenko & M. D. Greenbelt (Eds.),

Goddard Earth Sciences Data and Information Services Center (GES DISC).
Jewtoukoff, V., Hertzog, A., Plougonven, R., de la Camara, A., & Lott, F. (2015). Gravity waves in the Southern Hemisphere derived from balloon

observations and ECMWF analyses. Journal of the Atmospheric Sciences, 72(9), 3449–3468. https://doi.org/10.1175/jas‐d‐14‐0324.1
Kim, Y.‐J., Eckermann, S., & Chun, H.‐Y. (2003). An overview of the past, present and future of gravity‐wave drag parametrization for numerical

climate and weather prediction models. Atmosphere‐Ocean, 41(1), 65–98. https://doi.org/10.3137/ao.410105

Acknowledgments
This work and Sothea Has are supported by
the Institut des Mathématiques pour la
Planète Terre (IMPT). This work has also
received support from the ANR project
BOOST3R (ANR‐17‐CE01‐0016‐01) and
the French‐American project Strateole 2
(CNES). Moreover, we gratefully
acknowledge the support and collaborative
efforts extended by members of the
DataWave consortium, a Virtual Earth
System Research Institute (VESRI)
Schmidt Futures project.

Journal of Geophysical Research: Atmospheres 10.1029/2023JD040281

HAS ET AL. 17 of 18

 21698996, 2024, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JD

040281 by U
niversité Paris D

escartes, W
iley O

nline L
ibrary on [24/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1002/qj.637
https://doi.org/10.1175/jas-d-22-0021.1
https://doi.org/10.1175/2010JAS3455.1
https://kaggle.com/competitions/otto-group-product-classification-challenge
https://kaggle.com/competitions/otto-group-product-classification-challenge
https://doi.org/10.1029/2019ms002010
https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1175/jas-d-15-0022.1
https://doi.org/10.5194/wcd-3-1237-2022
https://doi.org/10.5194/wcd-3-1237-2022
https://doi.org/10.1029/2021ms002477
https://doi.org/10.1029/2021jd035165
https://doi.org/10.1002/2014JD022002
https://doi.org/10.1175/JAS-D-15-0377.1
https://doi.org/10.5194/gmd-16-6433-2023
https://doi.org/10.5194/acp-23-9549-2023
https://doi.org/10.5194/acp-23-9549-2023
https://doi.org/10.1002/2013JD020731
https://doi.org/10.5194/acp-22-15093-2022
https://doi.org/10.5194/essd-10-857-2018
https://doi.org/10.5194/essd-10-857-2018
https://doi.org/10.1029/2022gl098174
https://doi.org/10.1029/2022gl098174
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1029/2001RG000106
https://doi.org/10.1029/2001RG000106
https://doi.org/10.1175/JCLI-D-12-00545.1
https://doi.org/10.1029/2018GL078202
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1029/2018EO091907
https://doi.org/10.1029/2018EO091907
https://doi.org/10.5281/zenodo.10699282
https://doi.org/10.1002/qj.3803
https://doi.org/10.1175/jas-d-12-09.1
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1175/jas-d-14-0324.1
https://doi.org/10.3137/ao.410105


Köhler, L., Green, B., & Stephan, C. C. (2023). Comparing loon superpressure balloon observations of gravity waves in the tropics with global
storm‐resolving models. Journal of Geophysical Research: Atmospheres, 128(15), e2023JD038549. https://doi.org/10.1029/2023jd038549

Kremser, S., Thomason, L. W., von Hobe, M., Hermann, M., Deshler, T., Timmreck, C., et al. (2016). Stratospheric aerosol—Observations,
processes, and impact on climate. Reviews of Geophysics, 54(2), 278–335. https://doi.org/10.1002/2015rg000511

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural
Information Processing Systems, 25, 1097–1105.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
Lott, F., & Guez, L. (2013). A stochastic parameterization of the gravity waves due to convection and its impact on the equatorial stratosphere.

Journal of Geophysical Research: Atmospheres, 118(16), 8897–8909. https://doi.org/10.1002/jgrd.50705
Lott, F., Rani, R., Podglajen, A., Codron, F., Guez, L., Hertzog, A., & Plougonven, R. (2023). Direct comparison between a non‐orographic

gravity wave drag scheme and constant level balloons. Journal of Geophysical Research: Atmospheres, 128(4), e2022JD037585. https://
doi.org/10.1029/2022jd037585

Matsuoka, D., Watanabe, S., Sato, K., Kawazoe, S., Yu, W., & Easterbrook, S. (2020). Application of deep learning to estimate atmospheric
gravity wave parameters in reanalysis data sets. Geophysical Research Letters, 47(19), e2020GL089436. https://doi.org/10.1029/
2020gl089436

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit‐learn: Machine learning in Python. Journal of
Machine Learning Research, 12, 2825–2830.

Plougonven, R., de la Camara, A., Hertzog, A., & Lott, F. (2020). How does knowledge of atmospheric gravity waves guide their parameteri-
zations? The Quarterly Journal of the Royal Meteorological Society, 146(728), 1–15. https://doi.org/10.1002/qj.3732

Plougonven, R., Hertzog, A., & Guez, L. (2013). Gravity waves over Antarctica and the Southern Ocean: Consistent momentum fluxes in
mesoscale simulations and stratospheric balloon observations. Quarterly Journal of the Royal Meteorological Society, 139(670), 101–118.
https://doi.org/10.1002/qj.1965

Plougonven, R., Jewtoukoff, V., de la Camara, A., Hertzog, A., & Lott, F. (2017). On the relation between gravity waves and wind speed in the
lower stratosphere over the Southern Ocean. Journal of the Atmospheric Sciences, 74(4), 1075–1093. https://doi.org/10.1175/JAS‐D‐16‐0096.1

Plougonven, R., & Teitelbaum, H. (2003). Comparison of a large‐scale inertia‐gravity wave as seen in the ECMWF and from radiosondes.
Geophysical Research Letters, 30(18), 1954. https://doi.org/10.1029/2003gl017716

Podglajen, A., Hertzog, A., Plougonven, R., & Zagar, N. (2014). Assessment of the accuracy of (re)analyses in the equatorial lower stratosphere.
Journal of Geophysical Research: Atmospheres, 119(19), 11166–11188. https://doi.org/10.1002/2014JD021849

Preusse, P., Ern, M., Bechtold, P., Eckermann, S., Kalisch, S., Trinh, Q., & Riese, M. (2014). Characteristics of gravity waves resolved by
ECMWF. Atmospheric Chemistry and Physics, 14(19), 10483–10508. https://doi.org/10.5194/acp‐14‐10483‐2014

Rätsch, G., Onoda, T., & Müller, K.‐R. (2001). Soft margins for adaboost. Machine Learning, 42(3), 287–320. https://doi.org/10.1023/a:
1007618119488

Schoeberl, M. R., Jensen, E., Podglajen, A., Coy, L., Lodha, C., Candido, S., & Carver, R. (2017). Gravity wave spectra in the lower stratosphere
diagnosed from project loon balloon trajectories. Journal of Geophysical Research: Atmospheres, 122(16), 8517–8524. https://doi.org/10.
1002/2017jd026471

Solomon, S., Rosenlof, K., Portmann, R., Daniel, J., Davis, S., Sanford, T., & Plattner, G.‐K. (2010). Contributions of stratospheric water vapor to
decadal changes in the rate of global warming. Science, 327(5970), 1219–1223. https://doi.org/10.1126/science.118248

Stephan, C., Strube, C., Klocke, D., Ern, M., Hoffmann, L., Preusse, P., & Schmidt, H. (2019). Gravity waves in global high‐resolution simu-
lations with explicit and parameterized convection. Journal of Geophysical Research, 124(8), 4446–4459. https://doi.org/10.1029/
2018JD030073

Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the AmericanMeteorological Society, 79(1), 61–78. https://
doi.org/10.1175/1520-0477(1998)079〈0061:apgtwa〉2.0.co;2

Trinh, Q., Kalisch, S., Preusse, P., Ern, M., Chun, H., Eckermann, S., et al. (2016). Tuning of a gravity wave source scheme based on HIRDLS
observations. Atmospheric Chemistry and Physics, 16(11), 7335–7356. https://doi.org/10.5194/acp‐16‐7335‐2016

Vincent, R., & Hertzog, A. (2014). The response of superpressure balloons to gravity wave motions. Atmospheric Measurement Techniques, 7(4),
1043–1055. https://doi.org/10.5194/amt‐7‐1043‐2014

Vitart, F. & Robertson, A. W. (Eds.) (2018). Sub‐seasonal to seasonal prediction. Elsevier.
Wright, C., Osprey, S., & Gille, J. (2013). Global observations of gravity wave intermittency and its impact on the observed momentum flux

morphology. Journal of Geophysical Research Atmospheres, 118(19), 10980–10993. https://doi.org/10.1002/jgrd.50869
Wu, D., & Eckermann, S. (2008). Global gravity wave variances from aura MLS: Characteristics and interpretation. Journal of the Atmospheric

Sciences, 65(12), 3695–3718. https://doi.org/10.1175/2008jas2489.1
ZEWEICHU. (2019). 2019 ttic 31020 hw4 spam (adaboost). Kaggle. Retrieved from https://kaggle.com/competitions/2019‐ttic‐31020‐hw4‐

spam‐adaboost

Journal of Geophysical Research: Atmospheres 10.1029/2023JD040281

HAS ET AL. 18 of 18

 21698996, 2024, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JD

040281 by U
niversité Paris D

escartes, W
iley O

nline L
ibrary on [24/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1029/2023jd038549
https://doi.org/10.1002/2015rg000511
https://doi.org/10.1038/nature14539
https://doi.org/10.1002/jgrd.50705
https://doi.org/10.1029/2022jd037585
https://doi.org/10.1029/2022jd037585
https://doi.org/10.1029/2020gl089436
https://doi.org/10.1029/2020gl089436
https://doi.org/10.1002/qj.3732
https://doi.org/10.1002/qj.1965
https://doi.org/10.1175/JAS-D-16-0096.1
https://doi.org/10.1029/2003gl017716
https://doi.org/10.1002/2014JD021849
https://doi.org/10.5194/acp-14-10483-2014
https://doi.org/10.1023/a:1007618119488
https://doi.org/10.1023/a:1007618119488
https://doi.org/10.1002/2017jd026471
https://doi.org/10.1002/2017jd026471
https://doi.org/10.1126/science.118248
https://doi.org/10.1029/2018JD030073
https://doi.org/10.1029/2018JD030073
https://doi.org/10.1175/1520-0477(1998)079%3C0061:apgtwa%3E2.0.co;2
https://doi.org/10.1175/1520-0477(1998)079%3C0061:apgtwa%3E2.0.co;2
https://doi.org/10.5194/acp-16-7335-2016
https://doi.org/10.5194/amt-7-1043-2014
https://doi.org/10.1002/jgrd.50869
https://doi.org/10.1175/2008jas2489.1
https://kaggle.com/competitions/2019-ttic-31020-hw4-spam-adaboost
https://kaggle.com/competitions/2019-ttic-31020-hw4-spam-adaboost

	description
	Reconstructing Balloon‐Observed Gravity Wave Momentum Fluxes Using Machine Learning and Input From ERA5
	1. Introduction
	2. Data and Methodology
	2.1. Data
	2.2. Methodology
	2.2.1. Decision Tree
	2.2.2. Random Forest
	2.2.3. Extremely Randomized Trees
	2.2.4. Adaptive Boosting
	2.2.5. K‐Fold Cross‐Validation

	2.3. Training
	2.4. Evaluation Metric

	3. Results
	3.1. Overall Performances
	3.2. Which Large‐Scale Inputs Are Informative for ML Models?

	4. Discussion
	4.1. Why Are Westward GWMFs More Challenging?
	4.2. Why Are Some Balloons Easier to Predict Than Others?
	4.3. Exploring Potential Reasons for Unsatisfactory Cases

	5. Conclusion and Perspectives
	5.1. Key Messages
	5.2. Perspectives
	Data Availability Statement



