Article Dans Une Revue Journal of High Energy Physics Année : 2025

The Three-Point Form Factor of $\textrm{Tr}\,\phi^3$ to Six Loops

Résumé

We study the three-point form factor of the length-three half-BPS operator ($\textrm{Tr}\,\phi^3$) in planar $\mathcal{N}=4$ Super-Yang-Mills theory, using analyticity and integrability methods. We find that the functions describing the form factor in perturbation theory live in the same restrictive space of multiple polylogarithms as the one describing the form factor of the stress-tensor operator ($\textrm{Tr}\,\phi^2$). Furthermore, we find that the leading-order data in the collinear limit provided by the form factor operator product expansion (FFOPE) is enough to fix the form factor uniquely, at least through six loops. We perform various tests of our results using the subleading FFOPE corrections. We also analyze the form factor in the Regge limit where two Mandelstam invariants are large; we obtain a compact representation for the form factor in this limit which is valid to all orders in the coupling.
Fichier principal
Vignette du fichier
JHEP02(2025)034.pdf (1.03 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04771152 , version 1 (10-02-2025)

Licence

Identifiants

Citer

Benjamin Basso, Lance J Dixon, Alexander G Tumanov. The Three-Point Form Factor of $\textrm{Tr}\,\phi^3$ to Six Loops. Journal of High Energy Physics, 2025, 02, pp.034. ⟨10.1007/JHEP02(2025)034⟩. ⟨hal-04771152⟩
1 Consultations
0 Téléchargements

Altmetric

Partager

More