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An algebraic method for multi-dimensional derivative estimation

Samer Riachy, Yara Bachalany, Mamadou Mboup and Jean-Pierre Richard

Abstract— This communication revisits the algebra-based
results for derivative estimation presented by Fliess and co-
authors in 2005. It is proposed, here, to consider multi-
dimensional functions, namely scalar or vector fields of several
variables. Such fields are locally represented by a vector Taylor
series expansion, and a computation technique is presented so
to put successive partial derivatives (for instance, the gradient,
the Hessian matrix...) as functions of iterated integrals of the
measured quantities.

I. INTRODUCTION

Classical field theory [2] (not to be confused with algebraic
field theory) is a well developed branch of mathematics,
suitable to describe phenomena with distributed parameters
such as fluid mechanics, heat transfer, econometrics [10],
optimization [3] and many others.

Basic ingredients of the field theory are operators such
as gradient vector, Jacobian, Laplacian, Hessian, divergence,
curl, etc... Close looking to these operators, one can notice
that they are combinations of successive partial derivatives
of the field (scalar or vector) with respect to its coordinates.

As stated above, distributed parameters systems are mod-
eled as fields (scalar or vector), and the above mentioned
operators are manipulated in order to have a qualitative idea
for a given problem. If one seeks quantitative description,
numerical simulations have to be done.

One of the major problems in numerical simulation is the
dilemma of accuracy and computational cost in estimating
the above operators.

As an example, consider the problem of edge detection in
image processing. Roughly speaking, an image is a scalar
bidirectional field (x, y), and the problem of edge detection
can be solved by computing the Laplacian at each of the
image pixels. The Laplacian operator is given by:

L =
∂2

∂x2
+

∂2

∂y2
.

Thus estimating the Laplacian reduces to estimating second
order partial derivatives with respect to x and y.
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Technologies de Lille, 59651 Villeneuve d’Ascq, France
yara.bachalany@ed.univ-lille1.fr

M. Mboup: Projet ALIEN, INRIA FUTURS and UFR de Mathématiques
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Usually those quantities are estimated with use of finite
differences, resulting in poor estimation in the presence of
noise.

In this paper, we propose a methodology whose purpose
is to compute an estimate for successive partial derivatives
of a given field.

Robust and fast time derivation of noisy signals is now
possible, thanks to an algebra-based approach initiated in [7],
and oriented toward signal derivation in [4], [5], [6], [8], [9].
Advanced results on algebra-based derivative estimation can
be found in [9], which basic concepts well be recalled in
section II.

Based on a truncated Taylor expansion, nth order deriva-
tives are obtained through iterative integrations on the signal.

In [4], estimation of the derivatives of a multidimensional
signal was considered. The estimator developed in [4] was
based on a 2nd order bidimensional Taylor expansion, and
was constituted of a linear combination of the signal and
its (first) integral. But, using the original signal (without
integration) may introduce perturbations in noisy cases. In
this paper, we present a more general estimators based on a
mulitidimentional N th order Taylor expansion. We will see
that the resulting estimators are linear combination of iterated
integration on the multidimensional signal.

A sufficiently smooth field can be locally represented by
its vector Taylor expansion to the N th order. Consider a
truncation to the N th order of some Cr, r ≥ 2, function
f(x) : U ⊆ Rn → R defined on some compact set U , with
x = (x1, · · · , xn)T :

f(x + ∆x) = f(x) + G∆x + ∆xT H∆x + · · · , (1)

G =
[

Ix1 . . . Ixn

]
,

H=


Ix2

1
Ix1x2 . . . Ix1xn

Ix2x1 Ix2
2

. . . Ix2xn

...
...

. . .
...

Ixnx1 Ixnx2 . . . Ix2
n

 .

The Ixi , Ix2
i

i = 1 · · ·n are partial derivatives of f(x)
with respect xi. On the one hand, they can be seen as the 1st

and 2nd derivative estimation of a mono-dimensional noisy
signal. Thus the derivative estimation technique from [9] can
be used. Section (II) recalls its basic concepts. On the other
hand, a vector Taylor expansion is used to compute those
quantities. Section (III) presents some examples.



Generic forms can also be computed resulting in families
of estimators. One of them is used for the estimation of
the off-diagonal terms for the Hessian matrix. This is also
presented in section (III).

In section (IV), a comparison with finite differences
method is provided for the computation of successive partial
derivatives on an academic example.

II. NUMERICAL DIFFERENTIATION: A RECALL

This part recalls the framework introduced in [9]. Let
y(t) = x(t) + n(t) be a noisy observation on a finite time
interval of a real-valued signal x(t), the derivatives of which
are to be estimated. The signal x(t) is assumed to be analytic.
It is known that an analytic signal can be expanded into a
Taylor series:

x(t) =
∑
i≥0

x(i)(0)
ti

i!
.

On some finite interval of time, a truncation of the
Taylor expansion to some order N is acceptable as a ‘good’
approximation:

xN (t) =
N∑

i≥0

x(i)(0)
ti

i!
, t ∈ [0, T ]. (2)

The successive derivatives estimation requires some math-
ematical manipulation on (2) such as time derivation and
integration by parts. Doing these operations several times in
a row is tedious and lengthy, while doing the same in the
operational domain reduces computation time and provides
more compact forms. For this reason, applying the Laplace
transform to (2) gives:

sN+1x̂N (s) = sNx(0) + sN−1ẋ(0) + · · ·+ x(N)(0),

where x̂N (s) is the operational analog to xN (t) on [0, T ].
To be able to calculate individual estimators for the nth

order derivative (see [9] for a detailed discussion on what
is called simultaneous and individual estimators and the
difference between), a properly chosen differential opera-
tor is needed to annihilate all the remaining coefficients
x(j)(0), j ∈ {0, · · · , N} − {n}. One differential operator
has the form:

ΘN,n
κ =

dn+κ

dsn+κ

1
s

dN−n

dsN−n
κ ≥ 0.

It yields the following estimator for xn(0) :

xn(0)
sν+n+κ+1

=
(−1)n+κ

(n + κ)!(N − n)!
1
sν

ΘN,n
κ (sN+1x),

which is strictly proper whenever ν is of the form ν =
N + 1 + µ, µ ≥ 0. A family of strictly proper estimators
parameterized by κ, µ and N is obtained. Back to time
domain, one obtains:

x̃
(n)
N (0) =

(ν + n + κ)!(−1)n+κ

(n + κ)!(N − n)!T ν+n+κ

∫ T

0

Π(τ)x̂(τ)dτ,

with:

Π(τ) =

N−nX
i=0

„
N − n

i

«
(N + 1)!

(n + i + 1)!

N+κX
j=0„

n + κ
j

«
(n + 1)!

(1 + j − κ)!

(T − τ)ν+κ−j−2(−τ)i+j

(ν + κ− j − 2)!
.

As a concrete final form for the estimator, one may obtain
after normalization of the integral into [0, 1] forms like the
ones below:

It =
−30
T

∫ 1

0

(3− 32τ + 90τ2 − 96τ3 + 35τ4)f(Tτ)dτ,

for n = 1, N = 2, µ = 5, κ = 1.

It2 =
336
T 2

∫ 1

0

(4− 75τ + 360τ2 − 700τ3 + 600τ4

−189τ5)f(Tτ)dτ.

for n = 2, N = 3, µ = 6, κ = 1.

III. ESTIMATORS BASED ON THE VECTOR
TAYLOR EXPANSION

Consider the N th order vector Taylor series expansion for
the scalar field f(x). Note that the development in (1) may
be expressed in a more general form as:

f(x) =
N∑

i=0

 1
i!

(
n∑

k=1

xk
∂

∂xk

)i

f(x)


x=0

, (3)

with:(
∂i1

∂xi1
1

∂i2

∂xi2
2

· · · ∂in

∂xin
n

)
f(x) := I

x
i1
1 x

i2
2 ···xin

n
:= I

Πn
l=1x

il
l

,

i1 + i2 + · · ·+ il = i.

The multivariable Laplace transform is a linear operator
on a scalar field f(x) with x = (x1, . . . , xn)T ∈ Rn

+,
transforming it into a scalar field f̂(s) with s =
(s1, . . . , sn)T ∈ Cn and defined as follows:

f̂(s) =
∫

Rn
+

f(x) exp−sT x dx. (4)

We follow the same reasoning as in section (II). The idea
is to try to put the desired partial derivative (to be estimated)
as a function of iterated integrals of the observed quantities.
Computation are far more complex than the one-dimension
case in section (II). We start by some examples, to show
how to proceed and, then, we present a generic form for the
computation of the off-diagonal terms of the Hessian matrix.



A. Introductory examples

Consider a scalar vector field depending on two variables
z = f(x, y). Its Taylor truncation (for N = 2) around (0, 0)
is given by:

f2(x, y) = I(0, 0) + Ix(0, 0)x + Iy(0, 0)y +
1

2
Ix2(0, 0)x2

+
1

2
Iy2(0, 0)y2 + Ixy(0, 0)xy.

In the operational domain, and after omitting (0, 0) from
the above equation, one obtains:

I(s, p) =
I

sp
+

Ix

s2p
+

Iy

sp2
+

Ix2

s3p
+

Iy2

sp3
+

Ixy

s2p2
(5)

1) Estimation of the 1st derivative using a bidimentional
Taylor expansion: To compute Ix, we try to manipulate (5)
so to isolate Ix. Start by multiplying (5) by s3p3 and then
derivate two times with respect to p and once with respect
to s. Next multiply by 1

sp and differentiate once with respect
to s. The right-hand side of (5) reduces to −2Ix

s2p . Applying
the same operations to the left-hand side of (5) we obtain:

18I(s, p) + 30s
∂I(s, p)

∂s
+ 18p

∂I(s, p)
∂p

+ 30sp
∂2I(s, p)

∂s∂p

+3p2 ∂2I(s, p)
∂p2

+ 5sp2 ∂3I(s, p)
∂s∂2p

+ 6s2 ∂2I(s, p)
∂s2

+6s2p
∂3I(s, p)
∂s2∂p

+ s2p2 ∂4I(s, p)
∂s2∂p2

= −2
Ix

s2p

Note that multiplying by s (or p) corresponds to derivate
with respect to x (or y) in the time domain, which is not
desirable. For this reason, multiply (6) by 1

s3p3 and then
apply the inverse transform (see appendix) to return back
to time the domain. The following form is obtained:

18
4

∫ X

0

∫ Y

0

(X − x)2(Y − y)2I(x, y)dxdy +

30
2

∫ X

0

∫ Y

0

(X − x)(Y − y)2(−x)I(x, y)dxdy +

18
2

∫ X

0

∫ Y

0

(X − x)2(Y − y)(−y)I(x, y)dxdy +

30
∫ X

0

∫ Y

0

(X − x)(Y − y)(−x)(−y)I(x, y)dxdy +

3
2

∫ X

0

∫ Y

0

(X − x)2(−y)2I(x, y)dxdy +

5
∫ X

0

∫ Y

0

(X − x)(−x)(−y)2I(x, y)dxdy +

6
2

∫ X

0

∫ Y

0

(Y − y)2(−x)2I(x, y)dxdy +

6
∫ X

0

∫ Y

0

(Y − y)(−x)2(−y)I(x, y)dxdy +∫ X

0

∫ Y

0

(−x)2(−y)2I(x, y)dxdy +

= −2Ix
X4

4!
Y 3

3!
.

After an appropriate change of variable to normalize the
integrals over the interval [0, 1], the final form is obtained:

Ix =
−36
X

∫ 1

0

∫ 1

0

(−48x− 36y − 160xy2

−180x2y + 9 + 30y2 + 45x2 + 150x2y2

+192xy)I(Xx, Y y)dxdy (6)

2) Estimation of the Ix2 , Ixy derivatives using a bidimen-
tional Taylor expansion: Similarly, to compute an estimator
for Ix2 , one has to manipulate (5) so to isolate Ix2 . One way
is to successively apply 1

s3p4
∂2

∂s2
∂2

∂p2 s3p3. The final form in
time domain and after normalization of the integrals over
[0, 1] is the following:

Ix2 =
180
X2

∫ 1

0

∫ 1

0

(−18x− 12y − 60xy2

−72x2y + 3 + 10y2 + 18x2 + 60x2y2

+72xy)I(Xx, Y y)dxdy. (7)

Similarly applying 1
s3p3

∂
∂p

∂
∂s

1
sp

∂
∂p

∂
∂ss3p3 on (5), we ob-

tain:

Ixy =
144
XY

∫ 1

0

∫ 1

0

(−240x2y − 48y − 48x

−240xy2 + 9 + 45y2 + 45x2 + 225x2y2

+256xy)I(Xx, Y y)dxdy. (8)

Note that (8) is symmetric in x and y.

B. Generic form for Ixiyj

The equivalent equation to (3) in the operational domain
is obtained through the Laplace transform (4):

f̂N (S) =
N∑

n=0

{
1
n!

n!
Πk

i=1s
n+1
i

[
n∑

i1=0

n∑
i2=n−i1

n∑
i3=n−i2

· · ·

n∑
ik−1=n−ik−2

k∏
f=0

s
if

f I
Πk

f=0x
n−if
f


with ik = kN −

∑k−1
l=1 il. The elementary Laplace trans-

formation used to obtain the above equation are shown in
appendix.

To estimate Ixixj
{i, j} = 1, . . . , n, multiply by the

differential operator:

ΞN,n,i,j
κ1,κ2

= Ω
∏

l∈{1,..,n}−{i,j}

(
∂N

∂sN
l

)
,

with

Ω =
∂κ1+1

∂sκ1+1

∂κ2+1

∂sκ2+1

1
sisj

∂N−1

∂sN−1
i

∂N−1

∂sN−1
j

.

It yields the following estimator for Ixixj {i, j} = 1, . . . , n

Ixixj

sκ1+2
i sκ2+2

j Πn
l=1s

il

l

= α
1

Πn
l=1s

il

l

ΞN,n,i,j
κ1,κ2

n∏
l=1

(
sN+1

l

)
f(S),



with

α =
(−1)κ1+κ2+2

(κ1 + 1)!(κ2 + 1)!(N !)n−2[(N − 1)!]2
.

Similar generic forms for all terms in (3) can also be
computed.

IV. NUMERICAL SIMULATIONS

In order to show the efficiency of the above developed es-
timators, simulations are achieved on a bidimensional signal
given by f(x, y) = sin( 1

2x2+ 1
4y2+3)cos(2x+1−ey). The

obtained results are compared with finite differences methods
from [1]. A step sampling of (0.001× 0.001) is used. As it
is clear, estimators are computed on some elementary (non-
infinitesimal) surface over [0, X]×[0, Y ] with X = Y = 0.06
(for noise free simulations). Such surface involves 7×7 = 49
samples.

Fig. 1. 3-D plot of f(x, y) = sin( 1
2
x2 + 1

4
y2 + 3)cos(2x + 1− ey)

The derivatives are computed at a point (xi, yi) with yi =
2 and xi ranging from −2 to 7. In fact, at each point of
the line (−2 ≤ xi ≤ 7, yi = 2), the elementary surface
needed for the computation is taken around the particular
point (xi, yi).

Simulation results are shown in figures (2) and (3). The
second order derivative (7) is plotted in a yellow thick line,
while the finite differences ([1] section 25.3.23) is plotted in
a red thin line in figure (2). Figure (3) shows the estimation
of Ixy based on (8) in a thick yellow line and the finite
differences from ([1] section 25.3.26) in a thin red line. In
figures (2) and (3) the formal derivatives are in dashed green.
It is easily seen that the finite differences lacks curvature in
comparison to the algebra-based derivative.

Next, the surface is corrupted with noise n(x, y). The
noise level is measured by the signal to noise ratio in dB,

i.e., SNR = 10 log10

(P
i,j |f(xi,yj)|2P
i,j |n(xi,yj)2|

)
. In the following

simulation, the SNR is set to SNR = 25 dB. Figure (4)
shows a slice of the noisy surface in the plane xi = 2 and
for yi ranging from −1 to 3.

Fig. 2. Estimation of Ix2

Fig. 3. Estimation of Ixy

Fig. 4. A slice of the noisy surface at xi = 2 and −1 < yi < 3, 25 dB



A comparison between the algebra-based, and finite dif-
ference 1st derivative estimation are compared in figures
(5) and (6) respectively. The elementary surface needed
for computation is of 80 × 80 samples. The same surface
dimension (80×80) is used in both cases. The algebra-based
approach shows robustness with respect to noise. Note that
the estimation in (5) is subject to a delay. Following the
same reasoning as in [9], an explanation through the Jacobi
polynomials can be given. This is left for another work.

Fig. 5. Algebra-based estimation of the 1st derivative, Ix

Fig. 6. Finite difference estimation of the 1st derivative, Ix

We consider now the estimation of 2nd order derivatives
of the noisy surface, namely Ix2 and Ixy . The estimations
obtained with an SNR = 25 dB for the algebra-based
and finite difference estimators are affected by noise. When
considering a higher signal to noise ratio (SNR = 35 dB),
one obtains the figures (7), (8) and (9). Figure (8) shows an
estimation of Ixy . Computations are done on an elementary
surface of 150 × 150 samples. The finite difference (in
dashed red line) from ([1] section 25.3.26) shows robustness
with respect to noise in comparison to the algebra-based
estimation (in solid blue line), but less performance when
the signal curvature increase. In figure (9), an estimation of
Ix2 is plotted in a dash dotted blue line and compared to
finite difference from ([1] section 25.3.24 in dashed red and
25.3.25 in dotted cyan line). The formal 2nd derivative is
shown in solid green, a square window of 80×80 is used in
the simulation. Note that the algebra-based approach shows
better performance. We hope to improve the estimation
through the injection of a delay as in [9].

Fig. 7. A slice of the noisy surface at xi = 2 and −1 < yi < 3, 35 dB

Fig. 8. Estimation of Ixy

Fig. 9. Estimation of the 2nd derivative, Ix2



V. CONCLUSION

In this communication, we have presented an extension
of the algebra-based derivative to multidimensional signals.
Based on a vector Taylor expansion and the multivariable
Laplace transform, estimators are computed. Those estima-
tors are iterated integrals over the observed multidimensional
signal. Our estimators are compared to finite differences
methods from the literature. As demonstrated in [9], the in-
troduction of a delay in the estimators improves considerably
the quality of estimation and its robustness with respect to
noise. A similar reasoning is hoped to be attached to the
multidimensional estimators.

VI. APPENDIX

A. Laplace transform

In transforming from time domain into the operational
domain, the following Laplace transform is used:

L

(
k∏

i=1

xni
i

)
=

k∏
i=1

ni!
sni+1

(9)

To demonstrate this transform, start first with k = 2 which
yields to:

L(
xn

n!
ym

m!
) =

1
sn+1

1
pm+1

.

Suppose G(x, y) = xn

n!
ym

m! with n, m ∈ Z. Then,∫ ∞

0

e−py

∫ ∞

0

e−sxG(x, y)dxdy

=
∫ ∞

0

e−py

∫ ∞

0

e−sx xn

n!
ym

m!
dxdy

=
∫ ∞

0

e−py ym

m!

∫ ∞

0

e−sx xn

n!
dxdy

=
∫ ∞

0

e−py ym

m!
1

sn+1
dy

=
1

sn+1

∫ ∞

0

e−py ym

m!
dy

=
1

sn+1

1
pm+1

.

The general formula (9) is easily deduced by recurrence
on xi.

B. Inverse transform
Back to time domain this inverse-transform is used:

L−1

 
1Qk

i=1 s
ni
i

da1+···+akIQk
i=1 ds

ai
i

!
=

1Qk
i=1(ni − 1)!

Z X1

0
· · ·
Z Xk

0

kY
i=1

(Xi − xi)
ni−1

kY
i=1

(−xi)
aiI(x1, x2, · · · , xk)dxk · · · dx1 (10)

To demonstrate this inverse-transform, start first with k = 2,
which yields:

L−1(
1
sn

1
pm

∂a+bI

∂sadpb
)

Let G = ∂bI
∂pb ,

1
snpm

∂aG

∂sa
=

1
pm

1
sn

∂aG

∂sa

=
1

pm

∫ (n)

(−x)aGdx =
∫ (n)

(−x)a 1
pm

dbI

dpb
dx

=
∫ (n)

(−x)a

∫ (m)

(−y)bIdydx

=
∫ (n) ∫ (m)

(−x)a(−y)bIdydx

=
1

(n − 1)!(m − 1)!

Z X

0

Z Y

0
(X−x)

n−1
(Y − y)

m−1
(−x)

a
(−y)

b
Idydx.

The general formula (10) is easily deduced by recurrence
on xi.
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