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ABSTRACT

We present an investigation into a hitherto unexplored systematic that affects the accuracy of galaxy cluster mass estimates
with weak gravitational lensing. Specifically, we study the covariance between the weak lensing signal, AX, and the ‘true’
cluster galaxy number count, Ng,, as measured within a spherical volume that is void of projection effects. By quantifying the
impact of this covariance on mass calibration, this work reveals a significant source of systematic uncertainty. Using the MDPL2
simulation with galaxies traced by the SAGE semi-analytic model, we measure the intrinsic property covariance between these
observables within the three-dimensional vicinity of the cluster, spanning a range of dynamical mass and redshift values relevant
for optical cluster surveys. Our results reveal a negative covariance at small radial scales (R S Rjpo.) and a null covariance at
large scales (R 2 Rsgoc) across most mass and redshift bins. We also find that this covariance results in a 2-3 per cent bias in
the halo mass estimates in most bins. Furthermore, by modelling Ny, and AX as multi-(log)-linear equations of secondary halo
properties, we provide a quantitative explanation for the physical origin of the negative covariance at small scales. Specifically,
we demonstrate that the Ny—A X covariance can be explained by the secondary properties of haloes that probe their formation
history. We attribute the difference between our results and the positive bias seen in other works with (mock)-cluster finders to
projection effects. These findings highlight the importance of accounting for the covariance between observables in cluster mass
estimation, which is crucial for obtaining accurate constraints on cosmological parameters.

Key words: gravitational lensing: weak — galaxies: clusters: general —cosmology: observations.

cosmology. Considerable effort has been put into measuring the

1 INTRODUCTION . . . .
statistical relationships between masses and observable properties

Cluster abundance and its evolution with redshift are linked to the
constituents of the Universe through the growth of cosmic structure
(Allen, Evrard & Mantz 2011 for a review). Cluster abundance
measured in large-scale galaxy surveys offers power constraints on
cosmological parameters (e.g. Vikhlinin et al. 2009; Mantz et al.
2015; Dark Energy Survey Collaboration 2016; de Haan et al. 2016;
Mantz et al. 2016a; Pierre et al. 2016; Costanzi et al. 2021). These
constraints are based on accurate cluster mass measurements, which
are not directly observable and must be inferred. Cluster mass calibra-
tion has been identified as one of the leading systematic uncertainties
in cosmological constraints using galaxy cluster abundance (Mantz
et al. 2010; Rozo et al. 2010; Applegate et al. 2014; von der Linden
et al. 2014; Dodelson et al. 2016; Murata et al. 2019; Costanzi
et al. 2021). Accurate mappings between a population of massive
clusters and their observables are thus critical and essential in cluster
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that reflect their baryon contents (see Giodini et al. 2013 for a review)
and quantifying the sources of uncertainties.

The Dark Energy Survey (DES) cluster cosmology from the Year 1
data set (Abbott et al. 2020) reported tension in €2,, — the mean matter
density of the universe — with the DES 3 x 2 pt probe that utilizes
three two-point functions from the DES galaxy survey (Abbott et al.
2018). The tension between these two probes that utilize the same
underlying data set may be attributed to systematics that bias the
weak lensing mass of clusters low at the low-mass end (Costanzi
et al. 2021; To et al. 2021). A possible origin for this discrepancy
is that cluster masses are biased low due to systematics in cluster
mass calibration. On the other hand, the tension can also originate
from new physics that extends the Standard Cosmological model.
Thus, it is important to understand the systematics of cluster mass
calibration. Cluster masses estimated from X-ray and SZ data are
known to suffer from hydrostatic bias (Pratt et al. 2019). Conversely,
cluster masses estimated from weak lensing have the potential to
be more accurate compared to X-ray and SZ cluster masses. The

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,

provided the original work is properly cited.
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systematics in the weak lensing mass calibration has just started to
be explored recently (Applegate et al. 2014; Schrabback et al. 2018;
McClintock et al. 2019; Kiiveri et al. 2021; Wu et al. 2022).

A relatively unexplored category of cluster systematics is the
covariance between different cluster properties, including cluster
observables and mass proxies. In cluster mass calibration, it is often
assumed that this property covariance is negligible. However, as
initially pointed out by Nord et al. (2008) and later shown in Evrard
et al. (2014) and Farahi et al. (2018), non-zero property covariances
between cluster observables can induce non-trivial, additive bias
in cluster mass. As property covariance is additive, the systematic
uncertainties that it induces will not be mitigated with the reduction of
statistical errors as the sample size of the cluster increases. To achieve
accurate cosmological constraints with the next generation of large-
scale cluster surveys, it is imperative that systematic uncertainties in
the property covariance be accurately and precisely quantified (Rozo
et al. 2014).

Although the property covariance linking mass to observable
properties is becoming better understood and measured (Wu et al.
2015; Mantz et al. 2016a; Farahi et al. 2018, 2019; Sereno et al. 2020),
studies that specifically investigate weak lensing property covariance
are scarce, which poses a challenge for upcoming lensing surveys of
galaxy clusters such as the Rubin (Ivezi¢ et al. 2019) observatories.
To achieve the percentage-level lensing mass calibration goals for
the upcoming observations, the property covariance of weak lensing
must be quantified.

The physical origins of property covariance in lensing signals of
galaxy clusters can be attributed to the halo formation history of the
cluster and baryonic physics (Xhakaj et al. 2022). Developing a first-
principle physical model for the property covariance as a function of
halo formation history and baryonic physics is a daunting task due
to the highly non-linear and multiscale physics involved in cluster
formation. To make progress, in this paper, we adopt a simulation-
based, data-driven approach whereby we develop semi-analytical
parametric models of property covariance, which we then calibrate
with cosmological simulations. We then apply our model to quantify
the bias induced due to a non-zero property covariance in the expected
weak lensing signal and the mass-observable scaling relation.

As will be presented in Section 3, a key element of this analysis is
the estimation of true cluster richness by encircling clusters within a
three-dimensional (3D) radius within the physical vicinity of the halo
centre, as opposed to a two-dimensional (2D) projected radius used
by cluster finders as redMaPPer (Rykoff et al. 2014) by identifying
galaxies within the red-sequence band in the colour—-magnitude space
— the major difference being the removal of projection effects, or the
mis-identification of non-cluster galaxies in the 2D projected radius
from the photometric redshift uncertainty of the red-sequence when
estimating the true richness from a gravitationally bound region
around the halo. Furthermore, as this simulation-based study does not
introduce other observational systematics as shape noise of galaxies,
point spread function, miscentring, among others, this study can be
used to explore the intrinsic covariance between observables prior
to the addition of extrinsic systematics as projection effects. Our
results will not only provide insight into the physical origin of the
covariance, the difference between the fotal covariance as measured
by observations and the intrinsic covariance will provide estimates
on the amplitude of the extrinsic component.

The goals of this work are to (i) develop an analytical model
that accounts for and quantifies the effect of non-zero covariance
on cluster mass calibration, (ii) quantify this property covariance
utilizing cosmological simulations, (iii) update uncertainties on
inferred cluster mass estimates, and (iv) explain the physical origin

MNRAS 530, 3127-3149 (2024)

of the covariance using secondary halo parameters. The rest of this
paper is organized as follows. In Section 2, we present a population-
based analytical framework. In Section 3, we describe the simulations
and data-vector employed in this work. In Section 4, we present our
measurements and the covariance model. In Section 5, we present
the impact of the covariance on weak lensing mass calibration. In
Section 6, we quantify the physical origin of the covariance by
parametrizing it using secondary halo parameters. In Section 7, we
compare our work with those that employ realistic cluster finders.
We conclude in Section 8.

2 THEORETICAL FRAMEWORK

This section presents a theoretical framework that examines the
impact of covariance on mass-observable scaling relations. In Sec-
tion 2.1, we introduce the definitions of richness and weak lensing
excess surface mass density and their scaling relations with cluster
mass. We then describe the model of property covariance of richness
and excess surface mass density in Section 2.2. In Section 2.3,
we model the impact of covariance on stacked observable scaling
relations. Finally, in Section 2.4, we develop a theoretical framework
that explains the covariance based on a set of secondary halo
parameters. A graphic representation of the outline of the paper
is shown in Fig. 1. The notations used in this section to describe the
covariance are listed in Table 1 and notations for scaling relations
are listed in Table 2.

2.1 Observable-mass relations

2.1.1 Excess surface mass density AX from weak lensing

In weak lensing measurements of galaxy clusters, the key observable
is the excess surface mass density, denoted AX. The excess surface
mass density is defined as

AT(M,z,r,) = (M, z, < r,) = B(M, z,r,), M

where (M, z, < rp) denotes the average surface mass density
within projected radius r,, and X(M, z, r,) represents the average
of the surface mass density at r,,. We model the average surface mass
density X as

S(ry) = o /_m (1 + & (r = \/r2 +x2))dx, @)

o0

where p,, is the mean matter density at the redshift of the cluster,
R is the projected radius in the plane of the sky, x is the comoving
distance along the line of sight centred around the cluster, and &, ()
is the halo-matter correlation function that characterizes the total
mass density within a halo. Under the halo model, the halo-matter
correlation function consists of a ‘one-halo’ term:

M
En(ripny = VUMD 3)
Pm0
and a ‘two-halo’ term:
En(r|M) = b(M)&n(r), 4

where pnpw is the Navarro—Frenk—White (NFW) density profile
(Navarro, Frenk & White 1997), and &), is the linear matter
correlation function, and b is the halo bias parameter.

In weak lensing, the excess surface density AX is tied to the
tangential shear y, of the galaxies relative to the centre of each
foreground halo by the relation

Zairys = B(< R) — E(R) = AZ(R), &)
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Figure 1. Graphic representation of the modelling of Cov(A X, In Nga1|M, z) — the covariance between the halo weak lensing signal AX(R) and log-richness
In Ngy conditioned on mass and redshift — and its dependence with secondary halo parameters IT. The labels marked S. XX point to the location in the text. A

full list of the notations used in this paper is introduced in Tables 1 and 2.

Table 1. Notations employed in our framework for the covariance in
Section 2.3.

Parameter Explanation

AX Weak lensing signal

M Halo mass in Mg h~!

Ngal Optical richness enclosed inside 3D radius
z Redshift

Tp Projected and normalized radius

Table 2. Scaling relation conventions.

Parameter Explanation

g Normalization in scaling relation {(a|M)
g Slope in scaling relation (a|M)

oq Scatter about {(a|M)

Ta,b Correlation between a and b at fixed M
T alb Normalization in scaling relation (a|b)
Qa)p Slope in scaling relation (a|b)

Oalb Scatter about (a|b)

a, b a,be {AX, InNg }

where the critical surface density ¥ defined as

c? Dy

Aleris = —— ,
ent 4nG D[D[s

(6)

and where Dy, D), and Dy, refer to the angular diameter distances to
the source, the lens, and between the lens and source, respectively.

In this work, for each halo of mass M at redshift z, we compute
the corresponding AX profile. We compare these measurements
with theoretical predictions — in the one-halo regime we model
the cluster overdensity as NFW profiles with their concentration
determined by concentration-mass models of Prada et al. (2012),
Ludlow et al. (2016) and Diemer & Joyce (2019), whereas in the
two-halo term we adopt the linear matter correlation &,,, multiplied
by halo biases using the Tinker et al. (2010), Pillepich, Porciani &
Hahn (2010) and Bhattacharya et al. (2011) models to derive the
halo-matter correlation &,,,. At the transition radius between the
one- and two-halo regimes, we follow SDSS (Zu et al. 2014) in
setting the halo—matter correlation to the maximum value of the two
terms, i.e.

Epm (| M) = max{&(r|M), En(r|M)}. (N

In Fig. 2, the theoretical models described above are compared with
our measurements of AX in cosmological simulations to validate
our data product.

We model the mean (AX|M, z, r,,) at fixed mass M, redshift z, and
projected radius r, as a log-linear relation given by

(A | M, z,rp) =mas(M, 1y, 2) +aps(M,r,,2)In M, (8)

where aay is the power-law slope of the relation and way is a
normalization that is a function of redshift and mass.

2.1.2 Optical richness N

Optical richness N, is an observable measure of the abundance of
galaxies within a galaxy cluster. It is often defined as the number
of detected member galaxies brighter than a certain luminosity
threshold within a given aperture or radius around the cluster centre.

MNRAS 530, 3127-3149 (2024)
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Figure 2. The measured AX profiles using downsampled particles for every 10 particles and theoretical A¥ as computed from the NFW profile using different
concentration—mass relations (LHS in legend) in the one-halo regime and different halo-bias models (RHS in legend) in the two halo regimes, with errors taken
to be 1 — o standard deviations; the measurements are consistent with theoretical predictions and the size of the errors is too large to distinguish between

models. The same conclusion (not shown) holds for A binned by Ry;;.

Richness is often used as a proxy for cluster mass, as more massive
clusters are expected to have more member galaxies (e.g. Rozo et al.
2014; Rykoff et al. 2014). The richness-mass scaling relation relates
the richness of a galaxy cluster to its mass. In this work, we consider
the mean N,,;—M A scaling relation expressed as

(In Nat | Ma, 201 = 7ngy (M, 2) + @y (M, 2) In M. ©)

where M, is the mass of the halo within a radius where the mean
density is A times the critical density of the universe, a,, (M, z) is

MNRAS 530, 3127-3149 (2024)

the power-law slope of the relation, my,, (M, z) is a normalization
that is a function of redshift and mass.

2.1.3 Halo mass and radius definitions

A common approach to defining a radial boundary of a galaxy cluster
is such that the average matter density inside a given radius is the
product of a reference overdensity A, times the critical (p.) or mean

202 ABIN +Z U0 18aNB Aq 2GEYY9.//21E/E/0EG/PI0IE/SEIUW/WOY"dNO™DIWLSPED.//:SA)Y WO PaPEOjUMOQ



Impact of property covariance on WL scaling relations

density (p,,) of the universe at that redshift. The critical density is
defined as

3H?
" 8nG
where E(z)?> = Quo(1 + 2)* + Q4.0, Qo is the present-day matter
fraction of the universe, 2,  is the dark energy fraction at the present
age such that €2,, 0 + €24 o = 1 for a flat universe ignoring the minimal
contribution from the radiation fraction. The mean (background)
density is defined as

E(2), (10)

Pe

3H? 5
Py = %(Qm,o(1 +2)). )

The overdensity A, = 200 is commonly chosen as the reference
overdensity in optical weak lensing studies and is closely related to
the virial radius. Another radius definition is the virial radius Ry;,
with overdensity values calibrated from cosmological simulations
(Bryan & Norman 1998). In this work, we use Ryp. and Ry;; to scale
various observations, including the AX measurements and richness.
Since the covariance is close to zero at the outskirts R 2 Rape as
shown in Section 4, we adopt r, = R/Ryy. and r, = R/R,;; as our
normalized radii, as the cluster properties are more self-similar with
respect to p.(z) compared to p,(z) (Diemer & Kravtsov 2014; Lau
et al. 2015). To test for the robustness of our covariance against
different radii definitions, we also introduce a physical radius of a
toy model of a constant R = 1 Mpc h~!; here h = 0.6777 is the
reduced Hubble constant used in this study.

2.2 Covariance between AY. and Ny,

In optical surveys, we cannot expect the covariance between richness
Ng,1 and the excess surface mass density AX to be zero. Ignoring this
covariance will lead to bias in cluster mass inferred from the excess
surface mass density of the cluster selected based on richness. This
work aims to quantify and analyse this covariance and its impact
on the mass calibration relation. To achieve this objective, we must
first specify the joint probability distribution of excess surface mass
density and richness, p(AX, In Ny, |M, z, 1,). In this work, we assume
that the joint distribution follows a multivariate normal distribution
(Stanek et al. 2010; Evrard et al. 2014; Mulroy et al. 2019; Miyatake
et al. 2022), which is fully specified with two components, the mean
vector and the property covariance. We have checked the goodness
of this assumption in Appendix D.

From the mean observable-mass scaling relations in equations (8)
and (9), the scaling relation between these two observables can be
modelled as a local linear relation given by

(AT | Ngalv 2, rp) = nAE\Ng;ﬂ(Ngalv 2, rp)
+oas Ng (Ngals 2, Fp) I Nea, (12)

where 7 and « are the normalization and slope of the model.

The property covariance matrix is a combination of scatter and
correlation between the scatter of AX and In Ny, at a fixed halo mass,
redshift, and projected radius. We use ONga (M, 2) and o a5(M, 2, 1))
to denote the scatter of the observable-mass relation for In Ng, and
A, respectively, and use T Ngat, AS (M, z, rp,) to denote the correlation
between these scatters. The covariance matrix is then given by

COVi,j(Mv z,rp)=rij(M,z,r,)0i(M,z,rp) 0;(M, z,7p), (13)

where i and j € {AX, In Ngy }. Specifically, the covariance between
AY and N,y can be expressed in terms of the residuals about the
mean quantities

Covas Ny (M, z, 1) = Cov(resas (M, z, rp), tesy,, (M, 2)),  (14)

3131

where the residuals of the AX and Ny, are, respectively, given by
resas(M, z,rp) = AX — (AX | M, z, 1)), (15)

resy,, (M, z) = In Nga — (In Nga | M, z). (16)

To model the mass dependencies of the mean profiles of AX and
In Ng,i, we employ the Kernel Localized Linear Regression (KLLR;
Farahi, Anbajagane & Evrard 2022a) method. This regression
method fits a locally linear model while capturing globally non-linear
trends in data and has shown to be effective in modelling halo mass
dependencies in scaling relations (Farahi et al. 2018; Anbajagane,
Evrard & Farahi 2022; Wu et al. 2022). By developing a local-linear
model of AX — In N, with respect to the halo mass and computing
the residuals about the mean relation, we remove the bias in the
scatter due to the mass dependence and reduce the overall size of the
scatter. As shown in Fig. 4 the 1 — o of the covariance is determined
by bootstrap resampling.

2.3 Corrections to the AX — Ny, relation due to covariance

The shape of the halo mass function plays an important role in
evaluating the conditional mean value of (AX|Ngy, 2, 1) Where the
scatter between two observables with a fixed halo mass is correlated.
Ignoring the contribution from the correlated scatter, to the zeroth
order, the expected AX evaluated at fixed richness is given by
equation (12). This is the model that has been used in mass calibration
with stacked weak lensing profiles (Johnston et al. 2007; Kettula
et al. 2015; McClintock et al. 2019; Chiu et al. 2020; Lesci et al.
2022).

The first- and second-order approximations of the scaling relation
are given by

(AT | Nea, 201 = (AT | Ny Dsa + Z‘ x Cov(A S, In Nga),
(17)
and
(AZ|Nga, 2)2 = (AZ | Ngai, 2)fia
+Cov(AZ, In Ngy)
x[ S @ + 720 Nea =7, 0] (18)

aNgal

where (AX|Ngy, z)fa is the fiducial relation taking into account
the curvature of the HMF but independent of the covariance;
xs =1+ ychfﬂzvgal,l)" is the compression factor due to curvature
of the HMF, the subscript 1 denoting that the scatter is taken
from the HMF expanded to first order; here, we omit the (M,
z) dependence of the covariance as a shorthand notation. These
expansions around the pivot mass are for haloes centred around a
narrow enough mass bin. We show explicitly in Fig. 9 that the first-
order expansion converges using our binning method. The derivations
for the first and second-order expansion terms can be found in
Evrard et al. (2014) and Farahi et al. (2018) and the derivation
for this particular expression of the second-order term is shown in
Appendix C.

Here, y, and y, are the parameters for the first- and second-order
approximations to the mass dependence of the halo mass function
(e.g. Evrard et al. 2014):

dnpme(M, z)

1
any S A@ep | —n(M. I M — Sya(M. (I MY ).

19)

MNRAS 530, 3127-3149 (2024)
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Table 3. Notations employed in exploring the secondary halo parameter
dependence.

Parameter Explanation

I1 Set of secondary halo parameters

Tinst Instantaneous mass accretion rate (MAR)

CiooMyr Mean MAR over the past 100 Myr

Cayn Mean MAR over virial dynamical time

[adyn Mean MAR over two virial dynamical time

[ peak Growth rate of peak mass from current z to z + 0.5

ain Half mass scale factor

Cvir Ry;; concentration

T/|U| Absolute value of the kinetic to potential energy ratio

Xoff Offset of density peak from mean particle position (kpc A=)

where A(z) is the normalization of the mass function due to the
redshift alone. In deriving the above approximations, we have made
use of the fact that Cov(AX, In Ngy|M, 2) = FAS, NgOATON,, - The
teIMS O A, ONyyys Ny AT V1 and y, are evaluated at the mass implied
by (InM|Ngq).

These property covariance correction terms are absent in the
current literature. A key feature of this approximation method is that
the second-order solution has better than percent-level accuracy
when the halo mass function is known (Farahi et al. 2016). In Fig.
9, we demonstrate that the statistical uncertainties for the first-order
correction in equation (17) is larger than the uncertainty in the halo
mass function and the uncertainty due to the second-order halo mass
approximation.

2.4 Secondary halo parameter dependence of Cov(AX,
In N, gal |M x4 )

We elucidate the physical origin of the covariance between
AY and InNg, by developing a phenomenological model based
on the secondary halo parameters listed in Table 3. These
parameters are computed from the ROCKSTAR halo finder
(Behroozi, Wechsler & Wu 2013). They capture the halo’s
mass accretion history, which we hypothesise is the driving
force behind the observed covariance. To incorporate these pa-
rameters into our model, we extend equations (8) and (9)
by introducing multilinear terms that include the secondary halo
parameters denoted by the vector IT:

(In Nea | T M. 2) = (In Nga | M. 2)1 + Bl (M. 2) - TT + e,
= TN (M. 2) + oy (M, 2) In M

+BY, (M, 2) - T+ eny,,. (20)

(AT |, M,2) = (AT | M,2); + Bls(M,2) - Tl + éax
=maxs(M,2) +aps(M,2)In M
+B1s(M, 2) - Tl + €55, Q1)

where IT is a vector of secondary halo parameters of potential
interest listed in Table 3, and €5x and €Ny, are normally distributed
intrinsic scatter terms with zero means and uncorrelated variances.
In Appendix E, we show that the residual conditioned on secondary
halo parameters can largely be assumed to be Gaussian. Additionally,
we assume (eNguleAz) = 0, which implies that the scatter about
the mean relations is uncorrelated after factoring in the secondary
properties.
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Due to the bilinearity and distributive properties of covariance,
combining equations (20) and (21) yields

COV(AZ, In Nyt | M, 2) = Cov((AR)1, (Nga)1) + Cov((AZ)y, BT - TD)
+Cov((AX)y, en,,) + Cov(ﬁgz - I, (In Nga1)1)
+Cov(Bls - T1, B T+ Cov(Bly - T, €ny,)
+Cov(eas, (In Ngu)1) + Covieas, BT, - )
+Cov(ey,,, €ax), 22)

where we omit the explicit (M, z) dependence in (AX|M, z)i,
(InNgut IM, 2)1, BAs (M, 2), ﬁg{;gal (M, z), €N (M, z) and €A (M, 2) to
simplify the notation. The KLLR method is utilized to estimate these
mass-dependent parameters. All terms involving (AX) and (In Ng,)
vanish, as these terms are independent of IT by definition. Terms
involving €Nga and €,y also go to zero, as they are uncorrelated
Gaussian scatters. Only the term Cov(/f_flZ - 11, E{,ga] - IT) remains,
and hence our final expression for the covariance is

COV(AX, In Ny | M, 2) = Cov(By - T1, B, - TD)
= BLsCov(I1, By, (23)

To estimate the error in the covariance due to each of the secondary
halo parameters, we compute Cov(A X, I1;|M, z) for each secondary
halo parameter i in each (r,, M, z) bin and take their standard
deviations as the error measurement. Modelling the richness—mass
relation as in equation (20) and using the same derivation as in
equation (22), we arrive at the expression

CoV(AZ, InNga| M, 2) = Y Br,,i(M, 2) Cov(AZ, ;| M, 2),

(24

in which the error from each contributing term in IT is the standard
deviation for Cov(AX, I1;|M, z) multiplied by the partial richness
slope ,BNgaw The total variance of Cov(AX, InNyy|M, z) are the
errors of each term added in quadrature.

We test the validity of this model by checking how well the
secondary halo parameters can explain covariance between lensing
and richness in Section 6. After subtracting the covariance from
each of the II; terms, the full covariance should be consistent
with null, given the uncertainty. Our results confirm that the
dependency of secondary halo parameters can indeed explain the
covariance.

3 DATA SET AND MEASUREMENTS

In this section, we describe the measurements on the individual
ingredients that make up the covariance — AX the lensing signal in
Section 3.1 and In N, the log-richness measurement in Section 3.2.

3.1 Measurements of AX

We employ the MultiDark Planck 2 (MDPL2) cosmological simu-
lation (Klypin et al. 2016) to measure halo properties. The MDPL2
is a gravity-only N-body simulation, consisting of 38403 particles
in a periodic box with a side length of Ly,x = 1 h~!Gpc, yielding a
particle mass resolution of approximately m, ~ 1.51 x 10°h7! Mg.
The simulation was conducted with a flat Lambda old dark matter
(ACDM) cosmology similar to Planck Collaboration XVI (2014),
with the following parameters: h = 0.6777, Q, = 0.307115,
Qp = 0.692885, og = 0.829, and ny; = 0.96. We use the surface
overdensity of down-sampled dark matter particles to measure the
weak lensing signal. We selected cluster-sized haloes using the
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Figure 3. Using different prescriptions of the richness count, we compare
with the SPT-DES data (Costanzi et al. 2021). The richness estimator, with
no stellar or colour—magnitude cut, shows a similar trend with the data. In
Section 4, we show that the results are robust to changes in the definition of
the number count estimator.

ROCKSTAR (Behroozi et al. 2013) halo catalogue, which includes
the primary halo property of mass and redshift and a set of secondary
halo properties listed in Table 3 that we utilize in this analysis. To
capture the contribution of both the one- and two-halo terms to
&pm» we use a projection depth of D, = 200 Mpc h~! to calculate
AY (e.g. Costanzi et al. 2019; Sunayama et al. 2020). The MDPL2
data products are publicly available through the MultiDark Database
(Riebe et al. 2013) and can be downloaded from the CosmoSim
website.!

The excess overdensity, AX, is calculated by integrating the
masses of the dark matter particles in annuli of increasing radius
centred around the halo centre. However, since clusters do not have a
well-defined boundary, we compare the results of two radial binning
schemes. The first scheme uses 20 equally log-spaced ratios between
0.1 and 10 times R,;;, while the second scheme spans 0.1 to 10 times
R>p0.. We consider the measurements binned at Rygo. as our final
results to be consistent with the weak lensing literature. Fig. 2
shows that our measurements are consistent with most models of
the concentration-mass and halo-bias models at a 1o level.

At a projection depth of D, = 200 Mpc h~!, the projection
effects can be modelled as a multiplicative bias (Sunayama 2023).
In Sunayama (2023) the projection effects on AX are modelled
as AXgps = (1 + @)AX e, Where o = 18.4 + 8.6 per cent. Al-
though the multiplicative bias of projection effects may increase
the amplitude of Cov(AZX, InNg,) by a factor of (1 + «), we
argue that it does not introduce an additive bias into our model
for Cov(AX, InNgy). This is because, under the richness model
and A in equations (20) and (21), only terms in richness that are
correlated with projection effects will contribute to the covariance.
As demonstrated in Section 3.2, we enclose the halo within a 3D
physical radius, so the number count Ny, of galaxies should not
include projection effects. Therefore, projection effects should not
introduce an additive bias to our covariance.

To remove the 2D integrated background density, we first com-
puted the background density of the universe (pp) at the cluster
redshift using the cosmological parameters of the MDPL2 simula-
tion. The integrated 2D background density is given by X, = 2D, 05,
where factor 2 comes from the integration of the foreground and
background densities.

Thttps://www.cosmosim.org
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3.2 Measurements of Ng,

3.2.1 Data set for Ny — SAGE galaxy catalogue

The Semi-Analytic GALAXY Evolution (SAGE) is a catalogue
of galaxies within MDPL?2, generated through a post-processing
step that places galaxies onto N-body simulations. This approach,
known as a semi-analytic model (SAM), is computationally efficient
compared to hydrodynamical simulations with fully self-consistent
baryonic physics. SAMs reduce the computational time required by
two to three orders of magnitude, allowing us to populate the entire
1 (Gpc h™!)? simulation volume with galaxies. SAGE’s statistical
power enables us to conduct stacked weak lensing analyses.

The baryonic prescription of SAGE is based on the work of Croton
et al. (2016), which includes updated physics in baryonic transfer
processes such as gas infall, cooling, heating, and reionization. It
also includes an intracluster star component for central galaxies
and addresses the orphan galaxy problem by adding the stellar
mass of disrupted satellite galaxies as intra-‘cluster’ mass. SAGE’s
primary data constraint is the stellar mass function at z = 0.
Secondary constraints include the star formation rate density history
(Somerville, Primack & Faber 2001), the Baryonic Tully-Fisher
relation (Stark, McGaugh & Swaters 2009), the mass metallicity
relation of galaxies (Tremonti et al. 2004), and the black hole-bulge
mass relation (Stark et al. 2009).

3.2.2 Model for Ny

To determine the number of galaxies inside a cluster-sized halo, we
utilise the SAGE SAM and compute the total number of galaxies
within a 3D radius around the halo centre. We compare the true
richness (Nga) to M. scaling relations between different models
and the observed richness-mass relations from Costanzi et al. (2021)
using data from the DES Year-1 catalogue and mass-observable-
relation from the South Pole Telescope (SPT) cluster catalogue (see
Fig. 3). The observed richness-mass relation is fitted as a log-linear
model with 2 — ¢ error bars that trace the posterior of the best-
fitting richness-mass model parameters. The Msgo. mass definition
in the catalogue is converted to Mygy. using an NFW profile for
the surface density of the cluster and adopting the Diemer & Joyce
(2019) concentration-mass relation anchored at z = 0.35, which is
roughly the median redshift of the cluster sample.

We use the KLLR method to determine the local linear fit for
our Ng,-mass model, which relaxes the assumption of global log-
linearity (Anbajagane et al. 2020). Realistic cluster finders, such as
redMaPPer (Rykoff et al. 2014), impose a colour-magnitude cut or
a stellar mass cut, which are highly dependent on the red-sequence
model or the spectral energy density model. We found that imposing
a stellar mass cut of 10.5log (M/M) would correspond roughly to the
bottom 5 per cent percentile of SDSS detected galaxies (Maraston
et al. 2013). However, this drastically decreases the number of
galaxies in a halo, with most having Ny, in the single digits. As we
are interested in the intrinsic covariance from the physical properties
of the halo, we do not impose additional magnitude or stellar mass
cuts. We confirm that, as described in Croton et al. (2016), the galaxy
stellar mass distribution at z = 0 is consistent with the best-fitting
double Schechter function calibrated with low-redshift galaxies from
the Galaxy and Mass Assembly (Baldry et al. 2012) down to stellar
masses of M > 103 M.

Fig. 3 illustrates that our Ng-mass models, which count the
number of galaxies within a physical 3D radius and impose no colour-
magnitude cut as redMaPPer does, resemble the general behaviour
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Figure 4. Measured against the left hand side y-axis are measurements of Cov(AX, Nga|M, z) with 1o errors and different functional forms using the full
model. The functions are classes of ‘Sigmoid’ functions. In all bins, the error function outperforms other functional forms in their DIC parameters, providing
good %2 values. For Magoe € [5 x 10,1 x 1019) at z = 0.49 and Moo € [2 x 10,5 x 10'%) at z = 1.03, the posteriors of the full models do not converge as
the size of the covariance is too small. Measured against the right-hand side y-axis are the correlation coefficients ras, Ny, |m,z With smoothed bands representing

the 1 — o error. The errors are measured by bootstrap resampling.

of the observed richness-mass relations in terms of both slope and
intercept. However, we acknowledge that redMaPPer may suffer
from projection effects that artificially inflate the number count of
red-sequence galaxies within its aperture because of line-of-sight
structures. Additionally, the Ny, count within the R,; radius exceeds
that of Rypoc as Ry is greater than Rygoc. In the toy model scenario,
where we use a constant 1 Mpc ™! radius, the slope of the mass-
richness relation starts to decrease as the mass increases due to the
increasing physical size of the clusters, as expected. The diversity
of cluster radii and the resulting variation in the local slope and
intercept of the Ng,—mass relations demonstrate the robustness of
our covariance model. In Section 4, we show that different radii/mass
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definitions have little impact on the parameters of our covariance
model, thus establishing its independence from different reference
radii, the definitions of cluster edges, and the resulting richness-mass
relations.

4 RESULTS: COVARIANCE SHAPE AND
EVOLUTION

In this section, we report the measurements for our covariance. In
Fig. 4, we find an anti-correlation between Ny, and AX at small
scales across most redshift and mass bins spanned by our data set,
which we fit with the best-fitting ‘Sigmoid’ functional form of the
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Figure 5. Evolution of Cov(AX, Ngu|M, z) shape parameters with respect
to mass and radial binning schemes and Ng, definition at fixed redshift at
z=0. AX is binned in equal log-space radial bins in R/Rpo. or R/Ry;;; for
each radial binning, the number count of galaxies inside the cluster is given
by a constant radius of 1 Mpch™! or Rygoe when binned by Rogoe and Ryir
when binned by Ryi;. We find no strong evolution in the shape or scale of
the covariance under different binning schemes or Ng, definitions. The trend
is consistent across different redshift bins and demonstrates the robustness
of the covariance under different true richness definitions. The error bars
indicate the 1 — o distribution of the posteriors.

expression

ST +e).
2

with x = log R/Ry. the log-radius and ¥ = (x — y)/7 the scaled

and offset log-radius. In Appendix A, we offer statistical verification

of the best-fitting functional form.

We first describe the evolution of the covariance in Section 4.1
by binning across the (M, z) bins. Next, in Section 4.2, we present
an alternative binning scheme based on halo peak height that can
provide insight into the dependence of the time formation history of
the covariance scale.

Cov(R) = s(erf( (25)

4.1 Binned in (M, )

Our best-fitting parameters in Table D1 indicate that in 9 out of 12
(M, z) bins, the Cov(AX, InNg|M, z) rejects the null-correlation
hypothesis with high statistical significance (p-value < 0.01). How-
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ever, in two bins, specifically Mape € [5 x 10,1 x 10°)Mgh™!
at 7 = 0.49 and Mrpo € [2 x 10™, 5 x 10'5)M@h_l atz = 1.03, the
magnitude of the covariance is relatively small compared to the size
of their errors. Consequently, it becomes challenging to constrain the
shape parameters in these two bins, and the covariance is consistent
with the null hypothesis. Furthermore, we exclude the bin M. €
[5 x 10", 1 x 10°)Mgh~!, z = 1.03 due to the limited number of
haloes it contains.

Our results suggest that the shape of the covariances can be
accurately described by the full error function. Additionally, for R >
Ryir or R > Ryp., the covariance aligns with the null-correlation
hypothesis. This alignment is reflected in the fact that all nine
bins with constrained posterior shape have best-fitting g values
within 20 of g = —1. Deviations from g = —1 can be interpreted
as evidence of disagreements with the Press-Schechter formalism
(Press & Schechter 1974) of spherical collapse haloes, which can be
originated from the presence of anisotropic or non-Gaussian matter
distribution around haloes at large scales (Lokken et al. 2022), or it
can be an indicator of an open-shell model of haloes that allows for
the bulk transfer of baryonic and dark matter in and out of the halo
potential well during the non-linear collapse.

With ¢ = —1 fixed, the reduced error function marginally im-
proves the constraints in most bins. However, with the reduced
model, we can provide posterior constraints for My € [5 X 1014,
1 x 10")Mgh~! at z =0.49 and Mago. € [2 x 10'4,5 x 10P5)Mgh™!
at z = 1.03, which the full model failed to constrain but with very
loose posterior constraints. The estimated parameters for both the full
and reduced models are presented in Tables D1 and D2, respectively.

To assess the impact of varying the definition of the halo radius
on our measurements of the shape of the covariance, we considered
two factors: the scale dependence of AX discussed in Sections 2.1.3
and 3.1, and the alteration of the richness-mass relation as shown in
Fig. 3 in Section 3.2. Fig. 5 demonstrates that there is no apparent
evolution of the shape parameters 0 € {t, y, g} when altering the
scale dependence for AX or the true richness count. However, we
find marginal 3¢ evidence of a difference in the amplitude parameter
of the covariance s when changing the scale normalisation from r, =
R/Ryyc to 1, = R/R,;; while using the same true richness count. As
haloes exhibit more self-similarity in the inner regions when scaled
by Ry (Diemer & Kravtsov 2014), we adopt this as our radius
normalisation and use the number of galaxies enclosed within Ry
as our true richness count.

Subsequently, we explored the evolution of the shape parameters
with respect to (M, z) and found no strong mass dependence. How-
ever, we observed a monotonically decreasing redshift dependence
of the amplitude parameter s, as illustrated in Fig. 6. To explain both
the halo mass and the redshift dependence, we used the peak height
of the halo, v(M, z).

4.2 Binned by peak height

An alternative binning scheme that encapsulates both the halo mass
and redshift information is to bin haloes by the peak height parameter,
defined as

8¢

T o(R.a) (20)

where 8.(z) is the collapse overdensity at which gravitational col-
lapses enter the non-linear regime and o (R, a) is the smoothing scale
seen in equation (B2) at the radius of the cluster. For an Einstein-de
Sitter universe (£2,, = 1, 25, =0) §. & 1.686 at the epoch of collapse
and is weakly dependent on cosmology and redshift (Percival 2005).
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Figure 6. Evolution of Cov(A X, Ngy|M, z) shape parameters of the error
function with respect to mass and redshift, binned in units of Ragg. and with
Ngar taken to be the number of clusters inside the Rqoc radius of the cluster.
There is no strong dependence of 7, y, and g with respect to mass and redshift
and a strong monotonically decreasing s with respect to redshift. At Moo
€[5 x 10, 1 x 10'5), z = 0.49 and Magoc € [2 x 10,5 x 10%), z =
1.03 the covariance is consistent with null at p = 0.01 and p = 0.05 levels,
respectively. The error bars indicate the 1 — o distribution of the posteriors.

o (R, a) scales as (M, a) = 0 (M, a = 1)D(a) at the linear collapse
regime, where D o(a) = D, (a)/D(a = 1). Here, D, (a) is the linear
growth factor defined as

_5Qy @ da
D,(a) = TE(a)/0 WE@T (27)

for a ACDM cosmology, where E(a) = H(a)/H, is the normalized
Hubble parameter. o (R, z) depends strongly on redshift, and hence,
the peak height v strongly depends on the halo radius and the redshift
of non-linear collapse.

The peak height has been adopted to simplify the mass and redshift
dependence in various halo properties, such as halo concentration
(Prada et al. 2012) and halo triaxiality (Allgood et al. 2006). Here,
we explore whether the peak height can serve as a universal parameter
to explain the scale and shape of Cov(A X, In Ny, |M, z). We bin the
haloes into deciles of v and set posterior constraints on the shape
of the covariance using our erf model in the full model case. In
the highest decile (90-100 per cent percentile), we reject the null-
correlation hypothesis at the p = 0.01 level, but due to the size of
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Figure 7. Best-fitting ‘full’ error function model for Cov(A X, In Nga |M, z)
when binned in deciles of halo peak height. The first nine bins reject the
null hypothesis at a p < 0.01 level, and the highest decile rejects the null
hypothesis at a p < 0.05 level. We can provide posterior constraints for all
bins in peak height except for the one with the highest peak height value.

the error bars, the shape of the parameters 7, y, and g and largely
unconstrainedand s = 10'2 x 0.1670}5. Due to the large degeneracy,
we exclude the highest decile from our data set and limit the range
of our model to v € [1.57, 3.40), which spans 0-90 per cent of our
sample set. The large error bars may be due to the fact that the halo
abundance as a function of v falls precipitously around v ~ 4, so the
highest decile spans a wide tail of high v € [3.4, 4.6). The plots in
Fig. 7 are the best-fitting templates when binned by peak height, and
Fig. 8 shows the best-fitting parameters as a function of peak height.
We do not see a strong dependence on the peak height for z, y, and
g. For s, its dependence on v can be modelled as a log-linear relation
of the form

logo(s) = Cs + v, (28)

with Cy = 13.07703¢ and o = —0.4470]|. At the highest decile,
the s = 10'? x 0.16703 falls within the 1o confidence band of the
log-linear fit. Compared to the first nine deciles, the fit yields a x>
p-value of 0.73. The negative slope between s and v indicates that
more massive haloes at the cosmic era of their formation exhibit a
lesser anticorrelation between AX and In Ngy;.

5 IMPACT OF COV(AX, LN NgavIM, z7) ON WEAK
LENSING MEASUREMENTS

To assess the impact of Cov(A X, In Ngy|M, 7) on the scaling relation
(AX|Nga, z), we utilize equation (17) for the first-order correction
and equation (18) for the second order. The mean mass of the haloes
in each (M, z) bin is chosen as the pivot mass around which the HMF
is Taylor expanded, and the intercept 7y, and slope ay,, for the
richness-mass scaling relation shown in equation (9) are computed
locally at the pivot point in each bin (M, z) bin. Our mock data, binned
in Ry, yield results that are consistent with the global richness-mass
relation found in the literature (Bocquet et al. 2016; Costanzi et al.
2021; To et al. 2021), as shown in Fig. 3.

For the correction terms, we adopt the Tinker et al. (2008) halo
mass function as our nominal model and compute the numeric log-
derivative for values of y; and y,, the log-slope and curvature of
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Figure 8. The evolution of shape parameters for Cov(AX, InNgu|M, z)
binned in deciles of the peak height v, excluding the highest decile. The
parameters t, y, and g show little dependency with v while the amplitude s
exhibits a log-linear relationship with v of the form shown in equation (28).
The mean g is consistent with — 1. The horizontal teal bands fill the 1o range
around the mean, and the pink line is the best log-linear fit between s and v
with 1o confidence bands.

the halo mass function around the pivot mass. We compare the
Tinker mass function results with others, including Watson et al.
(2013), Bocquet et al. (2016), Despali et al. (2016), and find that the
difference is subdominant to the first-order correction, which is at a
~ 1 per cent level at small scales, as shown in Fig. 9.

To estimate the mass bias in each bin, we stack (AX|M, z) and
model the profiles as if they were individual haloes with a mean
mass, redshift and concentration as described in equations (2)—(7).
We assume NFW profile using the concentration—mass model of
Diemer & Joyce (2019) in the one-halo regime. The two-halo regime
should not be affected, as the covariance is consistent with zero at
R 2 Roooe. We convert the 3D overdensity of the modelled halo &,
to AX using equations (2) and (5), and then apply the first-order
correction in equation (17). Using a Monte Carlo method we obtain
the expected mass with and without this correction and report the
change in the mean halo mass with this correction for each (M, z)
bin. As shown in Fig. 9, we find that adding the correction leads
to an upward correction of the stacked halo mass of approximately
SM/M ~ 2 — 3 per cent for most (M, z) bins.

6 EXPLAINING THE COVARIANCE

6.1 Secondary halo parameter dependence of In Ny,

We employed a multivariable linear regression model to determine
the best fit when incorporating secondary properties in the regression.
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Initially, considering the full set of parameters listed in Table 3,
we applied a backward modelling scheme to identify the relevant
parameters of interest. Details of this process can be found in
Appendix E, which led to the selection of the following secondary
halo parameters for our model: ITC{T 2ayn, @112, Cvir, T/|U|, Xofc }. The
resulting model demonstrated good explanatory power, as indicated
by a high R? coefficient. Additionally, the model passed various tests,
including variance inflation, global F-statistic, partial F-statistic, 7-
statistic, scatter heteroscedasticity, and scatter normality in most
cases. Specifically, through a comparison of Fpq values, we found
that richness could be modelled by a multilinear equation involving
all secondary halo parameters. Further information can be found
in Table E1, where the F-statistic demonstrates that all parameters
are statistically significant. Only when considered collectively can
they accurately reflect the dependence of richness on halo formation
history.

To establish informative priors for upcoming weak lensing surveys
such as Hyper Suprime-Cam (HSC) and LSST, we examined whether
the dependence of N, on secondary halo properties, as inferred
from the slope B, , aligns with arguments based on halo formation
physics. We expected that By, c,, resulting from the formation
of satellite galaxies (equivalent to Ny, — 1 in the presence of
a central galaxy) within haloes would exhibit a negative relation,
1.€. BNgcwir < 0. Simulation-based studies have suggested that early
forming haloes possess higher concentrations (Wechsler et al. 2002),
and correspondingly, high-concentration haloes (which form early)
have fewer satellite galaxies due to galaxy mergers within the haloes
(Zentner et al. 2005). This effect is known as galaxy assembly bias
(Wechsler & Tinker 2018) — the change in galaxy properties inside a
halo at fixed mass due to the halo formation history. There is marginal
evidence of the existence of assembly bias from recent observations
using galaxy clustering techniques (Zentner et al. 2019; Wang et al.
2022), as well as measurements of the magnitude gap between the
brightest central galaxy (BCG) and a neighbouring galaxy as a proxy
for formation time (Hearin et al. 2013; Golden-Marx & Miller 2018;
Farahi, Ho & Trac 2020).

As noted in Table El, the signs of ﬂNgaw' for the remaining
parameters i € {ai, T/|U|, Tagyn, Xosr} align with our expectations
of assembly bias in most bins — late-forming clusters undergo
more rapid mass accretion (higher I'zqy,) and are less virialized
(higher T/|U|), and because they also from the galaxy assembly
bias mentioned above are richer in galaxy number counts when
conditioned on the mass, we expect a positive partial slope By, Iy,
and ﬂNgal.T sul- The case for a;;, and X, is more complicated. Under
the isolated formation of haloes a;, and X, would be smaller for
earlier forming haloes due to the monotonic mass accretion and
relaxation of haloes over long time-scales. However, as haloes un-
dergo mergers and tidal stripping the monotonicity of the parameters
over time is not guaranteed. Therefore, we see a mixture of positive
and negative partial slopes By, ,a;,, and By, x.q in these cases. To
describe the physical mechanisms on a case-by-case basis would
require that we probe into the halo merger tree history of individual
haloes.

In this paper, we take a closer look at the sign of By, c; and
observe that while the partial scope matches our expectations in most
bins, in some mass bins at medium and high redshifts it changes
signs from negative at lower redshifts to positive at higher ones.
While we observe a diminishing impact of secondary halo properties
on richness (indicated by a smaller absolute value for By, c.),
the reversal of the coefficient’s sign cannot be solely attributed to
statistical fluctuations around zero, as some values are inconsistent
with zero at levels exceeding 3o
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Figure 9. The per cent level change in stacked AX measurements after including the covariance terms in equations (17) and (18) as denoted by AX o, and
without applying corrections as denoted by AXqq4. The slope and curvature of the halo mass function are calculated numerically from the Tinker et al. (2008)
halo mass function in our nominal correction. The errors are taken from bootstrapped errors of the covariance. We compare the results with first-order corrections
from other halo mass functions using Watson et al. (2013); Bocquet et al. (2016); Despali et al. (2016). We find that the percentile difference in A% far
exceeds the uncertainty in the choice of halo mass functions, and that second-order corrections are subdominant to the first-order correction itself, which is at
a ~ 1 per cent level at small scales for AX and propagates into an upward correction of stacked halo mass of §M /M ~ 2 — 3 per cent for most bins after

applying the correction.

This issue can be attributed to the effect of major mergers on
concentration. Recent studies (Ludlow et al. 2012; Wang et al. 2022;
Lee et al. 2023) have shown that haloes, during major merger events,
experience a transient fluctuation in concentration before returning to
the mean relation over a time period slightly less than the dynamical
time of the halo. The measured concentration spike during major

MNRAS 530, 3127-3149 (2024)

mergers, particularly prominent at higher redshifts, could explain a
POSItive Bin,,,cyirl-

To test this hypothesis, we employ a toy model that divides haloes
in each (M, z) bin based on the median I" 4y, into low-I" 14y, and high-
I"iayn subsamples. Given the time-scale of mergers to be roughly
the dynamical time of the halo, we choose I'jgyn as a good proxy
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Figure 10. Residual log-richness versus concentration relation in subsets of halo mass accretion rate (MAR). The figure consists of three panels — left, middle,
and right panels corresponding to z = 0, z = 0.49, and z = 1.03, respectively, all on a benchmark mass bin of M. € [5 x 103, 1 x 10"*)Mgh~!. The sample
is split into low and high I"14ys based on their median values. The scatter plot illustrates the data points, while the shaded regions show the best-fitting linear fit
with 1o confidence interval for the main sample and each subsample. At z = 0, the richness—concentration relation exhibits a negative slope, consistent with
our expectations of halo formation physics. The slopes for the low and high I" 14y, subsamples diverge due to the negative correlation between concentration and
MAR. However, at z = 0.49 and z = 1.03, the slopes for the entire sample and/or the high I' 14y, subsample become positive, contrary to our observations of
the richness-concentration relation. In contrast, the low I"14y, subsample still shows a negative slope. These findings suggest that at medium to high redshifts, a
subset of unrelaxed and recently merged haloes with high MAR could elevate the concentration from its expected value at hydrostatic equilibrium.

for potential merger events even though this parameter is excluded
in the final linear regression model due to multicollinearity (see
Appendix E).

Fig. 10 displays the halo concentration plotted against the richness
residuals, separated by I'j4yn, at benchmark bins of Mg € [5 x 10"3,
1 x 10")Mg h~! at three different redshift snapshots of z = 0,
0.49, 1.03. At z = 0, we observe a negative slope as expected
from halo formation physics for both low-T"j4y, and high-T"j4y,
subsamples, as well as for the overall sample. Furthermore, we
observe a change in the slope between the low-I" 4y, and high-I"4yn
subsamples, which can be explained by the gradual increase (or
decrease) in concentration (I'jqyn) over time, even without major
merger events (Wechsler et al. 2002; Zhao et al. 2003; Lu et al.
2006). At redshifts of z = 0.49, 1.03, we observe a positive slope in
the overall and/or high-I";4y, samples, which contradicts the scaling
relations between HOD and concentration in models that track their
gradual evolution over T > T4yn,. However, in the presence of major
mergers, when I' 4y, is significantly enhanced, the halo concentration
may also experience a transient spike after the merger. The deviation
from hydrostatic equilibrium provides a plausible explanation for a
positive B{Nga, ¢yir }, which could be fully tested on MDPL2 through
the reconstruction of halo merger trees, an analysis beyond the scope
of this paper.

6.2 Secondary halo parameter dependence of AX

In this section, we employ a multilinear regression approach to
model the lensing signal, similar to the methodology described in
Section 6.1. We extend this approach to the model P(AX|Ngu(TT),
M, z) as a linear function of I1. Upon analysing different (M, z,
7,) bins, we observe that the reduced parameters nc{ain, cvis
T/U, Tayn, Xor} pass the variance inflation factor (VIF) test for
multicollinearity, or in other words we showed that the variance is not
inflated and thereby made less reliable in the case that the secondary
halo parameters in the full model are highly correlated. As with the

case for the lensing signal, this indicates that In Ny, can be described
without redundancy by a linear decomposition of these reduced
parameters. Furthermore, most bins exhibit homoscedasticity, as
confirmed by passing the Breusch—Pagan Lagrange multiplier test.
This implies that the scatter terms o,y and op, remain constant
within each bin, with a few exceptions. Lastly, the scatter oAz, Naal in
most bins (with a few exceptions) meets the criteria of the Shapiro—
Wilk test for Gaussianity, suggesting that the distribution closely
resembles a Gaussian distribution.

The multilinear regression is a good fit to the conditioned lensing
signal if we assume that P(In Ngy|M, z) and P(AX|M, z) can be
modelled with a normal distribution (e.g. Anbajagane et al. 2020;
Costanzi et al. 2021; To et al. 2021). In this case P(AX|Nga, M, z) is
a multilinear equation with respect to the secondary halo parameters
with mean

(AX|Nga, M.2) = (AE|Nga, M.2)

+Croas (D Pront 5 (T — (M )

;. Om
(29)
and is normally distributed around the mean with variance
2 2 2 2 2
OAS|InNg = %0 + G Z IBNgal,iaHi(l - Pm:fn,-)
J#i
+C3 ) pr—n,on,0m,. (30)

LJ
The parameters C1, C2, C3, and o can be explicitly derived where
P(InNgy|M, z) and P(AX|M, z) are known, but the exact values are
not essential for this paper. We refer the reader to Appendix F for
derivations of equations (29) and (30).

We note that only in bins of R < Ry do the multilinear regression
models pass the global F-statistic test and the 7-statistic test for each
parameter. This result suggests that, at R 2 Ry, we find little
correlation between AX and II;. Because the scatter still passes

MNRAS 530, 3127-3149 (2024)

202 ABIN +Z U0 18aNB Aq 2GEYY9.//21E/E/0EG/PI0IE/SEIUW/WOY"dNO™DIWLSPED.//:SA)Y WO PaPEOjUMOQ



3140  Z. Zhang et al.

< T/|U| Xoff
3 10
=
S~
<
O
= 100
W
< S
0.25 _3-E-
N —f--p-d-F--F-a--z_ §
g b= R T o R = T v S H B R e o P {i 3 i
0.00 s e o8 DL S PR Y . S Pa S
2 =T = o e TS Qi,‘]
e -
© _0.25 1»71"1-»-1—-;._;._-1--1"’1"{ F-d--F-googop-d--F
107t 100 10t
& aip rzdyn R/R200c
()
o 1014
=
S~
<
O
5 1013 [0%-20%]
N [20%-40%]
< [40%-60%]
[60%-80%]
0.25 [80%-100%]
N . | S o S {\{ —— Al
§ 0.00 £ S o e MO S o5 N ,H it T e SO Y l{}w .
g e o= SR A S 36 2 N :’] S B e S S “‘j——‘f*‘l:"‘l
O _ggg )| Frirdeib T I
107t 100 10! 107! 10° 10t
R/R200c R/R200c

Figure 11. The dependence of AY on accretion history parameters in Magoe € [2 x 10,5 x 10")Mgh~2, z = 0. In each of the five panels is plotted the
AY in different quintiles of the accretion history parameter IT € {ai/2, cyir, T/|U|, T"2dyn, Xoft } compared to the mean AX. For {ai, T/|U|, T2qyn, Xor} there
is a strong negative correlation at small scales at R < Rago. and for c¢yir we find a strong positive correlation at R S Rpoc. Comparing the width of A¥ binned
at different quintiles of IT with the standard deviation of the profiles, we find that accretion history parameters account for much of the variance at small scales

and play a negligible role at large scales.

the Shapiro-Walk test for Gaussanity, the conditional probability

P(AX|Ng, M, z) at large scales is still normally distributed, but with

pas—m; = 0. By setting pas—_n; = 0 the variance can be reduced to
J#L

G§2|Ngal =O~§+Zﬂfz\’gal‘i0~l§[i +ani71‘[i0’ni0’ni. 31
i L]

We visualize the dependence of pax_n; on R/Ray in Fig. 11. By
dividing AX into quintiles of I1; we find a strong correlation for all
parameters at R < R0, and a null correlation at R 2 Rppo.. On small
scales, our results show a positive correlation for concentration and a
negative correlation for {a, T/U, [adyn, Xotr }- We observe that this
trend holds for all (M, z) bins plotted for a benchmark bin of My,
€2 x 10", 5 x 10"Mg h~'atz =0.

The dependence of AX on secondary halo parameters qualitatively
agrees with Xhakaj et al. (2022) wherein they targeted a narrow mass
bin, with residual mass dependency inside the bin resampled so that
mass follows the same distribution. In our work, we remove the mass
dependency with the KLLR method (Farahi et al. 2022a), which
achieves the same effect. We extend their results to mass and redshift
bins probed by the optical surveys and quantitatively show that the
dependence of AX on IT can be modelled as a multilinear equation.

6.3 Results: secondary halo parameter dependence of Cov(AX,
In N, gal M, z)

In Fig. 12, we observe that the total covariance Cov(A X, In Ngy M,
7), which remains after removing the contribution of each secondary
halo parameter By,, iCov(AX, I1;|M, z), is consistent with zero
at a significance threshold of 0.05 in all bins. The errors on the
total covariance and individual contributions are computed using
bootstrapping, and the errors on the remaining term are determined
by adding the errors of the total and individual terms in quadrature.

MNRAS 530, 3127-3149 (2024)

Based on our hypothesis in equation (24), we conclude that the set
of secondary halo parameters I1, which are related to the formation
time and the mass accretion history of the haloes, can fully explain
the joint distribution of AX and In Ny, given the precision allowed
by current errors, limited by the resolution limit (see Appendix B for
information on particle resolution and measurement errors).

Since the joint distribution of AX and In Ny, follows a mul-
tivariate normal distribution, P(AX, InNgy|M, z) is completely
characterized by its mean relation and Cov(AX, InNgy|M, z). It
should be noted that the contribution of each individual parameter
to the total covariance, ﬁNgalinov(AE, Il; | M, z), is determined
by the richness dependency captured by the slope By, ; and the
AY dependence represented by Cov(AX, I1;|M, z). Qualitatively,
individual contributions to total covariance maintain their sign when
both AX and Ny, contributions preserve their sign. Consistent with
the arguments of halo formation, IT correlates with AX at small
scales, as demonstrated in Fig. 11 across all (M, z) bins. In most
cases, the dependence of the richness on secondary halo parameters
also maintains its sign across the (M, z) bins. In instances where we
encounter a sign reversal in the In Ny — ¢, relation, we speculate
thatitis due to a transient increase in concentration following a major
merger.

Furthermore, the total and individual contributions to the covari-
ance tend to decrease in magnitude at smaller scales with increasing
redshift. This decrease in covariance can be attributed to two factors:
the decreasing explanatory power of IT on richness, as indicated by
the decreasing values of R?> and Fparia values in Table E1, and the
decreasing absolute value of Cov(AX, I1;|M, z). This trend aligns
with the idea that as haloes have more time to form, the secondary
halo properties related to the mass accretion history become more
significant both in richness and in AX. As discussed in Section 4, the
dependence of the mass and redshift on covariance can be explained
by the halo peak height, v(M, 7).
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Figure 12. The dependence of Cov(AX, InNgy) on secondary halo parameters IT. The solid blue line is the total covariance. The dashed lines of the lines
represent the covariance contribution coming from each of the secondary halo parameters modelled and governed by equation (24), where Cov(A X, T1|M, z)
comes from the dependence of AX and the slope B; is the dependence of richness. The thick black dashed line is the remaining covariance after removing the
contribution from each I1; term; the errors are obtained by adding the total and individual errors in quadrature without considering the correlations between
terms. In agreement with our hypothesis in equation (24), the remaining term is consistent with null at a p < 0.01 level for all bins.

7 DISCUSSIONS component) and the underlying physics governing halo formation

Intrinsic versus Extrinsic Covariance. Our study distinguishes
between the intrinsic covariance investigated here and that observed
in empirical cluster data sets. This distinction arises from system-
atic biases introduced by the cluster-finding algorithm (extrinsic

(intrinsic component). Specifically, our analysis involves counting
galaxies in 3D physical space. In contrast, a realistic cluster finder like
redMaPPer (Rykoff et al. 2014) employs a probabilistic assignment
of galaxies to haloes in 2D physical space, considering projected
radii and redshift through colour matching on to the red sequence.
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Our study does not account for the observational systematics in
redMaPPer associated with uncertainties in photometric redshifts
and projection effects (Rozo et al. 2015; Farahi et al. 2016).

We find that the fractional amplitude of the bias and the scale
dependence on the lensing signal observed in our results (Fig. 9)
are comparable to those reported by Farahi, Nagai & Anbajagane
(2022b), who measured the covariance between the dark matter
density and the galaxy number count enclosed inside a halo after
applying a realistic stellar mass cut. The enclosed mass within
a 3D radius using the IlustrisTNG100 simulation is anchored at
z = 0.24. By comparing our findings to those obtained using a
realistic cluster finder such as redMaPPer, we can unravel intrinsic
and extrinsic contributions to the covariance between weak lensing
observables (Wu et al. 2022). This work provides more profound
insights into the distinct effects originating from the underlying
physics and the methodology employed in cluster-finding algorithms
(Euclid Collaboration 2019).

Projection effects. A noteworthy distinction arises regarding the
covariance observed in our study compared to others examining
clusters in projected space. Projection effects can potentially in-
troduce a sign flip in covariance, as they can positively bias both
AY and richness (Costanzi et al. 2019; Wu et al. 2022; Zhang &
Annis 2022; Zhang et al. 2023). Particularly, Zhang et al. (2023)
showed that the lensing signal can be affected both at large and small
scales from the preferential alignment of halo orientation with the
underlying large-scale structure filament. Wu et al. (2022) detected
a positive correlation between AY and In Ny, employing Buzzard
simulations, where AY¥ were measured using dark matter particles
and galaxy counts were performed within a cylindrical region of
depth 60 Mpc h~'. Their investigation revealed that the positive
correlation primarily stems from galaxy number counts beyond the
halo’s virial radius and within 60 Mpc ~~!. On the other hand,
using the Dark Quest emulator and HOD-based galaxy catalogues
(Nishimichi et al. 2019), Sunayama et al. (2020) found negligible
deviations from the mean relation at small scales and an overall
reduction in selection bias at large scales, approximately halving
the effect observed by Wu et al. (2022). Furthermore, Huang et al.
(2022), using data from the Subaru HSC survey, observed that the
selection bias is most prominent in the vicinity of the transition from
the one-halo to the two-halo regime, as evidenced by the comparison
between the outer stellar mass proxy and richness. In a study based on
the IustrisTNG300 simulation, Zhang & Annis (2022) discovered a
net positive correlation between the fitted weak lensing mass and the
projected 2D number count of the halo when conditioned on the halo
mass.

These results suggest that projection effects can potentially in-
troduce a positively correlated bias to both AX and Ng,. We
can estimate the impact of projection effects by comparing the
intrinsic covariance measured in our study with the total covariance
observed in the projected space. Consequently, our results serve
two essential purposes: (i) elucidating the physical origins of the
negative covariance and (ii) discerning intrinsic and extrinsic com-
ponents to determine the covariance attributable to projection effects
accurately.

Radial dependence. There is a notable difference in the re-
ported amplitude and scale dependence of covariance, which can
be attributed to discrepancies in the employed halo occupation
density models. Notably, a distinctive scale dependence discrepancy
exists between simulation-based investigations of projection effects
(Salcedo et al. 2020; Sunayama et al. 2020; Wu et al. 2022) and
observational data from the HSC (Huang et al. 2022). In particular,
the analysis of observational data reveals a prominent 1 Mpc bump,
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which could be explained by uncertainties inherent in observations,
such as miscentring effects. It is crucial to gain insight into the
sensitivity of the covariance with respect to the model parameters
and the influence of selection effects. Understanding these factors is
essential to comprehensively interpret and account for the observed
covariance in galaxy cluster survey studies.

Accuracy versus precision. The statistical power of current
and future surveys enables us to determine the normalization and
slope of the mass—observable relations at a few per cent levels (e.g.
Farahi et al. 2016; Mantz et al. 2016b; Mulroy et al. 2019; To
et al. 2021). However, these estimates are susceptible to known and
unknown sources of systematic errors that inflate the uncertainties.
These uncertainties introduce biases and degrade the accuracy of
the results. Therefore, it is essential to carefully identify, quantify,
and account for these systematic effects to ensure robust and
reliable measurements. In this work, we focus on studying one of
these sources of systematic uncertainty that was not considered
previously.

8 SUMMARY

This work reveals insights into the scale-dependent covariance
between weak lensing observables and the physical properties of
the halo. Using the MDPL2 N-body simulation with galaxies painted
using the SAGE SAM, we present several key findings:

(i) We observe that the intrinsic covariance between AX and
In Ny, enclosed within a 3D radius is negative at small scales and
null at large scales in (In M, z) ranges that cover optical surveys.

(i1)) We model the shape of the covariance across all bins using
an error function that is insensitive to the radius definition used to
define halo boundaries.

(iii) We find that the magnitude of the covariance is relatively
insensitive to mass and decreases considerably with increasing
redshift. The (M, z) dependence of the shape of the covariance can be
encapsulated by the peak height parameter v(M, z), which suggests
that the scale of the covariance is related to the formation history of
haloes

(iv) We show that incorporating the covariance into (AX|Ngy, 2,
rp) using the first-order expansion of the halo mass function yields
about > 1 per cent bias on (AX|Ngy, 2z, 1;,) at small scales, which
implies a mass bias of > 2 per cent in the halo mass estimates in
most bins.

(v) Our analysis reveals that the covariance between In N,y and
AY can be fully explained by secondary halo parameters related
to the history of the halo assembly. This finding provides strong
evidence that the non-zero covariance results from the variation in
the formation history of dark matter haloes.

This work underscores the importance of accounting for co-
variance in cluster mass calibration. Incorporating the covariance
between richness and the weak lensing signal and its characterization
should be an essential component of weak lensing cluster mass
calibration in upcoming optical cluster surveys. The results of this
work can be introduced as a simulation-based prior for the forward
modelling of scaling relations used by cluster cosmological analysis
pipelines. Within the LSST-DESC framework, this systematic bias
would be implemented in the CLMM pipeline (Aguena et al. 2021)
to update the stacked weak lensing mass in each richness bin.
Considering this covariance paves the path toward per cent-level
accuracy cosmological constraints, thereby enhancing the precision
and reliability of our scientific conclusions. Moving forward, it is
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imperative to integrate this understanding into the design and analysis
of future optical cluster surveys.
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APPENDIX A: FUNCTIONAL FORM

This section aims to characterize the shape of the covariance
across mass and redshift bins by fitting a template curve. The
process involves several transformations and adjustments. First, a
logarithmic transformation is applied to the radial bins, denoted as
x = logio(R/Rap0.). Then, a horizontal offset is introduced using a
parameter y, and scaling is applied using a parameter . This results
in a transformed variable ¥ = (x — y)/7.

To analyse the transformed data vector f(X), we test a set of
functional forms presented in Table A2. The normalization factors
and coefficients associated with these functions are chosen in such
a way that f(X) approaches 1 at large scales, —1 at small scales,
f(0) =1 and f(0) = 0.

A linear transformation of f(X¥) is then performed, given by
s ( f@X) + g), where g represents a vertical shift and s represents
a scaling factor. The magnitude of s is comparable to the magnitude
of Cov(A X, In Ny |M, z), while the parameters y, 7, g are of the order
of unity. These parameters, along with s, form the set of parameters
denoted as @ € {t, y, g, s}, which define our best-fitting model. If

g = —1, it implies a zero covariance at large scales. We fit two
models: a full model with all parameters free, and a reduced model
with g = —1, and the rest of the parameters free. The priors for the

parameters are specified in Table Al.

For the full model, we choose the error function as our fiducial
functional form. The estimated parameters for both the full and
reduced models are presented in Tables D1 and D2, respectively.
Appendix D provides robustness testing to determine the best-fitting
model for our covariance. In Table D1, we compare the model
parameters, x> p-value, and the difference in Deviance Information
Criterion (DIC) with our fiducial model using the candidate functions
listed in Table A2. The error function generally outperforms other
models when all parameters 6 € {t, v, g, s} are allowed to vary.
Table D2 shows that the DIC of the reduced error function (g = —1)

Table Al. Priors for the model. We introduce two sets of priors. In the
‘full” models, the parameters are given physical (i.e. T > 0, s > 0) but non-
informative uniform or log-uniform priors. In the ‘reduced’ case, assuming
that Cov(AX, InNga|M, z) = 0 at large scales, we restrict g = —1 while
assigning the same set of priors to all other parameters.

Parameters Priors

Full Reduced
T Uniform (0, 10) Uniform (0, 10)
y Uniform (-5, 5) Uniform (-5, 5)

Uniform (-2, 1)
Log-uniform (0.01, 10)

Fixedat g = —1

10712 x s Log-uniform (0.01, 10)
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Table A2. Functional forms to model Cov(AX, InNgy). The radius in
log-space x is transformed to ¥ = (x — y)/t by a horizontal offset y and
a characteristic scale r. The functions f(X) are normalized so that f(X)
asymptotically goes to 1 at +00, —1 at —oo, f{0) = 0 and f'(0) = 1. Finally,
we wrap f(X) by the function p(f (X)) = s(f(X + g) to include a vertical
offset g and amplitude parameter s. Together 8 € {z, y, g, s} form the set of
model parameters that allow us to make apple-to-apple comparisons between
models.

s (erf(@f) n g)

2

s (% arctan (5 %) + g
sE/A+FHV2 +g)

Error function (fiducial)

Logistics function

Inverse tangent

Algebraic second order

marginally outperforms the full error function in most cases, along
with the posterior constraints of parameters shown in Fig. D1.

APPENDIX B: PARTICLE RESOLUTION AND
ITS IMPACT ON MEASUREMENT ERRORS

Using the 300 Cori Haswell node hours allocated by the NERSC to
this project, we measured AX for ~5000 clusters using dark matter
particles downsampled by a factor of 10, in 20 log-spaced radial bins,
at a projection depth of 200 2~ 'Mpc.

At a downsampling rate of 10, our effective dark matter particle
resolution is M, ~ 1.51 x 10'°4~'"Mg,. The error in AX comes
from three sources: (i) cosmic variance, (ii) Poisson noise, and (iii)
the intrinsic diversity of haloes accounted for by secondary halo
properties. In Section 6.2, we presented the contribution to AX

1014 _
= .
—_ - N\
f'\la |
S 1013 e ————
~ = e
= =T
© - e
E [ .
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x E nth=100
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1011 E == = Cosmic Variance
Ei —————a A1 Ll
101 100 101
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Figure B1. The standard error of AY¥ measurements tested on a benchmark
bin of Magge € [1 x 10", 2 x 10'%) Mg h~! at z = 0. The standard error
is estimated using the bootstrap method for the N = 500 clusters with dark
matter particles downsampled by a factor of 200, 100, and 10 (solid lines).
At our current resolution (nth = 10, solid green line), the standard error is
just above the cosmic variance at small scales and drops below the cosmic
variance at large scales. The solid black line is density fluctuation estimated
from the cosmic variance floor, as described in equations (B2) and (B1). In
the ideal case that Poisson noise accounts for all the standard error, fully
sampling all particles (nth = 1, red dotted line) will reduce the standard
error by a factor of 4/10, rendering it just below the cosmic variance floor at
small scales. In the realistic case that the standard error for AX contributes
from both Poisson noise and the intrinsic diversity of halo profiles, the fully
sampled standard error should be on par with the cosmic variance at small
scales.
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scatter from secondary halo properties. Here, we compare the Poisson
noise to the cosmic variance floor.

The cosmic variance introduces fluctuations in a 2D surface
density fluctuation, given by

SAZ(R) = Dppr710(R)a (B1)

where D, = 200h~'Mpc is the projection depth, p,,(z) is the mean
density of the universe at that redshift, and o (R) is the root mean
squared matter density fluctuation, given by

o(R) = / Az(k)(w)zd Ink, (B2)
kR

which is smoothed over an area of A = 47w R?, A%(k) is the matter

power spectrum for a wavenumber &, and j; is the Bessel function of

the first order.

Fig. B1 shows the standard error of A¥ at a benchmark bin Mg
€[1 x 10,2 x 10"*) Mg A~! at z=0.00. At particle downsampling
factors of 200, 100, and 10, the reduction in error is consistent with
the Poisson term of +/N, indicating that at these sampling rates,
Poisson noise dominates. At our current downsampling rate of nth =
10, the standard error is just above the cosmic variance floor at small
scales and drops below the cosmic variance floor at large scales. In
the ideal case that Poisson noise accounts for all the standard error,
fully sampling all particles (nth = 1, red dotted line) will reduce the
standard error by a factor of 4/10, rendering it just below the cosmic
variance floor at small scales. In the realistic case that the standard
error for AX contributes from both Poisson noise and the intrinsic
diversity of halo profiles, the fully sampled standard error should be
on par with the cosmic variance at small scales. A future study with
fully sampled particles should yield greater statistical constraints.

APPENDIX C: DERIVATION OF SECOND
ORDER EXPANSION AROUND THE HMF

Following the formalism from Evrard et al. (2014), we derive
equation (18). The mean observable-mass scaling relation is given
by the expression

(s; | In My) = o; In My + 7;, (C1)

for s; € {AX, InNyy} and pivot mass My. We now denote the
deviation from the mean relation as §;, which from rearranging the
terms in equation (C1) is given by §; = (Y';—”') — In My. From Evrard
et al. (2014) the expression for the observable scaling relation for
generic observables {a, b} that follow a log-linear scaling relation

as in equation (C1) is given by
(8 | 5a) = xa[(INM | 53) + (1 + V2807 abOn Mia1Ommpp1 ], (C2)

where y; and y, are the first- and second-order coefficients of the
Taylor expansion of the HMF around the pivot mass M, and x, =
(14 1201 y10.1)~" the curvature term. The subscript 1 denotes the
scatter for the HMF expanded to first order.

We now convert the left-hand side of equation (C2) from the
deviation from the mean scaling relation, §,, to the observable s, to
arrive at the expression

(sp | sa) = [opxa(In M | s4) +1In Moy — 71,
+ [ Xa(¥1 + V280)7ab | O1n Mia.1 O 1.1
= (bla,z)d
Xq
+Cov(a,b) x | 5@ + (s, = 1)) (€3)

where we made use of the fact Cov(a, b|M, 2) = ru0 qmo pm and
that the mass scatter conditioned on the observable to first order is

MNRAS 530, 3127-3149 (2024)

202 ABIN +Z U0 18aNB Aq 2GEYY9.//21E/E/0EG/PI0IE/SEIUW/WOY"dNO™DIWLSPED.//:SA)Y WO PaPEOjUMOQ



3146  Z. Zhang et al.

related to the observable scatter by o pmje, 1 = 0 gm/cs, as shown
in equation 4 in Evrard et al. (2014) for the multivariate case.
Substituting In Ny, for a and AX for b yields the expression for
equation (18).

APPENDIX D: ROBUSTNESS TESTING OF
COVARIANCE MODELLING

The shape posterior is sampled by a Monto Carlo Markov Chain
(MCMC) using the EMCEE package (Foreman-Mackey et al. 2013).
We test for convergence by ensuring that the number of steps
exceeds f,,,0/100 for all parameters, where 7,,, is the integrated
autocorrelation time as defined by Goodman & Weare (2010) and by
ensuring that the convergence diagnostic denoted with R (Gelman &
Rubin 1992) across all walkers satisfy R < 1.05.

The posterior distribution according to Bayes theorem is given as

p@1{yi}) o< p({yi}10)p(6) (D

=1L pGil®)p©). (D2)

where the second line assumes independent and identical distribution
(i.i.d) for the data vectors. We set uniform priors p(f#) shown in
Table Al with signs and ranges motivated by the shape of the
covariance (i.e. a negative y and positive t to offset f(¥) to the left
and a positive s and negative g shifts the fitted curve downwards).

‘We measure the goodness of fit using the left-tail p-value for the
X2 with Ngaa — Nagim =20 —4 =16 degrees of freedom. We compare
between models by the Deviance Information Criterion defined as

DIC = 2D(0) — D), (D3)
where 0 is the best-fitting parameters, and D(0) is defined as
D(#) = —21og (P({x;}10)). D4

The performance between different functional forms (Table A2) is
reported in Table Al.

The summary statistics for the posterior distribution of the covari-
ance models are listed in Table D1 as plotted against measurements
in Fig. 4. Among the functions, the error function has either a better
or comparable fit to all other functions in all other bins, as indicated
by their DIC parameters. In two bins Mag. € [5 x 10'4, 1 x 10'5)
at z = 0.49 and My € [2 x 10", 5 x 10"%) at z = 1.03, the
amplitude of the covariance is too small relative to their errors for
shape parameters to be well-constrained. The right tail p-value for
%% is p > 0.05 for all but one bin. For this reason, we take the full
error function as the nominal functional form.

For R > R,j; or R > Ry, we find the covariance to be null at
p-values >0.01. A zero covariance at large scales implies g = —1
which coincides with the reduced model. We compare the results of
the error function of the reduced model to the full model and find
their performance varies from bin to bin as indicated by the DIC
(Table D2). The posteriors of the reduced model provide marginally
tighter constraints than the full model (Fig. D1).

Table D1. Summary statistics for Cov(A X, NgallM, z) binned by Rypoc and Magoc, with Ny defined inside the halo Rypoc. Columns 2-5 are the best-fitting
parameters for the nominal error function and their 1o ranges. Columns 6-8 are the difference between the DIC of the logistics, algebraic, and inverse tangent
models with the nominal error function, respectively. Column 9 is the right-tail p-value as measured by the x? statistic with 204 = 16 degrees of freedom.
Across all bins with applicable posterior constraints, the error function out-performs or is comparable to alternative functional forms as indicated by the difference
in DIC, and has p > 0.01 in all but one bin. In two bins Magge € [5 x 10™, 1 x 10'5) at z = 0.49 and Magge € [2 x 10'*, 5 x 10'9) at z = 1.03 the size of
the covariance is too small relative to the size of their errors for shape parameters to be constrained. The covariance in these two bins is consistent with null at

p =0.01 and p = 0.05 levels, respectively.

Mass and redshift

Error function (full): s (erf(@i) + g)

T y g 1012 x s ADIC[Og ADICMg ADIC gretan p-value
[5x 10'3,1 x 10, 7 = 0.00 0.47+0:08 —0.66+0.08 —0.9970003 2.88+07) 4.8 17.8 31.5 0.27
[1x10",2x 10"),z=000  0.5770% 0767533 —1.008T 0000 2734013 -2.9 —17 2.8 0.88
[2x 10,5 x 10M), =000  0.41700; 0515008 —0.99710900, 1.93403% 44 17.4 35.0 0.79
[5x 10", 1 x 101),z=000 0277503 0407008 —1.006759%, 1034013 -0.27 143 29.1 0.0009
[5x 1013, 1 x 10'), 7 = 0.49 0.28+0:4 —0.3675% —0.99073013 0.75+0:0 2.7 9.0 15.1 0.72
[1x 10", 2x 10"),2=049 0357507 —0437007 —1.02270018 0.81%013 17 54 9.3 0.97
[2 x 10,5 x 10%), 7 = 0.49 0.247508 —0.4910%7 —0.99570012 0.51750 0.6 24 4.0 0.63
[5 x 10,1 x 10'9), z = 0.49 NA
[5x 1013, 1 x 10'%), 7 = 1.03 0.1775% 031759 ~1.019%0:0% 0.3510:0¢ 43 6.5 8.3 0.05
[1x 10,2 x 10'), z = 1.03 0.21%0:0¢ —0.421000  —1.02479057, 0.51%007 -0.3 33 6.1 0.01
[2 x 10,5 x 101, z =1.03 NA
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Table D2. Summary statistics for Cov(A X, Nga|M, z) binned by Ropoc and Mago With Ngy defined inside the halo Rypg for the reduced error function model.
Compared with the full error function model, the performance of the reduced model varies from bin to bin — using ADIC > 3 as a statistically significant result,
it outperforms the full model in 5/9 overlapping bins, under-performs in 3/9 bins, and is comparable in 2 bins. The reduced model is able to yield convergent
chains for Magoe € [5 x 10, 1 x 10'9) at z = 0.49 and Magoe € [2 x 10,5 x 10'%) at z = 1.03 but with poor constraints on the parameters.

Mass & redshift

Error function (reduced): s erf(@f) —1

T y 1012 x s ADICerf_funl p-value
[5 x 1013, 1 x 10'%), z = 0.00 0.4475:04 —0.6310:07 2.66703% -5.2 0.06
[1x 10,2 x 10'), z = 0.00 0.69%00 —0.981020 4.10231 4.5 0.96
[2 x 10',5 x 10'), z = 0.00 0.40+0:2 ~0.5079% 1.90+0:2¢ 0.2 0.78
[5 x 10,1 x 10'%), z = 0.00 0.2975:04 —0.4010:04 1127513 6.1 0.005
[5x 1013, 1 x 10'), 7 = 0.49 0.2575:04 —0.35+0.04 0.7910%8 6.2 0.57
[1x 10,2 x 10'), 7 =049 0.387524 —0.4810:12 0.85704¢ 6.9 0.81
[2 x 10,5 x 10'%), z = 0.49 0.25752 —0.551013 0.4070 NA 0.48
[5 x 10,1 x 10'5), z =049 061107 ~0.90*949 101739 -5 0.99
[5x 10,1 x 10'), z = 1.03 0.20%00 —0.357008 0.3810.07 -0.75 0.04
[1x 10,2 x 10'), z = 1.03 0.2210:06 —0.427+0:96 0.54%0 09 39 0.3
[2 x 10,5 x 10M), z = 1.03 5.97427¢ ~0.554339 0.02702 NA 0.15

o= RIR200¢, Rhailo="1 Mpc/h
o= R/Ra00¢, Rhato = Raoo
ro=RIRyir, Rrasio="1 Mpc/h
o= RIRyir, Rhaio= Ryir

A

o= RIR200¢, Rhato= Roooc; €= — 1
PO .
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Figure D1. Posterior distribution of shape parameters in a benchmark bin of
Mogoe/Myir € [2 x 1014, 5 x 10'4) at z = 0.00 under different binning schemes
rp and Ngu models with different halo boundaries Rpalo. The marginalized
parameter constraints for the full model closely overlap one another, and
using the reduced model with g = —1 marginally improves the posterior
constraints. The plot was generated using pygtc (Bocquet & Carter 2016).

APPENDIX E: MODELLING SECONDARY
PROPERTIES

We describe the linear regression model for richness used in Sec-
tion 6.1. The same methodology is applied to AX in Section 6.2.
To model the expected natural logarithm of galaxy count (In N,),
we decompose it linearly using secondary halo parameters listed in
Table 3, as shown in equation (20). We employ the least squares
method for linear regression and examine parameter redundancies.
For over half of the bins, the parameters iy, I 100myr» I 2dyn» and T peak
exhibit collinearity, with VIF exceeding 5. This outcome is expected,

as these quantities represent the same physical quantities smoothed
over different time-scales. As for the reduced set of non-collinear
parameters, their correlation coefficient are quantified in Shin &
Diemer (2023) using the Erebos simulation suite. To determine which
parameters to retain, we utilize the partial F-statistic.

Table E1 demonstrates the diminishing explanatory power of I on
the richness as seen by the diminishing R? and Fpariai- We consider
the partial F-statistic serves as a heuristic measure for the explanatory
power of a variable, defined as

(RSSEreduced - RSSEfull)/p
RSSEfun/(n — k)

where RSSE is the residual sum of squared errors for the reduced
model after removing the parameter in question and the full model
containing I1C {aiz, cvir, T/U, Tagyn, Xott}, p is the number of
parameters removed from the full model which in our case is by
construction set to p = 1, n the number of data points, and & is
the number of parameters in the full backward model. This statistic
can be shown to be proportional to the contribution to the total R?
uniquely explained by this parameter alone.

A partial F-statistic test reveals that I'»qy, exhibits the highest
partial F-statistic of all accretion rate parameters. Therefore, we
retain this parameter in the reduced dimensional linear regression.
The final model includes the following parameters [1C{ay., Cyir
T/U, Ty4yn, Xofr }- To ensure the robustness of the linear model across
all bins, we perform the following tests:

F, partial — B (E 1)

(i) VIF test with a cut-off of 5 to detect multicollinearity.

(ii) Global F-statistic for the entire model with a significance level
of 0.05 to examine the correlation between the dependent variable
and all parameters.

(iii) Partial F-statistic for the entire parameter set to compare
the relative importance of each parameter. The Partial F-statistic
measures the additional contribution of each parameter to the
multilinear fit by estimating its corresponding R? value.

(iv) T-statistic for each parameter to verify that the coefficients
significantly deviate from zero at a significance level of 0.05.

(v) Breusch-Pagan Lagrange Multiplier test (Breusch & Pagan
1979) at a significance level of 0.05 to assess heteroscedasticity.

(vi) Shapiro—Wilk test (Shapiro & Wilk 1965) at a significance
level of 0.05 to evaluate the Gaussianity of residuals.
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Table E1. Best-fitting parameters, global R?, and explanatory power indicators for log-richness modelled in equation (20). Values in parentheses represent 1o
confidence intervals to the partial slopes 8. The partial F-statistic, defined in equation (E1), is used to quantify the explanatory power of each variable. A higher
partial F-statistic indicates a greater amount of predictive power uniquely attributed to that variable. Statistical significance is determined by an F-statistic of F

> 10.

Redshift R*  Const Cyir T/|U| ain T3agn Xoft

& Maooe Moh™h) BNga F BNga, F BN F 105 x BNga F o 10° x BN F
2=0.00

[5x1013,1x 10 045 —0.69 —0.0350.004) 171 1.448(0.135) 185 0.103(0.084) 166  2.743(1.68) 134 —1.62(0.23) 69
[1x 10,2 x10%) 048 —046  —0.033(0.003) 217 1.086(0.120) 179 —0.198(0.071) 170 2.668(0.628) 206 —0.76(0.15) 86
[2x 10,5 x 101 049 —041  —0.029(0.003) 196 —0.794(0.086) 145 0.292(0.007) 213 —0.722(0.223) 167 0.57(0.11) 67
[5x 10,1 x 10%) 046 —032  —0.019(0.002) 119 1.503(0.068) 111 0.148(0.054) 201 0.483(0.096) 226 —0.25(0.06) 51
=049

[5x 1013, 1x 10%) 025 —071  0.006(0.005 24 0.3250.125) 69 0.188(0.101) 142  3.90(1.64) 102 —0.3(0.19) 35
[1x 10" 2x 10" 021 -045 -0450(0.082) 27 0314(0.135) 46 —0.353(0.158) 107  1.800.71) 89 —0.37(0.13) 14
[2x 10%,5x 10 013 -056 —0.0030.004) 0 03230.110) 26 0.6700.155) 51 0.388(0.108) 26 —0.27(0.11) 2
[5x 10,1 x10%) 013 -032  —0.010(008) O 0.007(0.286) 0  0.697(309) 5 —0.5380.331) 3  -041(14) 3
z=1.03

[5x 1013, 1x 10%) 027 —1.12  0.015(0.005) 6 0471(0.136) 21  0.569(0.269) 116  2.7(1.2) 63 —081(0.18) 0
[1x 10", 2x 10" 022 —084  0.0160.004) 10 0374(0.135) 36 —0.233(0.234) 83  1.076(0478) 36 —0.350.12) 2
[2x 10%,5x 10 020 —0.6  0.00150.005 10 0.284(0.185) 1 —0.157(0.266) 15 0.160(0.213) 6 —0.550.11) 13

Across all bins, the reduced model successfully satisfies the first
four tests. However, some bins fail the Shapiro-Wilk test due to
a negative skew and positive kurtosis. None the less, a visual
examination of Q—Q plots indicates that the residuals predominantly
follow a Gaussian distribution, except for deviations at the tail ends.
Q-Q plots, quantile-quantile plots, are visualization tools used to
compare the quantiles of a data set to the quantiles of a theoretical
distribution, typically a normal distribution. They provide a visual
assessment of how well the data aligns with the assumed distribution.

APPENDIX F: DERIVATION OF P(AX|NgawL, m, z)

We demonstrate that P(AX|Ng, M, z) can be modelled as a
multilinear relation of secondary halo parameters of mean and
variance given by equations (29) and (30).

From our assertion that P(AX, I | M, z) is a bivariate normal,
the conditional probability P(I1;|AX, M, z) in each radial bin can be
expressed as a normal distribution with mean

(e
(TLIAS, M, z) = (TL;|M, 2) +pn,.7AzUi(A2 —(ASIM, 2)),
AX
(F1)
and variance

Ulgl,\A): = ‘7121[(1 - pI%I,—AZ)' (F2)

Here, we omit the radial dependence R/Rq. for all variables and the
conditional dependence on (M, z) in the subscripts for p and o (i.e.
o ax should be explicitly written as o Axu, ;(R)).

For an independent random variable Z = X + Y with X and Y uncor-
related independent random variables with distributions of the form
~ N(u, %) and ~ N (v, T2), respectively, Z is another Gaussian of
N + v, 02 + 72). In the case that X and Y are correlated, we must
introduce a cross term in the variance of probability distribution Z,
namely P(Z) ~ N(u + v, o2+ 2px_yot + T3).

In our specific case, we want to model the distribution
PO By, iTLIAZ, M, 2) from P(T1;| A X, M, z) and the correlation here
refers to the correction between secondary halo parameter or; m; 3

31n Section 6.2, we show through the variance inflation test that set of reduced
model parameters I1 € {ay,2, cvir, T /U, F;‘dyn, Xoff} are not multicollinear.
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From the convolution theorem and the expressions for P(IT;|A X,
M, z) in equations (F1) and (F2), we obtain the expression for
P(In Ngy|AX, M, 7) as a normal distribution with mean:

(InNou| AX, M, z) = (In Ny o|AZ, M, 2)

vone (30 2y x(rty — (mn ),

O’n’

(F3)
and variance
Jlizvgalmz = ‘71%/@1_0 + Zﬂlz\’ga],ialgl,-(l - Pizfn,)
J#i l
+2Pn,—nj0n,»0nj- (F4)

i.j
We now want to derive the scaling relations for P(AX|Ng, M, z).
From the Bayes theorem,
P(AT | M, z)
P(nNgy | M. 2)"
(F5)
wherein we assume that P(In Ngy|M, z) and P(AX|M, z) can be

modelled as normal distributions, then P(AX|Ng,, M, z) is another
normal distribution with mean

P(AY | Nga, M,2) = P(InNgy | AX, M, 2)

(AX|Nga, M, 2) = (AX|Ngao, M, 2)

BNg.i
+Cioas (D0~ papon, x (I = (I [M.2)
i 1

(F6)
and variance
UﬁZ\lnNgul = ‘702 + G Z ﬂzzvgu,,iaﬁ,-(l - pizfn,-)
i
J#i
+szpn[—nj0n,0n,~ (F7)

ij
The parameter C; for the mean relation can be explicitly derived if
we know the posterior distribution of P(In Ngyi|M, z) and P(AX|M,

z) by the exercise of completing the squares inside the exponents,
i.e. by matching the quadratic, linear and constant terms inside the
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exponents of normal distributions on the left and right hand sides of
equation (F5).

The parameters C,, C3, and o can be explicitly derived first by
using the variance of product law of correlated Gaussians, i.e. Var(Z
=XY) =1+ p? after transforming X and Y into unit variance, zero
mean Gaussians with correlation efficient p, and then by using the
variance of quotient approximation

o} Cov(X,Y o2
var(x /) = (A3)2[ % M) ok (F8)
ny MR Mx My Hy
© 2024 The Author(s).
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where p1x, o7 are the mean and variances of P(AX|M, z) and iy, o}
the mean and variances of P(In Ngu|M, z) in our specific case.

The exact values of C1, C2, C3, and o are not essential for this
paper as we aim to derive a general expression for P(AX|Nga, M, z)
as a function of secondary halo parameters.

This paper has been typeset from a TEX/I&TEX file prepared by the author.
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