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A B S T R A C T

In order to characterize the global circulation of the subsurface ocean of Jovian and Saturnian moons, we
analyse the properties of 21 three-dimensional simulations of Boussinesq thermal convection in a rapidly
rotating spherical shell. Flow is driven by an adverse temperature contrast imposed across the domain, and
is subjected to no-slip boundary conditions. We cover a region of parameter space previously unexplored
by global simulations, both in terms of rapid rotation and vigour of convective forcing, closer to, yet still
admittedly far from, the conditions appropriate for the subsurface ocean of Ganymede, Europa, Enceladus, and
Titan. Our most extreme simulations exhibit a dynamic global circulation that combines powerful east–west
zonal jets, planetary waves, and vortices. A spectral analysis of the kinetic energy distribution performed in
cylindrical geometry reveals a high degree of anisotropy of the simulated flows. Specifically, the axisymmetric
zonal energy spectra follow a steep −5 slope in wavenumber space, with the energy amplitude exclusively
controlled by the rotation rate. In contrast, the non-axisymmetric residual spectra display a gentle −5∕3 slope,
with the energy amplitude controlled by the thermal buoyancy input power. This spectral behaviour conforms
with the theory of zonostrophic turbulence, as coined by Sukoriansky et al. (2002), and allows us to propose
tentative extrapolations of these findings to the more extreme conditions of icy satellites. By assuming that
kinetic energy dissipates via Ekman friction at the ice–ocean boundary, we predict an upper bound for the
geostrophic zonal velocity ranging from a few centimetres per second for Enceladus to about one metre per
second for Ganymede, with residual velocities smaller than the zonal velocity by an order of magnitude on
each moon. These predictions yield typical jets size approaching the ocean depth of Titan, Ganymede and
Europa and 10 to 40% of the ocean depth on Enceladus.
1. Introduction

The astrobiological potential of the Jovian and Saturnian moons,
most notably Europa, Ganymede, Enceladus, and Titan, has come to
the fore in the wake of the Galileo, Cassini–Huygens, and Juno space
missions. These satellites contain more than water: non-aqueous com-
ponents, including salts and sulphur, have been detected on the surface
of Enceladus, while organic materials have been identified within
plumes emanating from geysers at its South pole (Postberg et al., 2011,
2018). While Hsu et al. (2015) have provided persuasive indications of
silica nanoparticles on the same Enceladus, spectroscopic analyses have
revealed the presence of diverse salts, such as MgSO4, NaCl, NH4Cl, as
well as sulphur compounds and organic materials on the surfaces of
Europa (Carlson et al., 2009) and Ganymede (Tosi et al., 2023). This
catalog of observations points to a well-mixed subsurface ocean and a
substantial hydrothermal activity inside these moons.

The concealed ocean of these icy satellites plays a crucial role in
shaping their surface composition (see the review by Soderlund et al.,
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2020). A good description of its circulation is key, since it governs the
transport of heat and matter from the floor up to the icy crust and
back. To date, most of our knowledge on the dynamics of subsurface
oceans relies on the outcome of global first-principle simulations. These
simulations drive oceanic flow either by thermal convection (e.g. Soder-
lund et al., 2014), mechanical forcing (e.g., tides or libration Grannan
et al., 2017; Lemasquerier et al., 2017), or even magnetic forcing due
to electromagnetic pumping in the case of Europa (Gissinger and Pe-
titdemange, 2019). Recent numerical investigations have also explored
the effects of heat flux variations from the inner mantle (Terra-Nova
et al., 2023) and temperature fluctuations beneath the ice shell on
oceanic convection dynamics (Kang et al., 2022). In these studies, the
resulting flows promote turbulent mixing within the bulk ocean and
thermo-compositional gradients, which have significant implications
for the ice shell, transport properties, surface geology, and potential
habitability. Nevertheless, bridging the gap between this research and
vailable online 13 March 2024
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in situ observations remains an intricate challenge, demanding further
xploration and validation.

Addressing this challenge, several studies have proposed the pos-
ibility of connecting thermal convection in the subsurface ocean to
he variations of the ice shell thickness inferred from space mis-
ions (Kvorka et al., 2018). Numerical simulations of rotating convec-
ion in spherical shells conducted by Amit et al. (2020), Soderlund
t al. (2014), Soderlund (2019), Kvorka and Čadek (2022) and Gastine
nd Aurnou (2023) demonstrate that planetary rotation results in a
ronounced latitudinal dependence of the flow, which impacts the
eat flux across the outer surface. Regions with high heat flux are
ore likely to experience increased melting, providing a potential

ink between observed ice shell topography and the behaviour of the
nderlying ocean. However, no consensus has emerged among these
tudies regarding the flow patterns characterizing each satellite. This
ack of consensus may stem from variations in the boundary conditions
rescribed by the authors, as well as from the discrepancies between
he planetary regimes and those achieved numerically.

The forthcoming NASA’s Europa Clipper mission (Roberts et al.,
023) and ESA’s JUICE mission (Grasset et al., 2013) will provide
dditional data on surfacial heat flux and ice topography, which should
einvigorate ongoing debates and shed new light on ocean dynamics.

In the meantime, we propose in this study to resort to a predictive
heoretical approach to unveil the dynamics of the subsurface oceans,
apitalizing on progress made over the past two decades in the topic
f rotating turbulence. Our working assumption is that oceanic flow is
riven by thermal convection alone. We will calibrate our theory using
suite of numerical simulations, for subsequent extrapolation to the

ceans of the Jovian and Saturnian moons.
The simulations involve a spherical fluid layer of thickness 𝐷 con-

fined between two rigid boundaries, which rotates at a constant ro-
tation rate 𝛺. Convective motions are driven by a fixed temperature
contrast 𝛥𝑇 imposed between the two boundaries. The ratio of the inner
radius of the shell to its outer radius is set to 0.8. The fluid mechanical
problem at hand is controlled by three dimensionless numbers: the
Ekman number 𝐸 = 𝜈∕𝛺𝐷2, the Rayleigh number 𝑅𝑎 = 𝛼𝑔𝑜𝐷3𝛥𝑇 ∕𝜈𝜅,
nd the Prandtl number 𝑃𝑟 = 𝜈∕𝜅, where 𝜈 and 𝜅 are the viscous
nd thermal diffusivities, 𝛼 is the thermal expansivity, and 𝑔𝑜 is the

acceleration of gravity at the surface of the domain.
In this context, it is common practice to refer to the regime diagram

for rotating convection initially introduced by Gastine et al. (2016).
Fig. 1 replicates and extends this diagram by incorporating additional
studies that deal with the subsurface oceans of the icy moons. The onset
of convection is determined by the critical Rayleigh number 𝑅𝑎𝐶 and is
expected to follow 𝑅𝑎𝐶 ∼ 𝐸−4∕3 in the limit of vanishing Ekman num-
bers. The exact values shown by black crosses in Fig. 1 come from the
linear computations by Barik et al. (2023) for a spherical shell with our
adopted radius ratio of 0.8. The parameter space (𝐸,𝑅𝑎𝐸4∕3) is divided
into several dynamical regimes. Beyond the weakly non-linear regime
close to onset, and for Rayleigh numbers below 𝑅𝑎𝑅, the influence of
rotation is maximum, resulting in a predominantly geostrophic flow
where the balance between Coriolis force and pressure gradient leads
to a strong flow invariance along the direction of rotation. For Rayleigh
numbers exceeding 𝑅𝑎𝑁𝑅, the influence of rotation is lost and the flow
is dominated by fluid inertia. In between, a transitional regime prevails,
with a weak but still significant influence of rotation. Given the ongoing
debates regarding the scaling laws for 𝑅𝑎𝑁𝑅, we report in Fig. 1 two
possible transition parameters (see Gastine et al., 2016; Cheng et al.,
2018, for more details). Note also that these regime boundaries are
susceptible to change with the radius ratio of the fluid domain.

In addition to the new calculations performed for this study, Fig. 1
also includes simulations of 3D convection by Soderlund et al. (2014),
Amit et al. (2020), Kvorka and Čadek (2022) and Bire et al. (2022). The
numerical cost of such global simulations makes it necessary to operate
with enhanced values of the fluid kinematic viscosity 𝜈 and thermal
2

diffusivity 𝜅. Employing physically sound no-slip (also termed rigid)
boundary conditions, as done e.g. by Amit et al. (2020), may tend to
exaggerate the role played by viscous stresses in the dynamics. This led
several authors (e.g. Soderlund et al., 2014; Soderlund, 2019; Kvorka
and Čadek, 2022) to opt for the more questionable free-slip boundary
conditions. Additionally, simulations from Bire et al. (2022), computed
in a spherical wedge geometry, considered a hybrid combination of
no-slip at the bottom boundary and free-slip at the top boundary.

The generic picture that emerges from these previous studies is
that convective motions are significantly influenced by the relative
importance of rotation. Rotation enforces flow invariance along the
rotation axis and fosters the formation of large-scale, axisymmetric
(invariant in azimuth) flows known as zonal jets (e.g. Christensen,
2002). Bire et al. (2022) show that the zonal flow pattern takes the form
of multiple jets of alternated directions with a weak prograde jet at the
equator (see their Fig. 6). At larger convective forcings (when 𝑅𝑎 ∼
𝐸−2𝑃𝑟), the zonal flow pattern transitions to a three-jet configuration
dominated by a strong retrograde equatorial jet (see, e.g. Soderlund,
2019, her Fig. 2). In these prior studies, free-slip boundary conditions
have been shown to promote stronger jets than those obtained in a no-
slip configuration. When free-slip boundaries are employed, zonal flows
dominate the kinetic energy budget, for instance reaching up to 98% of
the total energy at 𝐸 = 10−5 in the simulations by Yadav et al. (2016),
while this fraction is much smaller in simulations that adopt no-slip
boundaries, for instance ∼ 50% at 𝐸 = 3 × 10−7 in Gastine and Aurnou
(2023).

Following Soderlund (2019), one can estimate the Ekman and
Rayleigh numbers of the icy satellites and locate them in the regime
diagram (see the coloured polygons in Fig. 1). Since these estimates
fall within the transitional regime, the flow of the subsurface oceans is
expected to be influenced by planetary rotation. Also, the circulation
of Enceladus is likely to be more rotationally-constrained than that of
Ganymede, Europa, and Titan, which are closer to the boundary of the
non-rotating regime.

In any event, the force balance of interest in this study is such that
the Coriolis force dominates both viscous stresses and, to a lesser extent,
inertia. In terms of dimensionless numbers, this implies that 𝐸 ≪ 1
and that the Rossby number 𝑅𝑜 = 𝑈∕𝛺𝐷 (here 𝑈 is a typical flow
velocity) is below unity. Such flows, because they are essentially two-
dimensional (2D), transfer energy upscale through non-linear processes
known as turbulent cascades (Kraichnan, 1967). In addition, the spher-
ical geometry of planetary fluid layers enforce a zonal anisotropization
of the turbulent cascades to form east–west jets via the so-called 𝛽-
effect (Rhines, 1975). These specific planetary conditions define the
regime of zonostrophic turbulence (Sukoriansky et al., 2002).

In the framework of 2D-turbulence, Sukoriansky et al. (2002) pro-
vided scaling laws that govern the statistical distribution of kinetic
energy in zonostrophic flows. Fig. 2 illustrates this theoretical distribu-
tion against wavenumber 𝑘, where each wavenumber corresponds to a
specific scale of motion. Zonostrophic turbulent flows exhibit universal
kinetic energy spectra. The zonal (axisymmetric) component follows a
steep 𝑘−5 slope, while the residual (non-axisymmetric) component ad-
heres to the classical Kolmogorov–Batchelor–Kraichnan (KBK) scaling
with a 𝑘−5∕3 slope. Also, the magnitude of the zonal spectrum solely de-
pends on the rotation rate and some geometric parameters of the fluid
shell, while the magnitude of the residual spectrum is determined by
the turbulent power injected at wavenumber 𝑘𝑖 (see below for details).
According to Sukoriansky et al. (2002), a flow is considered zonos-
trophic when an inertial range exists between the friction-dominated
wavenumber 𝑘𝑓 and the residual-dominated wavenumber 𝑘𝛽 , as il-
lustrated in Fig. 2. In that range, zonal energy surpasses its residual
counterpart. Large-scale Ekman friction, which is contingent upon the
prescription of no-slip boundary conditions, impedes energy transfer
to smaller wavenumbers (𝑘 < 𝑘𝑓 ). This upscale transfer is possible for
free-slip simulations, which may lead to overestimate the global kinetic

energy budget.
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Fig. 1. Convective regime diagram following (Gastine et al., 2016) with superimposed parameter estimates for Enceladus (blue), Titan (green), Europa (yellow), and Ganymede
(red) as outlined in Appendix B and Table B.3 and following the calculation provided in Soderlund (2019). Direct numerical simulations from the current study and from Soderlund
(2019), Amit et al. (2020), Kvorka and Čadek (2022) and Bire et al. (2022) are reported with circles/triangles for no-slip(NS)/free-slip(FS) boundary conditions. The black crosses
denote the critical Rayleigh number 𝑅𝑎𝐶 given by Barik et al. (2023) for each Ekman number and a radius ratio of 0.8. The boundary 6𝑅𝑎𝐶 delimits the weakly non-linear regime
defined by Gastine et al. (2016) for a radius ratio of 0.6. Straight lines are predicted transitions from the regime of geostrophic turbulence to a transitional regime less influenced
by rotation (grey line), and from the transitional regime to a non-rotating regime (black lines). Scaling laws for 𝑅𝑎𝑅 and 𝑅𝑎1𝑁𝑅 are taken from Gastine et al. (2016) and for 𝑅𝑎2𝑁𝑅
from Gilman (1977). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Theoretical kinetic energy distribution as a function of wavenumber 𝑘 in
zonostrophic turbulence, after Galperin et al. (2010) and Cabanes et al. (2020).
3

To date, spectral distributions such as the one sketched in Fig. 2
have been detected in Jupiter’s tropospheric winds (Galperin et al.,
2014; Young and Read, 2017), in mechanically forced laboratory ex-
periments (Read et al., 2015; Cabanes et al., 2017; Galperin et al.,
2016; Lemasquerier et al., 2023), in numerical simulations on a rotating
sphere (Huang et al., 2001; Galperin et al., 2006) as well as in global
circulation atmospheric models (Cabanes et al., 2020). However, this
particular regime has not yet been observed in analog experiments
replicating rotating convection.

Indeed, despite the substantial body of research demonstrating that
rotating convection exhibits the essential ingredients of zonostrophic
turbulence, it remains a loosely-documented aspect. For instance, up-
scale turbulent cascades have been studied in three-dimensional (3D)
simulations of rapidly rotating Rayleigh–Bénard convection (Favier
et al., 2014; Kunnen et al., 2016; Maffei et al., 2021). Carrying out a
flow analysis, Böning et al. (2023) provided compelling evidence that
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planetary jets can be driven through statistical correlations of small
turbulent scales in 3D spherical convection. Additionally, the formation
of zonal jets has been observed in simulations replicating conditions
akin to those found within the Earth’s liquid core (Guervilly and Cardin,
2017) and the deep convective envelope of Jupiter and Saturn (Aurnou
and Olson, 2001; Heimpel et al., 2005; Yadav and Bloxham, 2020). In
light of these findings, our first goal is to demonstrate the adequacy of
zonostrophic theory to account for the statistical properties of rotating
convective flows located in the transitional region of Fig. 1, keeping
in mind for later that the applicability of this theory might become
questionable when approaching the regime of non-rotating convection.

Subsequently, we intend to make use of this theoretical frame-
work to assess the kinetic energy budget and flow regimes within the
oceans of Europa, Ganymede, Enceladus, and Titan. Previous attempts
to predict subsurface ocean flows have relied on scaling arguments,
drawing an hypothetical equivalence between the Rossby number of
the numerical simulations and that of the actual oceanic flows (e.g.
Vance et al., 2021; Bire et al., 2022). In addition, since the simulations
in question adopt free-slip boundary conditions, they neglect friction
effects, which may lead to overestimate the global energy budget.
Alternatively, Jansen et al. (2023) utilize energetic constraints to infer
flow velocity within the subsurface oceans, under the assumption that
dissipation is controlled by a turbulent quadratic drag akin to that of
the Earth’s ocean (Jansen, 2016). Employing a comparable approach,
but with a different assumption regarding the nature of dissipative
processes, we provide an upper bound for the zonal flow velocity.
Drawing upon the theory of zonostrophic turbulence, we derive the
typical scale of zonal jets in subsurface oceans, along with the residual
velocity.

To this end, we conduct 21 high-resolution simulations of 3D con-
ective turbulence in a spherical shell. We explore a parameter range
hat reaches Ekman numbers smaller by at least one order of magnitude
ith respect to previous studies (recall Fig. 1). We present in Section 2

he governing equations, numerical method, parameter coverage, and
ey diagnostics used in this study. In Section 3, we present global
roperties of the kinetic energy in our numerical simulations and we
onduct a statistical analysis of the zonal (axisymmetric) and residual
non-axisymmetric) flow components using cylindrical harmonic func-
ions. In Section 4 we delve into the insights offered by the theory of
onostrophic turbulence to explore the icy satellites’ oceans. Thanks to
stimates of the oceans’ depth, the rotation rate of the moons and the
eat flux coming up from their interiors we produce predictive kinetic
nergy budgets for Enceladus, Titan, Europa and Ganymede’s oceans.
inally, in Section 5, we introduce a novel and complementary regime
iagram that combines Ekman and Rossby numbers.

. Hydrodynamical model

.1. Governing equations

We consider rotating convection of a Boussinesq fluid confined in a
pherical shell. The fluid shell rotates at a constant angular frequency 𝛺
bout the axis 𝑧. Convective motions are driven by a fixed temperature
ontrast 𝛥𝑇 = 𝑇𝑖 − 𝑇𝑜 between the inner radius 𝑟𝑖 and the outer
adius 𝑟𝑜 of the sphere. Boundaries are impermeable, no-slip and held
t constant temperatures. We adopt a dimensionless formulation of the
avier–Stokes equations using the shell thickness 𝐷 = 𝑟𝑜 − 𝑟𝑖 as the

eference length scale and the inverse rotation rate 𝛺−1 as the reference
ime scale. The temperature contrast 𝛥𝑇 defines the temperature scale
nd gravity is non-dimensionalized using its reference value at the
uter boundary 𝑔𝑜. The dimensionless equations that govern convective
otions for the velocity 𝐮, the pressure 𝑝 and the temperature 𝑇 are

xpressed by

∇ ⋅ 𝐮 = 0,
𝜕𝐮
𝜕𝑡

+ 𝐮 ⋅ 𝛁𝐮 + 2𝐞𝑧 × 𝐮 = −∇𝑝 + 𝑅𝑎𝐸2

𝑃𝑟
𝑔𝑇 𝐞𝑟 + 𝐸𝛁2𝐮,

𝜕𝑇 + 𝐮⋅𝛁𝑇 = 𝐸 ∇2𝑇 .

(1)
4

𝜕𝑡 𝑃 𝑟
The unit vectors in the radial and vertical directions are denoted
by 𝐞𝑟 and 𝐞𝑧, respectively. The system of Eqs. (1) is governed by three
imensionless numbers, the Ekman number 𝐸, the Rayleigh number

𝑅𝑎 and the Prandtl number 𝑃𝑟 defined above. The radius ratio of the
spherical shell is 𝜂 = 𝑟𝑖∕𝑟𝑜. To compare with previous studies, we adopt
a linearly varying gravity with 𝑔 = 𝑟∕𝑟𝑜.

2.2. Numerical method and parameter coverage

Numerical simulations have been computed using the open source
pseudospectral code MagIC1 (the reader is referred to Wicht, 2002;
Gastine et al., 2016, for more details) and the open-source library
SHTns for the spherical harmonic transforms (Schaeffer, 2013).2 The
system of Eqs. (1) is solved in spherical coordinates (𝑟, 𝜃, 𝜙) and the
velocity and temperature fields are expanded in spherical harmonic
functions up to degree 𝓁max in colatitude 𝜃 and longitude 𝜙 and
in Chebyshev polynomials up to degree 𝑁𝑟 along the radius. The
time integration is performed using the ARS343 semi-implicit time
scheme (Ascher et al., 1997; Gopinath et al., 2022). We build a dataset
of 21 numerical simulations, with a fixed Prandtl number of one and
covering the parameter range 10−6 ≤ 𝐸 ≤ 10−4 and 107 ≤ 𝑅𝑎 ≤ 2×1010.
The full set of simulations and related numerical truncation are given
in Table 1. To mitigate the numerical cost and allow an exploration of
lower Ekman numbers, the radius ratio is set to 𝜂 = 0.8, which lies in
he low range expected for the subsurface oceans in the Solar System
see Table B.3).

.3. Diagnostics

In order to assess the influence of the various control parameters on
he global flow properties, we define several diagnostic quantities. We
dopt the following notations regarding different averaging procedures.
verbars ⋯ correspond to a time average, ⟨⋯⟩ to a spatial average over

he whole volume and ⟨⋯⟩𝜙 to an azimuthal average

𝑓 = 1
𝜏 ∫

𝑡𝑜+𝜏

𝑡𝑜
𝑓d𝑡, ⟨𝑓 ⟩ = 1

𝑉 ∫𝑉
𝑓d𝑉 , ⟨𝑓 ⟩𝜙 = 1

2𝜋 ∫

2𝜋

0
𝑓d𝜙, (2)

here 𝜏 is the time averaging interval and 𝑉 is the volume of the
pherical shell.

The dimensionless total kinetic energy 𝐸𝑇 is defined by

𝑇 = 1
2
⟨𝑢2⟩ =

𝓁max
∑

𝓁=1

𝓁
∑

𝑚=0
𝜀𝑚𝓁 , (3)

where 𝜀𝑚𝓁 is the dimensionless kinetic energy density at spherical har-
monic degree 𝓁 and order 𝑚. A typical dimensionless flow velocity is
given by the time-averaged Rossby number, defined as

𝑅𝑜 =
√

2𝐸𝑇 . (4)

In the context of spherical rotating turbulence, it is relevant to distin-
guish the axisymmetric flow (or zonal flow hereafter) from its resid-
ual, non-axisymmetric counterpart. We hence define the dimensionless
zonal kinetic energy and its associated Rossby number

𝐸𝑍 = 1
2𝑉 ∫𝑉

⟨𝑢𝜙⟩2𝜙d𝑉 =
𝓁max
∑

𝓁=1
𝜀0𝓁 and 𝑅𝑜𝑍 =

√

2𝐸𝑍 , (5)

where the contribution of the non-axisymmetric modes (𝑚 ≠ 0) are
excluded. The dimensionless residual kinetic energy and its associated
Rossby number are defined by

𝐸𝑅 =
𝓁max
∑

𝓁=1

𝓁
∑

𝑚=1
𝜀𝑚𝓁 and 𝑅𝑜𝑅 =

√

2𝐸𝑅, (6)

1 available at https://github.com/magic-sph/magic
2 available at https://gricad-gitlab.univ-grenoble-alpes.fr/schaeffn/shtns

https://github.com/magic-sph/magic
https://gricad-gitlab.univ-grenoble-alpes.fr/schaeffn/shtns
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Table 1
Summary of the 21 simulations performed in this study. 𝐸 and 𝑅𝑎 are the input Ekman and Rayleigh numbers, respectively. 𝑁𝑟 × 𝓁max defines
the numerical truncation. The five rightmost columns feature diagnostic parameters such as the Rossby number 𝑅𝑜, the energy ratios 𝐸𝑍∕𝐸𝑇 ,
𝐸𝑔

𝑍∕𝐸𝑍 , 𝐸𝑔
𝑅∕𝐸𝑅, and the zonostrophy index 𝑅𝛽 (see text for details).

N◦ 𝐸 𝑅𝑎 𝑁𝑟 × 𝓁max 𝑅𝑜 𝐸𝑍∕𝐸𝑇 𝐸𝑔
𝑍∕𝐸𝑍 𝐸𝑔

𝑅∕𝐸𝑅 𝑅𝛽

1 10−6 1 × 109 257 × 682 6.3 × 10−4 0.17 0.99 0.85 1.18
2 10−6 2 × 109 321 × 1024 1.6 × 10−3 0.38 0.99 0.77 1.37
3 10−6 2.5 × 109 321 × 1024 2.0 × 10−3 0.43 0.99 0.77 1.39
4 10−6 3 × 109 385 × 1365 2.4 × 10−3 0.42 0.99 0.70 1.42
5 10−6 5 × 109 385 × 1365 4.0 × 10−3 0.46 1.00 0.64 1.44
6 10−6 1 × 1010 513 × 1365 6.7 × 10−3 0.36 0.99 0.59 1.40
7 10−6 2 × 1010 705 × 1365 1.1 × 10−2 0.30 0.99 0.47 1.34

8 10−5 5 × 107 129 × 512 2.7 × 10−3 0.07 0.97 0.84 1.09
9 10−5 1 × 108 129 × 554 5.8 × 10−3 0.13 0.99 0.73 1.16
10 10−5 1.3 × 108 129 × 597 7.5 × 10−3 0.15 0.99 0.67 1.15
11 10−5 1.5 × 108 129 × 597 8.5 × 10−3 0.15 0.99 0.64 1.15
12 10−5 1.8 × 108 129 × 597 1.0 × 10−2 0.17 0.99 0.61 1.16
13 10−5 2 × 108 161 × 597 1.1 × 10−2 0.17 0.99 0.59 1.15
14 10−5 5 × 108 193 × 682 2.2 × 10−2 0.24 0.99 0.48 1.18
15 10−5 1 × 109 257 × 853 3.6 × 10−2 0.26 0.99 0.41 1.18
16 10−5 2 × 109 321 × 1024 5.4 × 10−2 0.20 0.98 0.37 1.14

17 10−4 5 × 106 97 × 256 1.9 × 10−2 0.05 0.95 0.66 0.98
18 10−4 1 × 107 97 × 256 3.4 × 10−2 0.05 0.93 0.51 0.94
19 10−4 3 × 107 97 × 256 7.1 × 10−2 0.03 0.86 0.39 0.95
20 10−4 1 × 108 193 × 512 1.4 × 10−1 0.02 0.75 0.32 0.93
21 10−4 3 × 108 257 × 618 2.6 × 10−1 0.04 0.77 0.29 0.93
t
where the contribution of the axisymmetric mode (𝑚 = 0) is excluded.
ualitatively, the residual energy represents a wealth of waves, ed-
ies, and convective instabilities, while the zonal energy pertains to
arge-scale axisymmetric features, commonly referred to as jets.

Another key feature of rotating turbulence is the nearly axial flow
nvariance along the rotation axis 𝐞𝑧, known as flow geostrophy. The
eostrophic flow 𝐮𝑔 is obtained by averaging the velocity along the
-direction over the spherical fluid depth following

𝑔(𝑠, 𝜙) = 1
ℎ+(𝑠) − ℎ−(𝑠) ∫

ℎ+(𝑠)

ℎ−(𝑠)
𝐮(𝑠, 𝜙, 𝑧)d𝑧, (7)

where (𝑠, 𝜙, 𝑧) are the standard cylindrical coordinates. In the above
expression, ℎ+(𝑠) = −ℎ−(𝑠) =

√

𝑟2𝑜 − 𝑠2 if 𝑠 ≥ 𝑟𝑖, while ℎ−(𝑠) =

𝑟2𝑖 − 𝑠2 and ℎ+(𝑠) =
√

𝑟2𝑜 − 𝑠2 if 𝑠 < 𝑟𝑖. The separation between
hese two branches marks the location of the so-called tangent cylinder,
he imaginary cylinder that circumscribes the inner boundary of the
omain and is parallel to 𝐞𝑧. The fluid depth ℎ(𝑠) is defined as

(𝑠) = ℎ+(𝑠) − ℎ−(𝑠). (8)

or the sake of simplicity, geostrophic velocities inside the tangent
ylinder are computed in the Northern hemisphere only. Following
he same procedure with 𝐮𝑔 than with 𝐮, we compute the geostrophic
omponent of the total, zonal and residual kinetic energy denoted as
𝑔
𝑇 , 𝐸𝑔

𝑍 , 𝐸𝑔
𝑅. Table 1 features the total Rossby number 𝑅𝑜 and the

nergy ratios E𝑍/E𝑇 , E𝑔
𝑍/E𝑍 , E𝑔

𝑅/E𝑅 for the 21 simulations performed
n this study.

Last but not least, an estimate of the energetic forcing in the spher-
cal convective shell is given by the mean buoyancy power averaged
ver the volume 𝑃 ,

= 𝑅𝑎𝐸2

𝑃𝑟
⟨𝑔𝑢𝑟𝑇 ⟩, (9)

hat corresponds to the energy flux injected in the fluid layer by
onvective instabilities.

. Results

.1. Global properties and flow visualization

Fig. 3 shows energy ratios as a function of the global Rossby
umber 𝑅𝑜 across our series of 21 numerical simulations. As previously
5

hown by Christensen (2002) and Yadav et al. (2016), the ratio of
he zonal to total kinetic energy 𝐸𝑍/𝐸𝑇 at a given Ekman number,
follows a bell-shaped function where the maximum value increases
with decreasing Ekman numbers (Fig. 3a). For 𝐸 = 10−6 the fraction
of zonal energy reaches up to ∼ 50% of the total energy, a value
significantly smaller than the ratio attained in the numerical models
with stress-free boundaries (see Yadav et al., 2016, their Fig. 3). When
the Rossby number is low, it is associated with decreased Rayleigh
numbers, causing the convective motions to approach a weakly non-
linear regime, which is less effective in driving vigorous flows. On the
contrary, at the largest 𝑅𝑜, a regime of intense convection is achieved,
and residual energy dominates over its zonal counterpart. The bell-
shaped pattern of the energy ratio 𝐸𝑍∕𝐸𝑇 is also evident in Fig. 3a
for simulations with 𝐸 = 10−5. However, in these simulations, the
maximum fraction of zonal energy does not exceed ∼ 26% of the total
energy. Ultimately, simulations conducted with the largest Ekman num-
ber (𝐸 = 10−4) are strongly dominated by turbulent fluctuations, with
𝐸𝑍∕𝐸𝑇 that remains below 10%. For this Ekman number, viscous effects
play a too significant role and preclude the formation of strong zonal
jets.

We also show in Figs. 3(b–c) the degree of geostrophy of the zonal
and residual flows. The ratio 𝐸𝑔

𝑍∕𝐸𝑍 indicates that the zonal flow is
almost purely geostrophic for 𝑅𝑜 < 10−2 (Fig. 3b). On the contrary, the
ratio 𝐸𝑔

𝑅∕𝐸𝑅 continuously decreases with increasing 𝑅𝑜. Consequently,
the residual flow is partly geostrophic, and when 𝑅𝑜 > 10−2, half of its
kinetic energy is non-geostrophic.

To illustrate the diversity of our numerical simulations, we now
show in Fig. 4 equatorial, meridional and radial cuts of the dimension-
less azimuthal velocity 𝑢𝜙, that correspond to snapshots extracted from
three selected cases at 𝐸 = 10−6 and one case at 𝐸 = 10−5. The filled-
in symbols in Fig. 3 mark their location in terms of energy ratios. In
all four images the flow is split into two dynamical regions, separated
by the tangent cylinder: a polar region (inside the tangent cylinder)
which is dominated by the formation of small-scale convective plumes,
and an equatorial region (outside the tangent cylinder) which features
azimuthally-elongated structures that correspond to prograde (in red)
and retrograde (in blue) zonal jets. To better characterize this multiple
jets system, we also report in Fig. 5 the time and azimuthal averages of
𝑢𝜙 in the meridional plane. If the jets are essentially confined outside
the tangent cylinder (i.e. in the equatorial region), Fig. 5 reveals that
increasing the Rossby number tends to enlarge their size and enable the
formation of low-latitude jets inside the tangent cylinder. Interestingly,

Fig. 4b also reveals the presence of large-scale chevron patterns in the
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Fig. 3. (a) Ratio of zonal to total kinetic energy as a function of the Rossby number 𝑅𝑜. (b) Ratio of zonal geostrophic kinetic energy to zonal kinetic energy as a function of
𝑅𝑜. (c) Ratio of residual geostrophic kinetic energy to residual kinetic energy as a function of 𝑅𝑜. The error bars correspond to one standard deviation about the time-averaged
values. They are smaller than the symbol size for most numerical models. The filled-in symbols correspond to the simulations later highlighted in Figs. 4–6. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Instantaneous zonal velocity maps in units of Rossby number, at 𝑟 = 4.98 for the outermost spherical surface and 𝑟 = 4.05 for the innermost one. The horizontal cut
corresponds to the equatorial plane. Panels a–d correspond to simulations 1, 5, 7 and 15 in Table 1.
equatorial region. Such patterns are reminiscent of planetary Rossby
waves detected in the Sun (Gizon et al., 2021) and further characterized
in a numerical model of solar-like rotating convection (Bekki et al.,
2022). As shown in Fig. 4b, Simulation 5, in which zonal and residual
energy are almost in equipartition, provides a perfect illustration of the
coexistence of a prograde equatorial jet and an embedded large-scale
wave. These features are less clear in the other simulations where zonal
flows never account for more than 30% of the total energy.
6

To further illustrate the degree of geostrophy of the different flow
components and the regionalization of the dynamics, Fig. 6 shows a
comparison between 𝑢𝑟 and 𝑢𝜙 in the equatorial plane (lower halves)
with their geostrophic counterparts (upper halves). Increasing the con-
vective forcing at a given Ekman number (panels a to c) goes along with
broader jets and larger-scale convective features outside the tangent
cylinder. While there is hardly any convective flow inside the tangent
cylinder at 𝑅𝑎 = 109 indicating sub-critical polar convection (Gastine
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Fig. 5. Time and azimuthal average of the azimuthal velocity in units of Rossby number, for the four simulations shown in Fig. 4.
and Aurnou, 2023), the differences in flow amplitude gradually taper
off at large supercriticalities (𝑅𝑎 ≈ 150𝑅𝑎𝐶 in both cases shown in
panels c and d). The comparison of equatorial and geostrophic flows
reveals that the geostrophic averaging mostly implies smoothing out
the small-scale eddies while preserving the large scale structures (for a
similar analysis in geodynamo models, see Fig. 5 in Schwaiger et al.,
2021). As already shown in Fig. 3c, the global ageostrophic residual
flow contributions grow with the Rossby number, which translates into
increased differences between equatorial and geostrophic flows from
panel a to panel d.

As a preliminary conclusion, a general picture of our simulations
is that thermal convection, in a rotating spherical shell subjected to
rigid mechanical boundaries, tends to spontaneously develop powerful
multiple geostrophic zonal flows of alternated directions (for other
examples see also Guervilly and Cardin, 2017; Barrois et al., 2022;
Gastine and Aurnou, 2023). This trend becomes more pronounced as
the Rossby and Ekman numbers are reduced. However, within the
range of parameters achieved in the present study, the residual energy
remains the predominant component of the flow, at the expense of the
zonal energy. Reaching a configuration where the zonal energy prevails
over the residuals would necessitate Ekman numbers lower by at least
one order of magnitude, presently out of reach to 3D computations if
one wishes to conduct a systematic parameter survey.

3.2. Statistical analysis

As stated in the introduction, the theoretical framework of zonos-
trophic turbulence was developed to study 2D rotating flows in the
presence of a 𝛽-effect. It has recently been applied to mechanically
driven laboratory flows, shallow-water numerical experiments and at-
mospheric observations. Here, we aim to extend its applicability to
3D convection in a rotating spherical shell. Consequently, a spectral
analysis of the flow is in order.

3.2.1. Theoretical energy spectra
In order to account for the zonal anisotropy of the flow, the frame-

work of zonostrophic turbulence defines a zonal spectrum and a resid-
ual spectrum in the following universal form Sukoriansky et al. (2002),
Galperin et al. (2010),

𝐸𝑅(𝑘) = 𝐶𝑅𝛱
2∕3𝑘−5∕3, (10a)

𝐸𝑍 (𝑘𝑠) = 𝐶𝑍𝛽
2𝑘−5𝑠 . (10b)

The residual spectrum (10a) closely follows the classical Kolmogorov–
Batchelor–Kraichnan (KBK) theory of 2D isotropic turbulence, where
𝑘 is the total wavenumber, 𝐶 ∼ 5 − 6 is taken to be a universal
7

𝑅

constant and 𝛱 is the energy transfer rate between the different scales
of motions (Boffetta and Ecke, 2012). The zonal spectrum (10b) char-
acterizes the axisymmetric energy and is measured along wavenumbers
𝑘𝑠 in the direction orthogonal to the zonal flow. 𝐶𝑍 is assumed to be a
universal constant of order unity, whose value was shown to lie around
0.5 in numerical simulations on the sphere (Sukoriansky et al., 2002,
2007), around 2 for Jupiter (Galperin et al., 2014), and in the range
0.3 − 2.7 for the laboratory experiments described in Cabanes et al.
(2017) and Lemasquerier et al. (2023). The 𝛽 parameter represents
the latitudinal gradient of planetary vorticity. In 2D spherical flows,
it directly stems from the variation of the Coriolis parameter with
the colatitude 𝜃 and can be expressed as 𝛽 = 2𝛺| sin 𝜃|∕𝑟𝑜. In 3D
spherical shells, 𝛽 arises from the variations of the fluid layer depth
with the cylindrical radius 𝑠 and is commonly referred to as the
topographic-𝛽 (e.g. Heimpel and Aurnou, 2007). It is then expressed
by

𝛽(𝑠) = 2𝛺
ℎ

dℎ
d𝑠

, (11)

with ℎ(𝑠) the fluid depth defined in Eq. (8). To compare theoretical pre-
dictions with the velocity fields obtained from numerical simulations,
it is necessary to conduct a spectral decomposition of the flow.

3.2.2. Spectral flow decomposition
Given the spherical geometry of our numerical setup, spherical

harmonic functions could spontaneously be invoked to compute energy
spectra along the 𝜃 and 𝜙 directions (see for example Boer, 1983;
Böning et al., 2023). However, rotationally-constrained flows show a
pronounced invariance along the axis of rotation, as shown in Figs. 4
and 5. In such flows, dominant features are cylindrical in nature,
which favours Bessel–Fourier basis functions for spectral analysis in
the 𝑠 and 𝜙 directions, respectively. This choice impacts the typical
scales that emerge from the spectral decomposition. As an illustrative
example, when a velocity field is projected onto the spherical surface,
the equatorial jet appears significantly larger in comparison to the jets
at higher latitudes (see Fig. 4). However, when observed along the
cylindrical radial direction (as shown in the meridional cross-sections
in Fig. 5), all jets appear to have the same width, which allows in turn
to unambiguously relate a wavenumber with a lengthscale.

To carry out a spectral flow decomposition in cylindrical geometry,
we make use of two distinct velocity fields: the geostrophic velocity
projected onto a disc (see Eq. (7)), and the velocity on the equatorial
annulus at 𝜃 = 𝜋∕2 (see the equatorial cut in Fig. 4). As detailed
in Section 2.3, the geostrophic velocity is defined on the disc, at all
cylindrical radii, by averaging along 𝐞𝑧, while the equatorial velocity is
only defined on the annulus outside the tangent cylinder. In both cases,
the domain is periodic in 𝜙 and is finite in radius, with 𝑠 ∈ [𝑎, 𝑏], say.
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Fig. 6. Snapshots of different flow components for the four simulations shown in Figs. 4 and 5. For each panel, the upper half corresponds to the geostrophic flow components
with 𝑢𝑔𝜙 on the left and 𝑢𝑔𝑠 on the right, while the bottom half corresponds to the flow in the equatorial plane with 𝑢𝜙(𝜃 = 𝜋∕2) on the left and 𝑢𝑟(𝜃 = 𝜋∕2) on the right. The dashed
arcs in the upper halves mark the location of the tangent cylinder.
Following Wordsworth et al. (2008) and Lemasquerier et al. (2023),
one can then decompose any field 𝑓 (𝑠, 𝜙) defined over such a domain
into spectral coefficients using Bessel–Fourier transforms,

̂̂𝑓𝑚𝑛 = ∫

𝑏

𝑎 ∫

2𝜋

0
𝑓 (𝑠, 𝜙)𝛹𝑚𝑛(𝑠)𝑒−𝑖𝑚𝜙𝑠 d𝑠 d𝜙, (12)

with 𝑚 and 𝑛 the azimuthal and radial dimensionless wavenumbers,
respectively (for a review of different spectral decompositions on the
disc, see Boyd and Yu, 2011).

On the disc, the integral along the cylindrical radius 𝑠 is defined
over the interval [0, 𝑟𝑜], and 𝛹𝑚𝑛(𝑠) ≡ 𝐽𝑚(𝛼𝑚𝑛𝑠), where 𝐽𝑚 denotes the
Bessel function of the first kind of order 𝑚. For a disc subjected to a
Dirichlet boundary condition (e.g. Sneddon, 1946), the wavenumbers
𝛼𝑚𝑛 are the roots of the equation

𝐽𝑚(𝛼𝑚𝑛𝑟𝑜) = 0 . (13a)

The radial wavenumbers 𝑘𝑚𝑛 = 𝛼𝑚𝑛 take discrete values since the
domain is bounded (see for example Wang et al., 2009). This spectral
decomposition defines the Hankel transform on the disc (e.g. Baddour,
2019).
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On the annulus 𝑠 ∈ [𝑟𝑖, 𝑟𝑜], the support functions consist of a linear
combination of Bessel functions of the first and second kind (Mac-
Robert, 1932) 𝐽𝑚 and 𝑌𝑚 such that

𝛹𝑚𝑛(𝑠) ≡ 𝑌𝑚(𝛼𝑚𝑛𝑟𝑜)𝐽𝑚(𝛼𝑚𝑛𝑠) − 𝐽𝑚(𝛼𝑚𝑛𝑟𝑜)𝑌𝑚(𝛼𝑚𝑛𝑠) . (14)

When Dirichlet boundary conditions are enforced on both sides, the
wavenumbers 𝛼𝑚𝑛 are the roots of Cinelli (1965)

𝑌𝑚(𝛼𝑚𝑛𝑟𝑖)𝐽𝑚(𝛼𝑚𝑛𝑟𝑜) − 𝐽𝑚(𝛼𝑚𝑛𝑟𝑖)𝑌𝑚(𝛼𝑚𝑛𝑟𝑜) = 0 . (15)

For this combination of geometry and boundary conditions, Eq. (12) is
then known as the Weber–Orr transform.

We compute kinetic energy spectra following

𝐸𝑚𝑛 =
𝑟𝑜

2𝑉 ⋆𝑁𝑚𝑛
(

|𝑚𝑛|
2 + |𝑚𝑛|

2) , (16)

where 𝑚𝑛 ≡
̂√ℎ𝑢̂𝑠 and 𝑚𝑛 ≡

̂√ℎ𝑢̂𝜙 to account for the height variation
of the fluid depth ℎ defined in Eq. (8). Note that a single hat ⋯̂
corresponds to a Fourier transform, while two hats correspond to a
Bessel–Fourier transform. In the above equation, 𝑉 ⋆ either corresponds
to the full fluid volume in the case of the disc (𝑉 ⋆ = 𝑉 ) or to the volume
outside the tangent cylinder only in the case of the annulus (𝑉 ⋆ = 𝑉 𝑎 =
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Fig. 7. Residual spectra of the equatorial velocity on the equatorial annulus. The vertical arrows correspond to the two injection wavenumbers 𝑘𝐸𝑖 for 𝐸 = 10−5 and 𝐸 = 10−6.
reen to blue colour gradient goes from 𝑅𝑎 = 108 to 2 × 109 for simulations at 𝐸 = 10−5. Light orange to purple colour gradient goes from 𝑅𝑎 = 109 to 2 × 1010 for simulations at
= 10−6. The theoretical prediction of the residual spectra from Eq. (10a) corresponds to the dashed blue line using 𝐶𝑅 = 5. The dashed black line corresponds to a 𝑘−30𝑛 slope.

For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
4𝜋∕3)[ℎ+(𝑟𝑖)]3). In the above expression, 𝑁𝑚𝑛 is a normalization factor
hich depends upon the relevant Bessel–Fourier transform such that

𝑚𝑛 =
2𝜋
𝑟2𝑜

1
𝐽 2
𝑚+1(𝛼𝑚𝑛𝑟𝑜)

(17)

for the disc (see Sneddon, 1946; Guizar-Sicairos and Gutiérrez-Vega,
2004; Baddour, 2019), and

𝑁𝑚𝑛 =
𝜋3𝛼2𝑚𝑛𝐽

2
𝑚(𝛼𝑚𝑛𝑟𝑜)

𝐽 2
𝑚(𝛼𝑚𝑛𝑟𝑖) − 𝑌 2

𝑚 (𝛼𝑚𝑛𝑟𝑜)
(18)

or the annulus (Sneddon, 1946; Cinelli, 1965).
We distinguish the zonal spectrum 𝐸𝑍 (𝑘0𝑛) = 𝐸0𝑛 that contains the

kinetic energy of the azimuthal mode 𝑚 = 0 and the residual spectrum
𝐸𝑅(𝑘0𝑛) =

∑𝓁max
𝑚=−𝓁max,𝑚≠0

𝐸𝑚𝑛, which is the contribution of all non-zonal
modes, 𝑚 ≠ 0. In this spectral analysis, each mode 𝑚 has different
wavenumbers 𝑘𝑚𝑛 = 𝛼𝑚𝑛 and the associated zonal wavenumbers are
𝑘0𝑛 = 𝛼0𝑛. As suggested by Lemasquerier et al. (2023) we perform a
summation into spectral bins for modes 𝑚 ≠ 0 in order to compute
the residual spectrum. The spectral bins d𝑘 are defined to correspond
to the zonal wavevector 𝑘0𝑛. Here, we consider that any typical length
scale is half a period in radius and can be computed using 𝐿 = 𝜋∕𝑘𝑚𝑛.
Hereafter, all spectra are computed once the steady state is achieved
in our simulations and a time average over at least 20 statistically
independent spectra is computed.

3.2.3. Residual spectra
Fig. 7 shows the residual energy spectra computed from the equa-

torial velocity on the annulus and for the entire set of simulations at
𝐸 = 10−5 and 10−6. At a given Ekman number, the injection scale is esti-
mated by 𝑘𝐸𝑖 = 𝑚𝑐∕𝑟𝑖 using the critical azimuthal wavenumber at onset
of convection 𝑚𝑐 computed by Barik et al. (2023), which give 𝑚𝑐 = 116
and 247 for 𝐸 = 10−5 and 10−6, respectively. Once the statistically-
steady state has been reached, 𝛱 = 𝑃 (Eq. (9)), providing an effective
way to measure the energy transfer rate in convection driven turbu-
lence. This enables a straightforward comparison of the residual spectra
9

for different convective forcings by considering 𝐸𝑅(𝑘)∕𝑃 2∕3. All residual
spectra are then found to follow the −5∕3 slope expected from the KBK
theory of 2D-turbulence, with 𝐶𝑅 ≈ 5 in Eq. (10a).

This also shows that when the Rayleigh number increases and the
Ekman number decreases, the range of scales where the −5∕3 scaling
applies increases, with larger wavenumbers exhibiting a slope near
−3. This change in the spectral slope occurs at wavenumbers close
to the injection scale 𝑘𝐸𝑖 . Such flow properties are reminiscent of the
paradigm of 2D-turbulence coined by Kraichnan (1967): an inverse
cascade of kinetic energy from injection to large scales with a −5∕3
slope, and a direct cascade of enstrophy to small scales with a −3
slope (see Deusebio et al. 2014 and Boffetta and Ecke 2012 for a
review). Fig. 7 illustrates that lowering the Ekman number goes along
with a broadening of the range of scales that adhere to the −5∕3
slope towards small wavenumbers, possibly suggesting a more effective
inverse cascade. Recently, Böning et al. (2023) showed that a −5∕3
slope can also be found in spherical convective flows, where zonal jets
are driven by statistical correlations of small convective scales instead
of the inverse turbulent cascade invoked in the theory of 2D-turbulence.
To differentiate between these two mechanisms and determine which
one is at play in our numerical simulations, a more detailed analysis
of energy and enstrophy transfers would be necessary, an analysis that
goes beyond the scope of the current study.

In Fig. 8a, we expand our statistical analysis by displaying three
distinct residual spectra computed from simulation 5, which corre-
sponds to the maximum energy ratio 𝐸𝑍∕𝐸𝑇 = 0.5 and the control
parameters 𝐸 = 10−6 and 𝑅𝑎 = 5×109. In this analysis, we concurrently
display the residual spectra computed on the annulus, originating from
both the equatorial (pink) and geostrophic (light pink) velocities, along
with the spectrum computed on the disc from the geostrophic velocity
(black). The light pink and black curves illustrate a decrease in the
magnitude of the residual spectra for the geostrophic velocity when
compared to the equatorial velocity. This reduction becomes even more
pronounced when we consider a spectral decomposition on the disc
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Fig. 8. (a) Residual spectra of simulation 5, computed for the geostrophic (geos) and
equatorial (Eq) velocities on the annulus as well as for the geostrophic velocity on the
disc. The pink curve is the same as the one presented in Fig. 7. (b) Comparison of
the residual spectra computed on the disc (light lines) and on the annulus (opaque
lines) for the geostrophic residual velocity for four selected simulations at 𝐸 = 10−6

with increasing supercriticalities. To stress the influence of the geometric factor, the
residual spectra on the annulus have been multiplied by 𝑉 𝑎∕𝑉 . On both panels, the
dashed pink and black lines are theoretical predictions from Eq. (10a) with 𝐶𝑅 = 5 and
1.5 respectively. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

rather than on the annulus. It is evident that part of this reduction
results from the axial averaging involved in the computation of the
geostrophic component. Referring to Fig. 3, we can recall that only
64% of the residual energy is attributed to the geostrophic component
for simulation 5 (see also Table 1). However, the magnitude of the
energy spectrum on the disc is further reduced compared to that on
the annulus. This reduction can be attributed to the presence of the
tangent cylinder, which forms a dynamical barrier leading to different
regionalized dynamics between high and low latitude regions (e.g.
Gastine and Aurnou, 2023).

These different regions manifest as a consequence of the inherent
anisotropy of the convective forcing. Dormy et al. (2004) demonstrated
that the onset of convective instabilities in a rotating spherical shell is
localized adjacent to, but outside, the tangent cylinder. Additionally,
imposing no-slip boundary conditions in our numerical setup further
reinforces the existence of these two dynamical regions, suppressing
the formation of large-scale flows within the polar region. The combi-
nation of these effects results in significant heterogeneities in turbulent
mixing throughout the fluid shell. Consequently, when incorporating
the weakly convective polar region into the spectral decomposition on
the disc, there is a marked reduction in the residual spectrum. This
decrease can hence be attributed to the combined effects of partial flow
10

s

geostrophy and differences of flow amplitude inside and outside the
tangent cylinder. The latter can be approximated by a geometric factor
𝑉 ∕𝑉 𝑎 ≈ 2.2 in the limit of sub-critical convection inside the tangent
cylinder. To account for those effects, we fit the black residual spectrum
in Fig. 8a using Eq. (10a) by lowering the residual constant from 𝐶𝑅 = 5
to 1.5 (as indicated by the black dashed line). This shows that within
spherical shell convection, the residual spectra cannot be uniquely
described by the theory of 2D isotropic, homogeneous, turbulence
that arises in unconstrained turbulent environments (Kraichnan, 1967).
Instead, the polar and equatorial dynamical regions, when considered
separately, are nearly homogeneous and must be treated accordingly.
This approach is illustrated in our consideration of the equatorial region
alone in Fig. 7.

Considering the parameter range for icy satellites, where 10−12 ≲
𝐸 ≲ 10−10 and 1016 ≲ 𝑅𝑎 ≲ 1024, it is plausible that the formation
of zonal jets extends to higher latitudes. Such a dynamical configu-
ration could lead to a more homogeneous distribution of turbulence
throughout the fluid volume, causing the spectrum computed on the
disc to converge towards that computed on the annulus. To test this
hypothesis, we present in Fig. 8b residual spectra obtained for a range
of simulations with increasing convective forcings from 𝑅𝑎 = 109

(Simulation 1) to 𝑅𝑎 = 2 × 1010 (Simulation 7). To highlight the flow
regionalization, the residual spectra on the annulus have been multi-
plied by the aforementioned geometric factor 𝑉 𝑎∕𝑉 . While a nearly
perfect overlap is observed for both spectra (i.e. on the disc and the
annulus) in the weakly-forced case (blue lines), they gradually depart
from each other as supercriticality increases. This deviation is more
sizeable at larger scales (𝑘0𝑛 ≤ 10), particularly for the highly turbulent
case 𝑅𝑎 = 2×1010 (red lines). This reflects a growing fraction of energy
inside the tangent cylinder, as also illustrated in Fig. 6. Nonetheless,
the parameters covered in this study do not allow to reach compara-
ble energy levels inside and outside the tangent cylinder. Would this
homogenization process becomes complete within the parameter range
relevant to icy satellites, one can speculate that a spectral analysis on
both the disc and the annulus would yield the same result, within the
geometric factor 𝑉 𝑎∕𝑉 involved in Fig. 8b.

3.2.4. Zonal spectra
Fig. 9 shows zonal energy spectra computed from the geostrophic

velocity on the annulus and on the disc. We have selected energy
spectra from different simulations at 𝐸 = 10−6 and 10−5, including
different Rayleigh numbers. For all the numerical simulations, the
zonal spectra consistently exhibit a −5 slope on approximately two
decades and the energetic amplitude is well predicted by Eq. (10b).
The dimensionless 𝛽 parameter is estimated at the mean radius of the
equatorial annulus 𝑠mid,

𝛽 =
2𝑠mid

𝑟2𝑜 − 𝑠2mid
with 𝑠mid = 1

2
(𝑟𝑖 + 𝑟𝑜), (19)

and the zonal constant which best fits the spectra is 𝐶𝑍 = 0.5. We opt
or estimating 𝛽 at the mean equatorial radius because it corresponds
o the average position of the zonal jets since they are mostly confined
utside the tangent cylinder (see Fig. 5). This condition generally holds
or all simulations, where only weak zonal jets form in the polar region.
owever, our estimate of 𝛽 may require reconsideration if zonal jets
ere to extend towards the poles. This is the case for instance in the

imulations with free-slip boundary conditions conducted by Soderlund
t al. (2014) or possibly in the range of parameters expected for the
cy satellites. In such configurations, the 𝛽 parameter would need to
e estimated differently to account for high latitudes. On the other
and, we estimate the zonal constant 𝐶𝑍 = 0.5 by fitting the magnitude
f the zonal spectra computed on the annulus rather than on the
isc. Again, the reason for this choice is that the disc encompasses
luid regions with very heterogeneous flows. In addition, the spherical

hell geometry has its own spectral signature which exhibits energetic
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Fig. 9. Zonal spectra of the geostrophic velocity computed on the annulus (top panel)
and on the disc (bottom panel). The theoretical prediction of the zonal spectra from
Eq. (10b) corresponds to the dashed blue line using 𝐶𝑍 = 0.5. Vertical dashed segments
re Rhines wavenumbers 𝑘𝑅ℎ from Eq. (20) and for each simulation. (For interpretation
f the references to colour in this figure legend, the reader is referred to the web version
f this article.)

umps at intermediate wavenumbers when using Bessel–Fourier de-
omposition (see Fig. 9). These bumps arise because the flow adopts
he cylindrical geometry of the fluid shell (one equatorial region with
trong jets, the other without), which artificially affects the energy
pectra. This would probably not occur if jets would have formed at all
ylindrical radii, making the spectral decomposition on the disc more
elevant. This configuration may occur in the parameter range relevant
o icy satellites, or it can equally arise in simulations with free-slip
oundary conditions, where significant polar and equatorial zonal flows
re known to develop (as observed in simulations by Soderlund, 2019;
öning et al., 2023). Conducting a spectral analysis of these free-slip
imulations could provide further insights into the dynamics of such
lows and their spectral distribution.

It is worth noting that the zonal constant 𝐶𝑍 obtained here lies
within the range of values 0.3 ≲ 𝐶𝑍 ≲ 2.7 estimated in previous
studies of zonostrophic turbulence (Sukoriansky et al., 2002; Galperin
et al., 2014; Cabanes et al., 2017; Lemasquerier et al., 2023). We
thus reinforce its universality by extending it to deep-seated convective
flows. Furthermore, a key implication of Eq. (10b) is that the ener-
getic amplitude of the zonal spectra is independent of the convective
forcing and solely depends on the rotation rate 𝛺 and some geometric
arameters given in Eq. (19).

It is also well accepted that in flows with a strong 𝛽-effect, the
hines scale (Rhines, 1975) is a good approximation of the frictional
cale denoted by 𝑘𝑓 in Fig. 2. This scale is pivotal in arresting the
nverse cascade of energy in such flows (e.g. Sukoriansky et al., 2007);
t is defined by

𝑅ℎ =

√

𝛽
2𝑈𝑔

. (20)

here 𝑈𝑔 is the root-mean-square geostrophic velocity integrated either
n the disc or on the annulus. The dashed vertical segments in Fig. 9
11

9

Fig. 10. Zonal spectra of the equatorial velocity computed on the annulus. The
theoretical prediction of the zonal spectra from Eq. (10b) corresponds to the dashed
blue line using 𝐶𝑍 = 0.5. Dots are Rossby scales 𝑘𝑅𝑜 from Eq. (21). (For interpretation
f the references to colour in this figure legend, the reader is referred to the web
ersion of this article.)

how that the Rhines wavenumber matches quite effectively with the
ost energetic scale, above which the energy systematically decreases.
he associated Rhines scale 𝐿𝑅ℎ = 𝜋∕𝑘𝑅ℎ has also proved to be a
ood estimate of the typical jets width (see Heimpel and Aurnou, 2007;
astine et al., 2014; Bire et al., 2022, for examples in spherical rotating
onvection). Since the jets size increases with the Rayleigh number
see Figs. 5 and 6 for an illustration) it results in zonal spectra which
urther extend towards smaller wavenumbers. At the highest Rayleigh
umbers, the energy maxima reach typical length scales corresponding
o almost half the shell gap. As previously stated, these length scales
annot be clearly identified in zonal spectra computed on the disc
ecause of the zonal flow regionalization.

Finally, we apply the zonostrophic theory to zonal energy spectra
btained from the equatorial velocity on the annulus, as shown in
ig. 10. Similarly to the geostrophic component, zonal energy at small
avenumbers are well accounted for by Eq. (10b). However, for large
avenumbers, the zonal energy of the equatorial flow shows a strong
ependence on the convective forcing, since its magnitude increases
ith increasing Rayleigh numbers. The slope also departs from the −5

caling and gradually tapers off on increasing convective forcings. In
rder to estimate the typical wavenumber at which the zonal spec-
ra deviate from the theoretical predictions, we introduce a Rossby
avenumber 𝑅𝑜𝑘 = 𝑅𝑜𝑘0𝑛∕𝜋. Assuming an arbitrary threshold value
f 𝑅𝑜𝑘 = 0.1 to mark the limit of strong rotational constraint (a similar
hreshold is used in the study by Christensen and Aubert, 2006), we
efine a critical wavenumber as follows,

𝑅𝑜 =
0.1𝜋
𝑅𝑜

. (21)

or wavenumbers where 𝑘 < 𝑘𝑅𝑜, the flow is strongly geostrophic
nd characterized by a Rossby number lower than 0.1. These scales
re the most energetic, and as a result, global properties presented
n Fig. 3 reveal a zonal flow that is predominantly geostrophic. Thus,
lthough the theory of zonostrophic turbulence does not explain the
nergy distribution of the equatorial velocity at all scales, it gives a
ood estimate of the zonal energy in the convective flows.

Here, we would like to stress that the zonostrophic theory remains
pplicable in the transitional regime of rotating convection (Fig. 1),
ven in setups where the zonal energy represents only a weak fraction
f the total kinetic energy (see Table 1). However, a crucial question
rises when approaching the non-rotating limit – a condition possibly
elevant for Titan, Europa and Ganymede – in which the flow becomes
ssentially ageostrophic. Although our study reveals that approximately

−5
9% of the zonal energy is geostrophic for all simulations with 𝐸 = 10
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Fig. 11. Zonal and residual energy spectra computed on the annulus from the
quatorial (Eq) and geostrophic (Geos) velocities. Panels from top to bottom correspond
o simulations 5, 15 and 19 in Table 1. The red and black dashed lines are the
heoretical predictions of the zonal and residual spectra using the zonal constant
𝑍 = 0.5 and the residual constant 𝐶𝑅 = 5. Vertical lines corresponds to Rhines’
avenumber (blue), the transitional wavenumber (grey) and the injection wavenumber
𝐸
𝑖 = 𝑚𝑐∕𝑟𝑖 (green), with 𝑚𝑐 = 55, 116 and 247 for 𝐸 = 10−4, 10−5 and 10−6,

respectively (Barik et al., 2023). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

and 10−6, it is likely that this fraction decreases when trending towards
the non-rotating limit. As the determination of the boundary of the
domain where zonostrophic theory applies remains unfortunately inac-
cessible to present computations, it is difficult to provide a conclusive
answer in that regard.

For now, it is crucial to bear in mind that future energetic predic-
tions for subsurface oceans, based on zonostrophic theory, will provide
an estimate for the geostrophic component of the zonal energy.

3.3. The zonostrophy index

We show in Fig. 11 the zonal and residual spectra for simulations 5,
15 and 19 corresponding to the highest ratio of zonal energy 𝐸𝑍∕𝐸𝑇 for
numerical experiments with 𝐸 = 10−6, 10−5 and 10−4. The intersection
between the theoretical −5∕3 (Eq. (10a)) and −5 (Eq. (10b)) spectra
defines a transitional wavenumber, which can be expressed as

𝑘𝛽 =
(

𝐶𝑍
𝐶𝑅

)3∕10 ( 𝛽3

𝛱

)1∕5

. (22)

his wavenumber defines the scale at which the theoretical zonal
pectrum overcomes the residual one. Thus, the range of wavenumbers
12
𝑅ℎ < 𝑘 < 𝑘𝛽 is known as the zonostrophic inertial range, in which
he zonal jets dominate energetically. In rotating turbulent flows, this
nertial range exists if the zonostrophy index 𝑅𝛽 = 𝑘𝛽∕𝑘𝑅ℎ is greater

than unity. At 𝐸 = 10−6, the simulation 5 satisfies this condition with
𝑅𝛽 = 1.45 and the zonal spectrum dominates the residual spectrum
in the range predicted by the Rhines and transitional wavenumbers.
For the simulation 15 at 𝐸 = 10−5, the zonostrophic inertial range
is significantly reduced and the intersection of the zonal and residual
spectra is poorly predicted by the theory. With an index of 𝑅𝛽 = 1.18,
this simulation shows that the 𝛽 parameter is too weak to efficiently
channel energy in the zonal flow component. Finally, simulation 19
at 𝐸 = 10−4 is not in the zonostrophic regime with 𝑅𝛽 < 1 and the
residual energy largely dominates its zonal counterpart. The flow is
energetically governed by the convective forcing, given that the resid-
ual energy is determined by the convective power following Eq. (10a).
With a nearly −5∕3 slope at all wavenumbers, the behaviour of the
flow resembles that of 3D-isotropic turbulence, with a forward energy
cascade from energy injection at small wavenumber (𝑘10−4𝑖 ≈ 14) down
to viscous dissipation at larger wavenumber. Nonetheless, although the
residual energy dominates, the zonal spectrum preserves its −5 slope
nd magnitude predicted by Eq. (10b). In this simulation, the influence
f both large viscosity (𝐸 = 10−4) and substantial rotational effects
𝑅𝑜 ∼ 0.07) is evident, leading to 86% of the zonal energy to be in
eostrophic balance. Hence, the weak yet mostly geostrophic zonal
lows still adhere to the −5 theoretical scaling.

We report in Table 1 the zonostrophy indices for all numerical
imulations. The general trend that emerges is that the zonostrophy
ndex increases on decreasing Ekman numbers. This goes along with

greater fraction of zonal energy in the convective shell. Using 2D
imulations on a rotating sphere, Galperin et al. (2010) suggest that
lower bound for the zonostrophic regime is rather 𝑅𝛽 ≃ 2.5. They

rgue that below this value, rotating turbulence occurs in a transitional
egime between the dissipation-dominated regime and zonostrophic
urbulence. The threshold value of 2.5 is however only indicative and
as been established for specific cases of 2D-turbulence (Sukoriansky
t al., 2007). Here, in 3D convective flows, with no-slip boundary
onditions at the top and bottom of the spherical shell, we never
xceed the value of 𝑅𝛽 = 1.45. The laboratory experiments conducted
y Lemasquerier et al. (2023) also reveal zonostrophy indices that
o not surpass the value of 2. Yet, the theory accurately predicts the
pectral energy distribution, even when the residual energy dominates,
specially in simulations with 𝐸 = 10−6. Consistently, we argue that
onostrophic turbulence is a relevant framework for analysing convec-
ive flows enclosed within a rotating spherical fluid layer. We now
ropose to use it to make a first theoretical prediction of the typical
elocity of subsurface oceans.

. Implications for subsurface oceans

In order to apply the framework of zonostrophic turbulence to the
ubsurface oceans of the icy satellites, we assume that this theory
an be extrapolated to more extreme parameters, despite the distance
etween the planetary regimes and those covered by the 3D numerical
odels (recall Fig. 1). This extrapolation has already proven effective,

s (Galperin et al., 2014) successfully applied this theory to in situ
easurements of the jovian zonal jets collected from the Cassini and
oyager missions. Our goal here is to use Eqs. (10a)–(10b) to generate

heoretical residual and zonal spectra and estimate the corresponding
elocities for the subsurface oceans of Enceladus, Titan, Europa and
anymede.

To this end, we present in Table B.3 some properties of the subsur-
ace oceans in dimensional units (extracted from Soderlund, 2019): the
hermal expansivity 𝛼, the gravitational acceleration 𝑔, the heat flux
, the density 𝜌, the heat capacity 𝐶𝑝, the ocean depth 𝐷 and the ice
hickness 𝐷𝐼 . These properties have been obtained in previous studies
see caption in Table 2) by considering different water compositions
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Table 2
Water shell structural properties of the icy satellites along with our velocity predictions. The buoyancy power is estimated using Eq. (23). The
ocean depths, denoted as 𝐷, are derived from the interior model properties provided by Vance et al. (2018) and references therein. The upper
bound of the geostrophic zonal velocity max(𝑈𝑧) is estimated using Eq. (27). The Rhines scale results from the combination of Eqs. (24) and
(27). The residual velocity 𝑈𝑟 is determined using Eq. (24) and the values are averaged while considering the uncertainty associated with the
zonal constant 𝐶𝑍 . The transitional scale is determined using Eq. (22), taking into account our calculated value of the topographic 𝛽 parameter
following Eq. (19).

Enceladus Titan Europa Ganymede

Buoyancy power, 𝑃𝑠 (10−13 m2/s3)
MgSO4 10 wt% 0.48, 2.63 3.11, 16.25, 20.69 17.26, 92.17 16.22, 30.11
Seawater 0.04, 0.2 – 18.38, 96.72 –
Water – 13.54, 25.26, 28.65 14.62, 72.47 14.8, 28.07, 156.26

Ocean thickness, 𝐷 (km)
MgSO4 10 wt% 13, 63 91, 333, 403 103, 131 287, 493
Seawater 12, 55 – 99, 126 –
Water – 130, 369, 420 97, 124 119, 361, 518

Zonal velocity upper bound, max(𝑈𝑧) (m s−1)
MgSO4 10 wt% 0.011, 0.047 0.149, 0.551, 0.666 0.237, 0.599 0.43, 0.715
Seawater 0.003, 0.013 – 0.241, 0.605 –
Water – 0.355, 0.713, 0.796 0.213, 0.521 0.297, 0.616, 1.66

Residual velocity, 𝑈𝑟 (10−3 m s−1)
MgSO4 10 wt% 1.45, 4.4 9.38, 25.16, 29.07 13.86, 29.93 20.89, 30.37
Seawater 0.48, 1.4 – 14.53, 30.36 –
Water – 18.72, 31.05, 33.82 12.85, 27.12 16.18, 27.43, 60.71

Rhines scale, 𝐿𝑅ℎ∕𝐷, 𝐶𝑍 = 0.3
MgSO4 10 wt% 0.4, 0.4 2.1, 2.1, 2.1 1.1, 1.6 1.4, 1.3
Seawater 0.2, 0.2 – 1.2, 1.7 –
Water – 2.7, 2.3, 2.3 1.1, 1.6 1.7, 1.5, 2.0

Rhines scale, 𝐿𝑅ℎ∕𝐷, 𝐶𝑍 = 2.7
MgSO4 10 wt% 0.2, 0.2 1.2, 1.2, 1.2 0.6, 0.9 0.8, 0.8
Seawater 0.1, 0.1 – 0.7, 0.9 –
Water – 1.5, 1.3, 1.3 0.6, 0.9 1.0, 0.8, 1.1

Transitional scale, 𝐿𝛽∕𝐷, 𝐶𝑍 = 0.3
MgSO4 10 wt% 0.09, 0.07 0.25, 0.21, 0.21 0.14, 0.17 0.14, 0.13
Seawater 0.05, 0.04 – 0.14, 0.18 –
Water – 0.29, 0.22, 0.22 0.14, 0.17 0.2, 0.14, 0.18

Transitional scale, 𝐿𝛽∕𝐷, 𝐶𝑍 = 2.7
MgSO4 10 wt% 0.05, 0.04 0.13, 0.11, 0.11 0.07, 0.09 0.07, 0.07
Seawater 0.03, 0.02 – 0.07, 0.09 –
Water – 0.15, 0.12, 0.11 0.07, 0.09 0.1, 0.07, 0.09


T
t
c
(

of the ocean, including scenarios with salty water containing 10 wt%
gSO4, seawater, or pure water. Using these properties one can esti-
ate the buoyancy power per unit mass available to drive convection

n the subsurface oceans, following,

𝑠 =
𝛼𝑔𝑞
𝜌𝐶𝑝

. (23)

ur estimates are given in Table 2. To generate synthetic residual and
onal spectra of the subsurface oceans, we follow the same approach
s in our numerical experiments: the turbulent mixing is given by the
uoyancy power 𝛱 = 𝑃𝑠, the 𝛽 parameter is estimated at the mean
quatorial radius following Eq. (19), with 𝑟𝑜 = 𝑅 −𝐷𝐼 and 𝑟𝑖 = 𝑟𝑜 −𝐷,

the residual constant is 𝐶𝑅 = 5 and the lower and upper bounds of
the zonal constant are considered to be 0.3 ≲ 𝐶𝑍 ≲ 2.7 (we recall that
these bounds are derived from a vast collection of current as well as
prior experiments and observations). At this stage, theoretical spectra
can be produced using Eq. (10a)–(10b), but we still need to determine
the range of wavenumbers over which the theory is applicable.

In zonostrophic turbulence, we can assume that the theoretical
zonal spectrum is applicable between the Rhines scale 𝑘𝑅ℎ and the
viscous dissipative scale denoted by 𝑘𝜈 . Conversely, the residual spec-
trum applies within the range from the Rhines scale (𝑘𝑅ℎ) to the
injection scale 𝑘𝐸𝑖 . Outside of these scale ranges, the energy density
systematically decreases. The viscous dissipative scale is known to be
of millimetric order as in the Earth’s ocean. This prompts us to assume
that 𝑘𝜈 ≫ 𝑘𝑅ℎ. As such, we can estimate the energy of the residual and
zonal velocities of the subsurface oceans by integrating the theoretical
13

r

spectra in Eq. (10a)–(10b) between wavenumbers 𝑘𝑅ℎ and 𝑘𝑖,

𝐸𝑠
𝑅 =

3𝐶𝑅𝑃
2∕3
𝑠

2𝜋2∕3
[𝐿2∕3

𝑅ℎ − 𝐿2∕3
𝑖 ] and 𝐸𝑠

𝑍 =
𝐶𝑍𝛽2𝐿4

𝑅ℎ

4𝜋4
, (24)

where we have assumed that 𝑘𝑅ℎ = 𝜋∕𝐿𝑅ℎ. The typical magnitudes of
the residual and zonal velocities, are obtained using the expressions
𝑈𝑟 =

√

2𝐸𝑠
𝑅 and 𝑈𝑧 =

√

2𝐸𝑠
𝑍 . The injection scale 𝐿𝑖 which enters

the residual velocity can be estimated using the critical azimuthal
wavenumber at onset (Barik et al., 2023). Since 𝐿𝑖 ∼ 𝐸1∕3𝐷 in the
limit of 𝐸 ≪ 1 relevant to the icy satellites, 𝐿𝑖 is expected to be 3 to 4
orders of magnitude smaller than the ocean thickness. Unfortunately,
direct measurements of the Rhines scale, indicative of jet sizes, are
unattainable due to the unobservable nature of the flow beneath the
ice crusts of the satellites.

To tackle this challenge, an upper bound for the jets velocity can be
derived from the energetics of the convective flow, i.e. an equilibrium
between the injected buoyancy power per unit mass and dissipative
processes (Jansen et al., 2023). Further assuming that dissipation can
be mostly attributed to the drag of the zonal flows near the boundaries
𝐽 (𝑈𝑧) yields

𝐽 (𝑈𝑧) ∼ 𝑃𝑠 . (25)

o account for the latter, Jansen (2016) assumed a parameterized
urbulent quadratic drag of the form  (𝑈𝑧) ≈ 𝐶𝐷𝐷𝑈3

𝑧 . Using drag
oefficients 𝐶𝐷 calibrated to model the Earth’s ocean, Jansen et al.
2023) and Kang (2024) then provide zonal flow velocity estimates
anging from a few mm/s for Enceladus to a few cm/s for Europa.



Icarus 415 (2024) 116047S. Cabanes et al.

s
b
w



p
h
e
a
b
n
p
a
t
r
r
5
j
𝐿
r
s
o
t
z

v
o
m
r
o
o
s
G

u
𝑅
c
T
p
n
z
f
O
u
t

The applicability of such quadratic boundary drag formulation to
the subsurface oceans of the icy satellites remains however unclear.
In particular, outside the tangent cylinder, friction processes mostly
involve the drag of quasi-geostrophic zonal jets on the external liquid–
ice interface. Since the surface roughness of such ice caps is currently
unknown, estimates for the drag coefficients remain speculative.

In light of these considerations, we here rather assume that dis-
sipation mostly occurs via Ekman friction at the external boundary.
This frictional mechanism can be conceptualized as the dissipation of
energy by the Ekman layer with a typical thickness 𝜖 =

√

𝜈∕𝛺 under no-
lip boundary conditions. Based on the formulation of Ekman pumping
y Greenspan (1968) and assuming flow geostrophy in a spherical shell,
e derive in Appendix A the following formulation

𝐽 (𝑈𝑧) =
(𝑟𝑜𝜈𝛺)1∕2
(

𝑟2𝑜 − 𝑠2
)3∕4

𝑈2
𝑧 , (26)

which holds for 𝑠 ≥ 𝑟𝑖 (see, e.g. Gillet and Jones, 2006). This enables
us to get an upper bound for the geostrophic zonal flow velocity which
does not involve an arbitrary drag coefficient

max(𝑈𝑧) =

√

√

√

√

√

√𝑃𝑠

(

𝑟2𝑜 − 𝑠2mid

)3∕4

𝑟1∕2𝑜 (𝜈𝛺)1∕2
. (27)

The geometric factor
(

𝑟2𝑜 − 𝑠2mid

)3∕4
is estimated at mid-radius, as is

done for the 𝛽 parameter in Eq. (19). It is essential to note that this
formulation is only applicable outside the tangent cylinder, where zonal
jets primarily develop in our numerical simulations. Also, the deriva-
tion of Eq. (27) does not account for possible large-scale topography
that would make the upper boundary non-spherical. Assuming that
the energy injected by buoyancy power is transferred upscale through
non-linear processes and that Ekman friction serves as the physical
mechanism arresting the upscale transfer of energy, Ekman friction
defines the largest scale of the system, namely the Rhines scale 𝐿𝑅ℎ. In
other words, we can solve for the Rhines scale in Eq. (24), considering
max(𝑈𝑧) from Eq. (27) as the upper bound for the zonal velocity.

Similar to velocity estimates, one should regard Rhines scale pre-
dictions as upper bounds. In addition, solving for Eqs. (24) and (27)
does not prevent the Rhines scale from exceeding the ocean depth
(𝐿𝑅ℎ > 𝐷). Such predictions are inherently overestimated, since our
derivation of the upper bound for the zonal velocity overlook Ekman
friction inside the tangent cylinder (refer to Appendix A). The changes
of ℎ(𝑠) across the tangent cylinder prevent determining a unique rele-
vant value for the zonal velocity upper bound that would incorporate
stresses from both inside and outside the tangent cylinder. Hence, in the
ongoing analysis, Rhines scale predictions must be regarded as possibly
overestimated when exceeding the ocean depth. With this limitation in
mind, we present in Table 2 our estimates for each satellite of the upper
bound of the geostrophic zonal velocity max(𝑈𝑧), the associated Rhines
scale 𝐿𝑅ℎ and the residual velocity derived from Eq. (24).

Ganymede, with an ocean which could be as thick as 518 km,
stands out as the most promising candidate for generating strong zonal
jets. The upper bound for geostrophic zonal velocity reaches over
1 m∕s, while the associated residual velocity remains at approximately
0.06 m∕s. When the ocean depth is reduced to 119 km, the zonal velocity
decreases to ∼ 0.3 m∕s, and the residual velocity drops to around
∼ 0.016 m∕s. In summary, Ganymede can possibly host strong zonal jets,
with zonal velocities falling within the range of 0.3 ≲ 𝑈𝑧 ≲ 1.66 m∕s,
encompassing all fluid depth configurations. Europa and Titan follow
with a zonal velocity range of 0.2 ≲ 𝑈𝑧 ≲ 0.6 m∕s and 0.1 ≲ 𝑈𝑧 ≲
0.8 m∕s respectively, while Enceladus has a reduced zonal velocity
falling within the range of 0.003 ≲ 𝑈𝑧 ≲ 0.05 m∕s. We emphasize that
these predictions for the zonal velocity only account for the geostrophic
component of the flow.

Our predictions for zonal velocities are lower than those provided
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by Vance et al. (2021), which reach up to 𝑈𝑧 ∼ 6 m∕s and 𝑈𝑟 ∼ 0.11 m∕s t
for Ganymede. On the other hand, our estimates indicate larger ve-
locities compared to the ranges reported by Bire et al. (2022), who
suggest values between 10−3 ≲ 𝑈𝑧 ≲ 0.7 m∕s and 10−2 ≲ 𝑈𝑟 ≲ 0.5 m∕s.
In both cases, estimations of flow velocities were solely based on the
assumption that the Rossby numbers from numerical simulations, are
equivalent to those in the oceans of icy satellites. This reasoning ignores
a rescaling of the physical quantities using either scaling laws for the
velocity (e.g. Gastine et al., 2016) or spectral analyses as done here.
These numerical setups also present different geometries (a spherical
shell for Vance et al. (2021) and a spherical wedge shell for Bire
et al. (2022)) and mechanical boundary conditions that may explain
the discrepancies. For comparison, Tyler (2008) demonstrated that tidal
forcing on subsurface oceans triggers large-amplitude Rossby waves
with typical velocities ranging from 0.086 to 0.84 m∕s.

As already mentioned, Jansen et al. (2023) and Kang (2024) derived
an upper bound for the zonal flow velocity using a power balance
between the buoyancy power and boundary friction. Their parame-
terized turbulent boundary layer friction yields velocity estimates for
Enceladus and Europa roughly 5 times lower than ours, a stark contrast
to which we shall come back in the discussion below.

Our velocity predictions are associated with projections of the
Rhines scale, whose uncertainty is contingent upon the zonal constant
(0.3 ≲ 𝐶𝑍 ≲ 2.7). On Europa, the typical jets size falls within the range
0.7𝐷 ≲ 𝐿𝑅ℎ ≲ 1.4𝐷 on average. The lower estimate suggests ocean
dynamics resembling our simulation at 𝐸 = 10−6 and 𝑅𝑎 = 2 × 1010

resented in Fig. 5, where the prograde equatorial jet spans more than
alf of the ocean depth. The upper estimate, however, suggests a single
quatorial jet whose typical size approaches the ocean depth. If such
configuration has been reported in numerical models with free-slip

oundary conditions (Soderlund, 2019), it remains to be seen under
o-slip conditions in the presence of Ekman friction. With Rhines scale
redictions in the range 0.9𝐷 ≲ 𝐿𝑅ℎ ≲ 1.6𝐷 on average, Ganymede also
ppears to be a promising candidate for a single-jet solution outside
he tangent cylinder. For Enceladus, however, the typical jets size is
educed to the range 0.15𝐷 ≲ 𝐿𝑅ℎ ≲ 0.3𝐷, indicating ocean dynamics
eminiscent of our multiple jets simulation at 𝐸 = 10−6 and 𝑅𝑎 =
× 109, or possibly 𝑅𝑎 = 109 (refer to Fig. 5). Discussing the size of

ets on Titan is more intricate since our predictions consistently yield
𝑅ℎ > 𝐷. Our overall Rhines scale predictions is in line with the

egime diagram presented in Fig. 1: smaller Rossby numbers and hence
maller jets in Enceladus reflect the stronger influence of rotation on its
cean dynamics. In contrast, Europa, Ganymede and Titan, straddling
he transitional and non-rotational regimes, likely exhibit much larger
onal jets.

In our analysis, Eq. (24) also provides an estimate of the residual
elocity. Across all satellites, the residual velocity is approximately
ne order of magnitude lower than the zonal velocity, reaching a
agnitude of few mm/s. These estimates arise from integrating the

esidual spectrum over the range 𝑘𝑅ℎ ≤ 𝑘 ≤ 𝑘𝐸𝑖 . In the predictions
f the residual velocity, the uncertainty stems from the determination
f the Rhines scale, influenced by the uncertainty in 𝐶𝑍 , which yields
tandard deviations of the order ≈ 5 × 10−3 m∕s for Titan, Europa, and
anymede, and ≈ 5 × 10−4 m∕s for Enceladus.

Fig. 12 provides a comprehensive summary of our numerical sim-
lations and predictive findings. It shows the zonal Rossby number
𝑜𝑍 = 𝑈𝑧∕𝛺𝐷 together with the residual Rossby number 𝑅𝑜𝑅 = 𝑈𝑟∕𝛺𝐷
omputed from our numerical simulations and velocity predictions.
he size of the coloured polygons reflect the uncertainties on internal
roperties and water compositions. These diagrams illustrate that in our
umerical simulations, a decrease in the Ekman number strengthens the
onal Rossby number at the expense of the residual one. For 𝐸 = 10−6,
lows obtained in numerical simulations correspond to 𝑅𝑜𝑅 ≈ 𝑅𝑜𝑍 .
ur predictions indicate that this trend continues for the icy satellites,
ltimately reaching a state where 𝑅𝑜𝑍 ≫ 𝑅𝑜𝑅. In such a regime, the
urbulence is strongly zonostrophic, and the Rhines scale is much larger

han the transitional scale (𝐿𝑅ℎ ≫ 𝐿𝛽 , see Table 2). In some cases,
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Fig. 12. Regime diagrams using Rossby and Ekman numbers from the simulations (dots) and predictions of the subsurface oceans (polygons). The left panel corresponds to the
zonal velocity (𝑅𝑜𝑍 ), while the right one corresponds to the residual velocity (𝑅𝑜𝑅). In each panel, the empty circles indicate values where 𝑅𝛽 < 1, while the filled-in dots
orrespond to 𝑅𝛽 > 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
he theoretical zonostrophy index of the subsurface oceans (𝐿𝑅ℎ∕𝐿𝛽)
an even exceed ten (not reported here). However, it is important
o note that this may not entirely reflect reality. As long as we only
onsider thermal convection, we overlook other sources of turbulence,
uch as mechanical and electromagnetic forcings, as well as double-
iffusive convection (Tyler, 2008; Vance and Brown, 2005; Gissinger
nd Petitdemange, 2019). These supplementary sources will enhance
he turbulent mixing within the subsurface oceans, likely reinforcing
he residual energy of the flow, and consequently, modifying the zonal
nergy balance through cascade effects. Future numerical simulations
ould incorporate these additional energy sources, leading to a revision
f the current version of our Rossby–Ekman diagram.

. Discussion

We have investigated 21 numerical simulations of rapidly-rotating
convection in a spherical shell of radius ratio 𝑟𝑖∕𝑟𝑜 = 0.8, which is in
the low range expected for the subsurface oceans in the Solar System.
Extending previous numerical studies, we have explored a range of
Ekman and Rayleigh numbers (10−6 ≤ 𝐸 ≤ 10−4 and 107 ≤ 𝑅𝑎 ≤ 2×1010)
leading to the formation of multiple zonal jets with no-slip boundary
conditions. At the lowest Ekman number, the kinetic energy contained
in the zonal flow is comparable to the residual energy (see Fig. 3). This
tendency would not have been so evident in earlier studies with Ekman
numbers of (10−4 − 10−5), if those studies did not assume free-slip
boundary conditions.

We took advantage of our new numerical setup to extend the theory
of zonostrophic turbulence to deep-seated convection in a rotating
sphere. We recall that this theory has been developed in purely 2D-
flows, thanks to numerical simulations on the sphere (Sukoriansky
et al., 2002). Only recently has the theory of zonostrophic turbu-
lence been extended to shallow-water simulations (Cabanes et al.,
2020), mechanically forced laboratory experiments (Cabanes et al.,
2017; Lemasquerier et al., 2023) and atmospheric observations (Young
and Read, 2017). However, it is not obvious that this theory would
also apply to deep-seated convection in a spherical shell where the 𝛽
parameter substantially changes with the cylindrical radius.

To assess its applicability, we develop a flow decomposition in
spectral space using cylindrical harmonic functions, namely the Hankel
and Weber–Orr transforms. We argue that, given the axial symmetry
of the zonal jets about the rotation axis, cylindrical harmonics are
better suited for deep models of rapidly-rotating turbulence in spherical
geometry. Thanks to this spectral analysis, we show that both zonal
and residual flow components are well accounted for by the theory of

−5
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zonostrophic turbulence for simulations with 𝐸 ≤ 10 and within the
limits of the Rayleigh numbers explored in this study. For 𝐸 ≤ 10−5,
present day numerical models cannot effectively reach the non-rotating
limit depicted in Fig. 1, which precludes the exploration of the plausible
failure of zonostrophic theory in this regime. We also stress that only
the geostrophic component of the zonal energy was found to adhere to
the zonostrophic theory. These different factors introduce uncertainties
regarding the applicability of the zonostrophic theory when trending
towards the non-rotating limit of the diagram, a region susceptible
to be relevant for several subsurface oceans. Within these limits, our
study demonstrates that it is possible to evaluate the residual and
the geostrophic zonal energy of the flow by estimating the available
buoyancy power of the convecting fluid, its Ekman number, and an
estimate of the 𝛽 parameter.

Assuming that the framework of zonostrophic turbulence can be
extrapolated to the more extreme parameters of the icy satellites, we
deliver in Table 2 velocity predictions for four subsurface oceans,
namely, Enceladus, Titan, Europa, and Ganymede. Due to the lack of
direct constraint on the jets size, necessary for estimating the zonal
energy using zonostrophy theory, we define an upper bound for the
zonal velocity using energetic constraints in the same vein as Jansen
et al. (2023). This methodology allows us to predict the Rhines scale
for each satellite, along with its residual energy.

We demonstrate that Europa and Ganymede may exhibit zonal
jets with a typical size approaching the ocean depth, while Enceladus
is likely characterized by multiple jets located outside the tangent
cylinder. Predictions for Titan present additional challenges, as our jet
size estimates consistently exceed the ocean depth. This poses a compli-
cation, given that our theoretical approach is built upon the assumption
of zonal jets confined outside the tangent cylinder, and given that there
is no evidence of numerical models with rigid boundaries developing
jets broader than the shell thickness. Furthermore, our analysis reveals
that for subsurface oceans, the upper bound for the geostrophic zonal
velocities ranges from ∼ 0.1 to 1.6 m∕s, while the residual velocities do
not exceed ∼ 0.003 to 0.06 m∕s. The exception may be Enceladus, the
smallest of the four satellites, whose zonal velocity ranges from ∼ 0.003
to 0.05 m∕s and residual velocity ranges from ∼ 0.0005 to 0.004 m∕s.
We emphasize that our estimates of the zonal velocity rests entirely
on the geostrophic component of the flow. Ageostrophic contributions
can further enhance our estimates, prompting the need for additional
investigations in that regard.

Our theoretical approach places a primary focus on the kinetic
energy budget within convective flows. It is similar to the approach
of Jansen et al. (2023), while diverging from earlier analyses that
simply assumed a direct equivalence between the Rossby number in

numerical simulations and that in real oceanic flows (e.g. Amit et al.,
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2020; Soderlund, 2019; Bire et al., 2022). The difference between our
study and those by Jansen et al. (2023) and Kang (2024) stands in the
treatment of the boundary drag: while they retain a quadratic turbulent
drag hypothesis initially tailored to model Earth’s ocean, we rather
assume that boundary friction is governed by Ekman pumping outside
the tangent cylinder of the subsurface oceans. At this stage of our
knowledge of the ice–water interface in these hidden ocean worlds, it
is however fair to say that no definite argument can be provided in
favour of one hypothesis or the other. This leaves us with a possible
factor of 3−5 between both velocity upper bounds, a prospect for future
investigations.

Additionally, it is worth noting that prior numerical simulations
employing free-slip boundary conditions overlook Ekman friction, a
process we underscore as crucial for stabilizing the jets. Without con-
sidering this frictional effect, zonal jets tend to equilibrate with viscous
dissipation in the fluid bulk (refer to Eq. (A.2) in the Appendix A) and
typically reach system scale (e.g. Soderlund, 2019). If we extrapolate
to the Ekman numbers relevant to icy satellites, where fluid viscosity
is significantly lower, we encounter unrealistic scenarios where the
residual energy would become negligible compared to the zonal energy.
This speculation is influenced by the findings of Soderlund (2019), who
already demonstrated at 𝐸 = 3 × 10−4 a partition of 𝐸𝑍 ∼ 100𝐸𝑅, this
actor of 100 being already comparable to our predictions for the sub-
urface oceans. Therefore, we advocate for the necessity of employing
o-slip boundary conditions in simulating subsurface ocean dynamics.

One of the main outcome of this study is to provide a Rossby–
kman diagram that emphasizes flow velocities independently of the
ature of the energetic sources that drive the flow. This contrasts with
he Rayleigh–Ekman diagram introduced by Gastine et al. (2016). Cur-
ently, this Rossby–Ekman diagram allows us to locate our numerical
imulations alongside with the predictions for subsurface oceans. We
dentify a continuous regime transition along the Ekman axis, shifting
rom a non-zonostrophic or quasi-3D turbulent regime at 𝐸 = 10−4 to
zonostrophic turbulent regime at 𝐸 = 10−5 and 10−6. The transition

threshold occurs when the zonostrophy index equals one, as illustrated
in Fig. 12 with the empty and filled-in circles. However, no such
transition is observed along the Rossby axis, as the zonostrophy index
remains above unity for all simulations at 𝐸 = 10−5 and 10−6. This
is due to the high computational cost of 3D turbulent experiments,
which prevents us from further exploring low Ekman and high Rossby
numbers 𝑅𝑜 ∼ (1), a regime possibly relevant for icy satellites such
as Titan, Ganymede, and Europa. Within this limit, the global fraction
of non-geostrophic energy increases, prompting questions about the
continued validity of zonostrophic theory. Further investigations are
required to elucidate these uncertainties.

Consequently, we advocate further exploration of the regime dia-
grams presented in Figs. 1 and 12 through deep-seated turbulent exper-
iments. This effort should aim to delineate the dynamical boundaries
of the zonostrophic regime of turbulence. For this purpose, laboratory
experiments offer the potential for more turbulent flows, elevating the
current Rossby number, while quasi-geostrophic simulations can reduce
the computational cost to explore lower Ekman numbers (see Barrois
et al., 2022; Lemasquerier et al., 2023).

In conclusion, it is crucial to stress that the estimate of an up-
per bound for the zonal flow velocity is instrumental to bring some
predictive power to the theory of zonostrophic turbulence. This is
required by the absence of direct observational data regarding the
size of ocean jets, or equivalently, the Rhines scale. To address this
limitation, there is a possibility that direct measurements of surface
heat transfer or ice topography may carry indications of the under-
lying jet flows and, by extension, their latitudinal size and location.
This approach has been previously investigated in studies conducted
by Soderlund et al. (2014), Kvorka et al. (2018), Amit et al. (2020),
Kvorka and Čadek (2022) and Terra-Nova et al. (2023). Such mea-
surements are planned for Europa and Ganymede, as they are the
16
main targets of ESA’s JUICE mission and NASA’s Europa Clipper mis-
sion. Should these future missions yield information about the typical
size of Europa’s and Ganymede’s ocean jets, they would offer addi-
tional invaluable constraints to enhance the accuracy of our theoretical
predictions regarding flow velocities.
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Appendix A. A bound for the axisymmetric azimuthal velocity in
the rapidly-rotating regime

In the rapidly-rotating, or quasi-geostrophic, regime, the 𝑠 and
𝜙 components of the quasi-geostrophic velocity 𝐮𝑔 are invariant in
the direction of global rotation 𝑧. An equation for the time-evolution
of the axisymmetric azimuthal velocity is obtained by averaging the
Navier–Stokes equation

𝜌 𝜕𝐮
𝜕𝑡

+ 𝜌(𝐮 ⋅ ∇)𝐮 + 2𝜌𝛺𝐞𝑧 × 𝐮 = −∇𝑃 + 𝜌𝜈∇2𝐮 + 𝜌𝛼𝑇 𝐠. (A.1)

over a so-called geostrophic cylinder (𝑠), whose cylindrical radius 𝑠 is
omprised between 𝑟𝑖 and 𝑟𝑜. In the 𝑧 direction, (𝑠) extends between
= −ℎ++𝜖 and 𝑧 = ℎ+−𝜖, where ℎ+ =

√

𝑟2𝑜 − 𝑠2 and 𝜖 is the thickness of
he viscous Ekman boundary layer that develops over the no-slip outer
pherical boundary. Denoting the average over (𝑠) by ⟨⋅⟩(𝑠), we obtain

𝜕
𝜕𝑡

+ (𝜈𝛺)1∕2
𝑟1∕2𝑜

ℎ+3∕2
− 𝜈

(

1
𝑠2

𝜕
𝜕𝑠

𝑠3 𝜕
𝜕𝑠

1
𝑠

)

]

⟨𝑢𝑔𝜙⟩(𝑠) =

− 1
𝑠2

⟨

𝜕𝑠
(

𝑠2𝑢𝑔𝑠𝑢
𝑔
𝜙

)⟩

(𝑠)
.

(A.2)

A secondary flow, driven by the so-called Ekman pumping, occurs
within Ekman boundary layers and permeates the bulk of the fluid
(Greenspan, 1968). Ekman pumping is responsible for the second term
on the left-hand side of Eq. (A.2), via the calculation of ⟨𝑢𝑔𝑠 ⟩(𝑠), see
e.g. Schaeffer and Cardin (2005) and Gillet and Jones (2006) for more
details. The term on the right hand-side of Eq. (A.2) is the nonlinear
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Table B.3
Summary of the properties of the subsurface oceans of the Jovian and Saturnian satellites (see Vance et al., 2018; Soderlund, 2019, and
references therein for further details).

Enceladus Titan Europa Ganymede

𝑔 (m/s2) 0.1 1.4 1.3 1.4
𝛺 (s−1) 5.3 × 10−5 4.6 × 10−6 2.1 × 10−5 1.0 × 10−5

𝜈 (m2/s) 1.8 × 10−6 1.8 × 10−6 1.8 × 10−6 1.8 × 10−6

𝜅 (m2/s) 1.4 × 10−7 1.8 × 10−7 1.6 × 10−7 1.8 × 10−7

𝑅 (km) 252 2575 1561 2631

Ice Ih thickness, 𝐷𝐼 (km)
MgSO4 10 wt% 50, 10 149, 86, 58 30, 5 157, 9, 26
Seawater 50, 10 – 30, 5 –
Water 51, 10 141, 74, 50 30, 5 134, 70, 5

Ocean thickness, 𝐷 (km)
MgSO4 10 wt% 13, 63 91, 333, 403 103, 131 24, 287, 493
Seawater 12, 55 – 99, 126 –
Water 11, 53 130, 369, 420 97, 124 119, 361, 518

Heat flux, 𝑞 (mW/m2)
MgSO4 10 wt% 16, 83 14, 17, 19 24, 123 15, 18, 25
Seawater 16, 82 – 23, 121 –
Water 16, 81 14, 18, 20 24, 119 16, 20, 107

Density, 𝜌 (103 kg∕m3)
MgSO4 10 wt% 1.11, 1.11 1.20, 1.23, 1.24 1.15, 1.14 1.19, 1.23, 1.24
Seawater 1.02, 1.02 – 1.07, 1.07 –
Water 1.00, 1.00 1.11, 1.14, 1.14 1.04, 1.04 1.11, 1.14, 1.14

Heat capacity, 𝐶𝑝 (103 J/kg/K)
MgSO4 10 wt% 3.6, 3.7 2.1, 2.5, 2.8 3.3, 3.5 2.1, 2.4, 3.0
Seawater 4.0, 4.0 – 3.8, 3.8 –
Water 4.2, 4.2 3.0, 3.5, 3.6 3.9, 3.9 3.0, 3.5, 3.7

Thermal expansivity, 𝛼 (10−4 K−1)
MgSO4 10 wt% 1.2, 1.3 0.4, 2.1, 2.7 2.1, 2.3 −0.1, 1.9, 3.2
Seawater 0.1, 0.1 – 2.5, 2.5 –
Water −0.5,−0.5 2.3, 4.0, 4.2 1.9, 1.9 2.2, 4.0, 4.4

𝛽 parameter, 𝛽 (10−10 m−1 s−1)
MgSO4 10 wt% 80.21, 15.65 1.0, 0.27, 0.22 4.01, 3.14 0.68, 0.39
Seawater 87.0, 18.11 – 4.17, 3.26 –
Water – 0.7, 0.24, 0.21 4.26, 3.32 1.66, 0.53, 0.37

Dimensionless numbers
𝑃𝑟 = 𝜈∕𝜅 13 10 11 10
𝐸 = 𝜈

𝛺𝐷2 10−12 − 10−10 10−12 − 10−11 [5 − 9] × 10−12 10−13 − 10−11

𝑅𝑎 = 𝛼𝑔𝐷3𝛥𝑇
𝜈𝜅

1016 − 1020 1019 − 1024 1023 − 1024 1022 − 1024

𝜂 = 𝑅−𝐷𝐼−𝐷
𝑅−𝐷𝐼

0.74 − 0.94 0.83 − 0.96 0.91 − 0.94 0.8 − 0.95
N
s
a
e
r
𝛥
b
T

𝛥

Reynolds stress term, that will be denoted by  in the following. The
balance for the axisymmetric zonal energy is obtained by multiplying
Eq. (A.2) by ⟨𝑢𝑔𝜙⟩(𝑠),

𝜕
𝜕𝑡

( 1
2
⟨𝑢𝑔𝜙⟩

2
(𝑠)

)

= ⟨𝑢𝑔𝜙⟩(𝑠) − (𝜈𝛺)1∕2
𝑟1∕2𝑜

ℎ+3∕2
⟨𝑢𝑔𝜙⟩

2
(𝑠)

+ 𝜈

[

1
𝑠2

𝜕
𝜕𝑠

𝑠3 𝜕
𝜕𝑠

(

⟨𝑢𝑔𝜙⟩(𝑠)
𝑠

)]

⟨𝑢𝑔𝜙⟩(𝑠).

The axisymmetric zonal energy can increase in response to the first
term on the right-hand side, and gets dissipated either by Ekman
friction arising from the Coriolis term or by viscous stresses. We shall
assume that the former is more effective at dissipating energy at the
scale of jets than the latter. On time average, this implies that

|

|

|

⟨𝑢𝑔𝜙⟩(𝑠)
|

|

|

≈ (𝜈𝛺)1∕2
𝑟1∕2𝑜

ℎ+3∕2
⟨𝑢𝑔𝜙⟩

2
(𝑠). (A.3)

Assuming that all energy injected by the mean buoyancy power 𝑃𝑠 =
𝛼𝑔𝑞∕𝜌𝐶𝑝 is channelled into the zonal jets through nonlinear processes,
namely that |

|

|

⟨𝑢𝑔𝜙⟩(𝑠)
|

|

|

= 𝑃𝑠, we derive an upper bound for the
xisymmetric quasi-geostrophic zonal velocity,

⟨𝑢𝑔𝜙⟩(𝑠) ≈

√

√

√

√𝑃𝑠

(

𝑟2𝑜 − 𝑠2
)3∕4

1∕2
. (A.4)
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𝑟𝑜 (𝜈𝛺)1∕2
In the main text, this upper bound of the zonal velocity is denoted by
max(𝑈𝑧). The geometric factor

(

𝑟2𝑜 − 𝑠2
)3∕4 is estimated at mid-radius,

as is done for the 𝛽 parameter in Eq. (19).

Appendix B. Properties of the subsurface oceans

All the relevant properties of the icy satellites are reported in Ta-
ble B.3. Building upon the methodology outlined by Soderlund (2019)
we can anticipate the convective regime of the icy satellites by estimat-
ing their Ekman, Rayleigh, and Prandtl numbers. The Prandtl number,
which solely depends on the properties of the fluid, is approximated to
be around 𝑃𝑟 ∼ 10 for the oceans of the satellite (Abramson et al., 2001;

ayar et al., 2016). Calculating the Ekman number is also relatively
traightforward, as it only depends on fluid viscosity, the rotation rate,
nd ocean depth (here the interior model from Vance et al., 2018, is
mployed). Following on from Soderlund (2019), the Rayleigh number
equires the knowledge of the superadiabatic temperature contrast
𝑇 . Soderlund (2019) suggests to solve for 𝛥𝑇 algebraically considering
oth non-rotating and rapidly-rotating scaling laws for the heat flux 𝑞.
he temperature contrast considering a non-rotating regime is,

𝑇 = 7.3
(

𝜈
)1∕4

𝑞3∕4 , (B.1)

𝛼𝑔𝜌𝐶𝑝



Icarus 415 (2024) 116047S. Cabanes et al.
and for the rotating regime,

𝛥𝑇 = 2.1

(

𝛺4𝜅
𝜌2𝐶2

𝑝 𝜈𝛼3𝑔3

)1∕5

(𝑞2𝐷)1∕5 , (B.2)

see also Gastine et al. (2016) for more details. Note that the range of
values for the dimensionless quantities given in Table B.3 correspond
to the estimated minima and maxima.
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