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Phase-locking parametric instability coupling longitudinal and transverse waves on
rivulets in a Hele-Shaw cell

Grégoire Le Lay∗ and Adrian Daerr
Matière et Systèmes Complexes UMR7057 CNRS,

Université Paris Cité, 75231 Paris cedex 13, France
(Dated: January 9, 2025)

We report an instability exhibited by a fluid system when coupling two distinct types of waves,
both linearly damped. While none of them is unstable on its own, they amplify one another re-
sulting in a previously unreported convective instability. An external excitation is used to induce
a parametric cross-coupling between longitudinal and transverse deformations of a liquid bridge
between two vertical glass plates. Coherent amplification results for waves satisfying a synchro-
nization condition, which selects a precise wavelength. We derive a model for this instability using
depth-averaged Navier–Stokes equations, showing the physical origin of the co-amplification, and
confirm its relevance experimentally. Our findings open new perspectives in the study of paramet-
rically controlled pattern formation, and invite to search for analogous parametric cross-coupling
instabilities in other systems exhibiting distinct wave types, from plasma to elastic media.

For more than one and a half centuries, the study of
hydrodynamic instabilities has driven our understand-
ing of dynamical systems, and led to the development
of tools to tackle non-linear systems with many degrees
of freedom that are used in all realms of physics and
indeed all sciences. Examples of hydrodynamic instabil-
ities include the laminar-to-turbulent transition [1], the
Rayleigh–Plateau instability of a liquid cylinder [2] or
the Kelvin–Helmholtz instability of the interface between
fluid phases moving relative to one another, as in wind
blowing over water giving rise to waves [3]. Understand-
ing these instabilities is of tremendous importance in en-
vironmental, biological and other natural settings as well
as in many industrial processes, where the instability can
be desirable as in combustion or printing, or deleterious
as in coating [4].

This paper reports on an original parametric insta-
bility that should be relevant in many contexts outside
hydrodynamics. Parametric instabilities arise from the
temporal variation of a multiplicative parameter. In hy-
drodynamics (Faraday instability of an accelerated liq-
uid [5]) or optics (parametric amplification of optical sig-
nals [6]), this variation usually creates a nonlinear cou-
pling of a wave-field to itself (surface height resp. electric
field in the given examples). In contrast, the instability
described here involved the coupling of two distinct wave
types, which do not interact in the absence of external
forcing. The parametric coupling of distinct modes can
also occur in plasma, e.g. Langmuir and ion acoustic
waves, under the effect of an external dipolar field [7, 8].
As a multitude of physical systems can sustain distinct
wave types (e.g. compressive and shear waves in elastic
media), we expect that analogous non-linear wave cou-
pling instabilities may occur in other very different con-
texts from geophysics and acoustics to astrophysics.

Here we subject a liquid filament, henceforth termed
rivulet, to homogeneous acoustic forcing, and describe
a previously unreported instability where the path fol-

lowed by the rivulet becomes sinuous, while simultane-
ously the streamwise mass distribution becomes inhomo-
geneous. We show that both features, although damped
under normal conditions, grow by amplifying one another
through a parametric coupling created by the the acous-
tic forcing. When the difference between fluid advection
velocity and sinusoidal wave speed precisely matches the
ratio of perturbation-wavelength and -period, the cou-
pling becomes coherent and phase-locked, leading to re-
ciprocal amplification. For the sake of clarity we stress
that this cross-coupling and its parametric origin is the
original finding of this article, and fundamentally distin-
guishes the resulting instability from the unforced, in-
ertial meandering instability occuring above a threshold
flow rate [9, 10].

Experimental setup We inject liquid between two ver-
tical and parallel glass plates separated by a gap of air
of thickness b = 0.6mm, forming a Hele-Shaw cell. The
liquid (perfluorinated polyether PFPE, Galden HT135,
density ρ = 1.71 g/ml, surface tension γ = 17mN/m,
kinematic viscosity ν = 1mm2/s) totally wets the glass.
The liquid forms a bridge joining the plates and falling
downwards. Since the plate separation b is chosen inferior
to the capillary length, the bridge is in first approxima-
tion bounded by semi-cylindrical interfaces meeting the
glass with vanishing contact angle [11].

The liquid is injected into the cell through a pipette tip
fed by a gear pump. Underneath the cell the fluid falls
into a container that is continuously weighted, allowing
us to measure the flow rate Q.

We use a camera to look at the rivulet which is back-lit
with quasi-collimated light. The two regions of curved
menisci appear as dark bands on a bright background,
framing a central light band where light passes unhin-
dered through the bulk (fig. 1). This allows us to record
the position of both the menisci as a function of x, from
which we define the rivulet position ζ(x, t) as the mid-
dle of the bright region and the rivulet width w(x, t) as
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FIG. 1. Sketch of the experimental apparatus, not to scale.
The glass panes are 1m high and 30 cm wide, and set b =
0.6mm apart. The lateral boundaries are closed except for a
20 cm range, vertically centered, where loudspeakers impose
the pressure. When viewed head-on, the rivulet appears de-
limited by dark bands where the curved interface refracts light
away from the optical axis.

the distance between the two menisci. By measuring the
width of the dark regions, we are also able to know if the
menisci are still semi-circular or have been deformed.

When not subject to forcing, the rivulet flows straight
vertically or exhibits spontaneous meandering depending
on whether the flow rate is inferior or superior to a critical
flow rate Q∗, the origin of which has been studied previ-
ously [10]. In both cases, the rivulet is always observed
to be of constant width. Indeed, since the curvature of
the interface in the transverse (y, z) plane is fixed by the
cell spacing, the rivulet is not subjected to the Plateau–
Rayleigh instability and any variation in width is linearly
damped.

The rivulet behaves as a 1-dimensional membrane ef-
fectively splitting the cell in two regions, into which we
force air using speakers on the sides of the cell (fig. 1)
driven by a sinusoidal signal of frequency f0 in a push-
pull configuration: when one speaker pushes air into the
space on the left of the rivulet, the other draws air on
the right, and the process is reversed half a period later.
Since the acoustic wavelength in air corresponding to the
frequency used is always larger than the cell width, the
rivulet is subjected to spatially homogeneous forcing over
a region spanning 20 cm lengthwise. The neutral line
around which the rivulet oscillates can display a small
shift in the z direction, with respect to the path in the
absence of forcing, over the scale of the excited portion
of the cell. This is a consequence of a slight asymme-
try in amplitude of the movements induced by the two
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FIG. 2. Left: Snapshots of the rivulet over one forcing pe-
riod T =20ms, for Q>Q∗ (Q=(46 ± 1)mm3/s). The phase
velocity vdrift of the sinuous deformation is smaller than that
at which the liquid bulges flow downstream. Note how the
pattern reproduces exactly after one period T , up to a trans-
lation. The dashed blue line represents the position of the
rivulet averaged in time and space. The spatially averaged
(over x) rivulet position coincides with this line at t=0, T/2, T
and the rivulet is off-centered on the left at t=T/4 and sym-
metrically on the right at t=3T/4. Right: decomposition of
the rivulet profile into the z-wise deformation of the center-
line (ζ, in blue) and the width modulation (w, in red).

speakers.

Results At leading order, the rivulet responds to the
forcing by moving sideways, i.e. along z, harmonically.
At low to moderate frequencies we observe that inertia
is negligible, that is the rivulet displacement is in phase
with that of the loudspeaker membranes. This sideways
movement of the whole rivulet at the forcing frequency is
always present, as indicated by the displacement relative
to the blue dashed line in fig. 2. In the experiments
that follow, we used transverse displacements of 0.2mm–
2mm, depending on the frequency.

On top of this synchronous sideways movement, when
the forcing amplitude is above a certain threshold that
depends on the forcing frequency, the rivulet adopts a
sinuous trajectory with a well defined wavelength λ that
is orders of magnitude below the acoustic wavelength.
Moreover, the width of the rivulet is also modulated
with the same spatial periodicity (fig. 2 and movie S1;
this modulation is sometimes termed varicose mode in
the literature). Movie S2 shows the initial growth after
the onset of forcing, while movie S3 shows how the per-
turbations quickly straighten out when the excitation is
switched off.

The width modulations are advected streamwise at a
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velocity only weakly depending on frequency and flow
rate, whereas the sinuous pattern is either static or drifts
slowly at a drift speed vdrift that can be zero, positive or
negative and that depends on the forcing frequency and
the flow rate (fig. 3 inset).

This reorganization of the rivulet is observed for a wide
range of frequencies (10Hz–1000Hz). The wavelength
nears the system size at the low end of this range, and
drops below the gap size b and optical resolution at high
frequencies, indicating that the frequency range of ob-
servable response could be extended even further through
appropriate modifications of the set-up.

When the drift speed is zero, we observe that the
rivulet profile is exactly the same, both in lateral dis-
placement and width, every period T . This also holds,
up to a translation in x, when the drift speed is non-
zero (fig. 2). In other terms the path and width mod-
ulations are phase-locked. This suggests that the wave-
length selection is given by the relative speed of the width
modulation with respect to the path modulation: after
one period, compared to the path modulation, the width
modulation has traveled exactly one wavelength further
downstream. The wavelength thus acts as a degree of
freedom that allows the rivulet to respond to any forcing
frequency (movie S1).

This is remarkably confirmed by plotting the distance
traveled by the width modulation — i.e. the wavelength
λ plus path drift distance in one period vdrift T — as a
function of the external forcing period T (fig. 3). Assum-
ing the phase speed of the width modulations matches
the bulk (Darcy) flow speed u0 = g b2/(12 ν) = (280 ±
40)mm/s, one expects the relation λ+ vdrift T = u0 T to
hold. We find quantitative agreement over two orders of
magnitude with this prediction, without any adjustable
parameter.

The points are slightly offset from the curve for peri-
ods smaller than 4ms, an effect that we attribute to the
meniscus deformation. Indeed, the semi-circular shape of
the meniscus is maintained for slow rivulet movements,
but viscous dissipation changes the dynamic contact an-
gle on the glass significantly for faster motion. When the
rivulet is subjected to fast transverse movements, the
interface flattens where the fluid advances while the con-
cavity increases where it retreats. For this reason, at
high frequencies we experimentally observe the interface
to become non-circular, with the meniscus shadows show-
ing time oscillating asymmetry (not shown). We thus
expect the average viscous dissipation to differ from the
semi-cylindrical meniscus case, affecting the fluid velocity
and/or the sinuous drift velocity.

The measured drift speed of the path modulation (fig. 3
inset) shows a non-trivial behavior: for flow rates below
the spontaneous meandering threshold (Q < Q∗) the sin-
uous pattern is stationary for frequency below 100Hz,
and drifts upstream at higher frequencies. For flow rates
above Q∗ and at low frequencies, the sinuous pattern

FIG. 3. The distance traveled over one period by the width
modulation as a function of the forcing period for two flow
rates Q, (26±1)mm3/s and (46±1)mm3/s, being respectively
below and above the spontaneous meandering threshold Q∗.
The dashed line is the linear function of slope u0. Inset: The
sinuous pattern drift speed vdrift as a function of the forcing
period.

moves downstream at the spontaneous meanders’ phase
speed, which we measure independently in the absence
of forcing.
Discussion In this section we propose a model for

the rivulet dynamics, based on the dominant physical
ingredients. We identify the mechanism for the unsta-
ble cross-amplification of phase-locked path and width
modulations.
The action of the speakers can be taken as equivalent

to that of two infinite rigid vertical walls placed sym-
metrically at distance ±ℓ0 from the rest position of the
straight rivulet at ζ = 0, moving horizontally so that
their position relative to the situation at rest is given
by Z(t) = Z0 cos(2πf0t), and acting like pistons on the
air to the left and right of the rivulet. From Mariotte’s
law, for small displacements it follows that the force per
unit length exerted on the rivulet is bρΠ(Z − ⟨ζ⟩x) with
Π = 2P0/(ρℓ0), where P0 is the atmospheric pressure and
⟨ζ⟩x is the space-averaged position of the rivulet. Thus
the rivulet behavior is given by

w(∂t + βu·∇)u = wg − wµu+ wΓ∇(∂xxw)

+ (Γ∂xxζ − µclu · n+Π(Z − ⟨ζ⟩x))n, (1)

(∂t + u·∇)w = −w∇ · u. (2)

The first equation is the depth-averaged Navier–Stokes
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equation integrated over the width of the rivulet w, where
u = uex + vez is the fluid velocity and n is a unit vec-
tor normal to the rivulet path ζ. The second equation
reflects mass conservation.

The LHS of equation (1) represents inertia, where the
numerical prefactor β ≃ 1 accounts for the velocity’s y-
profile. Henceforth, following [10], we take β = 1 to sim-
plify the equations without losing physical relevance. The
terms on the right represent, in this order, gravity, vis-
cous friction internal to the rivulet following from Darcy’s
law with µ = 12ν/b2, streamwise Laplace pressure gradi-
ent inside the rivulet due to width variations and forces
normal to the rivulet center-line. Note that this stream-
wise pressure gradient tends to regularize width varia-
tions, unlike in the Rayleigh–Plateau instability of cylin-
drical filaments.

The last term includes three contributions of normal
forces. Surface tension γ tends to straighten the rivulet,
with ∂xxζ being the curvature of the rivulet in the (x, z)
plane and Γ = πγ/(2ρ) [11]. The second term makes for
contact line friction, accounting for the high dissipation
at the meniscus edges when the rivulet slides transver-
sally on thin films of thickness h ≪ b on the plates out-
side the rivulet: µcl ≈ bµ

√
b/h [10, to be published],

with h =3 µm for Q =(46 ± 1)mm3/s. The last term is
the acoustic pressure discussed above.

The base solution is a straight rivulet of constant width
w0, located at z = ζ0(t) with velocity u = (u0=g/µ, v0 =
∂tζ0(t)). The rivulet rest width w0 in the experimen-
tal results presented here was measured to be (0.22 ±
0.04)mm for Q = (26 ± 1)mm3/s and (0.33 ± 0.04)mm
for Q = (46 ± 1)mm3/s. To understand the mecha-
nism leading to the instability we consider a weak per-
turbation of this straight rivulet with u = u0 + ϵu1(x, t),
w = w0 + ϵw1(x, t) and ζ = ζ0(t) + ϵζ1(x, t). The trans-
verse speed is v = (∂t + u · ∇)ζ. The Navier–Stokes
equation (1) projected on ez gives at order 0

w0(∂t + µ)∂tζ0 = −µcl∂tζ0 +Π(Z − ζ0) =: w0F (t). (3)

This equation describes the back and forth membrane-
like movement of the rivulet. It is linear in the forcing
amplitude, and indeed the experimental space-averaged
rivulet position ζ0 is always well fitted by a sine function
of time.

At order 1 the same projection yields an equation gov-
erning the fluid path ζ,

[w0(∂t + u0∂x)(∂t + u0∂x + µ)− Γ∂xx + µcl∂t]ζ1 = −F w1

(4)

which corresponds to equation (4) from [10] with an extra
forcing term on the RHS. This term couples the purely
time-dependent forcing F and the width w which is ad-
vected at speed u0. It is destabilizing and causes width
modulations in conjunction with acoustic forcing to am-
plify path perturbations.

FIG. 4. Spatio-temporal power spectrum of the position
(blue) and width (red) of the rivulet for Q > Q∗ (Q =(46 ±
1)mm3/s). The frequency scale is set by the forcing fre-
quency f0 = 50 Hz, the wavenumber scale by the dominant
mode q0 = 0.193 mm−1. The color intensity indicates the
strength of the signal on a logarithmic scale, with a cut-off to
white below -110 dB of the peak signal. An equivalent plot
for a lower flow rate Q < Q∗ is included in the SI as fig. S1.

By projecting equation (1) on ex, we obtain at first
order in ϵ the evolution equation for the width w,

[(∂t + u0∂x)(∂t + u0∂x + µ) + w0Γ∂xxxx]w1 = w0F ∂xxζ1
(5)

The right-hand term can be understood as a stretching
or compression of curved rivulet segments by the pressure
difference across the rivulet. This term implies that the
growth of width perturbations is a consequence of path
modulations combined with acoustic forcing.
An interesting property of eqn. (4) and (5) is that the

destabilizing RHS does not contain the quantity differen-
tiated on the LHS. In other words neither the sinuosity
ζ1 nor the width variations w1 are directly amplified by
the forcing, but rather the acoustic forcing allows mu-
tual growth by cross-coupling the two modes. While a
coupling between sinuous and width variation modes is
not unusual and is found for example in jets [12, 13], usu-
ally both modes are intrinsically unstable, can exist on
their own and compete against each other. Here sinu-
ous and width perturbations are linearly damped when
considered independently, i.e. in the absence of forcing-
induced coupling. They grow only by sustaining one an-
other through parametric coupling.
We can find experimental confirmation of this mecha-

nism by looking at the spatio-temporal Fourier transform
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of the position and width of the rivulet. Using image
analysis tools, we extract from the video the width and
the position of the rivulet as a function of time and the x-
coordinate (fig. 2 right, figs. SF2 and SF3). In fig. 4 and
fig. S1 we represent the logarithm of the power spectrum
of ζ and w in the reciprocal space (q, f). Zones of high
intensity are organized in localized spots, because of the
quasi-periodicity of the pattern. For non-zero wavenum-
bers, the more intense harmonics are at positive frequen-
cies, corresponding to positive speed (downward displace-
ment).

More can be said from fig. 4 and fig. S1 on the spatio-
temporal behavior of the rivulet. For instance, note how
for q = 0, the displacement spectrum ζ̂ has peaks (blue
patches) at ±f0 but not at ±nf0 with n > 1: this reflects
the fact that the space-averaged response of the rivulet
is linear and the global movement ζ0(t) is sinusoidal in
time, in accordance with equation (3).

More importantly, the patches of highest power in ŵ
(red) lie on a line whose slope is the speed of the width
modulations. The relevance of the mutual amplification
mechanism described above is supported by the fact that
on a given vertical line the high-signal regions alternate
between ŵ (red) and ζ̂ (blue), the gap between two con-
secutive spots being the forcing frequency f0. This shows
that both modes are coupled by a function oscillating at
f0, and that no mode is unstable on its own (or we would
see all its time harmonics). Finally the localization of
the spectrum at discrete wavenumbers is also explained
by our model, positive feedback and mutual amplifica-
tion of longitudinal and transverse waves requiring the
resonance condition u0 q = vdrift q + n f0 to be met.
Conclusion and perspectives Under the effect of a

spatially uniform forcing, a homogeneous membrane or
string is expected to respond by homogeneous transverse
translation. Remarkably, the liquid rivulet studied in this
letter develops a pattern with a well defined wavelength
combining transverse deformations of the flow path and
longitudinal modulations of the local cross-section.

It is far from obvious that the added degree of freedom
with respect to a string, namely the possibility to redis-
tribute mass along the rivulet, should lead to an instabil-
ity. Indeed both modes growing simultaneously, sinuosity
and width variations, are linearly damped, and they am-
plify one another only when coupled by the forcing. This
contrasts with vibrated soap films and strings loaded
with beads, where mass redistribution merely causes the
broadening of resonances[14, 15].

Interestingly, although the acoustic forcing is additive,
the effective forcing felt by the sinuosity and width vari-
ations is multiplicative. Formally this parametric cross-
coupling is reminiscent of the way standing waves in
the annular Faraday instability can be seen as arising
through the coupling of counter-propagating waves [5].
The resonance condition to the amplification indicates a
possible connection with the energy transfer due to res-

onant three-wave interaction in the case of stratified or
homogeneous free-surface flows over a non-flat bottom
[16, 17].

The selection of the pattern drift speed is an open prob-
lem. We attributed modifications of the width advection
speed at high frequencies to asymmetric deformations of
the rivulet cross-section. The study of these deforma-
tions, which can lead to rivulet breaking, could open the
perspective of investigating the problem of the behavior
of an air-fluid interface in a Hele-Shaw cell in the oscil-
lating regime where inertial effects can be as important
as capillary ones[18]. The forced rivulet also allows the
coupling and simultaneous study of both the retreating
and advancing menisci.

As an experimental investigation of a previously un-
reported instability, validated by theoretical modeling
that identifies the mechanism as a new type of para-
metric coupling, this Letter opens exciting perspec-
tives for new research and applications. The genera-
tion of wavelengths that are orders of magnitude smaller
than the acoustic wavelength of the forcing could be
exploited for controlled liquid fragmentation, mixing,
and micro-manufacturing. We also expect fundamen-
tal research on dynamical wetting to take advantage of
the broad frequency response, that can for instance be
used to probe timescales relevant in surfactant diffu-
sion/adsorption/desorption dynamics.
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