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1 | INTRODUCTION

Let A* be the set of infinite words on a finite alphabet A, equipped with a total order < and
the ultrametric d given by d(a,a, -, b b, ---) = 2~ Mntn>1: a#bu} for g, @, - # by b, ---. We study
properties of the set of sup-words

M ={s(a) : a€ A%}, with s(aja,-) i=sup,,; a,a,; -,

for alarge class of orders on A®. In particular, we are interested in the smallest accumulation point
m_ of M_. For the lexicographic order ., words in M occur as (quasi-greedy) S-expansions
of 1 for real bases § > 1 (see [20]), with mg_ = 1000 - being the limit of these expansions as
B — 1. For the alternating lexicographic order <,;, most elements of M are (—3)-expansions
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20f13 | KANEKO and STEINER

of ﬁ_Tﬁ1 in the sense of [16, 24], and again, m is the limit of these expansions as  — 1. An image
of M occurs in a multiplicative version of the (Markoff-)Lagrange spectrum w.r.t. an integer
base, which is defined in terms of well approximable numbers [2, 12]; see Proposition 10. Below the
image of mg , which is the fixed point of a substitution [3, 5, 13], we find the discrete part of this
spectrum. The classical Markoff and Lagrange spectra are given by two-sided versions of M
(and the Lagrange spectrum is defined by lim sup instead of sup). The unimodal order <,,; yields
kneading sequences of unimodal maps [19], and m___ is the fixed point of the period-doubling
(or Feigenbaum) substitution. Sup-words are also closely related to infinite Lyndon words, which
are defined by a,a, -+ < a,a,,, -~ for all n > 2; see [23].
We consider orders satisfying that

a<b<gc implies d(a,b)<d(a,c) foralla,b,c € A® €8]

(note that d(a, b) < d(a, c) is equivalent to d(b, ¢) < d(a, c) by the strong triangle inequality), and
we call them cylinder orders because the elements of each cylinder of words are contiguous. Here,
the cylinder (of length n) given by a, ---a,, € A" is

[a) - a,] :={djd} - € A® : a]--a, =a;a,},

and we write [a; --- a,] < [b; --- b, ]if (a; --- a,,)® < (b, --- b,)*® (o1, equivalently,a < bforalla €
la, -~ a,l, b € [by --- b,]), where w™ denotes the infinite repetition of a word w. Note that (1) is
equivalent to the condition (*) of [21], which states that ux < vy forallx,y € A®,u,v € A",n > 1,
such that u® < v®. Generalized lexicographic orders as considered in [22] satisfy this condition.

In Section 2, we give basic properties of M. Section 3 contains our main result, an algorithm for
determining the smallest accumulation point m. of M_, for any cylinder order (A®, ). We also
give a complete description, in terms of S-adic sequences, of all words m obtained by cylinder
orders and of the discrete part of M, that is, all its elements below m_. Since the words m_ have
linear factor complexity, real numbers having such f-expansions are in Q(8) or transcendental,
for all Pisot or Salem bases 8 > 2. In Section 4, we determine m_ for some classical examples of
cylinder orders and show that all Sturmian sequences that are sup-words can occur. We consider
cylinder orders on symmetric alphabets in Section 5 and apply our results to the multiplicative
Lagrange spectrum and other problems in Section 6,

2 | MARKOFF-LAGRANGE SPECTRUM

We first show that the set of periodic words in M is dense, and that M_ is equal to
L :={(a) : a€ A®}, with 7Z(aa,-) :=limsup,_, a,a,,; .

Note that M and £_ can be seen as generalizations of the Markoff and Lagrange spectrum, respec-
tively. In the classical case, these spectra are defined by two-sided sequences, and the Lagrange
spectrum is a strict subset of the Markoff spectrum [11, 14].

Theorem 1. Let < be a cylinder order on A®. Then
L= M = closure({sc(a) : a € A® purely periodic}).

In particular, the set M is closed.
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In the proof of the theorem, we use the following characterization of cylinder orders.

Lemma 2. An order < on A% is a cylinder order if and only if

a <b implies a’ <b’' foralla,b,a’,b’ € A® with max(d(a,a’),d(b,b’)) < d(a,b). (2)

Proof. Let < be a cylinder order, and a,b,a’,b’ € A® such that a <b, d(a,a’) < d(a,b),
d(b,b’) < d(a,b). Then both a <b<a’ and b’ <a’ <b are impossible by (1), using that
d(a’,b’) = d(a,b) by the strong triangle inequality. This implies that b > a’ and thus b’ > a’,
that is, (2) holds. Let now < be an order satisfying (2). Then, a < b and d(a, c) < d(a,b) imply
that c < b, thusa < b < cwith d(a, c) < d(a,b) is impossible, that is, (1) holds. O

Proof of Theorem 1. We show first that M_ is the closure of s_(a’) with purely periodica’ € A*®.
Since s_(s(a)) = sc(a), itsuffices to considera € A withs_(a) = a. We have (a, --- a,)* € M.
whenever

27"d(a, @y 1 Gyyn ) < 27'd(a, 14054, ) foralli € [1,n). 3)
Indeed, we have, for all i € [1,n), thata;,;a;,, -+ < a (because s_(a) = a) and

d(a,a;110;45 ++)>2"7"d(@, 411Gy 45 ) = 27"d((ag -+ @), @1 Qpgn )

= zid((al an)oo’a) = d(ai+1 an(al : n) Aiy14i42 )s

hence (2) gives that a; ., --a,(a;-a,)® <(a;--a,)®, thus (a;--a,)® € M,. Since
lim,_, . 27"d(a, a,,,a,4, +) = 0, we have either d(a, a,,,a,,, ---) = 0 for some n > 1, that is, a
is purely periodic, or there are infinitely many n such that (3) holds and thus (a, --- a,)* € M.
infinitely often. Therefore, M_ is contained in the closure of {s.(a) : a € A* purely periodic}.
For the opposite inclusion, we have to show that M_ is closed. Consider a = lim; _, a® with

(k) (k) . (k)
n+1 n+2 >a for

all large enough k, contradicting that a®®) e M. This implies that s_(a) = a, thatis,a € M_.
Since s (7(a)) = (a) for all a € A®, we have L C M_.. For the opposite inclusion,
let a =lim,_ a® for some purely periodic words a®®) € M, let (p,) be an increasing

sequence satisfying a) = (aik) agck))“, and let b = ail) agl)agz) (2) -. Then, Z(b) >

a® e M_.If a,,1a,,, - > a for some n > 1, then we would also have a

If al(i)l ag?a(kﬂ) aE,I:ll) --->aforsomek >1,0<i< pg,then
W) . g gkt (kD) (k) (k) ,(k+1)y »—p,
iy t=d(ay, -~ ay/a; wap 0 ee,a) <max(d(at™,a),d@",at ), 27k, @

k) .. k)
i Gy

contradicts a®) € M, thus 5i,k =2"J implies d(a(k), a)>27; similarly, for p,—i < j <2p,—i,

Indeed, for 1< j< p,—i, we cannot have [a; >[a; - aj]l= [agk) (k)] because this

[@® .. q®g® . q® 12 [q® . q®glktD

. a(k+1)
i+1 Pr 1 i+j—Dpy

(k) (k)]
i+1 Pk 1 i+j=Pr

] > [a1 a}] = [al aj
is impossible, thus 6, = 2~/ implies d(a®,ak+V) > 2Pc=i=J or d(a®), a) > 27/; hence, we have
ik <2172Pk or 6;; < 27Ped(a®,ak+D) or 6, < d(a®,a), which implies (4). Since the right-
hand side of (4) tends to 0 as k — co, we have 7 _(b) < a,thusa =7_(b) € L_. O
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3 | SMALLEST ACCUMULATION POINT OF M_

For determining the smallest accumulation point m of M_ for a cylinder order (A%, <), we can
restrict to two-letter alphabets, w.1.o.g., A = {0, 1}. Indeed, if {0, 1} C A, [0] < [1], then M _ has the
accumulation point 10® (because (10")* € M. for all n > 1), and we clearly have s_(a) > 10%
ifa € A contains a letter a,, € A with [a, ] > [1].

We use substitutions (also called word morphisms) and limit words (or S-adic sequences). Let
A* be the monoid of finite words over the alphabet A, with concatenation as operation. A substi-
tutiono : A* —» A* satisfies o(vw) = o(v)o(w) for all v, w € A* and is extended naturally to A*;
it suffices to give o(a) for a € A to define 0. For a sequence o = (0,,),,; of substitutions on the
alphabet A and an infinite word a € A%, the limit word is

o(a) := r}l—>nolo 071,01 (@),

if this limit exists; we use the notation o}y ) := 0700,0 -+ 00, for n > 0, with oy, o) being the iden-
tity map. For a set of substitutions S, we denote the monoid generated by the composition of
substitutions in S by S*. We use the set of substitutions

Tip - 0 1OJ
={r., : < ; J.k ’
S={rj) 1 0<j <k} with 1 10,

Our main result is the following characterization of the smallest accumulation point m. and
the discrete part of M for cylinder orders <.

Theorem 3. Letm € {0, 1}*°. Then, m = m_ for some cylinder order < on {0, 1}* with 0% < 1% if
and only if m = g(10%) for some o € S* orm = g(1%°) for some o € S*.
Ifm  =0o(1%), 0 =(0,)y5 €S, then

fae M, a<m={(0},(00)° : n>0hL (5)
Ifm< = o[l’h](lo""), O1s,0, €S, h >0, then

faeM ra<m}={(0p,(0)° : 0<n<h}
. , (6)
U{op,((107)%) 1 j >0, o7y 1y((101)*) <m.},

and there is at most one j > 0 such that o[l’h]((loj)"") <m_.

The following proposition constitutes the core of the proof of Theorem 3 and provides an
algorithm for calculating m_.

Proposition 4. Let < be a cylinder order on {0, 1}* with [0] < [1].

If[10/1] < [1070] holds for at most one j > 0, then m_ = 10, and a < m_ implies thata = 0%
ora = (10))* (in case [1071] < [10/0]).

Otherwise, we havem = 7; ; (m_) for the cylinder order < on {0, 1} defined bya < bifz;;(a) <
7; 1 (b), where j, k are minimal such that 0 < j < k, [10/1] < [10/0], [10¥1] < [10%0]; we have [0] <
[1Jandfae M, : a<m}={0}u{r;;(a) : a € M., a<m_}.
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Proof. We have m_ € [1] because M N [0] = {0}, and m_ < 10 because (10")* € M for
all n > 0. If [10/0] < [10/1] for all j > 0, that is, min [1] = 10%°, then m_ = 10%°. Otherwise, let
Jj be minimal such that [10/1] < [10/0], that is, min[1] € [10/]. Then M, N [10/1] = {(10/)*}
implies that m_ € [10/0]. If [10X0] < [10¥1] for all k > j, that is, min [10/0] = 10%°, then m_ =
10%°. Otherwise, let k > j be minimal such that [10%¥1] < [10%0], that is, min[10/0] € [10%1]. We
have m < 7;,;(10%) because 7;;((10")*) € M_ for all n > 0, thus m_ € € [10¥1]. Each word in
Mcn [10"1] is a concatenation of blocks 10/ and 10%, thus Mcn [10"1] C 7 k([1]). This proves
thatmg = 7, (m.), wherea <bif7;;(a) < 7;(b); note that m_ € [1] because [0] < [1]. Since
71 ([wo]) C [7;  (w0)1] and 7; ; ([wl]) C [7;;(w0)0] for all w € {0,1}", < is a cylinder order. If
a € M_witha <m_,thena =0%ora = (10/)® = 7;(0®)ora = rj’k(a’)witha’ € M n[1],
a’ <m._. O

The following lemma is used in the construction of a cylinder order < such that m_ = m for a
given word m. Here, € denotes the empty word.

Lemmas5. Leto = (0,)p51 € S%°, Wy, = 071 4)(0) -+~ 01,11(0) for n > 0, with w, = e.
For all even n > 0, we have o ,,([0]) € [w,,0], o ) [1]) C [w,1].
Forall odd n > 1, we have oy ,)([0]) C [w,1], oy ,)([1]) € [w,0].

Proof. Since oy o) is the identity, the statement is trivial for n = 0. Suppose that it is true for all
o € S® for some even n > 0. Then,

0[1,n+1]([0]) =01 00'[2’”4_1]([0]) c 01([0'[2,n+1](0) 0[2,2](0)0]) c [0'[1,n+1](0) 6[1,2](0)61(0)1]1

O11n41)([1]D) = 0100 5411 ([1D) € 01([072,417(0) -+ T2,21(0)1]) C [}1 1411(0) -+ T4 2)(0)T, (0)0],
thus the statement is true for all ¢ € S* for n+1. The case of odd 7 is similar. O

Proof of Theorem 3. Let first m_ be a cylinder order with [0] < [1]. By iterating Proposition 4,
we obtain a finite sequence o, ..., o), € S such that m = o}y ,)(10%°) or an infinite sequence o =
(0,)n>1 € S such that m¢ € oyy ,([1]) for all n > 1. Since oy ,417(1) starts with oy ,(1) and
is longer than oy ,,1(1) for all n > 1, we have ﬂn>1 o1, ([1]) = {o-(1°°)} Equations (5) and (6),
respectively, follow from Proposition 4.

Letnow o = (0,)p51 = (T), i Jns1 € ST By Proposition 4 and Lemma 5, we have o(1*) = m_
for all cylinder orders < satisfying

[071,2(10Yw,,0] < [0, ,(10Dw, 1] forallevenn >0, j, 41 #i < kyy,
andforalloddn > 1, i € {j,,1, k1),

(01,2 (10)w, 1] < [0, ,(10Dw, 0] foralloddn > 1, j,41 #i <kyy,
andforallevenn >0, i € {j,;1,k, 11}

(7

Such cylinder orders exist since oy; ,417(1)w,.; is longer than c[l,n](lokn+1 YWy, = 0y py11(Dw, for
all n > 0. To obtain m_ = o[l,h](lo‘”), h > 0, we use cylinder orders < such that (7) holds only for
n < hand such that, foralli > 0, [0} j,(10")w;,0] < [0}y ;,(10)wy 1] if his even, [0} ;(10)w,1] <
[o]1,,)(10)w},0] if h is odd. O
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The sequence m is thus either eventually periodic or an S-adic sequence. Aworda = a;a, -+
is eventually periodic if and only if the factor complexity

Payay- (M) 1= #{ay 105 Ay 0k 20}

is bounded; see, for example, [18, Theorem 1.3.13]. The smallest complexity for an aperiodic
sequence is p,(n) = n+1, which is attained precisely by Sturmian sequences; see, for example,
[18, Theorem 2.1.5]. By [10, Proposition 2.1], all aperiodic words with lim sup £ *‘r(l " < 2 are essen-
tially equal to o(1%°) with o = (Tjn’kn),gl € S® (and k,, < 2j,+1 or (j,.k,) = (O, 2)). Without
conditions on j,, k,, we get the following upper bound for p,(;=(n), which is optimal since

Pre 1y(n) = 3n=2forallk > 2,2 < n < k.

Proposition 6. Let < be a cylinder order. Then py, (n) < 3n—2foralln > 2

Proof. The proof is similar to that of [6, Theorem 17]; see also [10, Proposition 4.1]. Recall that
the set of factors of aword a = a;a, -+ € {0, 1}* is {a; 11 0y42 -+ G4 © k.1 = 0}, afactor vofa is
strong bispecial if all four words 0v0, Ov1, 100, 1v1 are factors of a, weak bispecial if Ov1, 1v0 are
factors and 0v0, 1v1 are not factors of a. Then, v is a strong/weak bispecial factor of (1), o =
(@ns1 = (T Ins1 € S¥,ifand onlyif v = 01/ 04171, k; > j,+2, or v = 010, (v/0), where v’ is
a strong/weak bispecial factor of lim,,_, ,, 0, ,j(1%°). By iterating, we obtain that all strong/weak
bispecial factors of o(1%°) are of the form

Wy = 01,0011 = o1 110707y 1y (07 1y (0) -+ &7 17(0),

with h > Osuch thatk, , > j,, 142, whereZ = j,, for astrong bispecial factor, £ = k;,, ,—1fora
weak one; here, w, , = 07. For any recurrent word a € {0, 1}* (where recurrence means that each
prefix of a occurs infinitely often in a), the difference of p, (n+2) — p,(n+1) and p, (n+1) — p,(n)
equals the difference of the number of strong and weak bispecial factors of a of length n; see
[7, Proposition 3.2]. By telescoping and since p,(1) — p,(0) = 1, p,(n+2) — p,(n+1) — 1 is equal
to the difference of the number of strong and weak bispecial factors of a up to length n. Since
lwy,,,—1.hl <171 h41 (D] < lop p421(0)] < lw;, . ne2l for all h > 0, this difference for a = o-(1°°)
isatmost2foralln > 0;note that o(1%°) is recurrent since oy, ,41)(1) starts with 10%n1foralln >

Since p,(2) < 4, we have thus p;;«) < 3n—2forall n > 2. Since Pg, ](1000)(11) Poey(n) if th
is sufficiently large, we also have Doy, (1000)(11) 3n—2foralln > 2 Wthh proves the proposition
by Theorem 3. O

Since the factor complexity is bounded by a linear function, we can apply the results of [1]. For
B >1,let

mg(ayay - z ‘B_H

Recall that Pisot and Salem numbers are algebraic integers § > 1 with all Galois conjugates (except
B itself) having absolute value < 1; § is a Salem number if a conjugate lies on the unit circle, a Pisot
number otherwise. In particular, all integers 8 > 2 are Pisot numbers.
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Proposition 7. Let 8 > 2 be a Pisot or Salem number, and let < be a cylinder order on {0, 1}*°. Then,
mg(m) is in Q(B) or transcendental.

Proof. This is a direct consequence of Proposition 6 and [1, Theorem 1A]. O

4 | EXAMPLES
4.1 | Lexicographic order

The classical order on the set of infinite words A® with an ordered alphabet (A, <) is the lexico-
graphic order, defined by [wa] <) [wb] for all w € A*, a,b € A with a < b. For A = {0, 1}, we
havem  =10° =min M, \ {0°°}.

By [20, §2], a sequence a € {0, 1}* is the greedy §-expansion of 1 for some 3 € (1, 2) if and only
ifae Mg\ {10} and a is not purely periodic; it is the quasi-greedy S-expansion of 1 for some
g €(1,2]ifand onlyifa € M, anda does notend with 0. Here, the greedy 3-expansion of 1is
the lexicographically largest sequence a € {0, 1}*° with 7z(a) = 1, the quasi-greedy -expansion
of 1 is the largest such sequence that does not end with 0%°. By [15, Theorem 1], we also have that
(0%, ) is the pair of kneading sequences of a Lorenz map if and only ifa € M _ does not end
with 0%°.

4.2 | Alternating lexicographic order

The alternating lexicographic order is defined by [wa] <, [wb] ifa < b and |w| is even, or a > b
and |w| is odd, where |w| denotes the length of a word w € A*. For A = {0,1} with 0 < 1, we
have [11] <, [10], [101] >, [100], [1001] <,;; [1000], thus m = = 7y,(m_) by Proposition 4,
with a <bif 7y,(a) <y 72(b). Since <is equal to <y, we obtain that m  is the fixed point of
7025 that is,

= To,z(msah) =100111001001001110011 ---;

<alt

see also [3, 5, 13]. By Theorem 3, we have

{a e M_

Salt

Da <y mg }={(77,(0)% 1 n>0}={0%,1%,(100)%,(10011)%,..}.  (8)

Salt

-8
B+1’ B+1
a, = [[m - BT, 1(x)J given by the (—g)-transformation T_5(y) := —gy — [5“ By|,and the

£ . By [24, Theorem 2], a sequence a is the

According to [16], the (—f§)-expansion of x € [ > B > 1, is the sequence a,a, -+ with

set of (—)-expansions is characterized by that of B

(—pB)-expansion of —~ B = for some 3 € (1,2)ifand onlyifa € M, \{(10)°°} a>,; mg ,anda ¢
{wl,w00}* \ {(w1)*®}forallw € {0, 1}* such that (w1)*® >, mgah. Note that continued fractions
are also ordered by the alternating lexicographic order on the sequences of partial quotients, and
m_ occurs, for example, in [8, Theorem 2] and [17, Remark 11.1].
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4.3 | Unimodal maps

Let A ={0,1} and define the unimodal order by [w0] <,,; [w1] if |w|; is even, [w0] >, [w1]
if lw|, is odd, where |w|; denotes the number of occurrences of 1 in w € {0, 1}*. Then we have
[11] <uni [10]a [101] <uni [100]’ and

i = To,l(m<an) =10111010101110111011101010111010 --- .
This is the fixed point of the period-doubling (or Feigenbaum) substitution 0 — 11, 1 ~ 10. The
set M 1is the set of kneading sequences of unimodal maps [9,19].

We define the flipped unimodal order by [w0] <gy;, [w1] if |w]y is even, [wO] >y, [w1] if [w]y
is odd, where |w|, denotes the number of occurrences of 0 in w € {0, 1}*. Then we have [11] >,
[10], [101] <gy;, [100], [1001] >, [1000], [10001] >yy;, [10000], and

= Tlﬁ(mSan) =100010101000100010001010100010101000101010001000 --- .

m
<flip

Note that Om_

<tp = F(méum)’ where F(a;a, --+) := (1—a;)(1—a,) ---, and we have

M

Suni

= 1F(M, )U{0™}.

4.4 | Sturmian sequences

The set of substitutions {6, : k > 1} defined by 6,.(0) = 0k-11, 0,(1) = 0%-110, generates the stan-
dard Sturmian words; see [18, Corollary 2.2.22]. Since 7j,_;  is rotationally conjugate to &), more
precisely 6, (w)0*~1 = 0¥z, (w) for all w € {0,1}*, the set of substitutions {r;_, : k > 1}
generates the same shifts as {0 : k > 1}. Therefore, the limit words of sequences in {r;_; ; : k >
1}* provide elements of all Sturmian shifts. For example, the limit word of the sequence (7 ;)*
is the Fibonacci word. Note that Sturmian sequences that are sup-words are also considered
in [4].

5 | SYMMETRIC ALPHABETS
For a real number q > 1, the set

L, = {ligl_)soljp Ixg"|l : x € R}, 9)
where ||.|| denotes the distance to the nearest integer, is a multiplicative version of the
Lagrange spectrum, and was studied in [2, 12]. If g is an integer, then representing x =
Y g * with a; € Z, a; # 0 for finitely many k <0, | X2, ., a,q" | < 1/2, gives that

lxq™l = | Z;f:n 41 a,,q"¥|; see also Proposition 10 below. This leads us to consider

Mibs = {szbs(a) : a€{0,+1}°} with sibs(ala2 -+) = sup,5; abs(a,a,,1 ),
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where

ifa >, 0%,
abs(a) = 4 = 7 with —(a,a, ) = (—a;)(—ay) - .
—a ifa gy 0%,

We denote the smallest accumulation point of M";bs by mibs.
The same proof as for Theorem 1 shows for all cylinder orders < on {0, +1}* that

Eibs = Mibs = closure({sibs(a) . a € {0,+1}* purely periodic}),

where Eibs := {limsup,,,, abs(a,a,,; =) : aa, - €{0,+1}®}

In the following, we assume that a cylinder order on {0, £1}* is consistent (with the natural
order on {0, +1}), which means that, for each w € {0, +1}*, we have [w(—1)] < [w0] < [w1] or
[w(=1)] > [wO] > [w1]. In order to describe mibs, we define maps ¢, ¢, ¢, from {0, 1}* to {0, +1}*

by 0,(€) = ¢,(€) = ¢,(€) = ¢ for the empty word ¢, and

(w)1 if |w], is even, (w)10 if |w|, is even,
eo(w0) = 4 o o(w1) = 4 £ o
go(w)(-1) if |w|, is odd, go(w)(—-1)0 if |w|, is odd,

(w)1 if |w|, is even, (w)10 if |w|, is even,
e1(w0) = { & o (wn={ S
g1 (w)(-1) if |w|, is odd, ¢ (w)(—-1)0 if |w|,; is odd,
(w)1 if |w| is even, (w)10 if |w| is even,
e(w0) = { & o Jwn = % o
o,(w)(=1) if|w|isodd, o,(w)(—=1)0 if |w| is odd,

for all w € {0, 1}*, where |w] is the length of a word w and |w|; the number of occurrences of the
letter i in w. As for substitutions, the maps ¢; are extended naturally to {0, 1}*.

Theorem 8. Let m € {0, +1}*. Then m = mibs for some consistent cylinder order < on {0, £1}*
with 0° < 1% ifand only if m = o(m.) for some o € {9, ¢1,9,, 71} and some cylinder order < on
{0, 1} with 0%° < 1%,

If mibs = o(m.), then we can assume that a < b if and only if o(a) < o(b), and we have

fae MP :a<m®}={0"}U{o(a):ae M, a<my} (10)

Proof. Let first < be a consistent cylinder order on {0, £1}*. Then, the order < defined bya <b
if o(a) < o(b) is a cylinder order for all o € {g,, ¢1,¢,,71}. Indeed, for any w € {0, 1}*, we have
o(Jwo)) c [e(w)xy], c(Jwl]) C [c(w)x0], where x,y € {£1}.

Assume first that [11] < [10]; here and in the following, we use the notation 1 = —1. Then,
M‘;bs N [11] = {(11)*}, thus mibs € [10]. If [101] < [100], then each 1 in a word in Mibs N [101]
is followed by 1 or 01, and each 1 is followed by 1 or 01, that is,

M 0 [101] € 10 ({1, T0K1, 10)* = ¢,([1]).

Therefore, m™ = ¢,(m.) for the cylinder order < defined by a < b if ¢,(a) < ,(b). If [101] <

<

[100], then each 1 in a word in Mibs N [101] is followed by 1 or 01, and each 1 is followed by 1 or
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01, that is,
M5 A[101] € 10((10)*1(10)*T)™ U 10((10)*1(10)*1)*(10)* U 10((10)*1(10)*1)*(10)* 1(10)*

= 9y(1(1*010)®) U go(1(1*01%0)*1%) U gy(1(1*01*0)*1*01%) = gy([1]).

Therefore, we have mzbs = go(m.) for the cylinder order < defined by a < b if g,(a) < gy(b).

Assume now [11] < [10]. Then Magbs N [11] = {1*}, thus m_ € [10]. If [101] < [100], then
M0 [101] € 10(1*101*10)* U 10(1*101*10)*1% U 10(1*101*10)*1*101% = ¢, ([1]),
thus mibs = ¢;(m.), with < defined by a < bif ¢;(a) < ¢;(b). If [101] < [100], then
ME* N [101] € 10{1, 10} = 70, ([1]),

thus mibs = 7, (m.) for the cylinder order < defined by a < bifz,;(a) < 7 (b). Since ¢,(0%) =
9,(0%) = (11)* and 01(0%°) = 74, (0%) = 1%, Equation (10) holds.

Let now < be a cylinder order on {0, 1}* with 0° < 1% and o € {g,, ¢,¢,,7(1}. Then, there
exists a consistent cylinder order < on {0, +1}* satisfying o(a) < o(b) if a <b and 0® < 1.
Indeed, for w € {0, +1}* and distinct a, b € {0, +1}, we set [wa] < [wb]ifa’ < b’ forsomea’,b’ €
{0,1}*® with o(a’) € [wa], o(b’) € [wb]; by Lemma 2, this does not depend on the choice ofa’, b’.
Moreover, since o(a) € [w1] and o(b) € [w1] is impossible, we have no obstruction to a consis-
tent cylinder order. Since 0% < 1%°, we have [11] < [10] in case ¢ € {00, 92}, [11] < [10] in case
o €1{,7(1}- We can set [101] < [100] in case o € {g;, ¢,} because ([100] U [101]) n o({0,1})> =
@; similarly, we can set [101] < [100] in case o € {¢, 7o ;}. Then, we have mibs = o(m,). O
Proposition 9. Let 3 > 3 be a Pisot or Salem number, and let < be a consistent cylinder order on
{0, £1}*. Then 75(m®™) is in Q(B) or transcendental.

Proof. Let G(a;a, ---) = |a;| |a,| -+-. Then Gog; = 7, for all i € {0, 1, 2}, thus pG(mabS)(n) <3n-2
’ <
by Proposition 6, Theorems 3 and 8. Moreover, the map G is 2-to-1 from the set of factors of mibs

to the set of factors of G(mzbs), thus pmibs(n) < 6n—4. By [1, Theorem 1A] and by adding 1 to each

digit of mgbs, we obtain that ﬂﬁ(mibs) + [ﬁ is in Q() or transcendental; thus, also ﬂﬁ(mibs) is

in Q(B) or transcendental. O

6 | EXAMPLES OF ORDERS ON SYMMETRIC SHIFT SPACES
6.1 | Lexicographic order

For the lexicographic order on {0, +1}* (with —1 < 0 < 1), we have [11] < [10], [101] < [100], and
we obtain that

m® = QZ(mSan) =10111010101110111011101010111010 --- .

Slex
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The following proposition relates the Lagrange spectrum ﬁ defined in (9), and its smallest

abs

accumulation point m, to Mabs and m%>® ; it slightly improves results of [2, 12].

Proposition 10. We have
£y =mMP) 0 [0, 2] £ M), 2y = my(m), ()
my(M abs *) = L£,n [ q%l] # L, forallintegers q > 4. (12)

For all integers q > 2, we have i, = 7rq(mabs )= ﬂq(ez(m< )) and

q
£,0[0.10,) = (M) 01 [0,10,) = {0} U {7,(65(x},(0)) : n >0},

Proof. As mentioned at the beginning of Section 5, for integer q > 2, ||xq"|| can be determined by
a symmetric g-expansion of x. We can assume w.L.o.g. |x| < % Let

Ay = {aa, - €AY ¢ Imy(arayyy )l < %for allk > 1}, with A, :={0,+1,...,+[q/2|}.
Foreachx € [-3, ;] we obtain a sequencea = a,a, - € A, satisfying x = 7,(a) by taking a; =
LQT’qC—l(x) + EJ where T, (y) 1= qy — |qy + EJ' Then,

”an” = |7Tq(an+1an+2 ')l = ﬂq(abs(an+1an+2 ))

Note that a <., b implies ﬂq(a) < ﬂq(b) for all a,b e A, Since Eill’s = Mi‘l’s (and a similar
relation holds for larger alphabets), we obtain that

= {72 (@) 1 a € A

For g € {2,3}, we have A, ={0,+1}, thus f,q C ﬂq(Mikl’:X). For q > 3, we have {0,+1}® C
Ag, thus 7 (./\/labS )C [1 . Since nz(Mi?:X) n[o, l] cL, and 1= 7r2(1°°) S 712(J\/l"4‘bS )\ £,, this
proves (11). For q 4, we have 7 ( abs (a)) q((22)°°) = m > — for alla € A°° \ {0, £1}*,
thus Eq nJo, ] c 7rq(j\/labs ). Together with —=— - € L \7rq(J\/labs ), we obtain (12) Since 7,
is order-preservmg on A, we obtain that s, = 7rq(mabs ) and that Li and ﬂq(lel):X) agree on
[0,m,). Since {a € Mall’s ta< m‘?lbs }is equal to {0®°}u {92(1'0 2(0°°)) n > 0} by Theorem 8
and (8) this completes the proof of the proposition. O

6.2 | Alternating lexicographic order

For the alternating lexicographic order on {0, £1}* (with —1 < 0 < 1), we have [11] <;; [10] and
[101] <y [100],

m®™ = o, (m_ )=10111010101110111011101010111010-- .

Salt
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6.3 | Bimodal order

Similarly to the unimodal order, we define the bimodal order on {0, +1}* by [wa] <; [wb] if a <
b (with —1 <0 < 1) and |w|; + |w|_; is even, or a > b and |w|; + |w|_; is odd. Then mazs =
TO,l(mSan) m_ . We get the same result for the order defined by [wa] < [wb]ifa < b and |w|;
iseven,ora > b and |w|; is odd.

We also define the flipped bimodal order on {0, +1}* by [wa] <biflip [wb] if a < b and |w], is
even, or a > b and |w], is odd. Then

mbs = QO(mSan) =10111010101110111011101010111010 --- ..

Sbiflip

6.4 | Other orders
For e € {1}, we define a cylinder order <, on {0, +1}* by
ag., b ife-agye-b,

where (e;e, ---) - (@1a; ) = (e;a1)(e,a,) ---. We know from Proposition 7 that nﬁ(mzzs) isin Q(B)
or transcendental for all Pisot or Salem numbers . However, here the value of 7z(e - mizs),
L) 2 aya, - € {0, 13}
when e; =1 and § > 3, is more relevant. If e is periodic with perlod k then p..,(n) < k p,(n),

and hence, n'ﬁ(e . mibs) is also in Q() or transcendental for all Pisot or Salem numbers 5. We do
not know whether the same result holds when e is aperiodic.

which is the smallest accumulation point of {limsup,_, ., | >, oy
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