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In this paper we aim to compare Kurepa trees and Aronszajn trees. Moreover, 
we analyze the effect of large cardinal assumptions on this comparison. Using the
method of walks on ordinals, we will show it is consistent with ZFC that there 
is a Kurepa tree and every Kurepa tree contains an Aronszajn subtree, if there is 
an inaccessible cardinal. This is stronger than Komjath’s theorem in [5], where he 
proves the same consistency from two inaccessible cardinals. Moreover, we prove 
it is consistent with ZFC that there is a Kurepa tree T such that if U ⊂ T is a 
Kurepa tree with the inherited order from T , then U has an Aronszajn subtree. This 
theorem uses no large cardinal assumption. Our last theorem immediately implies 
the following: If MAω2 holds and ω2 is not a Mahlo cardinal in L then there is a 
Kurepa tree with the property that every Kurepa subset has an Aronszajn subtree. 
Our work entails proving a new lemma about Todorcevic’s ρ function which might 
be useful in other contexts.

© 2024 The Authors. Published by Elsevier B.V. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

In this paper we aim to compare Kurepa trees and Aronszajn trees. Moreover, we analyze the effect of 
large cardinal assumptions on this comparison. We are interested in the question that to what extent do 
Kurepa trees contain Aronszajn subtrees. The first result regarding this question is due to Jensen. He showed 
that there is a Kurepa tree in the constructible universe L, which has no Aronszajn subtrees. Todorcevic 
showed that there is a countably closed forcing which adds a Kurepa tree with no Aronszajn subtree. Both 
Jensen’s and Todorcevic’s results are in the negative direction. In the positive direction, Komjath proved 
the following theorem.
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Theorem 1.1. [5] It is consistent relative to the existence of two inaccessible cardinals that there is a Kurepa 
tree and every Kurepa tree has an Aronszajn subtree.

It is natural to ask whether or not the large cardinal assumptions in Theorem 1.1 are sharp. In other 
words, assume every Kurepa tree has an Aronszajn subtree, then is it consistent that there are at least two 
inaccessible cardinals?

Let’s call an ω1-tree Aronszajn free if it has no Aronszajn subtree. Without the use of large cardinals, 
there are various ways to show the consistency of the existence of Aronszajn free Kurepa trees. It is natural 
to ask, if there are no large cardinals, do Kurepa trees have to have Aronszajn free Kurepa subtrees? In 
other words, do we need large cardinals in order to show the existence of a Kurepa tree with no Aronszajn 
free Kurepa subtree?

Our work reveals a new fact about Todorcevic’s ρ function. Based on this fact about ρ and a notion of 
capturing which was introduced in [3], we find Aronszajn subtrees in some canonical Kurepa trees without 
any large cardinal assumptions. It is worth mentioning that although we analyze some ω1-trees to prove 
this fact about ρ, the function ρ is defined in terms of ordinals with no reference to ω1-trees.

In this paper we will show the following theorem, which is stronger than Komjath’s Theorem.

Theorem 1.2. Assume there is an inaccessible cardinal. Then it is consistent that there is a Kurepa tree and 
every Kurepa tree contains an Aronszajn subtree.

Regarding the existence of a Kurepa tree with no Aronszajn free Kurepa subtree, we show the following 
theorem. It is worth mentioning that the following theorem does not need any large cardinal assumption.

Theorem 1.3. It is consistent that there is a Kurepa tree T such that whenever U ⊂ T is a Kurepa tree when 
it is considered with the inherited order from T , then U has an Aronszajn subtree.

In [7] by using ρ, Todorcevic introduces a forcing which satisfies the Knaster condition and which adds 
a Kurepa tree. We use this forcing to prove Lemma 4.3, which reveals a new inequality about ρ. We use 
Lemma 4.3 to find Aronszajn subtrees and show Theorem 1.3. Since the tree T can be forced to exist in 
any model of �ω1 using a ccc forcing, the following corollary trivially follows from Theorem 1.3.

Corollary 1.4. Assume MAω2 holds and ω2 is not a Mahlo cardinal in L. Then there is a Kurepa tree with 
the property that every Kurepa subset has an Aronszajn subtree.

The following question still remains unanswered.

Question 1.5. Is the large cardinal assumption in Theorem 1.2 sharp? In other words, assume every Kurepa 
tree has an Aronszajn subtree. Then is it consistent that there is an inaccessible cardinal?

2. Preliminaries

We will be using the following notation and terminology. Assume T is an ω1-tree. For any α ∈ ω1, Tα

denotes the set of all elements of T which have height α. T<α is the set of all members of T which have 
height less than α. T≤α is defined similarly. B(T ) is the set of all cofinal branches of T . If b is a cofinal 
branch in T and α ∈ ω1, b(α) refers to the element in b which is of height α. If t ∈ T and α ∈ ω1 then t � α
refers to the set of all elements x ≤T t whose height is less than α. For any x ∈ T , Tx is the set of all t ∈ T

that are comparable with x. In particular the predecessors of x are in Tx.
If x is a finite set of ordinals and i ∈ |x| then x(i) refers to the i’th element of x. For x, y finite sets of 

ordinals we say x < y if every element in x is less than every element in y. Assume x is a finite set of ordinals 
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and 〈Tα : α ∈ x〉 are ω1-trees, then 
⊗
α∈x

Tα =
⋃

ξ∈ω1

∏
α∈x

Tα
ξ . It is easy to see that the component-wise order 

on this product makes it an ω1-tree. With this product, for every n ∈ ω we can define T [n] =
⊗
i∈n

T . Assume 

T is an ω1-tree and 〈vi : i ∈ n〉 are pairwise distinct elements of T with the same height, then 
⊗
i∈n

Tvi is 

called a derived tree of T with dimension n.
In [3] a notion of capturing is defined for linear orders. This notion can be used for ω1-trees as well. We 

will use this notion and Proposition 2.3 in order to characterize when an ω1-tree contains an Aronszajn 
subtree.

Definition 2.1. [3] Assume T is an ω1-tree, κ is a large enough regular cardinal, t ∈ T ∪ B(T ), and N ≺ Hκ

is countable such that T ∈ N . We say that N captures t if there is a chain c ⊂ T in N which contains all 
elements of T<N∩ω1 below t, or equivalently t � (δN ) ⊂ c.

The following definition is a modification of Definition 3.1 in [3].

Definition 2.2. Assume T = (ω1, <) is an ω1-tree, x ∈ T ∪ B(T ) and N ≺ Hθ is countable with T ∈ N . We 
say that x is weakly external to N if there is a stationary Σ ⊂ [H(2ω1 )+ ]ω in N such that

∀M ∈ N ∩ Σ, M does not capture x.

Note that there is a major difference between the definition above and Definition 3.1 in [3]. If we require 
Σ to be a club we obtain the definition of external elements in [3]. This is why we call x weakly external in 
our definition. The purpose of this definition is to find Aronszajn suborders. It turns out that the existence 
of weakly external elements is enough for an ω1-tree to have Aronszajn subtrees. This should be compared 
with Theorem 4.1 in [3], where the existence of external elements is required for finding Aronszajn suborders. 
The proof we present here uses the ideas in the proof of Theorem 4.1 in [3], but we will include it for more 
clarity.

Proposition 2.3. Let T = (ω1, <) be an ω1-tree, κ = (2ω1)+ and Σ ⊂ [Hκ]ω be stationary. Assume for all 
large enough regular cardinal θ there are x ∈ T and countable N ≺ Hθ such that x is weakly external to 
N , witnessed by Σ. In other words, for all M ∈ Σ ∩ N , M does not capture x. Then T has an Aronszajn 
subtree.

Proof. Fix θ as in the proposition. For each t ∈ T let Wt be the set of all countable N ′ ≺ Hθ such that 
Σ, T are in N ′ and there is s > t such that for all M ∈ Σ ∩N ′, M does not capture s. Let A be the set of 
all t ∈ T such that Wt is stationary. We will show that A is Aronszajn.

First note that A is downward closed. This is because if t < t′ then Wt′ ⊂ Wt. Moreover, if t ∈ T , δ ∈ ω1
and ht(t) < δ then Wt =

⋃
{Ws : s > t and ht(s) = δ}. In other words, if A �= ∅ then A is uncountable. So 

it suffices to show that A �= ∅ and A does not contain any uncountable branch of T .
First we will show that A �= ∅. Fix a regular cardinal λ > 2θ such that θ is definable in Hλ. Let P ≺ Hλ

be countable such that for some x ∈ T Σ witnesses that x is weakly external to P . Let t ∈ T ∩P and t < x. 
Then P ∩Hθ ∈ Wt ∈ P . By the fact that P ≺ Hλ, Wt intersects every closed unbounded subset of [Hθ]ω
which means that it is stationary and A �= ∅.

In order to see A contains no uncountable branch of T , assume for a contradiction that b ⊂ A is a cofinal 
branch. Let M ≺ Hκ be countable such that T, A, b, are in M and M ∈ Σ. Let δ = M ∩ω1 and t = b(δ). Let 
N ≺ Hθ be countable such that N ∈ Wt and M ∈ N . This is possible because t ∈ A and Wt is a stationary 
subset of [Hθ]ω. Let s > t be the element in T such that for all Z ∈ Σ ∩ N , Z does not capture s. But 
M ∈ Σ ∩N and it captures s via b. This is a contradiction. �
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If T is an ω1-tree with an Aronszajn subtree A, N ≺ Hθ is countable with A ∈ N , and x ∈ A \N , then 
x is external to N . This makes the following corollary immediate.

Corollary 2.4. Assume T = (ω1, <) is an ω1-tree. Then the following are equivalent:

• T has an Aronszajn subtree.
• For all large enough regular cardinal θ there are x ∈ T and countable N ≺ Hθ such that x is external 

to N .
• For all large enough regular cardinal θ there are x ∈ T and countable N ≺ Hθ such that x is weakly 

external to N .

We will use the following facts from [4] which are due to Jensen and Schlechta. For more clarity we will 
include the sketch of their proofs.

Fact 2.5. [4] Assume A ∈ V is a countably closed poset, F ⊂ A is V-generic, B ∈ V is a ccc poset and 
G ⊂ B is V[F ]-generic. Let T ∈ V[G] be a normal ω1-tree.

(1) If b ∈ V[F ][G] is a cofinal branch in T , then b ∈ V[G].
(2) If S ∈ V[F ][G] is a downward closed Souslin subtree of T then S ∈ V[G].

Proof. Assume for a contradiction that b ∈ V[F ][G] \V[G] is a branch in T , and let ḃ be the name which is 
forced by 1 to be outside of V[G]. For k ∈ 2, let jk : A × B −→ A2 × B be the injections which take (p, q)
to (1, p, q) and (p, 1, q). Obviously, these injections naturally induce injections on (A ×B)-names. We will 
abuse the notation and use jk for the injections on names too. Let jk(ḃ) = τk for k ∈ 2. Since b /∈ V[G], 
1A2×B � τ0 �= τ1.

Note that the set D = {(a0, a1) ∈ A2 : ∃α ∈ ω1 (a0, a1, 1B) � τ0(α) �= τ1(α)} is dense in A2. This 
uses an argument similar to the proof of fullness lemma and the fact that countably closed posets do not 
add new countable subsets of the ground model. Similarly, the set Dα = {a ∈ A: for some B-name ẋ, 
(a, 1B) � ḃ(α) = ẋ} is dense in A. Now construct an increasing sequence αn, n ∈ ω and as, ẋs for s ∈ 2<ω

such that:

• (as, 1) � ḃ(α|s|) = ẋs where ẋs is a B-name in V,
• as�0, as�1 are both below as and (as�0, as�1, 1) � ẋs�0 �= ẋs�1.

For each r ∈ 2ω ∩V let ar be the lower bound for 〈as : s ⊂ r〉. In V[G] let yr be the element which is forced 
by ar to be the element on top of 〈xs : s ⊂ r〉. This means that T has an uncountable level in V[G] which 
is a contradiction.

The proof of the statement for Souslin subtrees uses similar ideas and the following facts, which we briefly 
mention. First note that if X is a countable subset of V which is in V[F ][G] then X ∈ V[G]. Also, if S is 
a Souslin subtree of T in V[G] then it is Souslin in V[F ][G]. If S ∈ V[F ][G] \ V[G] is a downward closed 
Souslin subtree of T then there is downward closed Souslin S′ ⊂ S such that every cone S′

x is outside of 
V[G] for all x ∈ S′.

Now assume for a contradiction that S is a Souslin subtree of T which is in V[F ][G] \V[G]. Without loss 
of generality we can assume that every cone Sx is outside of V[G], for every x ∈ S. Assume Ṡ is the name 
which is forced by 1 to be outside of V[G]. Again let τk be the corresponding names jk(Ṡ) as above.

Let Sk be the Souslin tree for τk, for k ∈ 2, in the extension by (F0, F1, G) ⊂ A2 ×B which is V-generic. 
Note that S0∩S1 ⊂ T<α for some α ∈ ω1. In order to see this assume S0∩S1 is uncountable. Then S0∩S1 is an 
uncountable downwards closed subtree of S0∪S1. But S0∪S1 is a Souslin tree. So S0∩S1 contains a cone from 
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S0 ∪ S1. Then for some x ∈ S0 ∩ S1, (S0)x = (S1)x. But then (S0)x = (S1)x ∈ V[F0][G] ∩V[F1][G] = V[G], 
which is a contradiction. Choose an increasing sequence 〈αn : n ∈ ω〉 and a sequence 〈as, ẋs : s ∈ 2<ω〉 such 
that:

• (as, 1) � Ṡ ∩ T<α|s| = ẋs, where ẋs is a B-name in V,
• as�0, as�1 are both below as,
• (as�0, as�1, 1) � Tαs

∩ ẋs�0 ∩ ẋs�1 = ∅.

For each r ∈ 2ω ∩ V, let ar be a lower bound for 〈as : s ⊂ r〉. Also let α = sup{αn : n ∈ ω}. Now we work 
in V[G]. For each r let xr =

⋃
s⊂r

ẋs[G]. Note that if r �= r′ then there is no t ∈ Tα such that the set of 

predecessors of t is contained in xr ∩ xr′ . For each r, let yr ∈ Tα such that {t ∈ T : t < yr} ⊂ xr. But this 
means that Tα is uncountable which is a contradiction. �

In this paper coll(ω1, < λ) refers to the usual Levy collapse forcing with countable conditions which 
collapses every cardinal less than λ to ω1. Fact 2.5 immediately implies the following lemma.

Lemma 2.6. Let λ ∈ V be an inaccessible cardinal, F ⊂ coll(ω1, < λ) be V-generic, P be a ccc poset of size 
ℵ1 in V[F ], G ⊂ P be V[F ]-generic and U ∈ V[F ][G] be an ω1-tree. Then U has at most ℵ1 many Souslin 
subtrees and cofinal branches in VP .

Proof. For every α ∈ λ, let Fα = F ∩ coll(ω1, < α). Let κ < λ be a regular uncountable cardinal such that 
P ∈ V[Fκ] and U ∈ V[Fκ][G]. Fact 2.5 implies the following.

• If b ∈ V[F ][G] is a cofinal branch of U then it is in V[Fκ][G].
• If S ∈ V[F ][G] is a Souslin subtree of U then it is in V[Fκ][G].

It is obvious that |B(T ) ∩ V[Fκ][G]| = ℵ1, in V[F ][G]. Similarly the conclusion follows for Souslin subtrees 
of U . �

The following Lemma from [1] is useful in finding club embeddings between ω1-trees.

Lemma 2.7 (Lemma 3.2 of [1]). Assume R and all its derived trees are Souslin, A is an Aronszajn tree and 
R′ is a derived tree of R whose dimension is n. Moreover assume forcing with R′ adds a new branch to A
and R′ has the least dimension with respect to this property among the derived trees of R. Then R′ club 
embeds into A.

Lemma 2.8. For every Aronszajn tree A there is a forcing PA which

• adds an uncountable antichain to A,
• preserves cardinals and
• adds no new cofinal branch to ω1-trees of the ground model.

Proof. For every ω1-tree A, let PA be the poset consisting of all finite antichains in A. Based on the work 
in [2], if A is Aronszajn and W is an uncountable collection of pairwise disjoint finite antichains of A, then 
there are distinct x, y in W such that x ∪y ∈ PA. Moreover, PA is ccc if and only if A is Aronszajn. Since PA

is a ccc poset of size ℵ1, it preserves cardinals. Usual density arguments, show that PA adds an uncountable 
antichain to A.
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First we show that PA does not add branches to the Aronszajn trees of the ground model. Assume U is 
an Aronszajn tree. Without loss of generality assume U, A are disjoint. Obviously A ∪ U with <A ∪ <U is 
an Aronszajn tree. Define ϕ from PA × PU to PA∪U by ϕ(a, b) = a ∪ b. Observe that ϕ is an isomorphism. 
Therefore PA × PU is ccc. Hence U remains Aronszajn after forcing with PA.

Now we show that PA does not add new cofinal branches to ω1-trees of the ground model. To this end, 
let U be an ω1-tree in the ground model, to which PA adds a new branch. Since PA is ccc, the possible 
points of the new branch form a Souslin subtree of U . In particular, there is a Souslin tree in the ground 
model to which PA adds a cofinal branch. But this is impossible because of what we just showed above. �

It is worth pointing out that in the presence of CH there are posets which in addition to satisfying the 
requirements of Lemma 2.8, do not add new reals. This is the poset introduced in Remark 5.2 of [6]. Let 
QS be the poset consisting of all q = (Xq, Uq) such that:

• Xq is a countable downward closed subset of S which has a last level of height αq,
• Uq is a non-empty countable set and for every U ∈ Uq there exists n ∈ ω such that U is a pruned 

downwards closed subtree of S[n],
• for every U ∈ Uq there is a σ ∈ U which is a subset of the last level of Xq.

We let p ≤ q if (Xp)≤αq
= Xq and Uq ⊂ Up.

Observe that for every q ∈ QS and s ∈ S there are t > s and p < q such that αp > ht(t) and t /∈ Xq. This 
shows that if G ⊂ QS is generic then 

⋃
p∈G

Xp does not contain any cone Ss. Obviously, 
⋃

p∈G

Xp is uncountable 

downward closed. Therefore, the minimal elements of S \
⋃

p∈G

Xp form an uncountable antichain in S.

Lemma 5.3 of [6] asserts that there exists a poset which projects onto QS and which does not add new 
branches to ω1-trees of the ground model. Therefore, QS does not add new branches to ω1-trees of the 
ground model. The fact that QS preserves cardinals follows from Remark 5.2 in [6]. CH is only used for 
preserving ω2. The same remark also explains why QS does not add new reals.

We will use �ω1 in order to have the structure of walks on ordinals up to ω2. The following is the standard 
definition of �ω1 .

Definition 2.9. A sequence 〈Cα : α is limit and ω1 < α < ω2〉 is said to be a �ω1-sequence if

• Cα is a closed unbounded subset of α,
• otp(Cα) < α and
• if α is a limit point of Cβ then Cβ ∩ α = Cα.

The assertion that there is a �ω1-sequence is called �ω1 .

The following proposition is obtained from standard argument using �ω1-sequences.

Proposition 2.10. If �ω1 holds then there is a sequence 〈Cα : α ∈ ω2〉 such that

• Cα is a closed unbounded subset of α,
• Cα+1 = {α},
• otp(Cα) ≤ ω1 and if cf(α) = ω then otp(Cα) < ω1,
• if α ∈ Cβ and β is limit then cf(α) ≤ ω,
• if α is a limit point of Cβ then Cβ ∩ α = Cα.
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We only consider �ω1-sequences which have the properties mentioned in the proposition above. We will 
also use the following standard fact.

Fact 2.11. Assume λ is a regular cardinal which is not Mahlo in L. Let G ⊂ coll(ω1, < λ) be L-generic. Then 
�ω1 holds in L[G].

Now we briefly review some definitions and facts about walks on ordinals, from sections 7.3, 7.4, and 7.5 
of [7] unless otherwise is mentioned. We fix a �ω1-sequence 〈Cα : α ∈ ω2〉 which satisfies the properties in 
Proposition 2.10.

We will use the following notation in the rest of the paper. For all X, αX = sup(X ∩ω2). For each α ∈ ω2
we let Lα be the set of all β ∈ ω2 such that α ∈ lim(Cβ). For each α < β in ω2, let Λ(α, β) be the maximal 
limit point of Cβ ∩ (α + 1) when such a limit point exists, otherwise Λ(α, β) = 0.

Definition 2.12 (See section 7.3 in [7]). The function ρ : [ω2]2 −→ ω1 is defined recursively as follows: for 
α < β,

ρ(α, β) = max{otp(Cβ ∩ α), ρ(α, min(Cβ \ α)), ρ(ξ, α) : ξ ∈ Cβ ∩ [Λ(α, β), α)}.

We define ρ(α, α) = 0 for all α ∈ ω2. When the order between α, β is not known we use ρ{α, β} instead of 
ρ(α, β). More precisely, ρ{α, β} = ρ(α, β) if α ≤ β and ρ{α, β} = ρ(β, α) if β ≤ α.

Lemma 2.13 (Lemma 7.3.6 of [7]). Assume ξ ∈ α and α is a limit point of Cβ. Then ρ(ξ, α) = ρ(ξ, β).

Lemma 2.14 (Lemma 7.3.11 of [7]). If α < β, α is a limit ordinal such that there is a cofinal sequence of 
ξ ∈ α, with ρ(ξ, β) ≤ ν then ρ(α, β) ≤ ν.

Lemma 2.15 (Lemma 7.3.8 of [7]). For all ν ∈ ω1 and α ∈ ω2, the set {ξ ∈ α : ρ(ξ, α) ≤ ν} is countable.

Lemma 2.16 (Lemma 7.3.7 of [7]). Assume α ≤ β ≤ γ. Then

• ρ(α, γ) ≤ max{ρ(α, β), ρ(β, γ)},
• ρ(α, β) ≤ max{ρ(α, γ), ρ(β, γ)}.

The following lemma can be obtained in the same way as Lemma 3.1.3 of [7].

Lemma 2.17. [7] Assume α < β < γ. We have ρ(α, γ) = ρ(α, β), if ρ(β, γ) < max{ρ(α, β), ρ(α, γ)}.

Proof. We only prove that if ρ(α, γ) > ρ(β, γ) then ρ(α, γ) = ρ(α, β). The other half of the statement can 
be proved by similar argument. ρ(α, β) ≤ max{ρ(α, γ), ρ(β, γ)} = ρ(α, γ). On the other hand, ρ(α, γ) ≤
max{ρ(α, β), ρ(β, γ)} and ρ(α, γ) > ρ(β, γ). So ρ(α, γ) ≤ ρ(α, β). And this finishes the proof. �
Lemma 2.18 (Lemma 7.3.10 of [7]). Assume β ∈ lim(ω2), and γ > β. Then there is β′ ∈ β such that for all 
α ∈ (β′, β), ρ(α, γ) ≥ ρ(α, β).

Lemma 2.19 (Lemma 7.4.7 of [7]). Assume A is an uncountable family of finite subsets of ω2 and ν ∈ ω1. 
Then there is an uncountable B ⊂ A such that B forms a Δ-system with root r and for all a, b in B:

• ρ{α, β} > ν for all α ∈ a \ b and β ∈ b \ a,
• ρ{α, β} ≥ min{ρ(α, γ), ρ(β, γ)} for all α ∈ a \ b, β ∈ b \ a and γ ∈ a ∩ b.



8 H. Lamei Ramandi, S. Todorcevic / Annals of Pure and Applied Logic 175 (2024) 103452
The following forcing is from the proof of Theorem 7.5.9 in [7].

Definition 2.20. [7] Assume A ⊂ ω2. QA is the poset consisting of all finite functions p such that the following 
holds.

(1) dom(p) ⊂ A.
(2) For all α ∈ dom(p), p(α) ∈ [ω1]<ω such that for all ν ∈ ω1, p(α) ∩ [ν, ν + ω) has at most one element.
(3) For all α, β in dom(p), p(α) ∩ p(β) is an initial segment of both p(α) and p(β).
(4) For all α < β in dom(p), max(p(α) ∩ p(β)) < ρ(α, β) or p(α) ∩ p(β) = ∅.

We let q ≤ p if dom(p) ⊂ dom(q) and ∀α ∈ dom(p), p(α) ⊂ q(α). We use Q in order to refer to Qω2 . The 
poset Qc consists of all conditions p in Q with the additional condition that for all α ∈ dom(p), cf(α) ≤ ω.

Definition 2.21. Assume G is generic for Q. Then for each ξ ∈ ω2, bξ =
⋃
{p(ξ) : p ∈ G}.

Recall that a poset P satisfies the Knaster condition if every uncountable subset A of P contains an 
uncountable subset B such that the elements of B are pairwise compatible. Note that Knaster condition is 
stronger than ccc. Moreover, if P satisfies the Knaster condition then it does not add new cofinal branches 
to ω1-trees and its iteration with any ccc poset is ccc.

Proposition 2.22 (Theorem 7.5.9. in [7]). The poset Q satisfies the Knaster condition.

We finish this section by some simple observations regarding the poset Q. Let G ⊂ Q be generic. For 
t ∈ s ∈ ω1, we let t < s if there is α ∈ ω2 and p ∈ G such that α ∈ dom(p) and t, s are in p(α). By 
Condition 3 of Definition 2.20, < is transitive and T = (ω1, <) forms a tree. Also note that for all α ∈ ω2
and ν ∈ {0} ∪ lim(ω1) the set of all conditions q ∈ Q such that α ∈ dom(q) and q(α) ∩ [ν, ν + ω) �= ∅ is a 
dense subset of Q. So for each α ∈ ω2 and ν ∈ {0} ∪ lim(ω1), |bα ∩ [ν, ν + ω)| = 1. This means that for each 
α ∈ ω2, bα is a maximal uncountable branch of T . Similar arguments show that if s �= t have limit heights 
in T then they have different sets of predecessors. In particular T is normal.

Moreover, it is easy to see that for all t ∈ T , the set of all q ∈ Q such that for some α ∈ dom(q), t ∈ q(α)
forms a dense subset of Q. This means that for each t ∈ T there is α ∈ ω2 such that t ∈ bα. Therefore, for 
each ν ∈ {0} ∪ lim(ω1), the set [ν, ν + ω) is a level of the tree T . In particular T is an ω1-tree whose levels 
are countable sets that are in the ground model.

3. Complete suborders of Q

When we analyze subtrees of the generic tree T , which is added by Q, it will be useful to know if there 
is a complete suborder of Q which adds the tree T but does not add certain branches. In this section we 
will find some subsets of Q which are complete suborders of it.

Lemma 3.1. The poset Qc is a complete suborder of Q. Moreover, if X ⊂ ω2 is a set of ordinals of cofinality 
ω1, then Qω2\X is a complete suborder of Q.

Proof. We only prove the first part of the lemma. The second part can be verified by a similar argument. 
Assume q ∈ Q. We will show that there is q′ ∈ Qc such that for all extensions p ≤ q′ in Qc, the conditions 
p, q are compatible. Without loss of generality we can assume that q has the following extra property: 
For all ξ < η in dom(q) there are distinct m, n in ω such that max(q(ξ) ∩ q(η)) + ω + m ∈ q(ξ) and 
max(q(ξ) ∩ q(η)) + ω + n ∈ q(η). In particular, q decides max(bξ ∩ bη) in the generic tree.
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Assume {βi : i ∈ n} is the increasing enumeration of all ordinals in dom(q) which have cofinality ω1. 
Also let C be the set of all ordinals in dom(q) which have countable cofinality. Define β′

i, for each i ∈ n, to 
be the least ordinal ξ such that:

(1) ξ is a limit point of Cβi
,

(2) ξ is strictly above all elements of dom(q) ∩ βi,
(3) for all α ∈ dom(q) \ βi, ρ(ξ, α) ≥ ρ(βi, α),
(4) otp(Cξ) > max(q(βi))

Note that the third requirement can easily be arranged by Lemma 2.15. Let q′ be the condition in Qc such 
that dom(q′) = C ∪ {β′

i : i ∈ n}, q′(α) = q(α) for all α ∈ C, and q′(β′
i) = q(βi) for each i ∈ n. It is easy to 

see that q′ ∈ Qc.
Now let p < q′ be in Qc. Let r be the condition in Q such that:

(1) dom(r) = dom(p) ∪ {βi : i ∈ n},
(2) r(α) = p(α) for each α ∈ dom(p), and
(3) r(βi) = p(β′

i) ∩ (max(q(βi)) + 1).

It is easy to see that r is a common extension of p and q, provided that it is in Q. We only show that 
Condition 4, of Definition 2.20 holds for r. Assume α ∈ dom(p) and β is one of the βi’s. If α < β′ then 
ρ(α, β′) = ρ(α, β). Therefore, max(r(α) ∩r(β)) ≤ max(p(α) ∩p(β′)) < ρ(α, β′) = ρ(α, β), which was desired. 
If β′ ≤ α < β, then

ρ(α, β) ≥ otp(Cβ′) > max(q(β)) = max(r(β)) ≥ max(r(β) ∩ r(α)).

If β < α note that by Lemma 2.17 either ρ(β, α) ≥ ρ(β′, α) or ρ(β′, β) = ρ(β′, α). In the first case there is 
nothing to show, and for the second case we have ρ(β′, α) = ρ(β′, β) = otp(Cβ′) > max(q(β)).

Now assume that α < β are both in {βi : i ∈ n}. Then

max(r(α) ∩ r(β)) ≤ max(p(α′) ∩ p(β′)) = max(q′(α′) ∩ q′(β′)).

Here the inequality is obvious. The equality follows from the facts that q′(β′
i) = q(βi), for each i ∈ n, and q

satisfies the extra property in the beginning of the proof. Moreover,

max(q′(α′) ∩ q′(β′)) = max(q(α) ∩ q(β)) < ρ(α, β).

This assures us that r satisfies condition 4 of Definition 2.20. �
It is well known that if there is a ccc poset P which adds a branch b to an ω1-tree U , then {u ∈ U :

∃p ∈ P, p � u ∈ ḃ} is a Souslin subtree of U . Here, Q is a ccc poset and Qc is a complete suborder of Q. 
Moreover, if G ⊂ Q is generic then G ∩Qc knows the generic tree T . Since there is a ccc poset R such that 
Q is equivalent to Qc ∗ Ṙ, T has lots of Souslin subtrees in any extension by Qc. This leads to the following 
corollary. In the next section we prove a stronger statement which we will use to prove a fact about ρ. For 
now, this corollary helps us to have a better picture of the forcing Q.

Corollary 3.2. The generic tree for Qc has Souslin subtrees.

Lemma 3.3. Assume CH. Let 〈Nξ : ξ ∈ ω1〉 be a continuous ∈-chain of countable elementary submodels of 
Hθ where θ is a regular large enough cardinal, Nω1 =

⋃
ξ∈ω1

Nξ, and μ = sup(Nω1 ∩ ω2). Then Qμ is a 
complete suborder of Q.
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Proof. We need to show that for all q ∈ Q there is p ∈ Qμ such that if r ≤ p and r ∈ Qμ then r is compatible 
with q. Let R =

⋃
range(q), L = dom(q) ∩ μ, and H = dom(q) \ μ = {βi : i ∈ k} such that βi is increasing. 

Fix ν̄ ∈ ω1 which is above all elements of R and all ρ(α, β) where α, β are in dom(q). Using Lemma 2.15, 
fix μ0 ∈ μ above max(L) such that for all β ∈ H and for all γ ∈ μ \ μ0, ρ(γ, β) > ν̄. For each β ∈ H and 
ν ∈ ν̄ let Aν,β = {α ∈ μ0 : ρ(α, β) = ν}.

Again by Lemma 2.15, for all ν ∈ ν̄ and β ∈ H, Aν,β is a countable subset of μ0. Since CH holds, we can 
fix N = Nξ such that μ0, ̄ν, L, R, 〈Aν,β : β ∈ H, ν ∈ ν̄〉 are in N . By elementarity, there is H ′ = {β′

i : i ∈ k}
which is in N and

(1) β′
i is increasing,

(2) min(H ′) > μ0
(3) for all i ∈ k and for all ν ∈ ν̄, Aν,βi

= {α ∈ μ0 : ρ(α, β′
i) = ν}, and

(4) for all i < j in k, ρ(βi, βj) = ρ(β′
i, β

′
j).

Let p be the condition such that dom(p) = L ∪ H ′, for all ξ ∈ L, p(ξ) = q(ξ) and for all i ∈ k, 
p(β′

i) = q(βi). Suppose r ≤ p is in Qμ. We will find s ∈ Q which is a common extension of r, q. Pick s such 
that dom(s) = dom(r) ∪H, s � dom(r) = r, and for all i ∈ k s(βi) = r(β′

i) ∩ (max(q(βi)) + 1).
We need to show that s is a condition in Q. All of the conditions in Definition 2.20 obviously hold, 

except for condition 4. If α < β are in H, by the last requirement for H ′ and the fact that r is a condition, 
max(s(α) ∩ s(β)) < ρ(α, β).

Now assume that α ∈ dom(r) and β = βi ∈ H. If ρ(α, β) ≥ ν̄, everything is obvious because max(s(β)) <
ν̄. Assume ρ(α, β) = ν < ν̄. So α ∈ Aν,β . Since r ∈ Qμ, we have max(s(α) ∩ s(βi)) ≤ max(r(α) ∩ r(β′

i)) <
ν. �

Lemma 3.3 shows that for many ordinals μ with cofinality ω1, Qμ is a complete suborder of Q. It is 
natural to ask the same question for ordinals of countable cofinality. The following fact shows that quite 
often Qμ is not a complete suborder of Q, when μ varies over ordinals of countable cofinality.

Fact 3.4. Assume cf(μ) = ω, μ ∈ ω2, for some β > μ, μ is a limit point of Cβ and the set of all limit points 
of Cμ is cofinal in μ. Then Qμ is not a complete suborder of Q.

Proof. Assume β > μ such that μ is a limit point of Cβ and cf(β) = ω. Let ν = otp(Cβ) and q = {(β, {ν})}. 
We claim that for all p ∈ Qμ there is an extension p̄ ≤ p in Qμ such that p̄ is incompatible with q. Fix 
p ∈ Qμ. Without loss of generality ν ∈

⋃
range(p) and p is compatible with q. Let ξ ∈ dom(p) such that 

ν ∈ p(ξ). Then p ∪ {(β, p(ξ) ∩ (ν + 1))} ∈ Q. Let α be a limit point of Cμ which is above all elements of 
dom(p). Then p̄ = p ∪ {(α, p(ξ) ∩ (ν + 1))} is a condition in Qμ. But ρ(α, β) = otp(Cα) < ν and ν ∈ p̄(α). 
Hence p̄, q are incompatible. �
Lemma 3.5. Assume μ ∈ ω2, x ⊂ ω2 is finite and Qμ � Q. Then Qμ � Qμ∪x � Q.1

Proof. Obviously Qμ �Q implies Qμ �Qμ∪x. It suffices to show Qμ∪x �Q for all μ ∈ ω2 with Qμ �Q and 
finite x ⊂ [μ, ω2). Let q ∈ Q. We need to show there is p ∈ Qμ∪x such that every extension p′ of p in Qμ∪x

is compatible with q. Without loss of generality, by extending q if necessary, we can assume that

• x ⊂ dom(q),
• q forces that ḃα ∧ ḃβ = max(q(α) ∩ q(β)) for all α, β in dom(q),

1 P0 � P1 denotes that P0 is a complete suborder of P1.
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• if α, β are in dom(q) and ν ∈ {0} ∪ lim(ω1), then q(α) intersects [ν, ν + ω) if and only if q(β) does.

It is easy to see that if r ≤Qx
q � x then r is compatible with q. This already shows that for all finite y ⊂ ω2, 

Qy � Q. Aside from the extra assumptions on q, we can also assume that μ is infinite.2
Let p0 ∈ Qμ such that for all extensions p1 of p0 in Qμ the conditions p1, q are compatible. Since μ is 

infinite, by extending p0 if necessary, we can assume 
⋃

range(q) ⊂
⋃

range(p0). Consequently, for every 
α ∈ dom(q) there is α′ ∈ dom(p0) such that q(α) ⊂ p0(α′). Define p on dom(p0) ∪ x as follows:

• If α ∈ x let p(α) = p0(α′) ∩ (max(q(α)) + 1), where α′ ∈ dom(p0) such that q(α) ⊂ p0(α′).
• If α ∈ dom(p0) let p(α) = p0(α).

By Condition 3 of Definition 2.20, for all α ∈ x, p(α) is independent of the choice of α′. Compatibility of 
p0 and q implies that p is a condition in Qμ∪x. Let p′ be an extension of p in Qμ∪x. Then p′ � μ is an 
extension of p0 in Qμ, hence it is compatible with q. Also the conditions p′ � x and q are compatible in Q, 
since p′ � x ≤Qx

q � x. This means that p′ = (p′ � μ) ∪ (p′ � x) is compatible with q and we are done. �
4. Climbing Souslin trees to see ρ

In this section we analyze the external elements of the generic Kurepa tree that is added by the poset 
Qc. The aim is to prove Lemma 4.3, which is a general fact about the function ρ. We use Lemma 4.3 to find 
more weakly external elements in the tree which is generic for Q.

Proposition 4.1. Fix κ a regular cardinal greater than (2ω1)+. Assume S is the set of all X ∈ [ω2]ω such 
that CαX

⊂ X and lim(CαX
) is cofinal in X. Define Σ = {M ≺ Hκ : M ∩ ω2 ∈ S ∧ |LαM

| = ℵ2}. Then Σ
is stationary in [Hκ]ω.

Proof. Let E ⊂ [Hκ]ω be a club. Fix θ a regular cardinal above (2κ)+. Let 〈Mξ : ξ ∈ ω1〉 be a continuous 
∈-chain of countable elementary submodels of Hθ such that for all ξ ∈ ω1, Mξ ∩ ω2 ∈ S and Mξ ∩Hκ ∈ E. 
Let αξ = sup(Mξ ∩ ω2) and α = sup{αξ : ξ ∈ ω1}. By thinning out if necessary, without loss of generality 
we can assume that for all ξ ∈ ω1, αξ is a limit point of Cα.

Let f : {η ∈ ω2 : |Lη| ≤ ℵ1} −→ ω2 by f(η) = sup(Lη), and Cf be the set of all ordinals that are 
f -closed. Obviously f ∈ M0 and for all ξ, αξ ∈ Cf . But for any ξ ∈ ω1, supLαξ

/∈ Mξ+1. So, for all ξ ∈ ω1, 
Mξ ∩Hκ ∈ E ∩ Σ. �
Lemma 4.2. Assume G ⊂ Qc is generic and T is the Kurepa tree that is added by G. Assume Q/G is the 
quotient poset such that Q is equivalent to Qc ∗ (Q/G). For each α of cofinality ω1, let Aα = {x ∈ T : ∃q ∈
Q/G q � “x ∈ ḃα”}. Then each Aα is a Souslin subtree of T . Moreover, there is α ∈ ω2 of cofinality ω1

such that for all x ∈ Aα, Tx contains ℵ2 many bξ with cf(ξ) = ω.

Proof. It is trivial that Aα is a Souslin subtree of T . For the rest of the lemma, let θ > (2ω1)+ be a regular 
cardinal, and assume S is the set of all X ∈ [ω2]ω such that CαX

⊂ X and lim(CαX
) is cofinal in X. Let 

〈Mξ : ξ ∈ ω1〉 be a continuous ∈-chain of countable elementary submodels of Hθ such that for all ξ ∈ ω1, 
Mξ ∩ ω2 ∈ S. Let αξ = sup(Mξ ∩ ω2) and α = sup{αξ : ξ ∈ ω1}. Also fix q ∈ Q with α ∈ dom(q), t ∈ q(α), 
and γ ∈ ω2. We find η > γ and p ≤ q such that cf(η) = ω, η ∈ dom(p), and t ∈ p(η). Find α′ ∈ lim(Cα)
such that:

2 In fact we can assume that μ is uncountable. This is because there is no countably infinite A ⊂ ω2 with QA �Q. This is trivial 
from the ideas in the proof of Lemma 3.5 and we are not going to use it.
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(1) dom(q) ∩ [α′, α) = ∅,
(2) otp(Cα′) is above all elements of 

⋃
range(q) and all ρ({α, β}) for β ∈ dom(q),

(3) for all β ∈ dom(q) \ α, ρ(α, β) ≤ ρ(α′, β),
(4) |Lα′ | = ℵ2.

Now pick η ∈ Lα′ which is above γ and all elements of dom(q) with cf(η) = ω. Define p by dom(p) =
dom(q) ∪ {η}, q(ζ) = p(ζ), for all ζ ∈ dom(q) and p(η) = q(α) ∩ (t + 1). We show that for all ζ ∈ dom(p), 
max(p(ζ) ∩ p(η)) ≤ ρ(ζ, η). If ζ < α′,

max(p(ζ) ∩ p(η)) ≤ max(q(ζ) ∩ q(α)) < ρ(ζ, α) = ρ(ζ, α′) = ρ(ζ, η).

Also max(p(α) ∩ p(η)) = max(q(α) ∩ q(η)) = t < otp(Cα′) ≤ ρ(α, η). When ζ is above α,

max(p(ζ) ∩ p(η)) ≤ max(q(ζ) ∩ q(α)) < ρ(α, ζ) ≤ otp(Cα′) ≤ ρ(ζ, η). �
Now we are ready to prove the main lemma of this section.

Lemma 4.3. Let (2ω1)+ < κ0 < κ < θ be regular cardinals such that (2κ0)+ < κ, and (2κ)+ < θ. Let S
be the set of all X ∈ [ω2]ω such that CαX

⊂ X and lim(CαX
) is cofinal in X. Assume A is the set of 

all countable N ≺ Hθ with the property that if N ∩ ω2 ∈ S then there is a club of countable elementary 
submodels E ⊂ [Hκ0 ]ω in N such that for all M ∈ E ∩N ,

ρ(αM , αN ) ≤ M ∩ ω1.

Then A contains a club.

Proof. Assume G is the V-generic filter over Qc and T be the tree that is introduced by G. Assume Ȧ is 
a Qc-name for an Aronszajn subtree of T with the property that for all t ∈ Ȧ, the set {ξ ∈ ω2 : cf(ξ) <
ω1 and t ∈ bξ} has size ℵ2. Fix N ≺ Hθ, in V, with Ȧ ∈ N and N ∩ ω2 ∈ S. Suppose for a contradiction 
that

(∗): for all clubs E ⊂ [Hκ0 ]ω in N there is M ∈ E ∩N such that ρ(αM , αN ) > M ∩ ω1.

Let δM , δN be M ∩ ω1 and N ∩ ω1 respectively. Fix t ∈ [δN , δN + ω), q ∈ Qc such that q forces that t ∈ Ȧ. 
Obviously, q forces that t is external to N [Ġ]. In other words, q forces that there is a club E ⊂ [Hκ0 [Ġ]]ω
in N [Ġ] such that for all Z ∈ E ∩N [Ġ], Z does not capture t. Let Ė be a name for the witness E above. 
So q forces that for all Z ∈ Ė ∩N [Ġ], Z does not capture t. In order to reach a contradiction, it suffices to 
show (∗) implies that there are M ≺ Hκ in N and p ≤ q in Qc such that:

(1) Ė ∈ M and
(2) p forces that M [Ġ] captures t.

We consider three cases. First, consider the case where t /∈
⋃

range(q). Let γ ∈ (N ∩ ω2) \ dom(q), with 
cf(γ) = ω. Let M ≺ Hκ be in N such that γ, Ė are in M . Let p be the condition such that dom(p) =
dom(q) ∪ {γ}, ∀ξ ∈ dom(q) p(ξ) = q(ξ), and p(γ) = {t}. It is obvious that p is an extension of q and it 
forces that M [Ġ] captures t via ḃγ .

Now suppose for some ξ ∈ dom(q) ∩N , t ∈ q(ξ). In this case assume M ≺ Hκ is in N such that Ė, ξ are 
in M . Then q forces that M [Ġ] captures t via ḃξ.

For the last case, suppose t ∈
⋃

range(q) but ∀ξ ∈ dom(q) ∩ N t /∈ q(ξ). Since any element of Ȧ is an 
element of ℵ2 many branches bξ ⊂ T with cf(ξ) < ω1, by extending q if necessary, we can assume that there 
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is τ ∈ dom(q) \αN such that t ∈ q(τ). We consider the partition dom(q) = H∪L ∪R where R = dom(q) ∩N

(rudimentary ordinals w.r.t. N), L = (dom(q) ∩αN ) \R (low ordinals), and H = dom(q) \αN (high ordinals). 
Let Bt be the set of all ξ ∈ dom(q) such that t ∈ q(ξ). So Bt ∩R = ∅ and τ ∈ Bt. By Lemma 2.18 we have 
the following about the ordinals in H:

∃γ0 ∈ N ∩ ω2 ∀γ ∈ N \ γ0 ∀ξ ∈ H ρ(γ, ξ) ≥ ρ(γ, αN ) (1)

For ordinals in L, let γ1 = max{min((N ∩ ω2) \ ξ) : ξ ∈ L}. Then

∀γ ∈ N \ γ1 ∀ξ ∈ L ρ(ξ, γ) ≥ δN . (2)

In order to see (2), fix ξ ∈ L and let ξ′ = min(N ∩ω2) \ ξ. Observe that cf(ξ′) = ω1. Let γ ∈ N be above γ1. 
We show that ρ(ξ, γ) ≥ N ∩ω1. Note that there is α ∈ ξ′ such that for all η ∈ (α, ξ′) the ordinal otp(Cξ′ ∩η)
appears in the definition of ρ(η, γ). Since γ, ξ′ are in N , by elementarity, the witness α exists in N . Since 
ξ ∈ (α, ξ′) the ordinal otp(Cξ′ ∩ ξ) appears in the definition of ρ(ξ, γ). But otp(Cξ′ ∩ ξ) ≥ δN , which shows 
(2).

Now using (∗) choose M ≺ Hκ in N such that ρ(αM , αN ) > δM and such that M has γ0, γ1, R, 
⋃

range(q) ∩
N, Ė as elements. Let γ3 > max{γ0, γ1} be in M such that for all γ ∈ M that are above γ3, ρ(γ, αN ) > δM . 
The ordinal γ3 is guaranteed to exist by Lemma 2.14.

For every ξ ∈ R and η ∈ Bt by the initial segment requirement on the conditions in Q, max(q(ξ) ∩q(η)) =
max(q(τ) ∩ q(ξ)). If max(q(ξ) ∩ q(τ)) /∈ M for some ξ ∈ R, we are done. Assume max(q(ξ) ∩ q(τ)) ∈ M , for 
all ξ ∈ R. By elementarity, fix γ > γ3 in M such that cf(γ) = ω and

∀ξ ∈ R ρ(ξ, γ) > max(q(τ) ∩ q(ξ)). (3)

Now define p ≤ q as follows:

• dom(p) = dom(q) ∪ {γ},
• ∀ξ ∈ dom(q) \Bt p(ξ) = q(ξ),
• ∀ξ ∈ Bt p(ξ) = q(ξ) ∪ {δM},
• p(γ) = p(τ) ∩ (δM + 1).

Obviously, p forces that M [Ġ] captures t via ḃγ , provided that p ∈ Qc. It is obvious that p fulfills the initial 
segment requirement. Moreover, 

⋃
range(p) \

⋃
range(q) = {δM} because 

⋃
range(q) ∩ N ∈ M . We show 

for all ξ, η in dom(p), ρ{ξ, η} > max(p(ξ) ∩ p(η)). This can be done by managing the following six cases.
First assume that ξ, η are in dom(q) and at least one of them is not in Bt. Equivalently, η ∈ dom(q) and 

ξ ∈ dom(q) \ Bt. Then δM /∈ p(ξ) and p(ξ) = q(ξ). Hence max(p(ξ) ∩ p(η)) = max(q(ξ) ∩ q(η)) < ρ{ξ, η}
because q is a condition in Q.

For the second case assume ξ, η are both in Bt. Recall δM < t and t ∈ q(ξ) ∩q(η). Then max(p(ξ) ∩p(η)) =
max(q(ξ) ∩q(η)) < ρ{ξ, η}. So far we have shown that condition 4 of Definition 2.20 holds for pairs of ordinals 
in dom(q).

For the fourth case assume ξ ∈ H and η = γ. The way we chose γ3, and (1) guarantees that ρ(γ, ξ) ≥
ρ(γ, αN ) > δM = max(p(γ)).

For the fifth case assume ξ ∈ L and η = γ. Then (2) implies that ρ(ξ, γ) ≥ δN > max(p(γ)).
For the sixth case assume ξ ∈ R and η = γ. Then (3) implies that ρ(ξ, γ) > max(q(τ) ∩ q(ξ)) =

max(p(γ) ∩ p(ξ)). Therefore, p ∈ Qc. �
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5. ρ introduces Aronszajn subtrees everywhere in T

In this section we will use Lemma 4.3 to show that every Kurepa subset of the generic Kurepa tree has 
an Aronszajn subtree. Here a subset Y of T is said to be a Kurepa subset if it is a Kurepa tree when it is 
considered with the order inherited from T . Note that Y is not necessarily downward closed. The theorems 
in this section are not using any large cardinal assumption.

Lemma 5.1. Assume X ⊂ ω2 is uncountable, QX � Q and T is the generic tree for QX . Then {bξ : ξ ∈ X}
is the set of all cofinal branches of T in the forcing extension by QX .

Proof. Assume P = QX and π is a P -name for a branch that is different from all bξ, ξ ∈ X. Inductively 
construct a sequence 〈pη : η ∈ ω1〉 as follows. The condition p0 ∈ P is arbitrary. If 〈pη : η < α〉 is given, find 
pα ∈ P such that:

• pα decides min(π \
⋃
{bξ : ξ ∈

⋃
{dom(pη) : η ∈ α}}) to be tpα

,
• tpα

∈
⋃

range(pα),
• for every β ∈ dom(pα), ht(max(pα(β))) > ht(tpα

).3

Let A = {pα : α ∈ ω1}. By going to a subset of A if necessary, we may assume that {dom(p) : p ∈ A} forms 
a Δ-system with root d. Also {

⋃
range(p) : p ∈ A} forms a Δ-system with root c. Moreover, we may assume 

that elements of A are pairwise isomorphic structures and the isomorphism between them fixes the root. 
By Lemma 2.19 there is an uncountable set B ⊂ A such that for every p, q in B if α ∈ dom(p) \ dom(q), 
β ∈ dom(q) \ dom(p), and γ ∈ d, then

• ρ{α, β} > max(c) and
• ρ{α, β} ≥ min{ρ{γ, α}, ρ{γ, β}}.

Note that for all p ∈ B, 
⋃

range(p) ⊂ ω1. So without loss of generality, by replacing B with an uncountable 
subset if necessary, we can assume the following: Whenever p, q are in B either

• c < a =
⋃

range(p) \ c < b =
⋃

range(q) \ c or
• c < b =

⋃
range(q) \ c < a =

⋃
range(p) \ c.

We claim that the elements of B are pairwise compatible. In order to see this, fix p, q in B. By symmetry, 
we can assume that

c < a =
⋃

range(p) \ c < b =
⋃

range(q) \ c.

We define the common extension r of p, q on dom(p) ∪ dom(q) as follows: For γ ∈ d let r(γ) = p(γ) ∪ q(γ), 
and for α ∈ dom(p) \ dom(q) let r(α) = p(α). For β ∈ dom(q) \ dom(p) we have two cases. Either for all 
γ ∈ d, max(q(γ) ∩ q(β)) ∈ c or there is a unique γ ∈ d such that max(q(γ) ∩ q(β)) ∈ b. In the first case let 
r(β) = q(β) and in the second case let r(β) = p(γ) ∪ q(β). In order to see that there is no possibility outside 
of these two cases, assume for a contradiction that γ0, γ1 are in d and for i ∈ 2, max(q(γi) ∩ q(β)) ∈ b \ c. In 
other words, both q(γ0), q(γ1) intersect q(β) above max(c). So there is ν ∈ b \ c such that ν ∈ q(γ0) ∩ q(γ1). 
Recall that the elements of B are isomorphic structures via the isomorphisms which fix the roots. Therefore, 

3 Note that the levels of the generic tree are in the ground model.
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for each s ∈ B there is νs ∈
⋃

range(s) \ c such that νs ∈ s(γ0) ∩ s(γ1). But this contradicts the fact that 
ρ(γ0, γ1) is countable, since {

⋃
range(s) : s ∈ B} is an uncountable Δ-system with root c.

First we will show that r satisfies Condition 3. Note that if γ1, γ2 are both in d then p(γ1) ∩ p(γ2) ⊂ c

and q(γ1) ∩ q(γ2) ⊂ c. In order to see this, assume this is not the case. Then by the fact that the conditions 
in B are pairwise isomorphic, sup{max(s(γ1) ∩ s(γ2)) : s ∈ B} = ω1 which implies that ρ(γ1, γ2) ≥ ω1. But 
this is absurd. Now assume i ∈ (p(γ1) ∪ q(γ1)) ∩ (p(γ2) ∪ q(γ2)), j < i and j ∈ (p(γ1) ∪ q(γ1)). We will show 
that j ∈ p(γ2) ∪ q(γ2). Note that j ∈ c. Then j ∈ p(γ1) ∩ c = q(γ1) ∩ c. Since p, q both satisfy Condition 3 
and i ∈ p(γ2) ∪ q(γ2), we have j ∈ p(γ2) ∪ q(γ2). If α ∈ dom(p) \ dom(q) and γ ∈ d note that

r(α) ∩ r(γ) = p(α) ∩ (p(γ) ∪ q(γ)) = p(α) ∩ p(γ).

But p(α) ∩ p(γ) is an initial segment of both p(α) and r(γ) because a < b. If β ∈ dom(q) \ dom(p) and 
for all γ ∈ d, max(q(γ) ∩ q(β)) ∈ c the argument is the same. So assume that for a unique γβ ∈ d, 
max(q(β) ∩ q(γβ)) ∈ b. Then it is easy to see that r(β) ∩ r(γβ) = p(γβ) ∪ (q(β) ∩ q(γβ)) is an initial segment 
of both r(β), r(γβ). If β ∈ dom(q) \dom(p) and γ ∈ d \{γβ}, in order to see r(β) ∩ r(γ) is an initial segment 
of both r(β), r(γ), note that

r(β) ∩ r(γ) = (p(γβ) ∪ q(β)) ∩ (p(γ) ∪ q(γ)) ⊂ c.

Then r(β) ∩ r(γ) = p(γβ) ∩ p(γ) which makes Condition 3 trivial. We leave the rest of the cases to the 
reader.

For Condition 4, we only verify the case α ∈ dom(p) \ dom(q) and β ∈ dom(q) \ dom(p). If for all γ ∈ d, 
max(q(γ) ∩ q(β)) ∈ c, there is nothing to prove. Assume for some unique γ ∈ d, max(q(γ) ∩ q(β)) ∈ b. 
Obviously, r(α) ∩r(β) = (p(α) ∩p(γ)) ∪ (p(α) ∩ q(β)). But max(p(α) ∩ q(β)) ≤ max(c) < ρ{α, β}. Moreover,

max(p(α) ∩ p(γ)) ≤ max(a) < min(b) ≤ max(q(β) ∩ q(γ)) ≤ ρ{γ, β}.

This means that max(p(α) ∩ p(γ)) < min{ρ{α, γ}, ρ{β, γ}} ≤ ρ{α, β}. Therefore, max(r(α) ∩ r(β)) <
ρ{α, β}.

We have two possible cases: either there is an uncountable C ⊂ B such that for all p ∈ C, there is γ ∈ d

with tp ∈ p(γ), or there are only countably many p ∈ B such that for some γ ∈ d, tp ∈ p(γ). If such an 
uncountable C exists, let s ∈ P such that s forces that the generic filter intersects C on an uncountable set. 
Then for some γ ∈ d, s � |π ∩ bγ | = ℵ1. But this contradicts the fact that π was a name for a branch that 
is different from all bξ’s.

Now assume that there is a countable set D ⊂ B such that if p ∈ B and for some γ ∈ d, tp ∈ p(γ) then 
p ∈ D. We can choose p, q in B \D such that:

(1) for some α ∈ dom(p) \ dom(q), tp ∈ p(α),
(2) for some β ∈ dom(q) \ dom(p), tq ∈ q(β),
(3) p forces that tp is not in the branches that are indexed by the ordinals in d, and
(4) max(c) + ω < tp and tp + ω < tq.

Obviously, (1), (2) are automatically true for any p, q in B \D. We claim that there is at most one pη ∈ B

which does not force that tpη
is not in the branches that are indexed by the ordinals in d. In order to see this, 

assume for a contradiction that ζ < η < ω1 and pη, pζ are counterexamples to our claim. Then pη decides 
min(π \

⋃
{bi : i ∈

⋃
{dom(pj) : j ∈ η}}) to be tpη

. In particular, pη forces that tpη
/∈
⋃
{bi : i ∈ dom(pζ)} ⊃⋃

{bi : i ∈ d}. Therefore, pη satisfies Condition (3), which is a contradiction. By the same argument, if p �= q

are in B then tp �= tq. Therefore, it is easy to choose p, q in B such that the four conditions above hold.
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Let a, b, c, d be as above. We will find a common extension of p, q which forces that tp is not below tq. 
This contradicts the fact that π was a name for a branch.

First consider the case in which for all γ ∈ d, max(q(β) ∩ q(γ)) ∈ c. Let r be the common extension 
of p, q described as above. Recall that r(β) = q(β) in this case. Let ξ ∈ (tp, tp + ω) \ (a ∪ b). Note that 
ξ > max(c). Let X = {η ∈ dom(r) : max(r(β) ∩ r(η)) > ξ}. Obviously, X ∩ dom(p) = ∅ and β ∈ X. Extend 
r to r′ such that dom(r′) = dom(r), r and r′ agree on any element of their domain which is not in X, and 
r′(η) = r(η) ∪ {ξ} for all η ∈ X. Checking r′ is a condition is routine. The condition r′ forces that in the 
generic tree ht(ξ) = ht(tp) and they are distinct. Therefore, it forces that ξ < tq and that tp is not below tq.

Now assume for some γ ∈ d, max(q(β) ∩ q(γ)) ∈ b. Again assume that r is the common extension 
described above. So r(β) = p(γ) ∪ q(β), and r forces that max(p(γ)) is below tq in the generic tree. Recall 
that ht(max(p(γ))) > ht(tp) and p forces that tp is not in the branches indexed by the ordinals in the root 
d. Hence p forces that tp is not below max(p(γ)). Since r ≤ p, it forces that tp is not below tq in the generic 
tree. �

Now we are ready to prove the main theorem of this section.

Theorem 5.2. It is consistent that there is a Kurepa tree T such that every Kurepa subset of T has an 
Aronszajn subtree.

Proof. Assume G is a generic filter for the forcing Q, and T is the tree introduced by G. Since Q is ccc, it 
preserves all cardinals and T is a Kurepa tree.

Assume U is a Kurepa subset of T , and X is the set of all ξ ∈ ω2 such that bξ ∩ U is uncountable. Let 
〈Nξ : ξ ∈ ω1〉 be a continuous ∈-chain of countable elementary submodels of Hθ such that U ∈ N0 and for 
all ξ ∈ ω1, Nξ ∈ A, where A is the same club as in Lemma 4.3. Let Nω1 =

⋃
ξ∈ω1

Nξ, μ = Nω1 ∩ ω2. Fix 

η ∈ X above μ. By Proposition 2.3, it suffices to show that for some ξ ∈ ω1, the first element of bη ∩ U

whose height is more than Nξ ∩ ω1 is weakly external to Nξ witnessed by some stationary set Σ.
Without loss of generality we can assume that for all ξ ∈ ω1:

• αNξ
= sup(Nξ ∩ ω2) is a limit point of Cμ,

• Nξ ∩ ω2 ⊃ CαNξ
and

• lim(CαNξ
) is a cofinal in αNξ

.

In order to see this, let f from ω1 to μ be the function which is defined as follows: For each ξ ∈ ω1, 
f(ξ) is the least ζ ∈ ω1 with Nζ ⊃ Cμ ∩ αNξ

. Now observe that if ξ is f -closed then it satisfies the second 
condition. For the other two conditions, note that the sets {αNξ

: ξ ∈ ω1} and the set of all γ ∈ Cμ which 
are limit of limit points in Cμ are clubs in μ.

Let ξ ∈ ω1 be such that otp(CαNξ
) > ρ(μ, η) and for all ζ > ξ, ρ(αNζ

, η) > ρ(μ, η). Then note that 
ρ(μ, η) ∈ Nξ. Use Lemma 4.3 to find E ∈ Nξ which is a club of countable elementary submodels of Hω3

such that for all M ∈ E ∩Nξ, ρ(μ, η) ∈ M and ρ(αM , αNξ
) ≤ M ∩ ω1. Now let Σ be the set of all M ∈ E

such that M ∩ω2 ⊃ CαM
and lim(CαM

) is a cofinal subset of αM . Obviously, Σ is stationary and in Nξ. Let 
M ∈ Σ ∩Nξ. We want to show that M does not capture bη, as a branch of T . Equivalently, for all b ∈ M

which is a cofinal branch of T , Δ(b, bη) ∈ M . By the lemma above, it suffices to show that for all γ ∈ M , 
ρ(γ, η) ≤ M ∩ ω1. Recall that:

ρ(γ, η) ≤ max{ρ(γ, αM ), ρ(αM , μ), ρ(μ, η)}.

Fix β which is a limit point of CαM
and which is above γ. Since β ∈ M and ρ(γ, β) = ρ(γ, αM ), we have 

that
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ρ(γ, αM ) ∈ M.

Since M ∈ E and αNξ
∈ lim(Cμ), we obtain

ρ(αM , μ) = ρ(αM , αNξ
) ≤ M ∩ ω1.

Recall that ρ(μ, η) ∈ M . Therefore, ρ(γ, η) ≤ M ∩ ω1.
Now assume M ∈ Σ ∩ Nξ, t is the first element of bη whose height is more than Nξ ∩ ω1. It suffices to 

show that M does not capture t as an element in U . Assume b ⊂ U is a cofinal branch of U which is in M
and b contains {s ∈ U ∩M : s < t}. Since t /∈ M , the set {s ∈ U ∩M : s < t} has order type M ∩ ω1. Let 
bγ be the downward closure of b in T . Then obviously γ ∈ M . But then the order type of bγ ∩ bη is at least 
M ∩ ω1, which is a contradiction. �

We finish this section by a corollary which relates the theorem above to Martin’s Axiom.

Corollary 5.3. Assume MAω2 holds and ω2 is not a Mahlo cardinal in L. Then there is a Kurepa tree with 
the property that every Kurepa subset has an Aronszajn subtree.

6. Taking Komjath’s inaccessible away

In this section we will show that if there is an inaccessible cardinal in L then there is a model of ZFC in 
which every Kurepa tree has an Aronszajn subtree. We will be using the following notation. If G ⊂ Q is a 
generic filter and X ⊂ ω2 with QX �Q, we use GX in order to refer to G ∩QX . If X ⊂ A and QX �QA �Q, 
RX,A refers to the ccc poset such that QA = QX ∗ ṘX,A. Note that the generic tree T is in V[GX ] if X is 
uncountable and QX � Q. Then RX,A can be described more explicitly in the forcing extension by GX as 
follows. Let T be the generic tree for QX and bξ be the set of all t ∈ T such that t ∈ q(ξ) for some q ∈ GX . 
Recall that bξ is an uncountable downward closed branch of T . Moreover, every branch of T in the forcing 
extension by GX has to be bξ for some ξ ∈ X. The poset RX,A consists of finite partial functions p from 
A \X to T such that:

(1) for every α ∈ dom(p) and ξ ∈ X, (p(α) ∧ bξ) < ρ{ξ, α} and
(2) for all α < β in dom(p), (p(α) ∧ p(β)) < ρ(α, β).

In RX,A, q ≤ p if dom(q) ⊃ dom(p) and p(α) ≤T q(α) for all α ∈ dom(p). We sometimes use the notation 
RA(B) in order to refer to RA,A∪B if A, B are disjoint.

Also, for finite x ⊂ [μ, ω2), let Sμ[x] be the set of all 〈vi : i ∈ |x|〉 ∈ T [|x|] such that for some q ∈ Rμ,ω2 :

• dom(q) ⊃ x and
• for all i ∈ |x|, q(x(i)) = vi.

So in particular every condition in Rμ,ω2 force that 
⊗
α∈x

ḃα ⊂ Sμ[x]. For α ∈ ω2 \ μ, we use Sμ[α] instead of 

Sμ[{α}].

Lemma 6.1. Assume ω1 < μ < ω2, Qμ � Q in V and G ⊂ Q is V-generic. Let K be an ω1-tree in V[Gμ]
and b ⊂ K be a cofinal branch in V[G]. Then there is a finite x ⊂ [μ, ω2) such that b ∈ V[Gμ∪x].

Proof. Work in V[Gμ]. Let T be the generic tree that is introduced by Gμ, r ∈ Rμ,ω2 ∩ G, τ ⊂ K × {q ∈
Rμ,ω2 : q ≤ r} be an Rμ,ω2-name. Assume for all finite x ⊂ [μ, ω2),
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r �Rμ,ω2
“τ is a cofinal branch of K which is not in V[Gμ ∗ Ḣx]” (4)

where Ḣx is the canonical name for the V[Gμ]-generic filter of Rμ(x). For every u ∈ K, let Cu = {q ≤ r :
q �Rμ,ω2

u ∈ τ} and let Eu ⊂ Cu such that:

(e1) Eu is an antichain that is maximal in Cu.
(e2) If q ∈ Eu and α ∈ dom(q) then htT (q(α)) ≥ htK(u).
(e3) If q ∈ Eu then q is a one-to-one function whose range consists of the elements of the same height in T .

The condition (e1) implies that Eu is countable because Rμ,ω2 is ccc. Let τ ′ =
⋃
{{u} × Cu : u ∈ K} and 

τ ′′ =
⋃
{{u} × Eu : u ∈ K}. Observe that r � τ = τ ′ = τ ′′. Without loss of generality, we assume τ = τ ′′, 

or in other words τ [{u}] = Eu for all u ∈ K. Let U be the set of all u ∈ K such that for some q ≤ r in 
Rμ,ω2 the condition q forces that u ∈ τ . Rμ,ω2 is ccc, so U is a Souslin tree in V[Gμ].

Let Γ ⊂ range(τ) be uncountable such that {dom(p) : p ∈ Γ} forms a Δ-system with root w. By thinning 
Γ out if necessary, we can assume the conditions in Γ have the same cardinality k + |w| ∈ ω. Note that 
r ∈ Rμ(w) and U = dom(τ ′′) = dom(τ). Also note that an important consequence of (e3) is that if p ∈ Γ
and p � w ∈ Gμ∪w then p is compatible with every condition in Gμ∪w.

By (e2), the set Γw = {p � w : p ∈ Γ} is an uncountable subset of Rμ(w) consisting of conditions 
extending r. Therefore Rμ(w) has an extension r′ of r which forces that Γw ∩ Ḣw is uncountable. In order 
to contradict (4), we need to work in V[Gμ ∗Hw] and some specific forcing extensions of this model. Here 
Hw ⊂ Rμ(w) is a V[Gμ]-generic filter which contains r′ and consequently intersects Γw on an uncountable 
set. Due to similarity of arguments and for easier notation let’s assume

|Γw ∩Gμ∪w| = ℵ1

and work with V[Gμ∪w] instead of V[Gμ ∗Hw].
Let A ∈ V[Gμ∪w] be the set of all p � (dom(p) \ w) such that p ∈ Γ and p � w ∈ Gμ∪w. Note that A is 

uncountable. Here we use (e2) and the fact that Γw ∩Gμ∪w is uncountable.
For each p ∈ A, let dp : k −→ dom(p) be the unique strictly increasing bijection. Let 〈Il : 0 < l ≤

k(k+1)
2 + 1〉 be a sequence listing all I ⊂ k with 0 < |I| ≤ 2 such that all singletons are listed before pairs. 

We are going to find 〈Vl, Al : l ≤ k(k+1)
2 + 1〉, by induction on l, such that:

• V0 = V[Gμ∪w].
• Vl+1 is an Aronszajn tree preserving and ω2-preserving forcing extension of Vl.
• Al ∈ Vl is uncountable for all l.
• Al+1 ⊂ Al ⊂ A0 = A.
• If {p, q} ⊂ Al then p � {dp(n) : n ∈ Il} and q � {dq(n) : n ∈ Il} are compatible in Rμ∪w,ω2 .

We proceed by finding Vl, Al when Vl−1, Al−1, Il are given. Work in Vl−1. First assume 0 < l ≤ k, which 
means Il = {n} for some n ∈ k. This task can be done by managing the following cases:

(1) The map p �→ p(dp(n)) is constant on some uncountable subset of Al−1.
(2) The map p �→ p(dp(n)) is countable-to-one and the downward closure of {p(dp(n)) : p ∈ Al−1} has an 

uncountable branch.
(3) The map p �→ p(dp(n)) is countable-to-one and the downward closure of {p(dp(n)) : p ∈ Al−1} is 

Aronszajn.
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For the first case, fix uncountable B ⊂ Al−1 such that p �→ p(dp(n)) is constant on B. Let ν = p(dp(n)) for 
some (any) p ∈ B. Let Al ⊂ B be uncountable such that if p �= q are in Al then ρ{dp(n), dq(n)} > ν. It is 
easy to see that Al together with Vl = Vl−1 works.

For the second case let W be the downward closure of {p(dp(n)) : p ∈ Al−1} in T . By Lemmas 2.8 and 
5.1, let ξ ∈ μ ∪w such that bξ ⊂ W . Let 〈pi : i ∈ ω1〉 be a sequence in Al−1 such that 〈pi(dpi

(n)) ∧bξ : i ∈ ω1〉
is strictly increasing. Let Γ0 ⊂ ω1 be uncountable such that 〈αi = dpi

(n) : i ∈ Γ0〉 and 〈ρ{αi, ξ} : i ∈ Γ0〉 are 
both strictly increasing. Recall that ρ{αi, ξ} ≥ bξ∧pi(αi), so this is possible. Find uncountable Γ1 ⊂ Γ0 such 
that ρ(αi, αj) ≥ min{ρ{αi, ξ}, ρ{αj , ξ}} for i < j in Γ1. In order to see Al = {pi : i ∈ Γ1} and Vl = Vl−1
work, assume for a contradiction that pi(αi) ∧ pj(αj) ≥ ρ(αi, αj) for some i < j in Γ1. Then

ρ{ξ, αi} > pi(αi) ∧ bξ = pi(αi) ∧ pj(αj) ≥ ρ(αi, αj) ≥ ρ{αi, ξ},

which obviously is a contradiction.
For the third case, let W be a pruned downward closed uncountable subtree of the downward closure 

of {p(dp(n)) : p ∈ Al−1} in T . Let Vl be a forcing extension of Vl−1 which adds an antichain A ⊂ W as 
in Lemma 2.8. From now on we work in Vl. Fix γ > sup{dp(n) : p ∈ Al−1} in ω2 and 〈ti : i ∈ ω1〉 in A
such that if i < j then ht(ti) < ht(tj). Since W is pruned, for every t ∈ W there are uncountably many 
p in Al−1 with t ≤T p(dp(n)). Since ω2 is preserved, the square sequence of Vl−1 is a square sequence in 
Vl. Therefore, for each i ∈ ω1 there is pi ∈ Al−1 such that ti ∈ ρ(dpi

(n), γ) and ti <T pi(dpi
(n)). Let 

αi = dpi
(n). Find uncountable Γ0 ⊂ ω1 such that 〈αi : i ∈ Γ0〉 and 〈ρ(αi, γ) : i ∈ Γ0〉 are both strictly 

increasing. Find uncountable Γ1 ⊂ Γ0 such that

ρ(αi, αj) ≥ min{ρ(αi, γ), ρ(αj , γ)}

whenever i < j in Γ1. In order to see Al = {pi : i ∈ Γ1} works, assume i < j are in Γ1. Then

pi(αi) ∧ pj(αj) < ti < ρ(αi, γ) = min{ρ(αi, γ), ρ(αj , γ)} ≤ ρ(αi, αj),

as desired. This finishes our induction for the singleton sets Il.
Before we deal with the induction steps in which Il is a pair, let’s make an observation.

Observation 6.2. Assume V is a forcing extension of V[Gμ∪w] by a forcing described in Lemma 2.8. Let 
m < n < k and assume in V , B ⊂ A is uncountable such that the maps p �→ p(dp(n)) and p �→ p(dp(m))
are countable-to-one on B. Then either

(a) there are incomparable s, t in T and uncountable B0 ⊂ B such that for all p ∈ B0, s <T p(dp(m)) and 
t <T p(dp(n)), or

(b) {p(dp(m)) ∧ p(dp(n)) : p ∈ B} is uncountable.

Proof of Observation 6.2. Assume {p(dp(m)) ∧ p(dp(n)) : p ∈ B} is countable. Assume u ∈ T such that for 
uncountably many p ∈ B, p(dp(m)) ∧ p(dp(n)) = u and let δ = ht(u) + 1. Then there are incomparable s, t
above u in Tδ such that

B′ = {p ∈ B : (p(dp(m)) � (δ + 1), p(dp(n)) � (δ + 1)) = (s, t)}

is uncountable. Since both maps p �→ p(dp(m)) and p �→ p(dp(n)) are countable-to-one, there is an uncount-
able B0 ⊂ B′ as desired in (a). Therefore, the dichotomy in Observation 6.2 holds. �

Assume Vl−1, Al−1, Il are given and Il = {m, n} is a pair. Based on Observation 6.2, we can assume at 
least one of the following cases holds:
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(0) At least one of the maps p �→ p(dp(n)) or p �→ p(dp(m)) is not countable-to-one on Al−1.
(a) There are incomparable s, t in T and uncountable B0 ⊂ Al−1 such that for all p ∈ B0, s <T p(dp(m))

and t <T p(dp(n)). Moreover, the maps p �→ p(dp(n)) and p �→ p(dp(m)) are countable-to-one on 
Al−1.

(b.1) The downward closure of {p(dp(m)) ∧ p(dp(n)) : p ∈ Al−1} in T has an uncountable branch and the 
maps p �→ p(dp(n)) and p �→ p(dp(m)) are countable-to-one on Al−1.

(b.2) The downward closure of {p(dp(m)) ∧ p(dp(n)) : p ∈ Al−1} in T is an Aronszajn tree and the maps 
p �→ p(dp(n)) and p �→ p(dp(m)) are countable-to-one on Al−1.

For case (0), the forcing extension is the trivial forcing extension. Find uncountable B ⊂ Al−1 and t ∈ T

such that one of the maps p �→ p(dp(n)) or p �→ p(dp(m)) is constantly t on B. Let ν = t + 1 and let 
Al ⊂ B be uncountable such that for p �= q in Al, ρ{dp(n), dq(m)} > ν. So for all distinct p, q in Al, 
p(dp(n)) ∧ q(dq(m)) < ν < ρ{dp(n), dq(m)}. By the symmetry and since we have already dealt with the one 
element subsets of k, this finishes case (0).

For case (a), the forcing extension is the trivial forcing extension. Fix s, t, B0 as in (a) of Observation 6.2. 
Let Al ⊂ B0 be uncountable such that for p �= q in Al, t < ρ{dp(n), dq(m)}. Then for all p �= q in Al, 
p(dp(n)) ∧ p(dq(m)) = s ∧ t < t < ρ{dp(n), dq(m)}. Because of symmetry and the fact that we dealt with 
the one element sets in the previous steps, this finishes case (a).

For case (b.1), the forcing extension is the trivial forcing extension. Assume W is the downward closure 
of the uncountable set {p(dp(m)) ∧ p(dp(n)) : p ∈ Al−1} in T . Using Lemmas 2.8 and 5.1, let ξ ∈ μ ∪w such 
that bξ ⊂ W . We can find {pi : i ∈ ω1} ⊂ Al−1 such that 〈pi(dpi

(m)) ∧ pi(dpi
(n)) ∧ bξ : i ∈ ω1〉 is strictly 

increasing. Find uncountable Γ0 ⊂ ω1 such that the sequences

• 〈αi = dpi
(n) : i ∈ Γ0〉,

• 〈βi = dpi
(m) : i ∈ Γ0〉,

• 〈{(pi(αi) ∧ bξ), (pi(βi) ∧ bξ)} : i ∈ Γ0〉,
• 〈{ρ{αi, ξ}, ρ{βi, ξ}} : i ∈ Γ0〉

are all strictly increasing. Find uncountable Γ1 ⊂ Γ0 such that

ρ{αi, βj} ≥ min{ρ{αi, ξ}, ρ{βj , ξ}}, (5)

for i �= j in Γ1.
Assume i < j are in Γ1. Then

pi(αi) ∧ pj(βj) = pi(αi) ∧ bξ < ρ{αi, ξ} = min{ρ{αi, ξ}, ρ{βj , ξ}}.

From (5) it follows that pi(αi) ∧ pj(βj) < ρ{αi, βj}. Again, by symmetry and the fact that we have already 
dealt with the one element sets before, Al = {pi : i ∈ Γ1} and Vl = Vl−1 works. This finishes case (b.1).

In case (b.2), let W be the downward closure of the uncountable set {p(dp(m)) ∧ p(dp(n)) : p ∈ Al−1} in 
T . Let W ′ be an uncountable downward closed pruned subtree of W . Let Vl be a forcing extension of Vl−1
in which W ′ has an uncountable antichain A as in Lemma 2.8. Work in Vl and let {ti : i ∈ ω1} ⊂ A such that 
〈htT (ti) : i ∈ ω1〉 is strictly increasing. Let γ ∈ ω2 be above all ordinals in {p(dp(n)) +p(dp(m)) : p ∈ Al−1}. 
For each i ∈ ω1, find pi ∈ Al−1 such that

• ti <T (pi(αi) ∧ pi(βi)) where αi = dpi
(n) and βi = dpi

(m),
• ti ∈ ρ(αi, γ), and
• ti ∈ ρ(βi, γ).
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This is possible because the maps p �→ p(dp(n)) and p �→ p(dp(m)) are countable-to-one and W ′ is pruned. 
Let Γ0 ⊂ ω1 be uncountable such that:

• ρ{αi, βj} ≥ min{ρ(αi, γ), ρ(βj , γ)} for all distinct i, j in Γ0, and
• 〈{ρ(αi, γ), ρ(βi, γ)} : i ∈ Γ0〉 is strictly increasing.

Now we show that Al = {pi : i ∈ Γ0} works. Assume i < j in Γ0. Then

pi(αi) ∧ pj(βj) < ti ∈ ρ(αi, γ) = min{ρ(αi, γ), ρ(βj , γ)} ≤ ρ(αi, βj).

As in the previous case, by symmetry and the fact that we have already dealt with the one element Il’s, 
this finishes the work for case (b.2).

Let z = k(k+1)
2 + 1, A′ = Az. In Vz define

Γ∗ = {p ∈ Γ : p � w ∈ Gμ∪w and p � (dom(p) \ w) ∈ A′}.

By the refinement process above, A′ ∈ Vz is uncountable and consists of pairwise compatible elements. So 
by (e3), Γ∗ is uncountable and consists of pairwise compatible elements. Again by (e3), every condition in 
Γ∗ is compatible with every condition in Gμ∪w.

Define b′ = {u ∈ U : ∃p ∈ Γ∗ (u, p) ∈ τ}. Since elements of Γ∗ are pairwise compatible, the elements of 
b′ are pairwise comparable. By (e1) and the fact that Γ∗ is uncountable, b′ is uncountable. Therefore, the 
downward closure of b′, which we call b, is an uncountable branch of U in V[Gμ∪w]. Here we use the fact 
that Vz is a forcing extension of V[Gμ∪w] using forcings which satisfy the properties listed in Lemma 2.8. 
Let π = {(u, p) ∈ τ : ∀q ∈ Gμ∪w p is compatible with q}. Note that π is the natural transition of τ from 
V[Gμ] to V[Gμ∪w]. Recall that r ∈ Gμ∪w and it forces that τ is an uncountable branch. So in V[Gμ∪w], 
the trivial element of Rμ∪w,ω2 forces that π is an uncountable branch. By (e1), {p ∈ range(π) : ∃u ∈ b

(u, p) ∈ π} is uncountable. Let s ∈ Rμ∪w,ω2 which forces that the generic filter of Rμ∪w,ω2 intersects 
{p ∈ range(π) : ∃u ∈ b (u, p) ∈ π} on an uncountable set. In particular in V[Gμ∪w], the condition s forces 
that the downward closure of π, τ is the same as b. In other words, the condition s forces that τ is a branch 
in V[Gμ∪w]. But this contradicts (4) because s is compatible with r. �

Now we are ready to prove Theorem 1.2. Assume λ is the first inaccessible cardinal in L and V is the 
generic extension of L by the Levy collapse forcing with countable conditions which makes λ the second 
uncountable cardinal. Note that V is a model of �ω1 . Assume G ⊂ Q is V-generic and T, 〈bξ : ξ ∈ λ〉 are the 
generic tree and branches that are defined from G as usual. We show for every Kurepa tree K in V[G] there 
is a Kurepa subtree of T which club embeds into K. By Theorem 5.2, this finishes the proof of Theorem 1.2.

Assume for a contradiction that K ∈ V[G] is a Kurepa tree, K̇ is a Q-name for K, and p0 ∈ G forces that 
K̇ is a Kurepa tree such that no Kurepa subtree of Ṫ club embeds into K̇. Let μ0 ∈ ω2 such that Qμ0 �Q, 
K and T are in V [Gμ0 ] and p0 ∈ Gμ0 . Note that in V[Gμ0 ],

Rμ0,ω2 � “no Kurepa subtree of Ť club embeds into Ǩ.” (6)

Let Y ∈ V[Gμ0 ] be the set of all (τ, p, x, A) such that:

(a0) x is a finite subset of [μ0, ω2),
(a1) τ is an Rμ0(x)-name,
(a2) p �Rμ0 (x) “τ is a cofinal branch of Ǩ which is not in V[Gμ0 ∗ Ḣx′ ], for any finite x′ which is a proper 

subset of x”, where Ḣx′ is the canonical name for the V[Gμ0 ]-generic filter of Rμ0(x′),
(a3) p is a one-to-one function, dom(p) = x and range(p) consists of the elements of the same height in T ,
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(a4) A = {u ∈ K : ∃q ∈ Rμ0(x) q ≤ p ∧ q � ǔ ∈ τ}.

For i ∈ {1, 2, 3, 4} let Yi be the projection of Y on the i’th component. By Lemmas 2.6 and 6.1, |Y3| = ℵ2. 
Let 〈xξ : ξ ∈ ω2〉 be an enumeration of Y3.

Let n ∈ ω and Γ0 ⊂ ω2 be of size ℵ2 such that {xξ : ξ ∈ Γ0} is a Δ-system with root w and |xξ| = n + |w|
for ξ ∈ Γ0. By thinning Γ0 out if necessary we can assume that 〈yξ = xξ \ w : ξ ∈ Γ0〉 is strictly increasing. 
For every ξ ∈ Γ0 let τ ′ξ, p′ξ, A′

ξ be such that (τ ′ξ, p′ξ, xξ, A′
ξ) ∈ Y . By thinning Γ0 out again we assume that 

for all i ∈ n + |w|, p′ξ(xξ(i)) does not depend on ξ. There is a condition r ∈ Rμ0,ω2 which forces that for ℵ2
many ξ ∈ Γ0, p′ξ is in the generic filter Ḣ[μ0,ω2), where Ḣ[μ0,ω2) is the canonical name for the V[Gμ0 ]-generic 
filter of Rμ0,ω2 . In order to contradict (6), we need to work with a V[Gμ0 ]-generic filter of Rμ0,ω2 which 
intersects {p′ξ : ξ ∈ Γ0} on a set of size ℵ2. Due to similarity of arguments and for easier notation let’s 
assume without loss of generality that

|G ∩ {p′ξ : ξ ∈ Γ0}| = ℵ2. (7)

Fix μ ∈ ω2 \μ0 above max(w) such that Qμ�Q. From now on, we work in V[Gμ] unless otherwise stated. 
Define Γ1 ∈ V[Gμ] to be the set of all ξ ∈ Γ0 such that min(yξ) > μ and p′ξ � w ∈ Gμ. Obviously |Γ1| = ℵ2
by (7). For each ξ ∈ Γ1 let pξ = p′ξ � yξ. Note that by (a3) and the definition of Γ1, pξ is compatible with 
every condition in Gμ. Via the natural transition of objects τ ′ξ, A′

ξ from V[Gμ0 ] to V[Gμ], we can find τξ, Aξ

in V[Gμ] such that for all ξ ∈ Γ1 the statement (ai) above implies (bi) below:

(b1) τξ is an Rμ(yξ)-name,
(b2) pξ ∈ Rμ(yξ) forces that τξ is a cofinal branch of Ǩ which is not in V[Gμ],
(b3) pξ is a one-to-one function and the elements in range(pξ) have the same height in T ,
(b4) Aξ = {u ∈ K : ∃q ∈ Rμ(yξ) q ≤ pξ ∧ q � ǔ ∈ τξ}.

We only show how we obtain (b2). Assume for a contradiction that ξ ∈ Γ1, r ∈ Gμ ∩Rμ0,μ is an extension 
of p′ξ � w and p̄ξ ∈ Rμ,ω2 is an extension of pξ such that:

r ∗ p̄ξ �Rμ0,ω2
τ ′ξ is a cofinal branch in V[Gμ0 ∗ Ḣμ0,μ].

Since r ∗ p̄ξ extends p′ξ, by (a2),

r ∗ p̄ξ �Rμ0,ω2
τ ′ξ is a cofinal branch in V[Gμ0 ∗ Ḣμ0,μ] ∩ V[Gμ0 ∗ Ḣxξ

].

This contradicts (a2) because by Lemma 5.1, for every V[Gμ0 ]-generic filter H ⊂ Rμ,ω2 , V[Gμ0 ∗ Hx] ∩
V[Gμ0 ∗Hμ0,μ] = V[Gμ0 ∗Hx∩μ] and xξ ∩ μ is a proper subset of xξ. Hence (b2) holds.

Note that by Lemma 2.6, all finite powers of T and K have at most ℵ1 many cofinal branches and Souslin 
subtrees in V[Gμ]. Let Γ2 ⊂ Γ1 be of size ℵ2 such that for all ξ and η in Γ2 the following hold:

• Sμ[yξ(i)] = Sμ[yη(i)] for all i ∈ n,
• Sμ[yξ] = Sμ[yη],
• Aξ = Aη.

Observe that if y ∈ {yξ : ξ ∈ Γ2} and v̄ = 〈vi : i ∈ n〉 is an element of Sμ[y], and vi’s are pairwise distinct 
then 

⊗
i∈n

(Sμ[y(i)])vi = (Sμ[y])v̄. Moreover, this tree does not depend on the choice of y. For i ∈ n, let 

ti = pξ(yξ(i)) for some ξ ∈ Γ2. The properties of Γ0 guarantee that ti does not depend on the choice of ξ. 
Let Γ3 ⊂ Γ2 with |Γ3| = ℵ2 such that if ξ < η are in Γ3, α ∈ yξ, β ∈ yη, then ρ(α, β) > max{ti : i ∈ n}.
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For every ζ ∈ Γ3 define ϕζ from 
⊗
i∈n

(Sμ[y(i)])ti to the poset consisting of all extensions of pζ = {(yζ(i), ti) :

i ∈ n} in Rμ(yζ) as follows. For every s̄ = 〈si : i ∈ n〉 in 
⊗
i∈n

(Sμ[y(i)])ti , let ϕζ(s̄) be the function defined 

on yζ which sends yζ(i) to si. It is easy to see that ϕζ is an isomorphism from its domain to a dense subset 
of the set of all extensions of pζ in Rμ(yζ). Let S =

⋃
i∈n

(Sμ[y(i)])ti and U = Aζ . Obviously, U is Souslin in 

V[Gμ]. Also V[Gμ] thinks that there is a derived tree of S, namely 
⊗
i∈n

(Sμ[y(i)])ti , which adds a branch to 

U .

Claim 6.3. All derived trees of S are Souslin in V[Gμ].

Proof. Assume 〈sij : i ∈ n ∧ j ∈ m〉 are pairwise distinct elements of S with the same height δ such that 
ti ≤ sij for all i, j. We will show that 

∏
{Ssij

: i ∈ n ∧ j ∈ m} is the set of all possible points of a branch of 
T [mn] which is added by a ccc poset in V[Gμ]. Let 〈ξj : j ∈ m〉 be a strictly increasing sequence in Γ3 such 
that for all j < k < m if α ∈ yξj and β ∈ yξk then ρ(α, β) > δ + ω. Let zj = yξj . Define p :

⋃
j∈m

zj −→ T

by p(zj(i)) = sij . By the requirement on Γ3 and the fact that ϕξj is an isomorphism, p � zj ∈ Rμ(zj) for all 
j ∈ m. The way we chose the zj ’s implies that p ∈ Rμ(

⋃
j∈m

zj).

Obviously, the set of all extensions of p in Rμ(
⋃

j∈m

zj) is a ccc poset in V[Gμ] and it adds a new branch 

to T [mn]. We show that the set 
∏
{Ssij

: i ∈ n ∧ j ∈ m} is the set of all possible points of this branch. In 

order to see this, assume aij ≥ sij is in Sμ[y(i)]. Then the function r on 
⋃

j∈m

zj defined by r(zj(i)) = aij is a 

condition in Rμ(
⋃

j∈m

zj). This can be seen in the same way as we showed p ∈ Rμ(
⋃

j∈m

zj). Moreover, r forces 

that 〈aij : i ∈ n ∧j ∈ m〉 is in the new branch that is added by Rμ(
⋃

j∈m

zj). Therefore, 
∏
{Ssij

: i ∈ n ∧j ∈ m}

is the set of all possible points of the new branch that is added by Rμ(
⋃

j∈m

zj), which is a ccc poset in V[Gμ]. 

This shows the derived tree of S generated by 〈sij : i ∈ n ∧ j ∈ m〉 is a Souslin tree. �
Claim 6.4. Assume 〈vj : j ∈ k〉 is a sequence of pairwise distinct elements of the same height in S. Then in 
V[Gμ], there is a condition q in Rμ,ω2 which forces that each Svj is Kurepa.

Proof. Fix Γ4 ⊂ Γ3 such that |Γ4| = ℵ2 and for all ξ < η in Γ4, for all α ∈ yξ, for all β ∈ yη,

ρ(α, β) > max{vi : i ∈ k}.

For every increasing σ = 〈ξl : l ∈ k〉 in Γ4, let qσ :
⋃
l∈k

yξl −→ S be a function such that qσ(yξl(i)) = vj if vj

is the l’th ordinal in 〈vj : j ∈ k〉 that is above ti in T . If there is no l’th ordinal in 〈vj : j ∈ k〉 that is above 
ti in T , let qσ(yξl(i)) = ti. The same argument as in Claim 6.3 shows that qσ ∈ Rμ,ω2 .

Let Γ5 ⊂ [Γ4]k be a collection of pairwise disjoint sets with |Γ5| = ℵ2. Since Rμ,ω2 is ccc, there is a 
condition q ∈ Rμ,ω2 which forces that for ℵ2 many σ ∈ Γ5, qσ is in the generic filter. But then q forces that 
Svj is Kurepa for all j ∈ k. �

In V[Gμ], let 
⊗
i∈k

Svi be a derived tree of S which adds a branch to U and which has the minimum 

dimension with this property. Such a derived tree exists because 
⊗
i∈n

Sti adds a branch to U . By Lemma 2.7

and Claim 6.3, there is a club embedding f from 
⊗
i∈k

Svi to U in V[Gμ]. By Claim 6.4, there is a condition 

q ∈ Rμ,ω2 which forces that all Svi ’s are Kurepa subtrees of T in V[G]. Let j ∈ k and ci ∈ V[G] be a cofinal 
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branch of Svi , for i ∈ k \ {j}. In V[G] let g be the restriction of f to the tree (
⊗

i∈k\{j}
ci) 

⊗
Svj , which 

obviously is isomorphic to Svj . Then q forces that g is a club embedding from an isomorphic copy of Svj

into U , and Svj is a Kurepa subtree of T . This contradicts (6).
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