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It is well known that two permanent magnets of fixed orientation will either always repel or at-
tract one another regardless of the distance between them. However, if one magnet is rotated at
sufficient speed, a stable position at a given equilibrium distance can exist for a second free mag-
net. The equilibrium is produced by magnetic forces alone, which are strong enough to maintain a
levitating state under gravity. We show that a stable levitation can be obtained when the rotating
magnet is tilted from the rotation axis, with no offset in its position. In this regime, the levitat-
ing magnet remains centered and its spinning rate remains negligible, while its magnetic moment
precesses in synchronization with the driving magnet. We provide a physical explanation of the lev-
itation through a model relying on static dipolar interactions between the two magnets and present
experimental results which validate the proposed theory.

I. INTRODUCTION

Recently a new way to obtain magnetic levitation —
i.e. the hovering of an object in the air due to mag-
netic forces — was discovered : a fast rotating perma-
nent magnet (the rotor) being able to ‘lock in’ another
magnet (termed here the levitating magnet) [1]. This
differs from a number of other well-known techniques al-
lowing for magnetic levitation. For example, electromag-
netic suspension, where an active control system using
an electromagnet stabilizes a permanent magnet, can be
used with high speed machinery [2]. Another approach is
generating an opposing magnetic field either using eddy
currents in conductive materials in the case of electrody-
namic suspension (for example in the Maglev train [3])
or directly using diamagnetic materials, or exploiting the
Meissner effect of superconductors [4]. One can also me-
chanically limit the degrees of the freedom of a levitating
magnet, use a rotating magnetic quadrupole to form a
magnetic Paul trap [5] or make stabilizing use of the gy-
roscopic torque as in the case of the Levitron [6–8].

The magnetic levitation by dipole rotation is simple to
observe and the experiment is easily doable by students
or amateurs but is surprisingly difficult to explain and de-
scribe quantitatively. In 2021, H. Ucar published a first
general description of this levitation technique [1]. His
seminal article provided an overview of the phenomenon,
including a compendium of experimental realizations,
and laid out the main physical ingredients to explain it.
The phenomenon started gaining interest after being ex-
posed to the general public [9, 10] and notably one of
the subjects of the International Physicists’Tournament
2023 consisted in investigating the limitations of the phe-
nomenon [11].

A more systematic study was recently published by
Hermansen et al [12]. Its authors focus experimentally
on the case of a centered rotor whose magnetic moment is
normal to the rotation axis, observing semi-stable states
of finite lifetime. Notably, they measure the lifetime of
the levitation, describe how it stops and study the influ-
ence of the magnet size and magnetization on the min-
imum rotation rate for levitation. The dynamics is
further explored by simulations of a model based on the
same ingredients as Ucar, which reproduce levitation pro-
vided the rotor is slightly shifted off-axis or tilted and
dissipation is added at least initially.

While both the works of Ucar and of Hermansen et al.
properly identify the fundamental physical mechanism
behind the levitation, and resort to numerical simulation
of the derived complex evolution equation for the transla-
tional and rotational degres of freedom of the levitating
magnet, neither provides a quantitative comparison of
the derived model to experimental measurements. The
goal of this paper is to provide a synthetic physical pic-
ture of the phenomenon, and to back it using quantitative
experimental evidence. We propose a model based on
physical ingredients in line with the preceding literature,
valid for small tilt angles γ and θ of both magnets with
respect to an orthogonal configuration (fig. 1) but other-
wise general, that yields scaling laws without the need
for numerical simulation. In particular we characterize
the axial equilibrium position. Confronting the scaling
laws and some analytical predictions to observations, we
provide the first quantitative comparison between experi-
mental data and an analytic model of the levitation. This
allows us to validate the levitation mechanism suggested
by Ucar.
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II. THE LEVITATION MECHANISM

A. Qualitative description and notations

The typical experimental setup needed to observe the
magnetic levitation in the regime studied here is as fol-
lows. One magnet (termed rotor magnet, or rotor), is
fixed and rotates at a rate ω, typically around 150 to
300Hz, around a vertical axis to which its magnetic mo-
ment is almost (yet not rigorously) perpendicular. The
angle between the horizontal plane and the magnetic mo-
ment of the rotor is noted γ and is a few degrees. Be-
low the rotor, another magnet (the levitating magnet, or
levitator) hovers mid-air (video S1 [13]). It is inclined
through an angle θ compared to the vertical. In this
levitating regime, both magnetic moments remain com-
prised in the same plane, evidencing the synchronization
between the rotation of the rotor and the precession of
the levitator. We have checked experimentally that this
synchronization is respected. A picture of the plane taken
from the video, as well as a schematics are displayed in
Fig. 1, showing that at any given instant the north pole
of the levitator points on the side of the north pole of the
rotor magnet (i.e. θ > 0).
Experimentally, the levitator remains at a fixed dis-

tance from the rotor for several tens of seconds when no
dissipation is present, to minutes or even hours when in
presence of dissipation obtained by placing an aluminium
block nearby the levitating magnet to enhance eddy cur-
rent damping. But even the shortest lifetimes, around 10
seconds, are very long compared to one period of rotation
(around 5 ms). Thus, the levitation can be considered
stable, lasting for thousands of cycles before eventually
failing. In the present work, we focus on the existence of
this stable position.

In this article, we will always consider that the dipolar
magnetic moment ml of the levitating magnet is local-
ized at the center of mass and aligns with a principal
axis of inertia (Fig. 1). We write I∥ the moment of in-
ertia around this axis and I⊥ the other two principal
moments which we suppose identical. The levitation can
be realized for a variety of ratios I⊥/I∥, as can be seen in
Supplementary Movie S3 [13]. The model applies when-
ever the magnetic field of the levitating magnet is dipolar
in first approximation, including non spherical magnets
such as cylinders or cubes, as can be seen on Supplemen-
tary Movie S2 [13].

For the convenience of forthcoming calculations, we
define two orthonormal bases, both rotating around the
vertical (magnet-to-magnet) axis synchronously at rate
ω. The basis (i, j,k) is so that k is pointing up and the
rotor magnetic moment is in the plane spanned by (j,k).
The basis (I,J,K) is attached to the levitating magnet:
K points along its magnetic moment and principal iner-
tial axis, inclined by an angle θ from the vertical, and
I = i.
We consider the center of the rotor to be vertically

aligned with that of the levitating magnet (i.e. no hor-

izontal offset for either magnets) at a distance r. Both
magnetic moments turning around the vertical axis at
constant rotation rate ω = 2π f (as discussed below, as
opposed to the rotor which is rotating, the levitator pre-
cesses with often negligible spin). The rotor is modeled
as a perfect magnetic dipole of moment mr contained
in the (j,k) plane and inclined from the horizontal by a
small angle γ ≪ 1 (Fig. 1).

B. Counteracting forces

Let us first offer a qualitative explanation for the exis-
tence of a stable point. The reason the levitator stays at
a fixed distance to the rotor is because it is constrained
there by a repulsive and an attractive force, both of mag-
netic origin. In general, these magnetic forces dominate
over gravity, which is why the levitation can be main-
tained even on an upside-down configuration, as shown
in previous literature [1].
The attractive force comes from the fact that the ro-

tor is slightly inclined, the vertical component mr · k
generating a vertical magnetic field. Given the relative
orientations of the magnets (see Fig. 2) this component
of the magnetic interaction is attractive and proportional
to γ.
The repulsive force comes from the slight inclination

of the levitator magnetic moment (θ), whose horizontal
component interacts with the horizontal magnetic field
generated by the rotor. Seeing that the north and south
poles of both magnets face each other (see Fig. 2), this
interaction is repulsive, like the one between two parallel
dipoles. Its intensity is proportional to the polar angle θ.
Aside from the qualitative explanation, one can rigor-

ously compute the forces acting between the two dipoles.
The magnetic field of the rotor magnet at the center of
mass of the levitating magnet reads [14]:

Br(L) =
µ0mr

4πr3
(cos γ j+ 2 sin γ k) . (1)

Thus the magnetic force acting on the levitating magnet
is:

F = ∇(ml ·Br(L))

=
3G

r4
((2 sin γ cos θ − sin θ cos γ)k+ cos(θ − γ)j)

≈ 3G

r4
((2γ − θ)k+ j) with G =

µ0mrml

4π
. (2)

The direction j rotates at rate ω in the inertial laboratory
frame, so that the corresponding force component has
vanishing time-average. The corresponding orbiting of
the levitating magnet in the plane normal to the axis is
imperceptible experimentally, due to inertia at these high
rotation rates. We therefore neglect this motion in the
following.
The vertical force comprises two components of op-

posite directions. In our experiment γ is fixed, but we
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FIG. 1. Left, Instantaneous picture of the experiment taken with a high speed camera. The top magnet is rotated at rate of
f = (216 ± 2)Hz and its dipolar moment mr is inclined by an angle γ relatively to the plane of rotation (the rotation axis is
vertical here). The bottom magnet levitates at a distance r from the top magnet and its dipolar moment ml makes an angle
θ with the vertical axis. For this experiment, the top magnet is a sphere of diameter 12.7mm and the levitating magnet is a
cylinder of radius 5mm and height 5mm. Other magnet shapes (sphere, cylinder, cube ...) both for rotating and levitating
magnet can produce the levitation effect, as noted previously [1] (see also Supplementary Movies S2, S3 [13]). Right, schematics
and geometrical notations for the model. The basis (i, j,k) is attached to the rotating magnet with k aligned with the rotation
axis and the magnetic moment in the (j,k) plane. The basis (I,J,K) is attached to the levitating magnet, with I = i, and
K along the magnetic moment. I∥ and I⊥ are the moments of inertia, parallel to the dipolar moment and perpendicular,
respectively.
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FIG. 2. Schematics of the magnetic interactions (forces and
torques) between the rotor magnet and the levitating magnet.

observe experimentally that the levitator tilt θ strongly
varies with the distance r between the two magnets. An
equilibrium position for the motion along the vertical axis
is reached when

θ = 2γ (3)

is verified. At this stage however the inclination of the
levitator θ remains unknown, so that eq. (3) tells us lit-
tle about the equilibrium position for the levitator. In
order to predict the equilibrium distance, one needs to

understand the relationship between the polar angle, θ,
and the distance, r. We will now show that the torque
balance provides this dependency.

C. Torque balance

To study the inclination of the levitating magnet one
can work in the frame of reference in rotation at rate ω.
The angle θ is given by the equilibrium between all the
different torques acting on the levitating magnet. The
magnetic torque Γ can be decomposed into two contri-
butions. The horizontal component of the rotor magnetic
moment and the vertical component of the levitator mag-
netic moment interact through the horizontal magnetic
field generated by the rotor, inducing an inclining torque,
which tends to align the levitator in the reverse horizontal
direction, so that the opposite poles of both contribution
face each other.

In contrast, the small vertical magnetic moment of the
rotor creates a vertical magnetic field, and its action on
the horizontal magnetic moment of the levitator creates
an axis-aligning torque, that tends to align the levitator
with the rotation axis. Since this contribution is propor-
tional to both γ and θ, which are chosen to be small, it



4

is always negligible compared to the inclining torque.

Γ = ml ×Br(L)

=
−G

r3
(cos γ cos θ + 2 sin γ sin θ) i with G =

µ0mrml

4π

≈ −G

r3
(1 + 2γ θ) i . (4)

If this torque were static, the magnet would align with
the field on a timescale

√
I⊥/Γ. The observed levitator

orientation almost aligned with the rotation axis is pos-
sible only if the torque changes orientation on a shorter
timescale. The minimum rotation rate should therefore
scale as

√
Γ/I⊥. Using the magnetic moment of the mag-

net used and typical levitation distances gives a minimum
rotation frequency of ∼ 100Hz, which is the correct order
of magnitude.

We now need to apply the laws of mechanics of an
axially-symmetric rigid body rotating around a fixed
point [15]. By applying the angular momentum theo-
rem to the levitating magnet at point L (see Fig. 1) in
the rotating frame of reference [16], we obtain

Γ ·K = I∥
dωs

dt
with ωs = ω cos θ + ωK (5)

Γ · J = I⊥(ω̇ sin θ + 2ωθ̇ cos θ)− I∥θ̇ωs (6)

Γ · I = I⊥θ̈ + I∥ωωs sin θ − I⊥ω
2 cos θ sin θ . (7)

The quantity ωs is the levitating magnet spin, i.e. the
angular rotation frequency of the magnet around its own
magnetic moment, in the laboratory frame of reference.
It is accessible experimentally for small polar angle θ and
is always observed to be considerably smaller than the
rotor frequency ω. Indeed, levitation can be obtained
for a levitator with no or even reverse spin. When un-
constrained however, the levitator will eventually start
spinning in the same direction as the rotor. Yet the spin-
ning rate of the levitator remains 5 to 10 times smaller
than that of the rotor. Note that, since we are inter-
ested in the rapid (on the timescale of one cycle) dynam-
ics of the evolution of θ, we consider an inviscid situa-
tion with no dissipation. Air drag, as well as dissipation
due to eddy currents, need not be taken into account on
such short timescale, where inertia and magnetic actions
largely dominate. The quantity ωK represents the speed
of rotation of the magnet around its magnetic moment
in the rotating frame of reference turning at speed ω, in
which the direction of the magnetic moment is fixed.

Due to the fact that the magnetic torques cannot be
colinear to the magnetic moment of the levitator, we have

dωs

dt
= 0 , (8)

so that the quantity ωs is conserved. Indeed, we always
observe experimentally that ωs is constant (with ∼ 2%
margin) for all the duration of an experiment. We always
observe ωs to be inferior to ω, being often negligible. It

is also possible to change this quantity using a string at-
tached to the levitator or a static magnet on the side of
the experiment, and still observe levitation. This justifies
in the following that we neglect the role of ωs. But in the
general case we have ωs ̸= 0, as can be seen in the Sup-
plementary Movies we provide [13] (Supp. Mat. movies
S1, S2 and S3) or those from Hermansen et al. [12], even
though their model predicts ωs to be null at all times.
Multiplying Eq. (6) by sin θ gives us:

dLk

dt
= 0 with Lk = I⊥ω sin2 θ + I∥ωs cos θ , (9)

which is a second conserved quantity, corresponding to
the angular momentum along the axis k. And since both
ω and ωs are unchanging, we necessarily have θ = cst. In
the inviscid situation that we placed ourselves in, valid
for the shortest timescales, the problem is mathemat-
ically extremely constrained and the inclination of the
levitating magnet cannot change significantly.
We can now use Eq. (7) to find the value of θ:

−G

r3
(1 + 2γθ) = (I∥ωωs − I⊥ω

2)θ (10)

On the left-hand term of Eq. (10), we see the magnetic
torque formed of the two contributions discussed earlier.
On the right-hand term we find the inertial torque, which
comes from the fact that we placed ourselves in the ro-
tating frame of reference. There are two contributions to
the inertial torque.

FIG. 3. The different torques in play. The magnetic torque is
the sum of an inclining torque, which tends to lay the magnet
down to θ = −π/2, and an axis-aligning torque, which pushes
θ to 0. Since we are in the rotating frame of reference, we see
torques of inertial origin : the gyroscopic torque which, as for
a spinning top, straightens up the magnet to the vertical, and
the centrifugal torque i.e. the torque resulting from centrifu-
gal forces, that tends to incline the levitating magnet.

The leftmost term consists of the gyroscopic torque,
proportional to the axial moment of inertia, which tends
to incline the levitator towards the vertical axis. This is
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the term that governs the equilibrium of spinning tops
and gyroscopes, but here this term is not dominating
as ωs is usually small. Indeed at first order the levitat-
ing magnet is not properly spinning around the vertical
axis: rather its magnetic moment is precessing on a cone
around the vertical axis, but a point on the equator of
the levitator hardly spins around said axis.

The last term consists of the centrifugal contribution of
the inertial torque. It is the torque generated by the addi-
tion of all the centrifugal forces along the levitator, which
is proportional to the transverse moment of inertia and
tends to lay down the levitator in the horizontal plane
perpendicular to the rotation axis. Note that this torque
is termed ‘gyroscopic’ in ref. [12] because of formal re-
semblance, in the rest frame of the levitator where it has
spin −ω, thus slightly stretching the textbook usage as a
torque linked to proper spin [17–20]. We favor a distinct
naming to stress an original feature of this kind of mag-
netic levitation, and a fundamental difference compared
to the levitron: here the levitator is not a gyroscope, and
gyroscopic effects, if any, are destabilizing.

Using θ, γ ≪ 1 and ωs ≪ ω, we can keep only the
dominating terms of Eq. (10) to see that the value of θ is
given by a balance between the centrifugal inertial torque
and the inclining magnetic torque as illustrated in Fig. 3.
We deduce from this the dependency of θ in r :

θ ≈ G

r3
1

I⊥ω2
. (11)

At short times, the angle of inclination of the levitating
magnet thus varies as 1/r3.

D. Conclusion on the levitation mechanism

The levitation takes place because of the balance be-
tween the attractive component of the magnetic force,
which only depends on the constant inclination angle of
the rotor γ, and its repulsive component, which depends
on the inclination angle of the levitator θ. According to
the torque balance condition, on short timescales we al-
ways have θ(r) ∝ 1/r3. Therefore, we can now draw the
whole physical picture, using a potential energy diagram
depicted Fig. 4.

In this Figure, the repulsive and attractive components
are represented and the resulting potential energy is plot-
ted as a function of the distance between the two mag-
nets. One can see that the energy landscape exhibits a
potential well which defines the stable position for the
levitator. For completeness, the effect of gravity was
added.

When the magnets are close, the magnetic torque
increases, and to keep the equilibrium the centrifugal
torque also augments, so the levitating magnet leans to-
wards the horizontal. This effect strongly increases the
repulsive magnetic force. When the levitating magnet
is further away, the attractive magnetic force gains im-
portance, until an equilibrium position is attained. The

FIG. 4. Potential energy diagram as a function of the dis-
tance between magnets r. This corresponds to the point
ω = 1362 rad/s of figure 8. The equilibrium position results
from an equilibrium between an attractive term ∝ −1/r3 and
a repulsive term ∝ θ/r3. Since θ ∝ 1/r3, the repulsive interac-
tion potential energy is as 1/r6. The equilibrium position is at
the minimum of the energy well, where small oscillations can
take place. When the levitator is below the rotating magnet,
gravity makes the situation metastable and beyond a critical
distance the levitator will run off to r → ∞. Note that if the
levitator is placed above the rotor, the metastability turns
into a complete stability for vertical displacements as gravity
acts in the opposite direction.

addition of gravity deforms the energy well, and makes
the situation metastable, as illustrated in Fig. 4.
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III. EXPERIMENTAL VERIFICATION

In this section, we present our experimental results and
quantitatively discuss their agreement with the model
developed above.

A. Torque balance

Experiments in this subsection were conducted using
as a rotor a 12.7mm diameter spherical magnet of rema-
nence (1.32± 0.03)T glued to an aluminum bit fitted in
the chuck of a motor tool (Dremel) and spun between
12000 and 18000 rpm. Its magnetic moment is inclined
by an angle γ = (6±1)◦ from the horizontal. The levitat-
ing magnet was a cylinder-shaped magnet (5mm height,
5mm diameter) weighting 746mg with a remanence of
(1.35±0.02)T. During the initialization of the levitation
we used an aluminium block as induction damper which
was removed once the levitation has started.

The setup was back-lit by a LED panel and a small
portion of wire of negligible weight was attached to the
levitating magnet to keep track of the rotation around its
own axis. In order to resolve all the time scales involved,
videos were taken with a high-speed camera, Chronos
CR14-1.0 at a frame rate of 8810 frames per second. The
images were analyzed using in-house Python routines in
order to extract the distance between the magnets r and
the polar angle θ.

An example of the data obtained can be seen on figure
5. The levitating magnet is in a bound state for more
than 4 s, as it performs small oscillations around the
equilibrium position (in a potential well similar to that
of Fig. 4, a representation of which is given in the Supple-
mentary Material S4 [13]). One can easily observe that
the levitating distance r and the polar angle θ are highly
correlated. Near the end of the recording, we see the
magnet falling vertically as r increases towards infinity.

The data allows us to validate the scaling law of
Eq. (11), arising from the equilibrium of magnetic and in-
ertial centrifugal torques in a conservative system, along
with approximations that are appropriate in our set-up.
The period of the oscillations (typically 0.2 s) is much
greater that than of the imposed rotation (smaller than
5ms), leaving enough time for the inclination of the lev-
itator, θ(t) to adapt to a varying distance r(t).

The data in figure 6, in which the angle θ is plotted
against the distance r between the magnets, is in excel-
lent agreement with the predicted power-law, even during
the fall of the levitating magnet. The fitting parameter
takes the value Aexp = (2.08±0.34)×10−6 rad.m3, while
the predicted value using Eq. (11) is Ath = (2.32±0.08)×
10−6 rad.m3, which is compatible with the experiments.
We thus correctly identified the mechanisms behind the
scaling law and demonstrates the robustness of our non-
dissipative approach for short times.

FIG. 5. Angle of the levitating magnet and distance between
the two magnets as a function of time for one given rotor
frequency. For this recording the rotor was turning at f =
(216± 2)Hz.

FIG. 6. The inclination angle of the levitation magnet as a
function of the distance between the two magnets, for a rotor
frequency of f = (216 ± 2)Hz. According to our theoreti-
cal model (Eq. (11)), we expect a power law of exponent -3.
The experimental values are well fitted by A/r3 red solid line,
where A is an adjustable parameter (see text). The equilib-
rium values for the distance req and the inclination θeq are
indicated in dotted lines. By performing small oscillations,
the levitating magnet explores the potential well, while ver-
ifying the scaling law. During the fall of the magnet, the
scaling law is still respected.

B. Equilibrium state: polar angle and distance

Experiments in this subsection were performed using a
setup similar to the one presented in the previous subsec-
tion. The rotor was a 10mm diameter spherical magnet
with remanence 1.22T–1.26T. The tilt angle of the rotor
was chosen to be γ = (9±1)◦ and the rotation speed was
varied. The resulting equilibrium distance and the equi-
librium inclination of the levitator were measured using
a large block of aluminum which serves as a inductive
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FIG. 7. Measured value of the angle θeq at equilibrium for
different rotor angular velocities. The angle γ is such that
γ = (9±1)◦. We observe that Eq. (3) holds up to experimental
precision.

damper for the oscillations reported in Fig. 5. Each data
point corresponds to an individual run which was filmed
using a high-speed camera. We used Python image anal-
ysis tools to extract the distance between magnets as well
as the polar angle θ, and an exploitation of the spectro-
gram of the sound made by the motor tool to determine
the rotation frequency.

As a reminder, according to Eq. (3), the mean polar an-
gle θ should be independent of the frequency and is equal
to twice the rotor inclination γ. To confirm this, we used
as levitating magnet a cylindrical magnet with height
12.5mm and diameter 4mm of remanence 1.29T–1.32T.
Exploiting a video of the experiment, we measured the
angle of inclination of the levitator θ. We were limited in
precision when measuring the angle because it exhibits
small variations due to vertical oscillations. Figure 7 in-
deed shows that the inclination of the levitating magnet
does not depend on the rotation speed, and remains equal
to 2γ with experimental uncertainties. Again, these re-
sult confirm the prediction of our dipolar model.

Combining Eqs. (3) and 11, one finds that the equilib-
rium condition (in the no gravity limit) reads:

r = 3

√
G

2 γ I⊥ ω2
∝ ω−2/3. (12)

The experimental measurements of the equilibrium dis-
tance as a function of the rotation speed are plotted
in Fig. 8. For these experiments, the levitating mag-
net was a sphere of diameter 10mm and remanence
1.22T–1.26T. Errors in ω correspond to the measure-
ment of the rotation speed from video acquisition and
errors in r are determined by the fluctuations in po-
sition during movement for one acquisition. Again,
the predicted ω−2/3 power-law is in excellent agreement
with the data. The fitting parameter takes the value
A′

exp = (1.69 ± 0.02)m.s2/3, while the predicted value

using Eq. (12) is A′
th = (1.48 ± 0.06)m.s2/3. The dis-

agreement between these two values can be explained by

FIG. 8. Equilibrium distance r between the two magnets as
a function of the rotation speed ω. The experimental data is
correctly described by a model r = A′ω−2/3, with A′ a free
parameter, which validates the theoretical result in Eq. (12)
(see text).

the simplicity of our model, which induces systematic er-
rors. In particular, as the magnetic field of the magnets
varies strongly at distances less than few radii, the as-
similation of magnets to point dipoles is a considerable
approximation. Consequently, the actions felt by the lev-
itating magnet are not exactly the force and torque given
in Eqs. (2) and (4). Nevertheless, these two values being
close to each other and of the same order of magnitude
confirms that the model correctly encompasses the main
physical effects. Note that levitation can be obtained for
lower values of the rotation speed but as ω decreases, the
role played by gravity become increasingly preeminent.

IV. CONCLUSION / PERSPECTIVE

In this article, we have proposed a clear explanation of
the levitation phenomenon first described by Ucar [1].
Our approach focuses on the case in which rotor is
slightly tilted from the horizontal, which creates a two-
component magnetic interaction, leading to the existence
of a stable point. Our model is compatible with the ap-
proaches of Ucar [1] and Hermansen et al. [12], but in-
stead of relying on numerical simulation of the dynamical
system, we used appropriate simplifications and analytic
calculations to draw a comprehensible picture of how the
levitation emerges from the interactions. Moreover, we
derived simple scaling laws that match our experimental
data quantitatively.
The theory and results presented here are obtained

with working assumptions whose range of applicability
needs to be discussed and tested.
First, the scaling given by Eq. (11) is derived in the

absence of any source of dissipation. This is a reason-
able assumption which holds for low rotation speeds and
which remains valid at short timescales. While it al-
lows for the explanation of the levitation, arguably in a
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more realistic approach, encompassing wider timescales
and studying the destabilization mechanism and the life-
time of the phenomenon, dissipation, coming either from
air drag or eddy currents heat loss, should be included
as well as energy injection from the rotor magnet.

In the regime presented here, as far as we can tell,
the two magnetic moments remain in the same (rotat-
ing) plane, one magnet rotating, the other precessing. In
general a lag between the two can exist. Indeed, a phase
angle between the rotor and the levitator of (6.4± 5.1)◦

was observed by Hermansen et al [12]. Such a small phase
shift has no significant impact on our model and its con-
clusions, as it induces only a quadratic correction on the
magnetic torque (appendix A). As a lag induces axial
torque (although quadratically small), it may however
be an important degree of freedom for the dynamics on
longer time-scales and for the stability of the system.

Our model treats the two magnets as point-like dipoles.
While it is known that spheres of uniform magnetic mate-
rial indeed create a dipolar field, the deviation from such
a field for non-spherical, or unevenly magnetized levita-
tors may come into play when the magnets get close to
one another. Note however that the levitation is possible
even when considering strongly non-spherical, and thus
less dipolar, levitating magnets (Supplementary Movie
S2 [13]). The limitations mentioned above imply correc-
tions merely of higher order, since our model quantita-
tively describes well the data.

In conclusion, we provided a first quantitative exper-
imental verification of the stabilizing mechanism for an
original magnetic levitation in a rotating dipolar field,
that differs fundamentally from the spin-stabilization of
the levitron. Compared to the latter which balances
weight with magnetic repulsion, trapping occurs only
through magnetic interactions which have both an at-
tractive and a repulsive contribution. The trapping en-
ergy in the milli-Joule range (fig. 4 and [1]) is easily two
orders of magnitude above that of the levitron, making
this levitation far easier to reproduce. Last but not least,
here dissipation helps in reaching the equilibrium posi-
tion, which is maintained as long as the second magnet
is spun, while dissipation limits the levitron’s duration
and stability. There are several interesting ways to
deepen the understanding of the phenomenon that we
have not explored. We believe that the most promising
one would be to add one (or several) degree of freedom to
the small-angle model to study how the destabilization
occurs and what dynamical path it takes to escape the
potential well. It would also be interesting to have an es-
timation of the lower bound of the rotor speed allowing
for levitation, which could be quantitatively compared
to experimental measurements such as the ones made by
Hermansen et al. [12].

For the purpose of open access, the author has applied
a Creative Commons Attribution (CC BY) license to any
Author Accepted Manuscript version arising from this
submission.

Appendix A: Effect of levitator precession phase lag

Consistent with our experimental observations, we as-
sume that the levitator’s magnetic moment is contained
in the same vertical plane as the magnetic moment of
the rotor. Here we discuss the implications of a small
but non-zero constant phase shift between the horizontal
components that rotate at the same rate around the ver-
tical. When the magnetic moment of the rotor is aligned
with −j, note ml = ml(− sin θ sin δ i − sin θ cos δ j +
cos θ k) the moment of the levitator, whose projection
in the (i, j)-plane lags by an angle δ behind that of the
rotor. With eq. (1) the magnetic torque then reads

Γ = ml ×Br(L)

=
−G

r3
((cos γ cos θ + 2 sin γ sin θ cos δ) i

− 2 sin γ sin θ sin δ j+ sin γ sin θ cos δ k)

≈ −G

r3
((1 + 2γ θ) i+ θδk)) with G =

µ0mrml

4π
.

(A1)

Compared to the torque (4) the inclining magnetic torque
∝ i is unchanged to second order in small angles, justify-
ing that we neglect the phase δ. Interestingly there is a
second order term ∝ k that tends to change δ, which may
play a role in stability and in determining the levitator
spin around its axis.

Appendix B: Levitator orbiting around rotation axis

If we consider that the levitator is at r = −zk+δii+δjj
then we can compute the force acting on the levita-
tor. Considering a small deviation from the equilib-
rium presented above, we take γ, θ ≪ 1 and also con-
sider δi, δj ≪ r. Last, we place ourselves at the equi-
librium position on the vertical axis, i.e. we consider eq
(3) to be valid. We then obtain, up to second order in
γ, θ, δi/r, δj/r :

F =
3G

r4

(
4
δj
r
k− (2γ

δi
r
+ 5

δi δj
r2

) i

+ (1 + 2γ
δj
r

− δi
2

2 r2
− 11 δj

2

2 r2
) j

)
(B1)

In the lateral direction, the leading term is F(0) = 3G/r4 j
which is seen on eq. (2), all other terms being of order
two. The discussion of the stability of a very small dis-
placement in the lateral direction would thus necessitate
a quadratic development of all the equations previously
computed and an analysis over long time scales for which
dissipation as well as energy injection can become rele-
vant. Note that since it only stays in the same direction
during a short time (of order 1/ω), the transverse mag-
netic force F ≈ 3G/r4 j can only move the magnet of a
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distance of order

δj
r

∼ F

rmω2
=

6 γ I⊥
mr2

≈ 6γ
(a
r

)2

≪ 1

where a is the characteristic size of the levitating mag-
net. Since this displacement is small the magnet stays,

to a good approximation, on the rotation axis. As the
levitator moves in the opposite direction half a period
later, this magnetic force effectively averages at 0.
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