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A B S T R A C T 

We present an investigation into a hitherto unexplored systematic that affects the accuracy of galaxy cluster mass estimates 
with weak gravitational lensing. Specifically, we study the covariance between the weak lensing signal, ��, and the ‘true’ 
cluster galaxy number count, N gal , as measured within a spherical volume that is void of projection effects. By quantifying the 
impact of this covariance on mass calibration, this work reveals a significant source of systematic uncertainty. Using the MDPL2 

simulation with galaxies traced by the SAGE semi-analytic model, we measure the intrinsic property covariance between these 
observables within the three-dimensional vicinity of the cluster, spanning a range of dynamical mass and redshift values relevant 
for optical cluster surv e ys. Our results rev eal a ne gativ e co variance at small radial scales ( R � R 200c ) and a null covariance at 
large scales ( R � R 200c ) across most mass and redshift bins. We also find that this covariance results in a 2 –3 per cent bias in 

the halo mass estimates in most bins. Furthermore, by modelling N gal and �� as multi-(log)-linear equations of secondary halo 

properties, we provide a quantitative explanation for the physical origin of the ne gativ e co variance at small scales. Specifically, 
we demonstrate that the N gal –�� covariance can be explained by the secondary properties of haloes that probe their formation 

history. We attribute the difference between our results and the positive bias seen in other works with (mock)-cluster finders to 

projection effects. These findings highlight the importance of accounting for the covariance between observables in cluster mass 
estimation, which is crucial for obtaining accurate constraints on cosmological parameters. 

Key words: gravitational lensing: weak – galaxies: clusters: general – cosmology: observations. 
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 I N T RO D U C T I O N  

luster abundance and its evolution with redshift are linked to the 
onstituents of the Universe through the growth of cosmic structure 
Allen, Evrard & Mantz 2011 for a re vie w). Cluster abundance
easured in large-scale galaxy surv e ys offers power constraints on 

osmological parameters (e.g. Vikhlinin et al. 2009 ; Mantz et al. 
015 ; Dark Energy Surv e y Collaboration 2016 ; de Haan et al. 2016 ;
antz et al. 2016a ; Pierre et al. 2016 ; Costanzi et al. 2021 ). These

onstraints are based on accurate cluster mass measurements, which 
re not directly observable and must be inferred. Cluster mass calibra- 
ion has been identified as one of the leading systematic uncertainties 
n cosmological constraints using galaxy cluster abundance (Mantz 
t al. 2010 ; Rozo et al. 2010 ; Applegate et al. 2014 ; von der Linden
t al. 2014 ; Dodelson et al. 2016 ; Murata et al. 2019 ; Costanzi
t al. 2021 ). Accurate mappings between a population of massive 
lusters and their observables are thus critical and essential in cluster 
 E-mail: zzhang13@uchicago.edu 
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osmology. Considerable effort has been put into measuring the 
tatistical relationships between masses and observable properties 
hat reflect their baryon contents (see Giodini et al. 2013 for a re vie w)
nd quantifying the sources of uncertainties. 

The Dark Energy Surv e y (DES) cluster cosmology from the Year 1
ata set (Abbott et al. 2020 ) reported tension in �m – the mean matter
ensity of the universe – with the DES 3 x 2 pt probe that utilizes
hree two-point functions from the DES galaxy surv e y (Abbott et al.
018 ). The tension between these two probes that utilize the same
nderlying data set may be attributed to systematics that bias the
eak lensing mass of clusters low at the low-mass end (Costanzi

t al. 2021 ; To et al. 2021 ). A possible origin for this discrepancy
s that cluster masses are biased low due to systematics in cluster

ass calibration. On the other hand, the tension can also originate
rom new physics that extends the Standard Cosmological model. 
hus, it is important to understand the systematics of cluster mass
alibration. Cluster masses estimated from X-ray and SZ data are 
nown to suffer from hydrostatic bias (Pratt et al. 2019 ). Conversely,
luster masses estimated from weak lensing have the potential to 
e more accurate compared to X-ray and SZ cluster masses. The
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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ystematics in the weak lensing mass calibration has just started to
e explored recently (Applegate et al. 2014 ; Schrabback et al. 2018 ;
cClintock et al. 2019 ; Kiiveri et al. 2021 ; Wu et al. 2022 ). 
A relativ ely une xplored cate gory of cluster systematics is the

ovariance between different cluster properties, including cluster
bservables and mass proxies. In cluster mass calibration, it is often
ssumed that this property covariance is negligible. Ho we ver, as
nitially pointed out by Nord et al. ( 2008 ) and later shown in Evrard
t al. ( 2014 ) and Farahi et al. ( 2018 ), non-zero property covariances
etween cluster observables can induce non-tri vial, additi ve bias
n cluster mass. As property covariance is additive, the systematic
ncertainties that it induces will not be mitigated with the reduction of
tatistical errors as the sample size of the cluster increases. To achieve
ccurate cosmological constraints with the next generation of large-
cale cluster surv e ys, it is imperative that systematic uncertainties in
he property covariance be accurately and precisely quantified (Rozo
t al. 2014 ). 

Although the property covariance linking mass to observable
roperties is becoming better understood and measured (Wu et al.
015 ; Mantz et al. 2016a ; Farahi et al. 2018 , 2019 ; Sereno et al. 2020 ),
tudies that specifically investigate weak lensing property covariance
re scarce, which poses a challenge for upcoming lensing surv e ys of
alaxy clusters such as the Rubin (Ivezi ́c et al. 2019 ) observatories.
o achieve the percentage-level lensing mass calibration goals for

he upcoming observations, the property covariance of weak lensing
ust be quantified. 
The physical origins of property covariance in lensing signals of

alaxy clusters can be attributed to the halo formation history of the
luster and baryonic physics (Xhakaj et al. 2022 ). Developing a first-
rinciple physical model for the property covariance as a function of
alo formation history and baryonic physics is a daunting task due
o the highly non-linear and multiscale physics involved in cluster
ormation. To make progress, in this paper, we adopt a simulation-
ased, data-driven approach whereby we develop semi-analytical
arametric models of property covariance, which we then calibrate
ith cosmological simulations. We then apply our model to quantify

he bias induced due to a non-zero property covariance in the expected
eak lensing signal and the mass-observable scaling relation. 
As will be presented in Section 3 , a key element of this analysis is

he estimation of true cluster richness by encircling clusters within a
hree-dimensional (3D) radius within the physical vicinity of the halo
entre, as opposed to a two-dimensional (2D) projected radius used
y cluster finders as redMaPPer (Rykoff et al. 2014 ) by identifying
alaxies within the red-sequence band in the colour–magnitude space
the major difference being the removal of projection effects, or the
is-identification of non-cluster galaxies in the 2D projected radius

rom the photometric redshift uncertainty of the red-sequence when
stimating the true richness from a gravitationally bound region
round the halo. Furthermore, as this simulation-based study does not
ntroduce other observational systematics as shape noise of galaxies,
oint spread function, miscentring, among others, this study can be
sed to explore the intrinsic covariance between observables prior
o the addition of extrinsic systematics as projection effects. Our
esults will not only provide insight into the physical origin of the
ov ariance, the dif ference between the total cov ariance as measured
y observations and the intrinsic covariance will provide estimates
n the amplitude of the extrinsic component. 
The goals of this work are to (i) develop an analytical model

hat accounts for and quantifies the effect of non-zero covariance
n cluster mass calibration, (ii) quantify this property covariance
tilizing cosmological simulations, (iii) update uncertainties on
nferred cluster mass estimates, and (iv) explain the physical origin
NRAS 530, 3127–3149 (2024) 
f the covariance using secondary halo parameters. The rest of this
aper is organized as follows. In Section 2 , we present a population-
ased analytical framework. In Section 3 , we describe the simulations
nd data-vector employed in this work. In Section 4 , we present our
easurements and the covariance model. In Section 5 , we present

he impact of the covariance on weak lensing mass calibration. In
ection 6 , we quantify the physical origin of the covariance by
arametrizing it using secondary halo parameters. In Section 7 , we
ompare our work with those that employ realistic cluster finders.
e conclude in Section 8 . 

 T H E O R E T I C A L  F R A M E WO R K  

his section presents a theoretical framework that examines the
mpact of covariance on mass-observable scaling relations. In Sec-
ion 2.1 , we introduce the definitions of richness and weak lensing
xcess surface mass density and their scaling relations with cluster
ass. We then describe the model of property covariance of richness

nd excess surface mass density in Section 2.2 . In Section 2.3 ,
e model the impact of covariance on stacked observable scaling

elations. Finally, in Section 2.4 , we de velop a theoretical frame work
hat explains the covariance based on a set of secondary halo
arameters. A graphic representation of the outline of the paper
s shown in Fig. 1 . The notations used in this section to describe the
ovariance are listed in Table 1 and notations for scaling relations
re listed in Table 2 . 

.1 Obser v able-mass relations 

.1.1 Excess surface mass density �� from weak lensing 

n weak lensing measurements of galaxy clusters, the key observable
s the excess surface mass density, denoted ��. The excess surface

ass density is defined as 

�( M, z, r p ) = � ( M, z, < r p ) − �( M, z, r p ) , (1) 

here � ( M, z, < r p ) denotes the average surface mass density
ithin projected radius r p , and �( M , z, r p ) represents the average
f the surface mass density at r p . We model the average surface mass
ensity � as 

( r p ) = ρm 

∫ +∞ 

−∞ 

(
1 + ξhm 

(
r = 

√ 

r 2 p + χ2 
))

d χ, (2) 

here ρm is the mean matter density at the redshift of the cluster,
 is the projected radius in the plane of the sky, χ is the comoving
istance along the line of sight centred around the cluster, and ξ hm ( r )
s the halo-matter correlation function that characterizes the total

ass density within a halo. Under the halo model, the halo-matter
orrelation function consists of a ‘one-halo’ term: 

1h ( r | M ) = 

ρNFW 

( r | M ) 

ρm 0 
− 1 , (3) 

nd a ‘two-halo’ term: 

ξ2h ( r | M ) = b( M ) ξlin ( r ) , (4) 

here ρNFW 

is the Navarro–Frenk–White (NFW) density profile
Navarro, Frenk & White 1997 ), and ξ lin is the linear matter
orrelation function, and b is the halo bias parameter. 

In weak lensing, the excess surface density �� is tied to the
angential shear γ t of the galaxies relative to the centre of each
oreground halo by the relation 

 crit γt = � ( < R) − �( R) ≡ ��( R) , (5) 
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Figure 1. Graphic representation of the modelling of Cov( ��, ln N gal | M , z) – the covariance between the halo weak lensing signal ��( R ) and log-richness 
ln N gal conditioned on mass and redshift – and its dependence with secondary halo parameters 
 . The labels marked S. XX point to the location in the text. A 

full list of the notations used in this paper is introduced in Tables 1 and 2 . 

Table 1. Notations employed in our framework for the covariance in 
Section 2.3 . 

Parameter Explanation 

�� Weak lensing signal 
M Halo mass in M � h −1 

N gal Optical richness enclosed inside 3D radius 
z Redshift 
r p Projected and normalized radius 

Table 2. Scaling relation conventions. 

Parameter Explanation 

πa Normalization in scaling relation 〈 a | M 〉 
αa Slope in scaling relation 〈 a | M 〉 
σ a Scatter about 〈 a | M 〉 
r a , b Correlation between a and b at fixed M 

πa | b Normalization in scaling relation 〈 a | b 〉 
αa | b Slope in scaling relation 〈 a | b 〉 
σ a | b Scatter about 〈 a | b 〉 
a , b a , b ∈ { ��, ln N gal } 
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here the critical surface density � crit defined as 

� crit = 

c 2 

4 πG 

D s 

D l D ls 

, (6) 

nd where D s , D l , and D ls refer to the angular diameter distances to
he source, the lens, and between the lens and source, respectively. 
In this work, for each halo of mass M at redshift z, we compute
he corresponding �� profile. We compare these measurements 
ith theoretical predictions – in the one-halo regime we model 

he cluster o v erdensity as NFW profiles with their concentration
etermined by concentration-mass models of Prada et al. ( 2012 ),
udlow et al. ( 2016 ) and Diemer & Joyce ( 2019 ), whereas in the

wo-halo term we adopt the linear matter correlation ξmm multiplied 
y halo biases using the Tinker et al. ( 2010 ), Pillepich, Porciani &
ahn ( 2010 ) and Bhattacharya et al. ( 2011 ) models to derive the
alo-matter correlation ξ hm . At the transition radius between the 
ne- and two-halo regimes, we follow SDSS (Zu et al. 2014 ) in
etting the halo–matter correlation to the maximum value of the two
erms, i.e. 

ξhm 

( r | M ) = max { ξ1h ( r | M ) , ξ2h ( r | M ) } . (7) 

n Fig. 2 , the theoretical models described abo v e are compared with
ur measurements of �� in cosmological simulations to validate 
ur data product. 
We model the mean 〈 ��| M , z, r p 〉 at fixed mass M , redshift z, and

rojected radius r p as a log-linear relation given by 

 �� | M, z, r p 〉 1 = π�� ( M, r p , z) + α�� ( M, r p , z) ln M, (8) 

here α�� is the power-law slope of the relation and π�� is a
ormalization that is a function of redshift and mass. 

.1.2 Optical richness N gal 

ptical richness N gal is an observable measure of the abundance of
alaxies within a galaxy cluster. It is often defined as the number
f detected member galaxies brighter than a certain luminosity 
hreshold within a given aperture or radius around the cluster centre.
MNRAS 530, 3127–3149 (2024) 



3130 Z. Zhang et al. 

M

Figure 2. The measured �� profiles using downsampled particles for every 10 particles and theoretical �� as computed from the NFW profile using different 
concentration–mass relations (LHS in legend) in the one-halo regime and different halo-bias models (RHS in legend) in the two halo regimes, with errors taken 
to be 1 − σ standard deviations; the measurements are consistent with theoretical predictions and the size of the errors is too large to distinguish between 
models. The same conclusion (not shown) holds for �� binned by R vir . 
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ichness is often used as a proxy for cluster mass, as more massive
lusters are expected to have more member galaxies (e.g. Rozo et al.
014 ; Rykoff et al. 2014 ). The richness-mass scaling relation relates
he richness of a galaxy cluster to its mass. In this work, we consider
he mean N gal –M � 

scaling relation expressed as 

 ln N gal | M � 

, z〉 1 = πN gal ( M, z) + αN gal ( M, z) ln M � 

. (9) 

here M � 

is the mass of the halo within a radius where the mean
ensity is � times the critical density of the universe, αN gal ( M, z) is
NRAS 530, 3127–3149 (2024) 
he power-law slope of the relation, πN gal ( M, z) is a normalization
hat is a function of redshift and mass. 

.1.3 Halo mass and radius definitions 

 common approach to defining a radial boundary of a galaxy cluster
s such that the average matter density inside a given radius is the
roduct of a reference o v erdensity � ref times the critical ( ρc ) or mean



Impact of property covariance on WL scaling relations 3131 

d  

d

ρ

w  

f  

a  

c
d

ρ

 

o  

t  

w
(  

v
S  

s  

n
r  

e  

d
t  

r

2

I  

N  

c  

s  

w
o  

fi
d  

t  

(  

e  

v
o

 

a  

m

〈

w

c  

r  

t  

�  

b

C

w  

�  

m

C

w

r

r

 

l  

F
m
t  

d
E  

m  

t  

s  

s  

b

2

T  

e  

s  

I
o  

e  

w  

e  

2

a

〈

a

〈

w  

t
x  

o  

f  

z

e  

n  

o
f  

E  

f  

A

a
(

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/530/3/3127/7644357 by guest on 24 M
ay 2024
ensity ( ρm ) of the universe at that redshift. The critical density is
efined as 

c = 

3 H 

2 
0 

8 πG 

E( z) , (10) 

here E ( z) 2 = �m ,0 (1 + z) 3 + �� ,0 , �m ,0 is the present-day matter
raction of the universe, �� ,0 is the dark energy fraction at the present
ge such that �m ,0 + �� ,0 = 1 for a flat universe ignoring the minimal
ontribution from the radiation fraction. The mean (background) 
ensity is defined as 

b = 

3 H 

2 
0 

8 πG 

( �m, 0 (1 + z) 3 ) . (11) 

The o v erdensity � c = 200 is commonly chosen as the reference
 v erdensity in optical weak lensing studies and is closely related to
he virial radius. Another radius definition is the virial radius R vir ,
ith o v erdensity values calibrated from cosmological simulations 

Bryan & Norman 1998 ). In this work, we use R 200c and R vir to scale
 arious observ ations, including the �� measurements and richness. 
ince the covariance is close to zero at the outskirts R � R 200c as
hown in Section 4 , we adopt r p = R / R 200c and r p = R / R vir as our
ormalized radii, as the cluster properties are more self-similar with 
espect to ρc ( z) compared to ρb ( z) (Diemer & Kravtsov 2014 ; Lau
t al. 2015 ). To test for the robustness of our covariance against
ifferent radii definitions, we also introduce a physical radius of a 
oy model of a constant R = 1 Mpc h −1 ; here h = 0.6777 is the
educed Hubble constant used in this study. 

.2 Co v ariance between �� and N gal 

n optical surv e ys, we cannot expect the covariance between richness
 gal and the excess surface mass density �� to be zero. Ignoring this
ovariance will lead to bias in cluster mass inferred from the excess
urface mass density of the cluster selected based on richness. This
ork aims to quantify and analyse this covariance and its impact 
n the mass calibration relation. To achieve this objective, we must
rst specify the joint probability distribution of excess surface mass 
ensity and richness, p ( ��, ln N gal | M , z, r p ). In this work, we assume
hat the joint distribution follows a multi v ariate normal distribution
Stanek et al. 2010 ; Evrard et al. 2014 ; Mulroy et al. 2019 ; Miyatake
t al. 2022 ), which is fully specified with two components, the mean
ector and the property covariance. We have checked the goodness 
f this assumption in Appendix D . 
From the mean observable-mass scaling relations in equations ( 8 )

nd ( 9 ), the scaling relation between these two observables can be
odelled as a local linear relation given by 

 �� | N gal , z, r p 〉 = π��| N gal ( N gal , z, r p ) 

+ α��| N gal ( N gal , z, r p ) ln N gal , (12) 

here π and α are the normalization and slope of the model. 
The property covariance matrix is a combination of scatter and 

orrelation between the scatter of �� and ln N gal at a fixed halo mass,
edshift, and projected radius. We use σN gal ( M, z) and σ�� ( M , z, r p )
o denote the scatter of the observable-mass relation for ln N gal and
�, respectively, and use r N gal ,�� ( M, z, r p ) to denote the correlation

etween these scatters. The covariance matrix is then given by 

ov i,j ( M, z, r p ) = r i,j ( M, z, r p ) σi ( M, z, r p ) σj ( M, z, r p ) , (13) 

here i and j ∈ { ��, ln N gal } . Specifically, the covariance between
� and N gal can be expressed in terms of the residuals about the
ean quantities 

ov ��,N gal ( M, z, r p ) = Cov ( res �� ( M, z, r p ) , res N gal ( M, z)) , (14) 
here the residuals of the �� and N gal are, respectively, given by 

es �� ( M, z, r p ) = �� − 〈 �� | M, z, r p 〉 , (15) 

es N gal ( M, z) = ln N gal − 〈 ln N gal | M, z〉 . (16) 

To model the mass dependencies of the mean profiles of �� and
n N gal , we employ the Kernel Localized Linear Regression (KLLR;
arahi, Anbajagane & Evrard 2022a ) method. This regression 
ethod fits a locally linear model while capturing globally non-linear 

rends in data and has shown to be ef fecti ve in modelling halo mass
ependencies in scaling relations (Farahi et al. 2018 ; Anbajagane, 
vrard & Farahi 2022 ; Wu et al. 2022 ). By developing a local-linear
odel of �� − ln N gal with respect to the halo mass and computing

he residuals about the mean relation, we remo v e the bias in the
catter due to the mass dependence and reduce the o v erall size of the
catter. As shown in Fig. 4 the 1 − σ of the covariance is determined
y bootstrap resampling. 

.3 Corrections to the �� − N gal relation due to co v ariance 

he shape of the halo mass function plays an important role in
 v aluating the conditional mean value of 〈 ��| N gal , z, r p 〉 where the
catter between two observables with a fixed halo mass is correlated.
gnoring the contribution from the correlated scatter, to the zeroth 
rder, the expected �� e v aluated at fixed richness is given by
quation ( 12 ). This is the model that has been used in mass calibration
ith stacked weak lensing profiles (Johnston et al. 2007 ; Kettula

t al. 2015 ; McClintock et al. 2019 ; Chiu et al. 2020 ; Lesci et al.
022 ). 
The first- and second-order approximations of the scaling relation 

re given by 

 �� | N gal , z〉 1 = 〈 �� | N gal , z〉 fid + 

γ1 

αN gal 

× Cov ( ��, ln N gal ) , 

(17) 

nd 

 ��| N gal , z〉 2 = 〈 �� | N gal , z〉 fid 

+ Cov ( ��, ln N gal ) 

×
[ x s 

α2 
N gal 

( αN gal γ1 + γ2 ( ln N gal − πN gal )) 
] 
, (18) 

here 〈 ��| N gal , z〉 fid is the fiducial relation taking into account
he curvature of the HMF but independent of the covariance; 
 s = (1 + γ2 σ

2 
M| N gal , 1 

) −1 is the compression factor due to curvature
f the HMF, the subscript 1 denoting that the scatter is taken
rom the HMF expanded to first order; here, we omit the ( M ,
) dependence of the covariance as a shorthand notation. These 
xpansions around the pivot mass are for haloes centred around a
arrow enough mass bin. We show explicitly in Fig. 9 that the first-
rder expansion converges using our binning method. The deri v ations 
or the first and second-order expansion terms can be found in
vrard et al. ( 2014 ) and Farahi et al. ( 2018 ) and the deri v ation

or this particular expression of the second-order term is shown in
ppendix C . 
Here, γ 1 and γ 2 are the parameters for the first- and second-order 

pproximations to the mass dependence of the halo mass function 
e.g. Evrard et al. 2014 ): 

d n hmf ( M, z) 

d ln M 

≈ A ( z ) exp 

[
−γ1 ( M, z ) ln M − 1 

2 
γ2 ( M, z )( ln M) 2 

]
. 

(19) 
MNRAS 530, 3127–3149 (2024) 
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Table 3. Notations employed in exploring the secondary halo parameter 
dependence. 

Parameter Explanation 


 Set of secondary halo parameters 
� inst Instantaneous mass accretion rate (MAR) 
� 100 Myr Mean MAR o v er the past 100 Myr 
� dyn Mean MAR o v er virial dynamical time 
� 2dyn Mean MAR o v er two virial dynamical time 
� peak Growth rate of peak mass from current z to z + 0.5 
a 1/2 Half mass scale factor 
c vir R vir concentration 
T/ | U | Absolute value of the kinetic to potential energy ratio 
X off Offset of density peak from mean particle position (kpc h −1 ) 

w  

r  

u  

t  

b
 

c  

t  

w  

9  

c  

m  

a

2
l

W  

�  

o  

p  

(  

m  

f  

r  

b  

p

(

(

w  

i  

i  

I  

h  

w  

t  

p

 

c

C

w  

〈  

s  

m  

v  

i  

G  

a

C

 

h  

h  

d  

r  

e

C

i  

d  

s  

e
 

s  

a  

e  

w  

d  

c

3

I  

i  

S  

3

W  

l  

i  

i  

p  

T  

(  

w  

�  

o  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/530/3/3127/7644357 by guest on 24 M
ay 2024
here A ( z) is the normalization of the mass function due to the
edshift alone. In deriving the abo v e approximations, we hav e made
se of the fact that Cov ( ��, ln N gal | M, z) ≡ r ��,N gal σ�� σN gal . The
erms σ�� , σN gal , r N gal ,�� , γ 1 and γ 2 are e v aluated at the mass implied
y 〈 ln M | N gal 〉 . 
These property covariance correction terms are absent in the

urrent literature. A key feature of this approximation method is that
he second-order solution has better than per cent-level accuracy
hen the halo mass function is known (Farahi et al. 2016 ). In Fig.
 , we demonstrate that the statistical uncertainties for the first-order
orrection in equation ( 17 ) is larger than the uncertainty in the halo
ass function and the uncertainty due to the second-order halo mass

pproximation. 

.4 Secondary halo parameter dependence of Cov( ��, 
n N gal | M , z) 

e elucidate the physical origin of the covariance between
� and ln N gal by developing a phenomenological model based

n the secondary halo parameters listed in Table 3 . These
arameters are computed from the ROCKSTAR halo finder
Behroozi, Wechsler & Wu 2013 ). They capture the halo’s
ass accretion history, which we hypothesise is the driving

orce behind the observed covariance. To incorporate these pa-
ameters into our model, we extend equations ( 8 ) and ( 9 )
y introducing multilinear terms that include the secondary halo
arameters denoted by the vector 
 : 

 ln N gal | 
, M, z) = 〈 ln N gal | M , z〉 1 + 

	 β
ᵀ 
N gal 

( M , z) · 
 + εN gal 

= πN gal ( M, z) + αN gal ( M, z) ln M 

+ 

	 β
ᵀ 
N gal 

( M, z) · 
 + εN gal . (20) 

 �� | 
, M, z) = 〈 �� | M , z〉 1 + 

	 β
ᵀ 
�� ( M , z) · 
 + ε�� 

= π�� ( M, z) + α�� ( M, z) ln M 

+ 

	 β
ᵀ 
�� ( M, z) · 
 + ε�� , (21) 

here 
 is a vector of secondary halo parameters of potential
nterest listed in Table 3 , and ε�� and εN gal are normally distributed
ntrinsic scatter terms with zero means and uncorrelated variances.
n Appendix E , we show that the residual conditioned on secondary
alo parameters can largely be assumed to be Gaussian. Additionally,
e assume 〈 εN gal ε�� 〉 = 0, which implies that the scatter about

he mean relations is uncorrelated after factoring in the secondary
roperties. 
NRAS 530, 3127–3149 (2024) 

w  
Due to the bilinearity and distributive properties of covariance,
ombining equations ( 20 ) and ( 21 ) yields 

ov ( ��, ln N gal | M, z) = Cov ( 〈 ��〉 1 , 〈 N gal 〉 1 ) + Cov ( 〈 ��〉 1 , 	 β
ᵀ 
N gal 

· 
 ) 

+ Cov ( 〈 ��〉 1 , εN gal ) + Cov ( 	 β
ᵀ 
�� · 
, 〈 ln N gal 〉 1 ) 

+ Cov ( 	 β
ᵀ 
�� · 
, 	 β

ᵀ 
N gal 

· 
 ) + Cov ( 	 β
ᵀ 
�� · 
, εN gal ) 

+ Cov ( ε�� , 〈 ln N gal 〉 1 ) + Cov ( ε�� , 	 β
ᵀ 
N gal 

· 
 ) 

+ Cov ( εN gal , ε�� ) , (22) 

here we omit the explicit ( M , z) dependence in 〈 ��| M , z〉 1 ,
 ln N gal | M , z 〉 1 , 	 β

ᵀ 
�� ( M, z ), 	 β

ᵀ 
N gal 

( M, z ), εN gal ( M, z ) and ε�� ( M , z) to
implify the notation. The KLLR method is utilized to estimate these
ass-dependent parameters. All terms involving 〈 ��〉 and 〈 ln N gal 〉

anish, as these terms are independent of 
 by definition. Terms
nvolving εN gal and ε�� also go to zero, as they are uncorrelated

aussian scatters. Only the term Cov ( 	 β
ᵀ 
�� · 
, 	 β

ᵀ 
N gal 

· 
 ) remains,
nd hence our final expression for the covariance is 

ov ( ��, ln N gal | M, z) = Cov ( 	 β
ᵀ 
�� · 
, 	 β

ᵀ 
N gal 

· 
 ) 

= 

	 β
ᵀ 
�� Cov ( 
, 
 ) 	 βN gal . (23) 

To estimate the error in the covariance due to each of the secondary
alo parameters, we compute Cov( ��, 
 i | M , z) for each secondary
alo parameter i in each ( r p , M , z) bin and take their standard
eviations as the error measurement. Modelling the richness–mass
elation as in equation ( 20 ) and using the same deri v ation as in
quation ( 22 ), we arrive at the expression 

ov ( ��, ln N gal | M, z) = 

∑ 

i 

βN gal ,i ( M, z) Cov ( ��, 
 i | M, z) , 

(24) 

n which the error from each contributing term in 
 is the standard
eviation for Cov( ��, 
 i | M , z) multiplied by the partial richness
lope βN gal , i . The total variance of Cov( ��, ln N gal | M , z) are the
rrors of each term added in quadrature. 

We test the validity of this model by checking how well the
econdary halo parameters can explain covariance between lensing
nd richness in Section 6 . After subtracting the covariance from
ach of the 
 i terms, the full covariance should be consistent
ith null, given the uncertainty. Our results confirm that the
ependency of secondary halo parameters can indeed explain the
ovariance. 

 DATA  SET  A N D  MEASUREMENTS  

n this section, we describe the measurements on the individual
ngredients that make up the covariance – �� the lensing signal in
ection 3.1 and ln N gal the log-richness measurement in Section 3.2 .

.1 Measurements of �� 

e employ the MultiDark Planck 2 (MDPL2) cosmological simu-
ation (Klypin et al. 2016 ) to measure halo properties. The MDPL2
s a gravity-only N -body simulation, consisting of 3840 3 particles
n a periodic box with a side length of L box = 1 h −1 Gpc, yielding a
article mass resolution of approximately m p ≈ 1.51 × 10 9 h −1 M �.
he simulation was conducted with a flat Lambda old dark matter
 � CDM) cosmology similar to Planck Collaboration XVI ( 2014 ),
ith the following parameters: h = 0.6777, �m 

= 0.307115,
� 

= 0 . 692885, σ 8 = 0.829, and n s = 0.96. We use the surface
 v erdensity of down-sampled dark matter particles to measure the
eak lensing signal. We selected cluster-sized haloes using the
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Figure 3. Using different prescriptions of the richness count, we compare 
with the SPT-DES data (Costanzi et al. 2021 ). The richness estimator, with 
no stellar or colour–magnitude cut, shows a similar trend with the data. In 
Section 4 , we show that the results are robust to changes in the definition of 
the number count estimator. 
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OCKSTAR (Behroozi et al. 2013 ) halo catalogue, which includes 
he primary halo property of mass and redshift and a set of secondary
alo properties listed in Table 3 that we utilize in this analysis. To
apture the contribution of both the one- and two-halo terms to 
hm , we use a projection depth of D p = 200 Mpc h −1 to calculate
� (e.g. Costanzi et al. 2019 ; Sunayama et al. 2020 ). The MDPL2

ata products are publicly available through the MultiDark Database 
Riebe et al. 2013 ) and can be downloaded from the CosmoSim
ebsite. 1 

The e xcess o v erdensity, ��, is calculated by integrating the
asses of the dark matter particles in annuli of increasing radius

entred around the halo centre. Ho we ver, since clusters do not have a
ell-defined boundary, we compare the results of two radial binning 

chemes. The first scheme uses 20 equally log-spaced ratios between 
.1 and 10 times R vir , while the second scheme spans 0.1 to 10 times
 200c . We consider the measurements binned at R 200c as our final

esults to be consistent with the weak lensing literature. Fig. 2 
hows that our measurements are consistent with most models of 
he concentration-mass and halo-bias models at a 1 σ level. 

At a projection depth of D p = 200 Mpc h −1 , the projection
ffects can be modelled as a multiplicative bias (Sunayama 2023 ). 
n Sunayama ( 2023 ) the projection effects on �� are modelled
s �� obs = (1 + α) �� true , where α = 18 . 4 ± 8 . 6 per cent . Al-
hough the multiplicative bias of projection effects may increase 
he amplitude of Cov( ��, ln N gal ) by a factor of (1 + α), we
rgue that it does not introduce an additive bias into our model
or Cov( ��, ln N gal ). This is because, under the richness model
nd �� in equations ( 20 ) and ( 21 ), only terms in richness that are
orrelated with projection effects will contribute to the covariance. 
s demonstrated in Section 3.2 , we enclose the halo within a 3D
hysical radius, so the number count N gal of galaxies should not 
nclude projection effects. Therefore, projection effects should not 
ntroduce an additive bias to our covariance. 

To remo v e the 2D inte grated background density, we first com-
uted the background density of the universe ( ρb ) at the cluster
edshift using the cosmological parameters of the MDPL2 simula- 
ion. The integrated 2D background density is given by � b = 2 D p ρb ,
here factor 2 comes from the integration of the foreground and 
ackground densities. 
 https://www.cosmosim.org 

 

n  

m

.2 Measurements of N gal 

.2.1 Data set for N gal – SAGE galaxy catalogue 

he Semi-Analytic GALAXY Evolution (SAGE) is a catalogue 
f galaxies within MDPL2, generated through a post-processing 
tep that places galaxies onto N -body simulations. This approach, 
nown as a semi-analytic model (SAM), is computationally efficient 
ompared to hydrodynamical simulations with fully self-consistent 
aryonic physics. SAMs reduce the computational time required by 
wo to three orders of magnitude, allowing us to populate the entire
 (Gpc h −1 ) 3 simulation volume with galaxies. SAGE’s statistical 
ower enables us to conduct stacked weak lensing analyses. 
The baryonic prescription of SAGE is based on the work of Croton

t al. ( 2016 ), which includes updated physics in baryonic transfer
rocesses such as gas infall, cooling, heating, and reionization. It 
lso includes an intracluster star component for central galaxies 
nd addresses the orphan galaxy problem by adding the stellar 
ass of disrupted satellite galaxies as intra-‘cluster’ mass. SAGE’s 

rimary data constraint is the stellar mass function at z = 0.
econdary constraints include the star formation rate density history 
Somerville, Primack & Faber 2001 ), the Baryonic Tully-Fisher 
elation (Stark, McGaugh & Swaters 2009 ), the mass metallicity 
elation of galaxies (Tremonti et al. 2004 ), and the black hole–bulge
ass relation (Stark et al. 2009 ). 

.2.2 Model for N gal 

o determine the number of galaxies inside a cluster-sized halo, we
tilise the SAGE SAM and compute the total number of galaxies
ithin a 3D radius around the halo centre. We compare the true

ichness ( N gal ) to M 200c scaling relations between different models
nd the observed richness-mass relations from Costanzi et al. ( 2021 )
sing data from the DES Year-1 catalogue and mass-observable- 
elation from the South Pole Telescope (SPT) cluster catalogue (see 
ig. 3 ). The observed richness-mass relation is fitted as a log-linear
odel with 2 − σ error bars that trace the posterior of the best-
tting richness-mass model parameters. The M 500c mass definition 

n the catalogue is converted to M 200c using an NFW profile for
he surface density of the cluster and adopting the Diemer & Joyce
 2019 ) concentration-mass relation anchored at z = 0.35, which is
oughly the median redshift of the cluster sample. 

We use the KLLR method to determine the local linear fit for
ur N gal -mass model, which relaxes the assumption of global log-
inearity (Anbajagane et al. 2020 ). Realistic cluster finders, such as
edMaPPer (Rykoff et al. 2014 ), impose a colour-magnitude cut or
 stellar mass cut, which are highly dependent on the red-sequence
odel or the spectral energy density model. We found that imposing
 stellar mass cut of 10.5log ( M /M �) would correspond roughly to the
ottom 5 per cent percentile of SDSS detected galaxies (Maraston 
t al. 2013 ). Ho we ver, this drastically decreases the number of
alaxies in a halo, with most having N gal in the single digits. As we
re interested in the intrinsic covariance from the physical properties 
f the halo, we do not impose additional magnitude or stellar mass
uts. We confirm that, as described in Croton et al. ( 2016 ), the galaxy
tellar mass distribution at z = 0 is consistent with the best-fitting
ouble Schechter function calibrated with low-redshift galaxies from 

he Galaxy and Mass Assembly (Baldry et al. 2012 ) down to stellar
asses of M > 10 8 . 5 M �. 
Fig. 3 illustrates that our N gal -mass models, which count the

umber of galaxies within a physical 3D radius and impose no colour-
agnitude cut as redMaPPer does, resemble the general behaviour 
MNRAS 530, 3127–3149 (2024) 
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Figure 4. Measured against the left hand side y-axis are measurements of Cov( ��, N gal | M , z) with 1 σ errors and different functional forms using the full 
model. The functions are classes of ‘Sigmoid’ functions. In all bins, the error function outperforms other functional forms in their DIC parameters, providing 
good χ2 values. For M 200c ∈ [5 × 10 14 , 1 × 10 15 ) at z = 0.49 and M 200c ∈ [2 × 10 14 , 5 × 10 15 ) at z = 1.03, the posteriors of the full models do not converge as 
the size of the covariance is too small. Measured against the right-hand side y -axis are the correlation coefficients r ��,N gal | M,z with smoothed bands representing 
the 1 − σ error. The errors are measured by bootstrap resampling. 
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f the observed richness-mass relations in terms of both slope and
ntercept. Ho we ver, we ackno wledge that redMaPPer may suffer
rom projection effects that artificially inflate the number count of
ed-sequence galaxies within its aperture because of line-of-sight
tructures. Additionally, the N gal count within the R vir radius exceeds
hat of R 200c as R vir is greater than R 200c . In the toy model scenario,
here we use a constant 1 Mpc h −1 radius, the slope of the mass-

ichness relation starts to decrease as the mass increases due to the
ncreasing physical size of the clusters, as expected. The diversity
f cluster radii and the resulting variation in the local slope and
ntercept of the N gal –mass relations demonstrate the robustness of
ur covariance model. In Section 4 , we show that different radii/mass
NRAS 530, 3127–3149 (2024) 
efinitions have little impact on the parameters of our covariance
odel, thus establishing its independence from different reference

adii, the definitions of cluster edges, and the resulting richness-mass
elations. 

 RESULTS:  C OVA R I A N C E  SHAPE  A N D  

VO L U T I O N  

n this section, we report the measurements for our covariance. In
ig. 4 , we find an anti-correlation between N gal and �� at small
cales across most redshift and mass bins spanned by our data set,
hich we fit with the best-fitting ‘Sigmoid’ functional form of the
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Figure 5. Evolution of Cov( ��, N gal | M , z) shape parameters with respect 
to mass and radial binning schemes and N gal definition at fixed redshift at 
z = 0. �� is binned in equal log-space radial bins in R / R 200c or R / R vir ; for 
each radial binning, the number count of galaxies inside the cluster is given 
by a constant radius of 1 Mpc h −1 or R 200c when binned by R 200c and R vir 

when binned by R vir . We find no strong evolution in the shape or scale of 
the covariance under different binning schemes or N gal definitions. The trend 
is consistent across different redshift bins and demonstrates the robustness 
of the covariance under different true richness definitions. The error bars 
indicate the 1 − σ distribution of the posteriors. 
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xpression 

ov ( ̃ x ) = s 
(

erf ( 

√ 

π

2 
˜ x ) + g 

)
, (25) 

ith x ≡ log R / R 200c the log-radius and ˜ x ≡ ( x − γ ) /τ the scaled
nd offset log-radius. In Appendix A , we offer statistical verification 
f the best-fitting functional form. 
We first describe the evolution of the covariance in Section 4.1 

y binning across the ( M , z) bins. Next, in Section 4.2 , we present
n alternative binning scheme based on halo peak height that can 
rovide insight into the dependence of the time formation history of
he covariance scale. 

.1 Binned in ( M , z) 

ur best-fitting parameters in Table D1 indicate that in 9 out of 12
 M , z) bins, the Cov( ��, ln N gal | M , z) rejects the null-correlation
ypothesis with high statistical significance ( p -value < 0.01). How- 
ver, in two bins, specifically M 200c ∈ [5 × 10 14 , 1 × 10 15 ) M �h −1 

t z = 0.49 and M 200c ∈ [2 × 10 14 , 5 × 10 15 ) M �h −1 at z = 1.03, the
agnitude of the covariance is relatively small compared to the size

f their errors. Consequently, it becomes challenging to constrain the 
hape parameters in these two bins, and the covariance is consistent
ith the null hypothesis. Furthermore, we exclude the bin M 200c ∈

5 × 10 14 , 1 × 10 15 ) M �h −1 , z = 1.03 due to the limited number of
aloes it contains. 
Our results suggest that the shape of the covariances can be

ccurately described by the full error function. Additionally, for R ≥
 vir or R ≥ R 200c , the covariance aligns with the null-correlation
ypothesis. This alignment is reflected in the fact that all nine
ins with constrained posterior shape have best-fitting g values 
ithin 2 σ of g = −1. Deviations from g = −1 can be interpreted

s evidence of disagreements with the Press-Schechter formalism 

Press & Schechter 1974 ) of spherical collapse haloes, which can be
riginated from the presence of anisotropic or non-Gaussian matter 
istribution around haloes at large scales (Lokken et al. 2022 ), or it
an be an indicator of an open-shell model of haloes that allows for
he bulk transfer of baryonic and dark matter in and out of the halo
otential well during the non-linear collapse. 
With g = −1 fixed, the reduced error function marginally im-

ro v es the constraints in most bins. Ho we ver, with the reduced
odel, we can provide posterior constraints for M 200c ∈ [5 × 10 14 ,
 × 10 15 )M �h −1 at z = 0.49 and M 200c ∈ [2 × 10 14 , 5 × 10 15 )M �h −1 

t z = 1.03, which the full model failed to constrain but with very
oose posterior constraints. The estimated parameters for both the full 
nd reduced models are presented in Tables D1 and D2 , respectively.

To assess the impact of varying the definition of the halo radius
n our measurements of the shape of the covariance, we considered
w o f actors: the scale dependence of �� discussed in Sections 2.1.3
nd 3.1 , and the alteration of the richness-mass relation as shown in
ig. 3 in Section 3.2 . Fig. 5 demonstrates that there is no apparent
volution of the shape parameters θ ∈ { τ, γ, g} when altering the
cale dependence for �� or the true richness count. Ho we ver, we
nd marginal 3 σ evidence of a difference in the amplitude parameter
f the covariance s when changing the scale normalisation from r p =
 / R 200c to r p = R / R vir while using the same true richness count. As
aloes exhibit more self-similarity in the inner regions when scaled 
y R 200c (Diemer & Kravtsov 2014 ), we adopt this as our radius
ormalisation and use the number of galaxies enclosed within R 200c 

s our true richness count. 
Subsequently, we explored the evolution of the shape parameters 

ith respect to ( M , z) and found no strong mass dependence. How-
v er, we observ ed a monotonically decreasing redshift dependence 
f the amplitude parameter s , as illustrated in Fig. 6 . To explain both
he halo mass and the redshift dependence, we used the peak height
f the halo, ν( M , z). 

.2 Binned by peak height 

n alternative binning scheme that encapsulates both the halo mass 
nd redshift information is to bin haloes by the peak height parameter, 
efined as 

= 

δc 

σ ( R, a) 
, (26) 

here δc ( z) is the collapse o v erdensity at which gravitational col-
apses enter the non-linear regime and σ ( R , a ) is the smoothing scale
een in equation ( B2 ) at the radius of the cluster. For an Einstein-de
itter universe ( �m = 1, �� 

= 0) δc ≈ 1.686 at the epoch of collapse
nd is weakly dependent on cosmology and redshift (Perci v al 2005 ).
MNRAS 530, 3127–3149 (2024) 
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Figure 6. Evolution of Cov( ��, N gal | M , z) shape parameters of the error 
function with respect to mass and redshift, binned in units of R 200c and with 
N gal taken to be the number of clusters inside the R 200c radius of the cluster. 
There is no strong dependence of τ , γ , and g with respect to mass and redshift 
and a strong monotonically decreasing s with respect to redshift. At M 200c 

∈ [5 × 10 14 , 1 × 10 15 ), z = 0.49 and M 200c ∈ [2 × 10 14 , 5 × 10 15 ), z = 

1.03 the covariance is consistent with null at p = 0.01 and p = 0.05 levels, 
respectively. The error bars indicate the 1 − σ distribution of the posteriors. 
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Figure 7. Best-fitting ‘full’ error function model for Cov( ��, ln N gal | M , z) 
when binned in deciles of halo peak height. The first nine bins reject the 
null hypothesis at a p < 0.01 level, and the highest decile rejects the null 
hypothesis at a p < 0.05 level. We can provide posterior constraints for all 
bins in peak height except for the one with the highest peak height value. 

t  

u  

w  

o  

s  

a  

h  

F  

F  

W  

g  

o

w  

t  

l
p  

m  

l

5  

L

T  

〈  

a  

i  

i  

r  

l  

i  

r  

2
 

m  

d  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/530/3/3127/7644357 by guest on 24 M
ay 2024
( R , a ) scales as σ ( M , a ) = σ ( M , a = 1) D + 0 ( a ) at the linear collapse
egime, where D + 0 ( a ) ≡ D + 

( a )/ D + 

( a = 1). Here, D + 

( a ) is the linear
rowth factor defined as 

 + 

( a ) = 

5 �M 

2 
E( a ) 

∫ a 

0 

da ′ 

[ a ′ E( a ′ )] 3 
, (27) 

or a � CDM cosmology, where E ( a ) ≡ H ( a )/ H 0 is the normalized
ubble parameter. σ ( R , z) depends strongly on redshift, and hence,

he peak height ν strongly depends on the halo radius and the redshift
f non-linear collapse. 
The peak height has been adopted to simplify the mass and redshift

ependence in various halo properties, such as halo concentration
Prada et al. 2012 ) and halo triaxiality (Allgood et al. 2006 ). Here,
e explore whether the peak height can serve as a universal parameter

o explain the scale and shape of Cov( ��, ln N gal | M , z). We bin the
aloes into deciles of ν and set posterior constraints on the shape
f the covariance using our erf model in the full model case. In
he highest decile (90–100 per cent percentile), we reject the null-
orrelation hypothesis at the p = 0.01 level, but due to the size of
NRAS 530, 3127–3149 (2024) 
he error bars, the shape of the parameters τ , γ , and g and largely
nconstrained and s = 10 12 × 0 . 16 + 0 . 34 

−0 . 12 . Due to the large de generac y,
e exclude the highest decile from our data set and limit the range
f our model to ν ∈ [1.57, 3.40), which spans 0–90 per cent of our
ample set. The large error bars may be due to the fact that the halo
bundance as a function of ν falls precipitously around ν ∼ 4, so the
ighest decile spans a wide tail of high ν ∈ [3.4, 4.6). The plots in
ig. 7 are the best-fitting templates when binned by peak height, and
ig. 8 shows the best-fitting parameters as a function of peak height.
e do not see a strong dependence on the peak height for τ , γ , and
 . For s , its dependence on ν can be modelled as a log-linear relation
f the form 

log 10 ( s) = C s + αν, (28) 

ith C s = 13 . 07 + 0 . 26 
−0 . 26 and α = −0 . 44 + 0 . 11 

−0 . 11 . At the highest decile,
he s = 10 12 × 0 . 16 + 0 . 34 

−0 . 12 falls within the 1 σ confidence band of the
og-linear fit. Compared to the first nine deciles, the fit yields a χ2 

 -value of 0.73. The ne gativ e slope between s and ν indicates that
ore massive haloes at the cosmic era of their formation exhibit a

esser anticorrelation between �� and ln N gal . 

 I M PAC T  O F  C OV (  ��,  LN  N G A L 

| M ,  z)  O N  W E A K
ENSING  MEASUREMENTS  

o assess the impact of Cov( ��, ln N gal | M , z) on the scaling relation
 ��| N gal , z〉 , we utilize equation ( 17 ) for the first-order correction
nd equation ( 18 ) for the second order. The mean mass of the haloes
n each ( M , z) bin is chosen as the pivot mass around which the HMF
s Taylor expanded, and the intercept πN gal and slope αN gal for the
ichness-mass scaling relation shown in equation ( 9 ) are computed
ocally at the pivot point in each bin ( M , z) bin. Our mock data, binned
n R 200c , yield results that are consistent with the global richness-mass
elation found in the literature (Bocquet et al. 2016 ; Costanzi et al.
021 ; To et al. 2021 ), as shown in Fig. 3 . 
For the correction terms, we adopt the Tinker et al. ( 2008 ) halo
ass function as our nominal model and compute the numeric log-

eri v ati ve for values of γ 1 and γ 2 , the log-slope and curvature of
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Figure 8. The evolution of shape parameters for Cov( ��, ln N gal | M , z) 
binned in deciles of the peak height ν, excluding the highest decile. The 
parameters τ , γ , and g show little dependency with ν while the amplitude s 
exhibits a log-linear relationship with ν of the form shown in equation ( 28 ). 
The mean g is consistent with −1. The horizontal teal bands fill the 1 σ range 
around the mean, and the pink line is the best log-linear fit between s and ν
with 1 σ confidence bands. 
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he halo mass function around the pivot mass. We compare the 
inker mass function results with others, including Watson et al. 
 2013 ), Bocquet et al. ( 2016 ), Despali et al. ( 2016 ), and find that the
ifference is subdominant to the first-order correction, which is at a 

1 per cent level at small scales, as shown in Fig. 9 . 
To estimate the mass bias in each bin, we stack 〈 ��| M , z〉 and
odel the profiles as if they were individual haloes with a mean
ass, redshift and concentration as described in equations ( 2 )–( 7 ).
e assume NFW profile using the concentration–mass model of 
iemer & Joyce ( 2019 ) in the one-halo regime. The two-halo regime

hould not be affected, as the covariance is consistent with zero at
 � R 200c . We convert the 3D o v erdensity of the modelled halo ξ hm 

o �� using equations ( 2 ) and ( 5 ), and then apply the first-order
orrection in equation ( 17 ). Using a Monte Carlo method we obtain
he expected mass with and without this correction and report the 
hange in the mean halo mass with this correction for each ( M , z)
in. As shown in Fig. 9 , we find that adding the correction leads
o an upward correction of the stacked halo mass of approximately 
M/M ∼ 2 − 3 per cent for most ( M , z) bins. 

 EX P LAIN ING  T H E  C OVA R I A N C E  

.1 Secondary halo parameter dependence of ln N gal 

e employed a multi v ariable linear regression model to determine 
he best fit when incorporating secondary properties in the regression. 
nitially, considering the full set of parameters listed in Table 3 ,
e applied a backward modelling scheme to identify the rele v ant
arameters of interest. Details of this process can be found in
ppendix E , which led to the selection of the following secondary
alo parameters for our model: 
 ⊂{ � 2dyn , a 1/2 , c vir , T / | U | , X off } . The
esulting model demonstrated good explanatory power, as indicated 
y a high R 

2 coefficient. Additionally, the model passed various tests,
ncluding variance inflation, global F -statistic, partial F -statistic, T -
tatistic, scatter heteroscedasticity, and scatter normality in most 
ases. Specifically, through a comparison of F partial values, we found 
hat richness could be modelled by a multilinear equation involving 
ll secondary halo parameters. Further information can be found 
n Table E1 , where the F -statistic demonstrates that all parameters
re statistically significant. Only when considered collectively can 
hey accurately reflect the dependence of richness on halo formation 
istory. 
To establish informative priors for upcoming weak lensing surveys 

uch as Hyper Suprime-Cam (HSC) and LSST, we examined whether 
he dependence of N gal on secondary halo properties, as inferred 
rom the slope βN gal , aligns with arguments based on halo formation
hysics. We expected that βN gal ,c vir resulting from the formation 
f satellite galaxies (equi v alent to N gal − 1 in the presence of
 central galaxy) within haloes would exhibit a ne gativ e relation,
.e. βN gal ,c vir < 0. Simulation-based studies have suggested that early 
orming haloes possess higher concentrations (Wechsler et al. 2002 ), 
nd correspondingly, high-concentration haloes (which form early) 
ave fewer satellite galaxies due to galaxy mergers within the haloes
Zentner et al. 2005 ). This effect is known as galaxy assembly bias
Wechsler & Tinker 2018 ) – the change in galaxy properties inside a
alo at fixed mass due to the halo formation history. There is marginal
vidence of the existence of assembly bias from recent observations 
sing galaxy clustering techniques (Zentner et al. 2019 ; Wang et al.
022 ), as well as measurements of the magnitude gap between the
rightest central galaxy (BCG) and a neighbouring galaxy as a proxy
or formation time (Hearin et al. 2013 ; Golden-Marx & Miller 2018 ;
arahi, Ho & Trac 2020 ). 
As noted in Table E1 , the signs of βN gal ,i for the remaining

arameters i ∈ { a 1/2 , T / | U | , � 2dyn , X off } align with our expectations
f assembly bias in most bins – late-forming clusters undergo 
ore rapid mass accretion (higher � 2dyn ) and are less virialized

higher T / | U | ), and because they also from the galaxy assembly 
ias mentioned abo v e are richer in galaxy number counts when
onditioned on the mass, we expect a positive partial slope βN gal ,� 2dyn 

nd βN gal , T / | U | . The case for a 1/2 and X off is more complicated. Under
he isolated formation of haloes a 1/2 and X off would be smaller for
arlier forming haloes due to the monotonic mass accretion and 
elaxation of haloes o v er long time-scales. Ho we ver, as haloes un-
er go mer gers and tidal stripping the monotonicity of the parameters
 v er time is not guaranteed. Therefore, we see a mixture of positive
nd ne gativ e partial slopes βN gal , a 1 / 2 and βN gal , X off in these cases. To
escribe the physical mechanisms on a case-by-case basis would 
equire that we probe into the halo merger tree history of individual
aloes. 
In this paper, we take a closer look at the sign of βN gal ,c vir and

bserve that while the partial scope matches our expectations in most
ins, in some mass bins at medium and high redshifts it changes
igns from ne gativ e at lo wer redshifts to positi ve at higher ones.

hile we observe a diminishing impact of secondary halo properties 
n richness (indicated by a smaller absolute value for βN gal ,c vir ), 
he reversal of the coefficient’s sign cannot be solely attributed to
tatistical fluctuations around zero, as some values are inconsistent 
ith zero at levels exceeding 3 σ . 
MNRAS 530, 3127–3149 (2024) 
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Figure 9. The per cent level change in stacked �� measurements after including the covariance terms in equations ( 17 ) and ( 18 ) as denoted by �� cov and 
without applying corrections as denoted by �� fid . The slope and curvature of the halo mass function are calculated numerically from the Tinker et al. ( 2008 ) 
halo mass function in our nominal correction. The errors are taken from bootstrapped errors of the covariance. We compare the results with first-order corrections 
from other halo mass functions using Watson et al. ( 2013 ); Bocquet et al. ( 2016 ); Despali et al. ( 2016 ). We find that the percentile difference in �� far 
exceeds the uncertainty in the choice of halo mass functions, and that second-order corrections are subdominant to the first-order correction itself, which is at 
a ∼ 1 per cent level at small scales for �� and propagates into an upward correction of stacked halo mass of δM/M ∼ 2 − 3 per cent for most bins after 
applying the correction. 
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This issue can be attributed to the effect of major mergers on
oncentration. Recent studies (Ludlow et al. 2012 ; Wang et al. 2022 ;
ee et al. 2023 ) have shown that haloes, during major merger events,
xperience a transient fluctuation in concentration before returning to
he mean relation o v er a time period slightly less than the dynamical
ime of the halo. The measured concentration spike during major
NRAS 530, 3127–3149 (2024) 
ergers, particularly prominent at higher redshifts, could explain a
ositive β{ N gal ,c vir } . 
To test this hypothesis, we employ a toy model that divides haloes

n each ( M , z) bin based on the median � 1dyn into low- � 1dyn and high-
 1dyn subsamples. Given the time-scale of mergers to be roughly

he dynamical time of the halo, we choose � 1dyn as a good proxy
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Figure 10. Residual log-richness versus concentration relation in subsets of halo mass accretion rate (MAR). The figure consists of three panels – left, middle, 
and right panels corresponding to z = 0, z = 0.49, and z = 1.03, respectively, all on a benchmark mass bin of M 200c ∈ [5 × 10 13 , 1 × 10 14 )M �h −1 . The sample 
is split into low and high � 1dyn based on their median values. The scatter plot illustrates the data points, while the shaded regions show the best-fitting linear fit 
with 1 σ confidence interval for the main sample and each subsample. At z = 0, the richness–concentration relation exhibits a negative slope, consistent with 
our expectations of halo formation physics. The slopes for the low and high � 1dyn subsamples diverge due to the negative correlation between concentration and 
MAR. Ho we ver, at z = 0.49 and z = 1.03, the slopes for the entire sample and/or the high � 1dyn subsample become positive, contrary to our observations of 
the richness-concentration relation. In contrast, the low � 1dyn subsample still shows a ne gativ e slope. These findings suggest that at medium to high redshifts, a 
subset of unrelaxed and recently merged haloes with high MAR could ele v ate the concentration from its expected value at hydrostatic equilibrium. 
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or potential merger events even though this parameter is excluded 
n the final linear regression model due to multicollinearity (see 
ppendix E ). 
Fig. 10 displays the halo concentration plotted against the richness 

esiduals, separated by � 1dyn , at benchmark bins of M 200c ∈ [5 × 10 13 ,
 × 10 14 ) M � h −1 at three different redshift snapshots of z = 0,
.49, 1.03. At z = 0, we observe a negative slope as expected
rom halo formation physics for both low- � 1dyn and high- � 1dyn 

ubsamples, as well as for the o v erall sample. Furthermore, we
bserve a change in the slope between the low- � 1dyn and high- � 1dyn 

ubsamples, which can be explained by the gradual increase (or 
ecrease) in concentration ( � 1dyn ) o v er time, ev en without major
erger events (Wechsler et al. 2002 ; Zhao et al. 2003 ; Lu et al.

006 ). At redshifts of z = 0.49, 1.03, we observe a positive slope in
he o v erall and/or high- � 1dyn samples, which contradicts the scaling
elations between HOD and concentration in models that track their 
radual evolution o v er T � T 1dyn . However, in the presence of major
ergers, when � 1dyn is significantly enhanced, the halo concentration 
ay also experience a transient spike after the merger. The deviation 

rom hydrostatic equilibrium provides a plausible explanation for a 
ositive β{ N gal , c vir } , which could be fully tested on MDPL2 through
he reconstruction of halo merger trees, an analysis beyond the scope 
f this paper. 

.2 Secondary halo parameter dependence of �� 

n this section, we employ a multilinear regression approach to 
odel the lensing signal, similar to the methodology described in 
ection 6.1 . We extend this approach to the model P ( ��| N gal ( 
 ),
 , z) as a linear function of 
 . Upon analysing different ( M , z,

 p ) bins, we observe that the reduced parameters 
 ⊂{ a 1/2 , c vir ,
 / U , � 2dyn , X off } pass the variance inflation factor (VIF) test for
ulticollinearity, or in other words we showed that the variance is not

nflated and thereby made less reliable in the case that the secondary
alo parameters in the full model are highly correlated. As with the
ase for the lensing signal, this indicates that ln N gal can be described
ithout redundancy by a linear decomposition of these reduced 
arameters. Furthermore, most bins exhibit homoscedasticity, as 
onfirmed by passing the Breusch–Pagan Lagrange multiplier test. 
his implies that the scatter terms σ�� and σ
 i 

remain constant 
ithin each bin, with a few exceptions. Lastly, the scatter σ��| N gal in
ost bins (with a few exceptions) meets the criteria of the Shapiro–
ilk test for Gaussianity, suggesting that the distribution closely 

esembles a Gaussian distribution. 
The multilinear regression is a good fit to the conditioned lensing

ignal if we assume that P (ln N gal | M , z) and P ( ��| M , z) can be
odelled with a normal distribution (e.g. Anbajagane et al. 2020 ;
ostanzi et al. 2021 ; To et al. 2021 ). In this case P ( ��| N gal , M , z) is
 multilinear equation with respect to the secondary halo parameters 
ith mean 

 ��| N gal , M, z〉 = 〈 ��| N gal , M, z〉 

+ C 1 σ�� 

( ∑ 

i 

βN gal ,i 

σ
 i 

ρ��−
 i × ( 
 i − 〈 
 i | M, z〉 ) 
)

(29) 

nd is normally distributed around the mean with variance 

2 
��| ln N gal 

= σ 2 
0 + C 2 

∑ 

i 

β2 
N gal ,i 

σ 2 

 i 

(1 − ρ2 
��−
 i 

) 

+ C 3 

j �= i ∑ 

i,j 

ρ
 i −
 j 
σ
 i 

σ
 j 
. (30) 

he parameters C 1, C 2, C 3, and σ 0 can be explicitly derived where
 (ln N gal | M , z) and P ( ��| M , z) are known, but the exact values are
ot essential for this paper. We refer the reader to Appendix F for
eri v ations of equations ( 29 ) and ( 30 ). 
We note that only in bins of R � R 200c do the multilinear regression
odels pass the global F -statistic test and the T -statistic test for each

arameter. This result suggests that, at R � R 200c , we find little
orrelation between �� and 
 i . Because the scatter still passes
MNRAS 530, 3127–3149 (2024) 
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Figure 11. The dependence of �� on accretion history parameters in M 200c ∈ [2 × 10 14 , 5 × 10 14 )M �h −2 , z = 0. In each of the five panels is plotted the 
�� in different quintiles of the accretion history parameter 
 ∈ { a 1/2 , c vir , T / | U | , � 2dyn , X off } compared to the mean ��. For { a 1/2 , T / | U | , � 2dyn , X off } there 
is a strong ne gativ e correlation at small scales at R � R 200c and for c vir we find a strong positive correlation at R � R 200c . Comparing the width of �� binned 
at different quintiles of 
 with the standard deviation of the profiles, we find that accretion history parameters account for much of the variance at small scales 
and play a negligible role at large scales. 
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he Shapiro-Walk test for Gaussanity, the conditional probability
 ( ��| N gal , M , z) at large scales is still normally distrib uted, b ut with
��−
 i 

= 0. By setting ρ��−
 i 
= 0 the variance can be reduced to 

2 
��| N gal 

= σ 2 
0 + 

∑ 

i 

β2 
N gal ,i 

σ 2 

 i 

+ 

j �= i ∑ 

i,j 

ρ
 i −
 j 
σ
 i 

σ
 j 
. (31) 

We visualize the dependence of ρ��−
 i 
on R / R 200c in Fig. 11 . By

ividing �� into quintiles of 
 i we find a strong correlation for all
arameters at R � R 200c and a null correlation at R � R 200c . On small
cales, our results show a positive correlation for concentration and a
e gativ e correlation for { a 1/2 , T / U , � 2dyn , X off } . We observe that this
rend holds for all ( M , z) bins plotted for a benchmark bin of M 200c 

 [2 × 10 14 , 5 × 10 14 )M � h −1 at z = 0. 
The dependence of �� on secondary halo parameters qualitatively

grees with Xhakaj et al. ( 2022 ) wherein they targeted a narrow mass
in, with residual mass dependency inside the bin resampled so that
ass follows the same distribution. In our work, we remo v e the mass

ependency with the KLLR method (Farahi et al. 2022a ), which
chieves the same effect. We extend their results to mass and redshift
ins probed by the optical surv e ys and quantitativ ely show that the
ependence of �� on 
 can be modelled as a multilinear equation.

.3 Results: secondary halo parameter dependence of Cov( ��, 
n N gal | M , z) 

n Fig. 12 , we observe that the total covariance Cov( ��, ln N gal | M ,
), which remains after removing the contribution of each secondary
alo parameter βN gal ,i Cov ( ��, 
 i | M, z), is consistent with zero
t a significance threshold of 0.05 in all bins. The errors on the
otal covariance and individual contributions are computed using
ootstrapping, and the errors on the remaining term are determined
y adding the errors of the total and individual terms in quadrature. 
NRAS 530, 3127–3149 (2024) 
Based on our hypothesis in equation ( 24 ), we conclude that the set
f secondary halo parameters 
 , which are related to the formation
ime and the mass accretion history of the haloes, can fully explain
he joint distribution of �� and ln N gal given the precision allowed
y current errors, limited by the resolution limit (see Appendix B for
nformation on particle resolution and measurement errors). 

Since the joint distribution of �� and ln N gal follows a mul-
i v ariate normal distribution, P ( ��, ln N gal | M , z) is completely
haracterized by its mean relation and Cov( ��, ln N gal | M , z). It
hould be noted that the contribution of each individual parameter
o the total co variance, βN gal ,i Co v ( ��, 
 i | M, z), is determined
y the richness dependency captured by the slope βN gal ,i and the
� dependence represented by Cov( ��, 
 i | M , z). Qualitatively,

ndividual contributions to total covariance maintain their sign when
oth �� and N gal contributions preserve their sign. Consistent with
he arguments of halo formation, 
 correlates with �� at small
cales, as demonstrated in Fig. 11 across all ( M , z) bins. In most
ases, the dependence of the richness on secondary halo parameters
lso maintains its sign across the ( M , z) bins. In instances where we
ncounter a sign reversal in the ln N gal − c vir relation, we speculate
hat it is due to a transient increase in concentration following a major
erger. 
Furthermore, the total and individual contributions to the covari-

nce tend to decrease in magnitude at smaller scales with increasing
edshift. This decrease in covariance can be attributed to two factors:
he decreasing explanatory power of 
 on richness, as indicated by
he decreasing values of R 

2 and F partial values in Table E1 , and the
ecreasing absolute value of Cov( ��, 
 i | M , z). This trend aligns
ith the idea that as haloes have more time to form, the secondary
alo properties related to the mass accretion history become more
ignificant both in richness and in ��. As discussed in Section 4 , the
ependence of the mass and redshift on covariance can be explained
y the halo peak height, ν( M , z). 
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Figure 12. The dependence of Cov( ��, ln N gal ) on secondary halo parameters 
 . The solid blue line is the total covariance. The dashed lines of the lines 
represent the covariance contribution coming from each of the secondary halo parameters modelled and go v erned by equation ( 24 ), where Cov( ��, 
 | M , z) 
comes from the dependence of �� and the slope β i is the dependence of richness. The thick black dashed line is the remaining covariance after removing the 
contribution from each 
 i term; the errors are obtained by adding the total and individual errors in quadrature without considering the correlations between 
terms. In agreement with our hypothesis in equation ( 24 ), the remaining term is consistent with null at a p < 0.01 level for all bins. 
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 DISCUSSIONS  

ntrinsic versus Extrinsic Covariance. Our study distinguishes 
etween the intrinsic covariance investigated here and that observed 
n empirical cluster data sets. This distinction arises from system- 
tic biases introduced by the cluster-finding algorithm (extrinsic 
r  
omponent) and the underlying physics go v erning halo formation 
intrinsic component). Specifically, our analysis involves counting 
 alaxies in 3D ph ysical space. In contrast, a realistic cluster finder like
edMaPPer (Rykoff et al. 2014 ) employs a probabilistic assignment 
f galaxies to haloes in 2D physical space, considering projected 
adii and redshift through colour matching on to the red sequence.
MNRAS 530, 3127–3149 (2024) 
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ur study does not account for the observational systematics in
edMaPPer associated with uncertainties in photometric redshifts
nd projection effects (Rozo et al. 2015 ; Farahi et al. 2016 ). 

We find that the fractional amplitude of the bias and the scale
ependence on the lensing signal observed in our results (Fig. 9 )
re comparable to those reported by Farahi, Nagai & Anbajagane
 2022b ), who measured the covariance between the dark matter
ensity and the galaxy number count enclosed inside a halo after
pplying a realistic stellar mass cut. The enclosed mass within
 3D radius using the IllustrisTNG100 simulation is anchored at
 = 0.24. By comparing our findings to those obtained using a
ealistic cluster finder such as redMaPPer, we can unravel intrinsic
nd extrinsic contributions to the covariance between weak lensing
bservables (Wu et al. 2022 ). This work provides more profound
nsights into the distinct effects originating from the underlying
hysics and the methodology employed in cluster-finding algorithms
Euclid Collaboration 2019 ). 

Projection effects. A noteworthy distinction arises regarding the
o variance observ ed in our study compared to others examining
lusters in projected space. Projection effects can potentially in-
roduce a sign flip in co variance, as the y can positively bias both
� and richness (Costanzi et al. 2019 ; Wu et al. 2022 ; Zhang &
nnis 2022 ; Zhang et al. 2023 ). Particularly, Zhang et al. ( 2023 )

howed that the lensing signal can be affected both at large and small
cales from the preferential alignment of halo orientation with the
nderlying large-scale structure filament. Wu et al. ( 2022 ) detected
 positive correlation between �� and ln N gal employing Buzzard
imulations, where �� were measured using dark matter particles
nd galaxy counts were performed within a cylindrical region of
epth 60 Mpc h −1 . Their inv estigation rev ealed that the positive
orrelation primarily stems from galaxy number counts beyond the
alo’s virial radius and within 60 Mpc h −1 . On the other hand,
sing the Dark Quest emulator and HOD-based galaxy catalogues
Nishimichi et al. 2019 ), Sunayama et al. ( 2020 ) found negligible
eviations from the mean relation at small scales and an o v erall
eduction in selection bias at large scales, approximately halving
he effect observed by Wu et al. ( 2022 ). Furthermore, Huang et al.
 2022 ), using data from the Subaru HSC surv e y, observ ed that the
election bias is most prominent in the vicinity of the transition from
he one-halo to the two-halo regime, as evidenced by the comparison
etween the outer stellar mass proxy and richness. In a study based on
he IllustrisTNG300 simulation, Zhang & Annis ( 2022 ) disco v ered a
et positive correlation between the fitted weak lensing mass and the
rojected 2D number count of the halo when conditioned on the halo
ass. 
These results suggest that projection effects can potentially in-

roduce a positively correlated bias to both �� and N gal . We
an estimate the impact of projection effects by comparing the
ntrinsic covariance measured in our study with the total covariance
bserved in the projected space. Consequently, our results serve
wo essential purposes: (i) elucidating the physical origins of the
e gativ e co variance and (ii) discerning intrinsic and extrinsic com-
onents to determine the covariance attributable to projection effects
ccurately. 

Radial dependence. There is a notable difference in the re-
orted amplitude and scale dependence of covariance, which can
e attributed to discrepancies in the employed halo occupation
ensity models. Notably, a distinctive scale dependence discrepancy
xists between simulation-based investigations of projection effects
Salcedo et al. 2020 ; Sunayama et al. 2020 ; Wu et al. 2022 ) and
bservational data from the HSC (Huang et al. 2022 ). In particular,
he analysis of observational data reveals a prominent 1 Mpc bump,
NRAS 530, 3127–3149 (2024) 
hich could be explained by uncertainties inherent in observations,
uch as miscentring effects. It is crucial to gain insight into the
ensitivity of the covariance with respect to the model parameters
nd the influence of selection effects. Understanding these factors is
ssential to comprehensively interpret and account for the observed
ovariance in galaxy cluster survey studies. 

Accuracy versus precision. The statistical power of current
nd future surv e ys enables us to determine the normalization and
lope of the mass–observable relations at a few per cent levels (e.g.
arahi et al. 2016 ; Mantz et al. 2016b ; Mulroy et al. 2019 ; To
t al. 2021 ). Ho we ver, these estimates are susceptible to known and
nknown sources of systematic errors that inflate the uncertainties.
hese uncertainties introduce biases and degrade the accuracy of

he results. Therefore, it is essential to carefully identify , quantify ,
nd account for these systematic effects to ensure robust and
eliable measurements. In this work, we focus on studying one of
hese sources of systematic uncertainty that was not considered
reviously. 

 SUMMARY  

his work reveals insights into the scale-dependent covariance
etween weak lensing observables and the physical properties of
he halo. Using the MDPL2 N -body simulation with galaxies painted
sing the SAGE SAM, we present several key findings: 

(i) We observe that the intrinsic covariance between �� and
n N gal enclosed within a 3D radius is ne gativ e at small scales and
ull at large scales in (ln M , z) ranges that co v er optical surv e ys. 
(ii) We model the shape of the covariance across all bins using

n error function that is insensitive to the radius definition used to
efine halo boundaries. 
(iii) We find that the magnitude of the covariance is relatively

nsensitive to mass and decreases considerably with increasing
edshift. The ( M , z) dependence of the shape of the covariance can be
ncapsulated by the peak height parameter ν( M , z), which suggests
hat the scale of the covariance is related to the formation history of
aloes 
(iv) We show that incorporating the covariance into 〈 ��| N gal , z,

 p 〉 using the first-order expansion of the halo mass function yields
bout > 1 per cent bias on 〈 ��| N gal , z, r p 〉 at small scales, which
mplies a mass bias of > 2 per cent in the halo mass estimates in

ost bins. 
(v) Our analysis reveals that the covariance between ln N gal and
� can be fully explained by secondary halo parameters related

o the history of the halo assembly. This finding provides strong
vidence that the non-zero covariance results from the variation in
he formation history of dark matter haloes. 

This work underscores the importance of accounting for co-
ariance in cluster mass calibration. Incorporating the covariance
etween richness and the weak lensing signal and its characterization
hould be an essential component of weak lensing cluster mass
alibration in upcoming optical cluster surv e ys. The results of this
ork can be introduced as a simulation-based prior for the forward
odelling of scaling relations used by cluster cosmological analysis

ipelines. Within the LSST–DESC framework, this systematic bias
ould be implemented in the CLMM pipeline (Aguena et al. 2021 )

o update the stacked weak lensing mass in each richness bin.
onsidering this covariance paves the path toward per cent-level
ccuracy cosmological constraints, thereby enhancing the precision
nd reliability of our scientific conclusions. Moving forward, it is
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mperative to integrate this understanding into the design and analysis 
f future optical cluster surv e ys. 
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Table A1. Priors for the model. We introduce two sets of priors. In the 
‘full’ models, the parameters are given physical (i.e. τ > 0, s > 0) but non- 
informative uniform or log-uniform priors. In the ‘reduced’ case, assuming 
that Cov( ��, ln N gal | M , z) = 0 at large scales, we restrict g = −1 while 
assigning the same set of priors to all other parameters. 

Parameters Priors 
Full Reduced 

τ Uniform (0, 10) Uniform (0, 10) 
γ Uniform ( −5, 5) Uniform ( −5, 5) 
g Uniform ( −2, 1) Fixed at g = −1 
10 −12 × s Log-uniform (0.01, 10) Log-uniform (0.01, 10) 
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PPENDI X  A :  F U N C T I O NA L  F O R M  

his section aims to characterize the shape of the covariance
cross mass and redshift bins by fitting a template curve. The
rocess involv es sev eral transformations and adjustments. First, a
ogarithmic transformation is applied to the radial bins, denoted as
 = log 10 ( R / R 200c ). Then, a horizontal offset is introduced using a
arameter γ , and scaling is applied using a parameter τ . This results
n a transformed variable ˜ x = ( x − γ ) /τ . 

To analyse the transformed data vector f ( ̃  x ), we test a set of
unctional forms presented in Table A2 . The normalization factors
nd coefficients associated with these functions are chosen in such
 way that f ( ̃  x ) approaches 1 at large scales, −1 at small scales,
 

′ (0) = 1 and f (0) = 0. 
A linear transformation of f ( ̃  x ) is then performed, given by

 

(
f ( ̃  x ) + g 

)
, where g represents a vertical shift and s represents

 scaling factor. The magnitude of s is comparable to the magnitude
f Cov( ��, ln N gal | M , z), while the parameters γ , τ , g are of the order
f unity. These parameters, along with s , form the set of parameters
enoted as θ ∈ { τ, γ, g, s} , which define our best-fitting model. If
 = −1, it implies a zero covariance at large scales. We fit two
odels: a full model with all parameters free, and a reduced model
ith g = −1, and the rest of the parameters free. The priors for the
arameters are specified in Table A1 . 
For the full model, we choose the error function as our fiducial

unctional form. The estimated parameters for both the full and
educed models are presented in Tables D1 and D2 , respectively.
ppendix D provides robustness testing to determine the best-fitting
odel for our covariance. In Table D1 , we compare the model

arameters, χ2 p -value, and the difference in Deviance Information
riterion (DIC) with our fiducial model using the candidate functions

isted in Table A2 . The error function generally outperforms other
odels when all parameters θ ∈ { τ, γ, g, s} are allowed to vary.
able D2 shows that the DIC of the reduced error function ( g = −1)
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Table A2. Functional forms to model Cov( ��, ln N gal ). The radius in 
log-space x is transformed to ˜ x ≡ ( x − γ ) /τ by a horizontal offset γ and 
a characteristic scale τ . The functions f ( ̃ x ) are normalized so that f ( ̃ x ) 
asymptotically goes to 1 at +∞ , −1 at −∞ , f (0) = 0 and f ′ (0) = 1. Finally, 
we wrap f ( ̃ x ) by the function p( f ( ̃ x )) ≡ s( f ( ̃ x + g) to include a vertical 
offset g and amplitude parameter s . Together θ ∈ { τ , γ , g , s } form the set of 
model parameters that allow us to make apple-to-apple comparisons between 
models. 

Error function (fiducial) s 
(

erf ( 
√ 

π

2 ˜ x ) + g 
)

Logistics function s 
(

2 
1 + e ̃ x − 1 + g 

)

Inverse tangent s 
(

2 
π

arctan 
(

π
2 ˜ x 

) + g 
)

Algebraic second order s( ̃ x / (1 + ˜ x 2 ) 1 / 2 + g) 
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arginally outperforms the full error function in most cases, along 
ith the posterior constraints of parameters shown in Fig. D1 . 

PPEN D IX  B:  PA RTICLE  RESOLUTION  A N D  

TS  I M PAC T  O N  MEASUREMENT  E R RO R S  

Using the 300 Cori Haswell node hours allocated by the NERSC to
his project, we measured �� for ∼5000 clusters using dark matter 
articles downsampled by a factor of 10, in 20 log-spaced radial bins,
t a projection depth of 200 h 

−1 Mpc. 
At a downsampling rate of 10, our ef fecti ve dark matter particle

esolution is M p ≈ 1.51 × 10 10 h −1 M �. The error in �� comes
rom three sources: (i) cosmic variance, (ii) Poisson noise, and (iii)
he intrinsic diversity of haloes accounted for by secondary halo 
roperties. In Section 6.2 , we presented the contribution to �� 
igure B1. The standard error of �� measurements tested on a benchmark 
in of M 200c ∈ [1 × 10 14 , 2 × 10 14 ) M � h −1 at z = 0. The standard error 
s estimated using the bootstrap method for the N = 500 clusters with dark 

atter particles downsampled by a factor of 200, 100, and 10 (solid lines). 
t our current resolution (nth = 10, solid green line), the standard error is 

ust abo v e the cosmic v ariance at small scales and drops belo w the cosmic 
ariance at large scales. The solid black line is density fluctuation estimated 
rom the cosmic variance floor, as described in equations ( B2 ) and ( B1 ). In 
he ideal case that Poisson noise accounts for all the standard error, fully 
ampling all particles ( n th = 1, red dotted line) will reduce the standard 
rror by a factor of 

√ 

10 , rendering it just below the cosmic variance floor at 
mall scales. In the realistic case that the standard error for �� contributes 
rom both Poisson noise and the intrinsic diversity of halo profiles, the fully 
ampled standard error should be on par with the cosmic variance at small 
cales. 
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catter from secondary halo properties. Here, we compare the Poisson 
oise to the cosmic variance floor. 
The cosmic variance introduces fluctuations in a 2D surface 

ensity fluctuation, given by 

δ��( R ) = D p ρm 

σ ( R) , (B1) 

here D p = 200 h 

−1 Mpc is the projection depth, ρm ( z) is the mean
ensity of the universe at that redshift, and σ ( R ) is the root mean
quared matter density fluctuation, given by 

σ 2 ( R) = 

∫ 

� 

2 ( k) 
(3 j 1 ( kR) 

kR 

)2 
d ln k, (B2) 

hich is smoothed o v er an area of A = 4 πR 

2 , � 

2 ( k ) is the matter
ower spectrum for a wavenumber k , and j 1 is the Bessel function of
he first order. 

Fig. B1 shows the standard error of �� at a benchmark bin M 200c 

 [1 × 10 14 , 2 × 10 14 ) M � h −1 at z = 0.00. At particle downsampling
actors of 200, 100, and 10, the reduction in error is consistent with
he Poisson term of 

√ 

N , indicating that at these sampling rates,
oisson noise dominates. At our current downsampling rate of nth =
0, the standard error is just abo v e the cosmic variance floor at small
cales and drops below the cosmic variance floor at large scales. In
he ideal case that Poisson noise accounts for all the standard error,
ully sampling all particles (nth = 1, red dotted line) will reduce the
tandard error by a factor of 

√ 

10 , rendering it just below the cosmic
ariance floor at small scales. In the realistic case that the standard
rror for �� contributes from both Poisson noise and the intrinsic
iversity of halo profiles, the fully sampled standard error should be
n par with the cosmic variance at small scales. A future study with
ully sampled particles should yield greater statistical constraints. 

PPENDI X  C :  D E R I VAT I O N  O F  S E C O N D  

R D E R  EXPANSI ON  A RO U N D  T H E  H M F  

ollowing the formalism from Evrard et al. ( 2014 ), we derive
quation ( 18 ). The mean observable-mass scaling relation is given
y the expression 

 s i | ln M 0 〉 = αi ln M 0 + πi , (C1) 

or s i ∈ { ��, ln N gal } and pivot mass M 0 . We now denote the
eviation from the mean relation as δi , which from rearranging the
erms in equation ( C1 ) is given by δi = 

( s i −πi ) 
αi 

− ln M 0 . From Evrard
t al. ( 2014 ) the expression for the observable scaling relation for
eneric observables { a , b } that follow a log-linear scaling relation
s in equation ( C1 ) is given by 

 δb | s a 〉 = x a 
[〈 ln M | s a 〉 + ( γ1 + γ2 δa ) r ab σln M| a, 1 σln M| b, 1 

]
, (C2) 

here γ 1 and γ 2 are the first- and second-order coefficients of the 
aylor expansion of the HMF around the pivot mass M 0 and x a =
1 + γ2 σ

2 
ln M| a, 1 ) 

−1 the curvature term. The subscript 1 denotes the
catter for the HMF expanded to first order. 

We now convert the left-hand side of equation ( C2 ) from the
eviation from the mean scaling relation, δb , to the observable s b to
rrive at the expression 

 s b | s a 〉 = 

[
αb x a 〈 ln M | s a 〉 + ln M 0 − πb 

]
+ 

[
αb x a ( γ1 + γ2 δa ) r ab 

]
σln M| a, 1 σln M| b, 1 

= 〈 b | a, z〉 fid 

+ Cov ( a, b) ×
[ x a 
α2 

a 

( αa γ1 + γ2 ( s a − πa )) 
] 
, (C3) 

here we made use of the fact Cov( a , b | M , z) = r ab σ a | M 

σ b | M 

and
hat the mass scatter conditioned on the observable to first order is
MNRAS 530, 3127–3149 (2024) 
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elated to the observable scatter by σ ln M | a , 1 = σ a | M 

/ αa , as shown
n equation 4 in Evrard et al. ( 2014 ) for the multi v ariate case.
ubstituting ln N gal for a and �� for b yields the expression for
quation ( 18 ). 

PPENDIX  D :  RO BU STNESS  TESTING  O F  

OVA R I A N C E  M O D E L L I N G  

he shape posterior is sampled by a Monto Carlo Markov Chain
MCMC) using the EMCEE package (F oreman-Macke y et al. 2013 ).

e test for convergence by ensuring that the number of steps
xceeds t auto /100 for all parameters, where t auto is the integrated
utocorrelation time as defined by Goodman & Weare ( 2010 ) and by
nsuring that the convergence diagnostic denoted with R (Gelman &
ubin 1992 ) across all w alk ers satisfy R < 1.05. 
The posterior distribution according to Bayes theorem is given as 

( θ |{ y i } ) ∝ p ( { y i }| θ) p ( θ) (D1) 

= 

∏ 

i p ( y i | θ) p ( θ) , (D2) 

here the second line assumes independent and identical distribution
i.i.d) for the data vectors. We set uniform priors p( θ) shown in
able A1 with signs and ranges moti v ated by the shape of the
ovariance (i.e. a negative γ and positive τ to offset f ( ̃  x ) to the left
nd a positive s and negative g shifts the fitted curve downwards). 
NRAS 530, 3127–3149 (2024) 

able D1. Summary statistics for Cov( ��, N gal | M , z) binned by R 200c and M 200

arameters for the nominal error function and their 1 σ ranges. Columns 6–8 are th
odels with the nominal error function, respectively. Column 9 is the right-tail p -
cross all bins with applicable posterior constraints, the error function out-performs

n DIC, and has p ≥ 0.01 in all but one bin. In two bins M 200c ∈ [5 × 10 14 , 1 × 1
he covariance is too small relative to the size of their errors for shape parameters t
 = 0.01 and p = 0.05 levels, respectively. 

ass and redshift Error 

τ γ g 

5 × 10 13 , 1 × 10 14 ), z = 0.00 0 . 47 + 0 . 06 
−0 . 05 −0 . 66 + 0 . 08 

−0 . 11 −0 . 99 + 0 . 00
+ 0 . 00

1 × 10 14 , 2 × 10 14 ), z = 0.00 0 . 57 + 0 . 11 
−0 . 08 −0 . 76 + 0 . 14 

−0 . 22 −1 . 008 + 0 . 00
−0 . 00

2 × 10 14 , 5 × 10 14 ), z = 0.00 0 . 41 + 0 . 04 
−0 . 04 −0 . 51 + 0 . 05 

−0 . 06 −0 . 997 + 0 . 00
−0 . 00

5 × 10 14 , 1 × 10 15 ), z = 0.00 0 . 27 + 0 . 03 
−0 . 03 −0 . 40 + 0 . 04 

−0 . 05 −1 . 006 + 0 . 00
−0 . 00

5 × 10 13 , 1 × 10 14 ), z = 0.49 0 . 28 + 0 . 6 −0 . 05 −0 . 36 + 0 . 05 
−0 . 07 −0 . 990 + 0 . 0−0 . 0

1 × 10 14 , 2 × 10 14 ), z = 0.49 0 . 35 + 0 . 07 
−0 . 06 −0 . 43 + 0 . 07 

−0 . 09 −1 . 022 + 0 . 0−0 . 0

2 × 10 14 , 5 × 10 14 ), z = 0.49 0 . 24 + 0 . 08 
−0 . 07 −0 . 49 + 0 . 07 

−0 . 10 −0 . 995 + 0 . 0−0 . 0
5 × 10 14 , 1 × 10 15 ), z = 0.49 
5 × 10 13 , 1 × 10 14 ), z = 1.03 0 . 17 + 0 . 05 

−0 . 04 −0 . 31 + 0 . 05 
−0 . 05 −1 . 019 + 0 . 0−0 . 0

1 × 10 14 , 2 × 10 14 ), z = 1.03 0 . 21 + 0 . 06 
−0 . 05 −0 . 42 + 0 . 05 

−0 . 06 −1 . 024 + 0 . 01
−0 . 00

2 × 10 14 , 5 × 10 14 ), z = 1.03 
We measure the goodness of fit using the left-tail p -value for the
2 with N data − N dim 

= 20 − 4 = 16 degrees of freedom. We compare
etween models by the Deviance Information Criterion defined as 

IC = 2 D( θ ) − D( θ ) , (D3) 

here θ is the best-fitting parameters, and D( θ ) is defined as 

( θ) ≡ −2 log ( P ( { x i }| θ)) . (D4) 

he performance between different functional forms (Table A2 ) is
eported in Table A1 . 

The summary statistics for the posterior distribution of the covari-
nce models are listed in Table D1 as plotted against measurements
n Fig. 4 . Among the functions, the error function has either a better
r comparable fit to all other functions in all other bins, as indicated
y their DIC parameters. In two bins M 200c ∈ [5 × 10 14 , 1 × 10 15 )
t z = 0.49 and M 200c ∈ [2 × 10 14 , 5 × 10 15 ) at z = 1.03, the
mplitude of the covariance is too small relative to their errors for
hape parameters to be well-constrained. The right tail p -value for
2 is p > 0.05 for all but one bin. For this reason, we take the full
rror function as the nominal functional form. 

For R ≥ R vir or R ≥ R 200c , we find the covariance to be null at
 -values > 0.01. A zero covariance at large scales implies g = −1
hich coincides with the reduced model. We compare the results of

he error function of the reduced model to the full model and find
heir performance varies from bin to bin as indicated by the DIC
Table D2 ). The posteriors of the reduced model provide marginally
ighter constraints than the full model (Fig. D1 ). 
 c , with N gal defined inside the halo R 200c . Columns 2–5 are the best-fitting 
e difference between the DIC of the logistics, algebraic, and inverse tangent 
value as measured by the χ2 statistic with 20–4 = 16 degrees of freedom. 
 or is comparable to alternative functional forms as indicated by the difference 
0 15 ) at z = 0.49 and M 200c ∈ [2 × 10 14 , 5 × 10 15 ) at z = 1.03 the size of 
o be constrained. The covariance in these two bins is consistent with null at 

function (full): s 
(

erf ( 
√ 

π

2 ˜ x ) + g 
)

10 12 × s � DIC log � DIC alg � DIC arctan p -value 

5 
4 2 . 88 + 0 . 71 

−0 . 47 4.8 17.8 31.5 0.27 
05 
07 2 . 73 + 0 . 13 

−0 . 65 −2.9 −1.7 2.8 0.88 
4 
04 1 . 93 + 0 . 24 

−0 . 18 4.4 17.4 35.0 0.79 
5 
05 1 . 03 + 0 . 13 

−0 . 11 −0.27 14.3 29.1 0.0009 
13 
13 0 . 75 + 0 . 11 

−0 . 09 2.7 9.0 15.1 0.72 
16 
17 0 . 81 + 0 . 15 

−0 . 10 1.7 5.4 9.3 0.97 
12 
11 0 . 51 + 0 . 14 

−0 . 01 0.6 2.4 4.0 0.63 
NA 

20 
22 0 . 35 + 0 . 06 

−0 . 05 4.3 6.5 8.3 0.05 
3 
14 0 . 51 + 0 . 09 

−0 . 07 −0.3 3.3 6.1 0.01 
NA 

30/3/3127/7644357 by guest on 24 M
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Table D2. Summary statistics for Cov( ��, N gal | M , z) binned by R 200c and M 200 c with N gal defined inside the halo R 200c for the reduced error function model. 
Compared with the full error function model, the performance of the reduced model varies from bin to bin – using � DIC > 3 as a statistically significant result, 
it outperforms the full model in 5/9 o v erlapping bins, under-performs in 3/9 bins, and is comparable in 2 bins. The reduced model is able to yield convergent 
chains for M 200c ∈ [5 × 10 14 , 1 × 10 15 ) at z = 0.49 and M 200c ∈ [2 × 10 14 , 5 × 10 15 ) at z = 1.03 but with poor constraints on the parameters. 

Mass & redshift Error function (reduced): s 
(

erf ( 
√ 

π

2 ˜ x ) − 1 
)

τ γ 10 12 × s � DIC erf−full p -value 

[5 × 10 13 , 1 × 10 14 ), z = 0.00 0 . 44 + 0 . 04 
−0 . 04 −0 . 63 + 0 . 07 

−0 . 09 2 . 66 + 0 . 56 
−0 . 39 −5.2 0.06 

[1 × 10 14 , 2 × 10 14 ), z = 0.00 0 . 69 + 0 . 11 
−0 . 09 −0 . 98 + 0 . 20 

−0 . 27 4 . 10 2 . 31 
1 . 19 4.5 0.96 

[2 × 10 14 , 5 × 10 14 ), z = 0.00 0 . 40 + 0 . 04 
−0 . 03 −0 . 50 + 0 . 05 

−0 . 06 1 . 90 + 0 . 26 
−0 . 20 0.2 0.78 

[5 × 10 14 , 1 × 10 15 ), z = 0.00 0 . 29 + 0 . 04 
−0 . 04 −0 . 40 + 0 . 04 

−0 . 04 1 . 12 + 0 . 13 
−0 . 11 6.1 0.005 

[5 × 10 13 , 1 × 10 14 ), z = 0.49 0 . 25 + 0 . 04 
−0 . 03 −0 . 35 + 0 . 04 

−0 . 04 0 . 79 + 0 . 08 
−0 . 07 6.2 0.57 

[1 × 10 14 , 2 × 10 14 ), z = 0.49 0 . 38 + 0 . 14 
−0 . 09 −0 . 48 + 0 . 12 

−0 . 24 0 . 85 + 0 . 46 
−0 . 19 −6.9 0.81 

[2 × 10 14 , 5 × 10 14 ), z = 0.49 0 . 25 + 0 . 21 
−0 . 12 −0 . 55 + 0 . 14 

−0 . 42 0 . 40 + 0 . 69 
−0 . 13 NA 0.48 

[5 × 10 14 , 1 × 10 15 ), z = 0.49 0 . 61 + 0 . 27 
−0 . 24 −0 . 90 + 0 . 49 

−0 . 76 1 . 01 + 3 . 05 
−0 . 60 −5.7 0.99 

[5 × 10 13 , 1 × 10 14 ), z = 1.03 0 . 20 + 0 . 06 
−0 . 05 −0 . 35 + 0 . 06 

−0 . 08 0 . 38 + 0 . 07 
−0 . 06 −0.75 0.04 

[1 × 10 14 , 2 × 10 14 ), z = 1.03 0 . 22 + 0 . 06 
−0 . 05 −0 . 42 + 0 . 06 

−0 . 8 0 . 54 + 0 . 11 
−0 . 09 3.9 0.3 

[2 × 10 14 , 5 × 10 14 ), z = 1.03 5 . 97 + 2 . 76 
−3 . 01 −0 . 55 + 3 . 30 

−2 . 99 0 . 02 + 0 . 02 
−0 . 008 NA 0.15 

Figure D1. Posterior distribution of shape parameters in a benchmark bin of 
M 200c / M vir ∈ [2 × 10 14 , 5 × 10 14 ) at z = 0.00 under different binning schemes 
r p and N gal models with different halo boundaries R halo . The marginalized 
parameter constraints for the full model closely o v erlap one another, and 
using the reduced model with g = −1 marginally impro v es the posterior 
constraints. The plot was generated using pygtc (Bocquet & Carter 2016 ). 
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PPEN D IX  E:  M O D E L L I N G  S E C O N D  A R  Y  

ROPERTIES  

e describe the linear regression model for richness used in Sec- 
ion 6.1 . The same methodology is applied to �� in Section 6.2 . 

To model the expected natural logarithm of galaxy count (ln N gal ),
e decompose it linearly using secondary halo parameters listed in 
able 3 , as shown in equation ( 20 ). We employ the least squares
ethod for linear regression and examine parameter redundancies. 
 or o v er half of the bins, the parameters � inst , � 100Myr , � 2dyn , and � peak 

xhibit collinearity, with VIF exceeding 5. This outcome is expected, 
s these quantities represent the same physical quantities smoothed 
 v er different time-scales. As for the reduced set of non-collinear
arameters, their correlation coefficient are quantified in Shin & 

iemer ( 2023 ) using the Erebos simulation suite. To determine which
arameters to retain, we utilize the partial F -statistic. 
Table E1 demonstrates the diminishing explanatory power of 
 on 

he richness as seen by the diminishing R 

2 and F partial . We consider
he partial F -statistic serves as a heuristic measure for the explanatory
ower of a variable, defined as 

 partial = 

( RSSE reduced − RSSE full ) /p 

RSSE full / ( n − k) 
, (E1) 

here RSSE is the residual sum of squared errors for the reduced
odel after removing the parameter in question and the full model

ontaining 
 ⊂ { a 1/2 , c vir , T / U , � 2dyn , X off } , p is the number of
arameters remo v ed from the full model which in our case is by
onstruction set to p = 1, n the number of data points, and k is
he number of parameters in the full backward model. This statistic
an be shown to be proportional to the contribution to the total R 

2 

niquely explained by this parameter alone. 
A partial F -statistic test reveals that � 2dyn exhibits the highest

artial F -statistic of all accretion rate parameters. Therefore, we 
etain this parameter in the reduced dimensional linear regression. 
he final model includes the following parameters 
 ⊂{ a 1/2 , c vir ,
 / U , � 2dyn , X off } . To ensure the robustness of the linear model across
ll bins, we perform the following tests: 

(i) VIF test with a cut-off of 5 to detect multicollinearity. 
(ii) Global F -statistic for the entire model with a significance level

f 0.05 to examine the correlation between the dependent variable 
nd all parameters. 

(iii) Partial F -statistic for the entire parameter set to compare 
he relative importance of each parameter. The Partial F -statistic 

easures the additional contribution of each parameter to the 
ultilinear fit by estimating its corresponding R 

2 value. 
(iv) T -statistic for each parameter to verify that the coefficients 

ignificantly deviate from zero at a significance level of 0.05. 
(v) Breusch-Pagan Lagrange Multiplier test (Breusch & Pagan 

979 ) at a significance level of 0.05 to assess heteroscedasticity. 
(vi) Shapiro–Wilk test (Shapiro & Wilk 1965 ) at a significance 

evel of 0.05 to evaluate the Gaussianity of residuals. 
MNRAS 530, 3127–3149 (2024) 
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M

Table E1. Best-fitting parameters, global R 

2 , and explanatory power indicators for log-richness modelled in equation ( 20 ). Values in parentheses represent 1 σ
confidence intervals to the partial slopes β. The partial F -statistic, defined in equation ( E1 ), is used to quantify the explanatory power of each variable. A higher 
partial F -statistic indicates a greater amount of predictive power uniquely attributed to that variable. Statistical significance is determined by an F -statistic of F 

> 10. 

Redshift R 

2 Const c vir T/ | U | a 1/2 � 

∗
2dyn X off 

& M 200c (M �h −1 ) βN gal F βN gal , F βN gal F 10 6 × βN gal F 10 3 × βN gal F 

z = 0.00 
[5 × 10 13 , 1 × 10 14 ) 0.45 −0.69 −0.035(0.004) 171 1.448(0.135) 185 0.103(0.084) 166 2.743(1.68) 134 −1.62(0.23) 69 
[1 × 10 14 , 2 × 10 14 ) 0.48 −0.46 −0.033(0.003) 217 1.086(0.120) 179 −0.198(0.071) 170 2.668(0.628) 206 −0.76(0.15) 86 
[2 × 10 14 , 5 × 10 14 ) 0.49 −0.41 −0.029(0.003) 196 −0.794(0.086) 145 0.292(0.007) 213 −0.722(0.223) 167 0.57(0.11) 67 
[5 × 10 14 , 1 × 10 15 ) 0.46 −0.32 −0.019(0.002) 119 1.503(0.068) 111 0.148(0.054) 201 0.483(0.096) 226 −0.25(0.06) 51 
z = 0.49 
[5 × 10 13 , 1 × 10 14 ) 0.25 −0.71 0.006(0.005) 24 0.325(0.125) 69 0.188(0.101) 142 3.90(1.64) 102 −0.3(0.19) 35 
[1 × 10 14 , 2 × 10 14 ) 0.21 −0.45 −0.450(0.082) 27 0.314(0.135) 46 −0.353(0.158) 107 1.80(0.71) 89 −0.37(0.13) 14 
[2 × 10 14 , 5 × 10 14 ) 0.13 −0.56 −0.003(0.004) 0 0.323(0.110) 26 0.670(0.155) 51 0.388(0.108) 26 −0.27(0.11) 2 
[5 × 10 14 , 1 × 10 15 ) 0.13 −0.32 −0.010(.008) 0 0.007(0.286) 0 0.697(.309) 5 −0.538(0.331) 3 −0.41(.14) 3 
z = 1.03 
[5 × 10 13 , 1 × 10 14 ) 0.27 −1.12 0.015(0.005) 6 0.471(0.136) 21 0.569(0.269) 116 2.7(1.2) 63 −0.81(0.18) 0 
[1 × 10 14 , 2 × 10 14 ) 0.22 −0.84 0.016(0.004) 10 0.374(0.135) 36 −0.233(0.234) 83 1.076(0.478) 36 −0.35(0.12) 2 
[2 × 10 14 , 5 × 10 14 ) 0.20 −0.6 0.0015(0.005) 10 0.284(0.185) 1 −0.157(0.266) 15 0.160(0.213) 6 −0.55(0.11) 13 

 

f  

a  

e  

f  

Q  

c  

d  

a  

A

W  

m  

v
 

t  

e

〈
 

a

σ

H  

c  

σ

 

r  

∼  

N  

i  

n
 

P  

r

3

m

F  

M  

P

〈

a

W  

F

P

w  

m  

n

〈

a

σ

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/530/3/3127/7644357 by guest on 24 M
ay 2024
Across all bins, the reduced model successfully satisfies the first
our tests. Ho we ver , some bins fail the Shapiro–W ilk test due to
 ne gativ e skew and positive kurtosis. None the less, a visual
xamination of Q–Q plots indicates that the residuals predominantly
ollow a Gaussian distribution, except for deviations at the tail ends.
–Q plots, quantile–quantile plots, are visualization tools used to

ompare the quantiles of a data set to the quantiles of a theoretical
istribution, typically a normal distribution. They provide a visual
ssessment of how well the data aligns with the assumed distribution.

PPENDIX  F:  D E R I VAT I O N  O F  P (  ��| N G A L 

,  m ,  z)  

e demonstrate that P ( ��| N gal , M , z) can be modelled as a
ultilinear relation of secondary halo parameters of mean and
 ariance gi ven by equations ( 29 ) and ( 30 ). 
From our assertion that P ( ��, 	 
 | M, z) is a bi v ariate normal,

he conditional probability P ( 
 i | ��, M , z) in each radial bin can be
xpressed as a normal distribution with mean 

 
 i | ��, M, z〉 = 〈 
 i | M, z〉 + ρ
 i −�� 

σ
 i 

σ�� 

( �� − 〈 ��| M, z〉 ) , 
(F1)

nd variance 

2 

 i | �� = σ 2 


 i 
(1 − ρ2 


 i −�� ) . (F2) 

ere, we omit the radial dependence R / R 200c for all variables and the
onditional dependence on ( M , z) in the subscripts for ρ and σ (i.e.
�� should be explicitly written as σ��| M , z ( R )). 
For an independent random variable Z = X + Y with X and Y uncor-

elated independent random variables with distributions of the form
N ( u, σ 2 ) and ∼ N ( ν, τ 2 ), respectively, Z is another Gaussian of
 ( u + v, σ 2 + τ 2 ). In the case that X and Y are correlated, we must

ntroduce a cross term in the variance of probability distribution Z,
amely P ( Z) ∼ N ( u + v, σ 2 + 2 ρX−Y στ + τ 2 ). 
In our specific case, we want to model the distribution

 ( 
∑ 

i βs , i 
 i | ��, M , z) from P ( 
 i | ��, M , z) and the correlation here
efers to the correction between secondary halo parameter ρ
 i ,
 j 

. 3 
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 In Section 6.2 , we show through the variance inflation test that set of reduced 
odel parameters 
 ∈ { a 1 / 2 , c vir , T /U, � 

∗
2dyn , X off } are not multicollinear. 

T  

w  

z  

i  
rom the convolution theorem and the expressions for P ( 
 i | ��,
 , z) in equations ( F1 ) and ( F2 ), we obtain the expression for
 (ln N gal | ��, M , z) as a normal distribution with mean: 

 ln N gal | ��, M, z〉 = 〈 ln N gal , 0 | ��, M, z〉 

+ σ�� 

( ∑ 

i 

βN gal ,i 

σ
 i 

ρ��−
 i ×( 
 i − 〈 
 i | M, z〉 ) 
)
, 

(F3) 

nd variance 

σ 2 
ln N gal | �� = σ 2 

N gal , 0 
+ 

∑ 

i 

β2 
N gal ,i 

σ 2 

 i 

(1 − ρ2 
��−
 i 

) 

+ 

j �= i ∑ 

i,j 

ρ
 i −
 j 
σ
 i 

σ
 j 
. (F4) 

e now want to derive the scaling relations for P ( ��| N gal , M , z).
rom the Bayes theorem, 

 ( �� | N gal , M, z) = P ( ln N gal | ��, M, z) 
P ( �� | M, z) 

P ( ln N gal | M, z) 
, 

(F5) 

herein we assume that P (ln N gal | M , z) and P ( ��| M , z) can be
odelled as normal distributions, then P ( ��| N gal , M , z) is another

ormal distribution with mean 

 ��| N gal , M, z〉 = 〈 ��| N gal , 0 , M, z〉 

+ C 1 σ�� 

( ∑ 

i 

βN gal ,i 

σ
 i 

ρ��−
 i × ( 
 i − 〈 
 i | M, z〉 ) 
)

(F6) 

nd variance 

2 
��| ln N gal 

= σ 2 
0 + C 2 

∑ 

i 

β2 
N gal ,i 

σ 2 

 i 

(1 − ρ2 
��−
 i 

) 

+ C 3 

j �= i ∑ 

i,j 

ρ
 i −
 j 
σ
 i 

σ
 j 
. (F7) 

he parameter C 1 for the mean relation can be explicitly derived if
e know the posterior distribution of P (ln N gal | M , z) and P ( ��| M ,

) by the e x ercise of completing the squares inside the exponents,
.e. by matching the quadratic, linear and constant terms inside the
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xponents of normal distributions on the left and right hand sides of
quation ( F5 ). 

The parameters C 2 , C 3 , and σ 0 can be e xplicitly deriv ed first by
sing the variance of product law of correlated Gaussians, i.e. Var( Z

XY ) = 1 + ρ2 after transforming X and Y into unit variance, zero
ean Gaussians with correlation efficient ρ, and then by using the 

ariance of quotient approximation 

ar(X / Y) = 

(μX 

μY 

)2 
[ σ 2 

R 

μ2 
R 

− 2 
Cov(X , Y) 

μX μY 
+ 

σ 2 
X 

μ2 
Y 

] 
, (F8) 
2024 The Author(s). 
ublished by Oxford University Press on behalf of Royal Astronomical Society. This is an Open
 https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reuse, distribution, and rep
here μX , σX are the mean and variances of P ( ��| M , z) and μY , σY 

he mean and variances of P (ln N gal | M , z) in our specific case. 
The exact values of C 1, C 2, C 3, and σ 0 are not essential for this

aper as we aim to derive a general expression for P ( ��| N gal , M , z)
s a function of secondary halo parameters. 
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