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Abstract 

Purpose. The aim of this study is to define and illustrate metrics for the external evaluation of 

a population model. 

Methods. In this paper, several types of metrics are defined: based on observations 

(standardized prediction error with or without simulation and normalized prediction 

distribution error); based on hyperparameters (with or without simulation); based on the 

likelihood of the model. All the metrics described above are applied to evaluate a model built 

from two phase II studies of gliclazide. A real phase I dataset and two datasets simulated with 

the real dataset design are used as external validation datasets to show and compare how 

metrics are able to detect and explain potential adequacies or inadequacies of the model. 

Results. Normalized prediction errors calculated without any approximation, and metrics 

based on hyperparameters or on objective function have good theoretical properties to be used 

for external model evaluation and showed satisfactory behaviour in the simulation study. 

Conclusions. For external model evaluation, prediction distribution errors are recommended 

when the aim is to use the model to simulate data. Metrics through hyperparameters should be 

preferred when the aim is to compare two populations and metrics based on the objective 

function are useful during the model building process. 

KEY WORDS: model evaluation, metrics, external validation, population pharmacokinetics, 

posterior predictive check
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INTRODUCTION 

Population pharmacokinetic (PK) and/or pharmacodynamic (PD) analyses using 

nonlinear mixed-effects models are increasingly used during drug development [1-3] and for 

simulation of clinical trials [4-6]. The use of population pharmacokinetic modelling in the 

drug development process is recommended in the FDA’s guidance for industry to help 

identify differences in drug safety and efficacy among population subgroups [7]. Model 

evaluation is also recommended in this guidance however there is no consensus today on an 

appropriate approach to assess a population model.  

Two types of model evaluation can be performed. The first is internal evaluation and 

refers to the use of data splitting and resampling techniques [8]; in the following, we only 

consider the second one, external evaluation, which refers to a comparison between a 

validation dataset and the predictions from the model built from the learning dataset using 

dosage regimen information and possibly covariates from the validation dataset. The 

validation dataset is not used for model building or for parameter estimation. 

In this paper, we describe criterion which are often used for model evaluation as well 

as some new metrics or new approaches that can be used for external model evaluation in 

population PK or PD analyses. We then propose to compare the metrics for the evaluation of a 

population PK model with different tests and graphs. 

Different approaches to model evaluation have been proposed [9], although none has 

yet proved universally preferable. We consider here metrics with or without Monte Carlo 

simulation. Metrics with Monte Carlo simulation are called posterior predictive check (PPC), 

and they evaluate the adequacy between the data and the model by comparing a given 

statistic, computed with the observed data, to its posterior predictive distribution according to 

the model. PPC was defined by Yano et al [10]. Several papers have been published that 

apply PPC to pharmacokinetic-pharmacodynamic models [11, 12]. 
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Evaluation through prediction errors on observations calculated by linearisation of the 

model are the most used model evaluation tool [13-17]. The mean square prediction error 

(precision) and the mean prediction error (bias) are easily computed and used to compare 

predictions to observations. However prediction errors on observations are not independent 

within an individual [18]. The standardized prediction errors, obtained using a first-order 

approximation, are also often used. In NONMEM, their computation takes into account 

correlation of the observations within an individual so that standardized prediction errors are 

decorrelated [9]. A recent method consists of using PPC on observations, by computing for 

each observation prediction discrepancies as the percentile of the observation in the whole 

distribution of predictions [19]. Computation of prediction discrepancies using Monte Carlo 

integration does not require model approximation but this metric is correlated within an 

individual. This method has been applied to detect the differences in the pharmacokinetics of 

S1, an oral anticancer agent, in Western and Japanese patients [20]. As predictions 

discrepancies did not take into account correlation of the observations within an individual 

[19, 20], we have decorrelated this metric in this paper. 

A second approach to model evaluation is through the examination of population 

parameters or hyperparameters, comparing population estimates of the parameters between 

the learning and the validation datasets with appropriate tests based on the estimated standard 

error. Another method for hyperparameter comparison is to use PPC. 

A third approach is to use the objective function for model evaluation. We describe in 

this paper two tests based on this metric. 

These metrics were applied to the evaluation of a population pharmacokinetic model 

of gliclazide (an antidiabetic drug) which is a one compartment model with zero order 

absorption, built from two phase II studies. We show the results of the evaluation for three 

validation datasets: a real phase I dataset (Vreal) and two datasets simulated with the design of 
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Vreal. The first (Vtrue) is simulated using the parameters of the model; the second (Vfalse) is 

simulated using the same model, but with a bioavailability multiplied by 2. All these metrics 

were applied as an illustration to these two simulated datasets to show how they are able to 

detect and explain potential adequacies and inadequacies of the model and to compare 

theoretical statistical properties of the metrics.  

 

MATERIAL AND METHODS 

Notations 

Let B denote a learning dataset and V a separate external validation dataset . B is used 

to build a population pharmacokinetic model called MB. External evaluation methods 

compare the predictions obtained by MB, using the design of V, to the observations in V. 

Let i denote the ith individual (i = 1,…, N) and j the jth measurement in an individual (j 

= 1,…, ni, where ni is the number of observations for subject i). Let Yi be the ni-vector of 

observations observed in individual i. The function f is a nonlinear structural model, i.e., the 

pharmacokinetic model. The statistical model for the observation Yij in patient i at time tij, is 

given by: 

( )ij ij i ijY f t ,= θ + ε     (1) 

where θi is the p-vector of the pharmacokinetic individual parameters and εij is the residual 

error, which is assumed to be normal, with zero mean. We assume that the variance of the 

error follows a combined error model: 

   ( ) ( )22 2
ij int er slope ij, iV ar f tε = σ + σ × θ   (2) 

where 2
int erσ  and 2

slopeσ  are two parameters characterizing the variance. This combined 

variance model covers the case of an homoscedastic variance error model when 2
slopeσ  = 0 and 
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the case of a constant coefficient of variation error model when 2
int erσ  = 0. Let Σ be the 

parameters of the measurement error, Σ = ( )2 2
int er slope,σ σ . 

We assume an exponential model for interindividual variability, so that: 

( )i exp iθ = θ× η     (3) 

where θ  is the population vector of the pharmacokinetic parameters, and ηi represents the 

vector of random effects of individual i. It is assumed that ηi ~N(0, Ω) with Ω defined as 

variance-covariance matrix so that each diagonal element ωk² represents the variance of the kth 

component of the random effects vector. 

 The vector of population parameters called hyperparameters, is denoted Ψ  and has 

dimension Q. Ψ  includes the vector of population means θ , the unknown elements in the 

variance-covariance matrix of the random effects Ω. Estimation of the hyperparameters is 

based on maximum likelihood (ML). Γ is the asymptotic variance-covariance matrix of 

estimation, i.e., the Fisher information matrix calculated in NONMEM using the inverse 

Hessian matrix for the hyperparameters Ψ . SEq, the standard errors of estimation for the qth 

hyperparameter qΨ , is the square root of the qth diagonal element of Γ. 

Model MB is defined by its structure and by the hyperparameters BΨ  estimated from 

the learning dataset B. 

 

Illustrative example 

Phase II studies (learning dataset) 

Two phase II studies in a total of 209 Type II diabetic patients were pooled to create 

the dataset B, which was used to build MB. These studies were performed during the clinical 

development of a modified release formulation of gliclazide (gliclazide MR) and were part of 

a larger dataset analyzed by Frey et al., who studied the relationship between the 
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pharmacokinetics of gliclazide and its long-term pharmacodynamic effect in a large 

population of Type II diabetic patients [21].  

The first study (N = 50 patients) was a phase II, dose-increase, monocentric, 

randomised, parallel double-blind placebo-controlled study. Patients were first treated with 

placebo for a 2-week wash-out period. At the end of this period, 50 patients were randomised 

to receive placebo (10 patients), 15 mg of gliclazide (20 patients) or 30 mg of gliclazide (20 

patients) during 4 weeks (period 1). During the next 4 weeks (period 2), the 10 patients 

treated by placebo continued to receive placebo. For the other 40 patients, two fasting plasma 

glucose (FPG) measurements were performed at the end of the first period. If the mean of the 

2 FPG measurements was lower than 7.8 mmol/L, the patients received the same dose of 

gliclazide (15 or 30 mg) as in the first period. If the mean of the 2 FPG measurements was 7.8 

mmol/L or more, the patients received a dose of gliclazide two times higher (30 or 60 mg) 

than in the first period. 

To obtain a better evaluation of patient compliance, MEMS (Medication Event 

Monitoring System), medication bottles in which the cap contains microelectronic 

components recording the dates and times of dose removals from the bottle, were used. Blood 

samples were drawn on the first day, at the end of the first 4 weeks and at the end of the study 

(8 weeks), according to one of two sampling schedules (S1 or S2) which were randomly 

assigned for a period to the 50 patients. For S1, the sampling times were pre-dose, 2, 4, 6, 8 

hours after administration and before leaving the clinical research unit (13 hours after 

administration). For S2 the sampling times were pre-dose, 3, 5, 7, 9 hours after administration 

and before leaving the clinical research unit (13 hours after administration). 

The second study (N = 169 patients) was a phase II, dose ranging, monocentric, 

randomised, parallel double-blind placebo-controlled study. After a 2-week wash-out period, 

patients were randomly divided into 6 parallel groups and given either placebo or one of the 
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following doses of gliclazide: 15, 30, 60, 90 and 135 mg. Gliclazide was administered once a 

day during 8 weeks. Three blood samples were taken on the last day of treatment: just before 

the last administration, 2 h after dosing and between 5 and 6.5 h (half of the patients) or 

between 7.5 or 9 h after dosing (other half of the patients). The times of drug intake on the 

day of the visit and on the day before the visit were recorded. 

Gliclazide plasma concentrations were measured using high-performance liquid 

chromatography with ultaviolet detection. The lowest concentration giving accuracy and 

precision within a limit of 20 % was 50 ng.mL-1. This value was taken as the limit of 

quantification. 

 

Population pharmacokinetic model from the above phase II studies 

Plasma concentration-time data were obtained from the 209 patients who received 

gliclazide. A one compartment model with zero-order absorption and first-order elimination 

was used to fit the concentration–time data of gliclazide. This model was parameterized with 

the apparent volume of distribution (V/F), the apparent clearance (CL/F) and the duration of 

absorption for the zero order absorption model (Tabs). An exponential random-effect model 

was chosen to describe inter-individual variability.  

During model building, values below the quantification limit (BQL), with a 

quantification limit (QL) which was equal to 0.05 mg/L, were treated in one of the standard 

ways by imputing the first BQL measurement to QL/2 and omitting subsequent BQL 

measurements during the terminal phase [22]. The symmetrical reverse procedure was applied 

to BQL measurements during the absorption phase. Only 5 samples were below the 

quantification limit. 

The population analysis of the two phase II studies was performed using NONMEM 

software version V  (University of San Francisco) with the FOCE method with interaction. 

 8

H
A

L author m
anuscript    inserm

-00189557, version 1
H

A
L author m

anuscript    inserm
-00189557, version 1



 

SAS version 8.2 software was used to perform statistical analyses and to plot graphs (SAS 

Institute INC., 1990). 

Model selection was based on comparison of the objective function given by 

NONMEM. For nested models, a likelihood ratio test (LRT) was performed with a p-value of 

0.05; i.e. the difference on objective function was compared to the limit of a chi-square 

distribution, with a number of degrees of freedom equal to the number of additional 

parameters in the full model. For non-nested models, models were compared using the Akaike 

criterion (AIC). Goodness-of-fit plots were performed during the building process (population 

or individual predictions vs observations, WRES vs population predictions (or time) , 

individual WRES vs individual predictions (or time)). Decrease of the inter-individual 

variability of parameters estimation and decrease of the standard error of the fixed effects 

were also taken into account. 

A proportional error model was found to best describe the residual error model. As 

study 1 used MEMS, the records of dates and times of drug administrations were more 

accurate than for study 2. Two different variances for the error, one for study 1 and another 

for study 2, were included, and this provided a significant improvement in the likelihood 

(p<0.0001). Several models for the random effects were tested to determine the basic model 

that best fitted the data, and only random effects on CL/F and V/F were kept in the model. No 

inter-occasion variability was found in the model. As there were five different doses of 

gliclazide (15, 30, 60, 90 and 135 mg), the effect of dose was tested on the two 

pharmacokinetic parameters with inter-individual variability (CL/F and V/F). We therefore 

defined a categorical covariate, DF, which equals 1 for dose > 60 mg and 0 for dose ≤ 60 mg 

and θD the fixed effect for the dose effect when dose > 60 mg. Inclusion of this covariate in 

the population analysis on V/F provided a significant improvement (p<0.001). The equation, 
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which linked V and θD was: ( )V DV 1 D= θ × + θ × F . θV was the fixed effect for the volume of 

distribution without a dose effect. 

The estimates of the population parameters for this model are given in Table I. The 

CV of the error model were estimated to 0.06 % (σ1) for the study using MEMS and 0.11 % 

(σ2) for the study without MEMS. 

 

Phase I study (validation dataset) 

The validation dataset Vreal was obtained in a phase I open single dose study with a 2-

way-cross-over randomised and balanced design which aim was to evaluate the absolute 

bioavailability of gliclazide. Twelve healthy volunteers received gliclazide as a tablet of 30 

mg and as a solution given in one hour infusion, with a 7-day-wash-out between the two 

administrations [23]. These volunteers were Caucasian males and were between 18 and 35 

years old. We only considered here data obtained after oral administration of gliclazide. 

For each volunteer, sixteen blood samples were taken at 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 10, 

16, 24, 36, 48, 60, 72 hours after oral dosing. 

 

Simulation  

To illustrate and compare the methods presented in the following section, we 

simulated with NONMEM two validation datasets according to the design of the real phase I 

study [23]. The first dataset (Vtrue) was simulated according to the model and to the 

hyperparameters values estimated from the learning dataset ; the second (Vfalse) was simulated 

using the same model, but with the fixed effects for V/F and CL/F divided by two, 

corresponding to a bioavailability multiplied by two. 

Patients were given the dose of gliclazide under controlled conditions, therefore we 

assumed a CV of 25% for the residual error, corresponding to the estimate obtained in the 
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population where MEMS was used. Values below the quantification limit for Vtrue, Vfalse and 

Vreal were treated in the same way as in the learning dataset. As all subjects received 30 mg of 

gliclazide the dose effect was not taken into account. 

The various metrics proposed in the following were first applied to the two simulated 

datasets to illustrate the ability of each metric not to reject the "correct" dataset (Vtrue) and to 

reject the "false" dataset (Vfalse). We then applied these metrics to the real dataset (Vreal). 

 

Metrics for external evaluation 

The null hypothesis (H0) is that data in the validation dataset V can be described by 

model MB. In this section, we describe the metrics which can be proposed as tools for model 

evaluation, and we test their distribution under H0. We consider metrics with or without 

Monte Carlo simulation. Metrics with simulation are called posterior predictive check (PPC), 

and evaluate the adequacy between the data and the model by comparing a given statistic, 

computed with the observed data, to its posterior predictive distribution according to the 

model [10]. When performing Monte Carlo simulations with the model MB applied to the 

design of V, we used the estimates of the parameters without taking into account the standard 

errors of estimation. This is reasonable for large enough datasets. 

Since for some of the metrics multiple tests are involved, we used the Simes 

procedure, a modification of the Bonferroni procedure, to adjust for the increase of the type I 

error [24]. This procedure, while preserving the family-wise error of the test, is less 

conservative than the Bonferroni correction but is still simple to apply. This method allows to 

test Q simultaneous assumptions (H1,…,HQ), and uses the following procedure. 

The Q p-values of each of the Q tests are sorted in ascending order, so that 

p1<p2<...<pQ. We chose a family-wise error rate of 0.05. Starting with p1, the smallest p-value, 

each successive pq for q = 2,…Q, is compared with the value cq = q × 0.05/Q. If p1 > c1, 

 11

H
A

L author m
anuscript    inserm

-00189557, version 1
H

A
L author m

anuscript    inserm
-00189557, version 1



 

H1,…, HQ are not rejected, if not, H1 is rejected and p2 and c2 are compared. The procedure is 

then iterated until pq is found such that pq>cq. Then the hypotheses H1... Hq-1 are rejected 

while the remaining hypotheses Hq... HQ are not rejected. 

 

Metrics based on observations 

 Metrics based on observations are the most frequently used statistics to validate 

population models. Predictions are obtained using MB and the design of V and compared to 

the observed values in V. Three metrics based on observations are tested. 

Standardized prediction error on observations (SPEY) 

Prediction errors are defined as the difference between the observations and the 

predictions obtained using MB. The vector PEYi, of the ith subject is then: 

i

i

    (4) 
i iPEY Y PRED= −

where Yi is the vector of observations of the ith subject, and PREDi the vector of population 

prediction (assuming η = 0) using MB. It should be noted that, for non linear models, the 

prediction at η = 0 is not the mean of the predictive distribution. PEYi is obtained with 

NONMEM under the name of RESi. 

Calculation of standardized prediction errors takes into account the variability. SPEYi, 

the vector of standardized prediction error for the ith subject is defined as [25]: 

1/ 2
i iSPEY C PEY−= ×     (5) 

where the matrix Ci is the variance-covariance matrix of Yi in the population derived using 

the first order approximation and Ci
-1/2 is obtained using the Cholesky decomposition of Ci. 

SPEYi is derived from the full variance matrix of predictions so are decorrelated assuming 

that the approximations made by linearization are negligible. The standardized predictions 

errors were derived, for each observation, from the mean value and its variance, computed 

using the first-order approximation around the mean of the model like in the FO linearization 
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approach used in NONMEM. SPEYi is obtained with NONMEM under the name weighted 

residual denoted WRESi using the first order approximation of the model.  

 Under H0 and based on the first-order approximation, the prediction errors SPEYij 

should have a normal distribution with mean 0. Testing the model adequacy using the 

assumed N(0, 1) distribution of the weighted residuals was first proposed by Vozeh [13].  

 

Standardized prediction error on observations with simulation (SPEYS) 

Instead of using the model predictions at η = 0 to estimate PREDi and a linearisation 

of the model to estimate Ci, we can use Monte Carlo simulations to get better estimates of the 

mean and the variance of the predictive distribution of each Yi. Using the design of V and 

model MB, we simulated K datasets simkV . Let k denote the kth simulation (k = 1,..., K), and 

simk
iY

s i mk
iY

 the vector of simulated observation of the ith subject for this kth simulation. Let E(Yi) 

denote the vector of the mean of observations for the ith subject, estimated empirically over 

the k simulations as: 

( ) ( simk
i

k

1E Y Y
K

= ∑ )i     (6) 

Let Var(Yi) be the full predicted variance of Yi estimated empirically from the K simulations. 

We define the standardized prediction error on observations with simulations for the ith 

subject SPEYSi as: 

( ) ( )1/ 2
i i iSPEYS Var Y Y E(Y )−= × − i   (7) 

If K is large enough, under H0 and based on the first-order approximation, the mean and 

variance of SPEYSij should be 0 and 1. By using NONMEM terminology SPEYS are a form 

of simulated WRES. 
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Normalized prediction distribution errors on observations with simulation (NPDEYS) 

SPEY and SPEYS are standardized errors both defined by analogy to normal 

residuals, SPEYS using better estimates of mean and variance but their distribution is not 

normal for nonlinear models. As an alternative, we can consider the whole distribution to 

define prediction distribution errors [26]. Let Fij denote the cumulative distribution function 

(cdf) of the predictive distribution of Yij under MB. We define the prediction distribution error 

PDEYSij as the value of Fij at Yij, Fij (Yij). Fij can be approached using Monte Carlo 

simulation of simkV  as described previously. PDEYSij is then computed as the percentile of Yij 

in the empirical distribution of the 
s i mk

iY

simk
ijY : 

ij ij ijk
k

1PDEYS F
K

= = δ∑    (8) 

where δij 
ijkδ

 = 1 if  simk
ijY ≤  , and = 0 otherwise. These PDEYSijY ij are correlated within an 

individual i. To obtain decorrelated PDEYSij, we used E(Yi) and Var(Yi) estimated 

empirically from the K simulations and calculated Yi
simk* =  and 

Y

( ) ( )( )1/ 2 simk
i iVar Y Y E Y− − i

)ii* = . We then calculated F( ) ( )(1/ 2
i iVar Y Y E Y− − ij based on these two new vectors Yi

simk* 

and Yi* instead of Yi
simk and Yi. 

Under H0, if K is large enough, the distribution of the PDEYS should follow a uniform 

distribution over [0,1] by construction of the cdf. Normalized prediction distribution errors 

(NPDEYS) can then be obtained using the inverse function of the normal cumulative density 

function implemented in most software. By construction NPDEYSij follow a N(0, 1) 

distribution without any approximation and are uncorrelated within an individual i. 
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Tests and graphs 

For each of the three metrics on concentrations, a Wilcoxon signed-rank test can be 

performed to test whether the mean is significantly different from 0, and a Fisher test can be 

performed to test whether the variance is significantly different from 1. Under the 

approximations mentioned previously, SPEYij and SPEYSij should follow a normal 

distribution if H0 is true, while NPDEYSij should follow a normal distribution without any 

approximation. This can be tested using the Shapiro-Wilks test (SW), which tests the 

normality assumption with no constraints on mean and variance. We have to consider the 

conjunction of the three tests (Wilcoxon, Fisher or Shapiro-wilks tests) together to decide 

whether to reject a validation dataset. Indeed, under H0, SPEY, SPEYS and NPDEYS should 

follow a normal distribution N(0, 1). If one of the three tests (Wilcoxon, Fisher or Shapiro-

wilks tests) is significant, H0 is rejected. 

Graphically, the metrics can be represented by scatterplots versus time to look at the 

behaviour of the variances. We can also assess distributional assumptions using quantile-

quantile plots (QQ-plots). Quantiles from the metrics distribution (SPEY, SPEYS and 

NPDEYS) can be plotted against quantiles of the theoretical distribution N(0, 1). Departures 

from the theoretical distribution can be visually assessed by plotting the unity line y = x. 

Histograms can be plotted instead of QQ-plots to represent the distribution of the metrics. 

 

Metrics based on hyperparameters 

 Model evaluation can be performed on hyperparameters. The model developped on the 

learning dataset B can be used to estimate the hyperparameters in the validation dataset V. Let 

V
qΨ  be the qth hyperparameter estimated with the model in V, which we compared to the qth 

hyperparameter estimated in B, B
qΨ . 
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Standardized Prediction Error on Hyperparameter (SPEH) 

 We define SPEHq for the qth hyperparameter as the following Wald statistic: 

( ) ( )

V B
q q

q 2V
q q

SPEH
SE SE

Ψ − Ψ
=

Ψ + Ψ
2B    (9) 

where ( V
qSE Ψ )  (respectively ( B

qSE )Ψ ) is the standard error of estimation for the qth 

hyperparameter in the analysis on V (respectively on B). Asymptotically, maximum 

likelihood estimators follow a normal distribution. Therefore, under H0, SPEHq should follow 

N(0, 1).  

 

Standardized Prediction Error on Hyperparameter with Simulation (SPEHS) 

As previously, K datasets simkV  using MB with design V are simulated. For each simulated 

dataset, the vector of hyperparameters simkΨ  is estimated. The qth hyperparameter estimated 

on V with MB, V
qΨ  is then compared to the empirical distribution of simk

qΨ .  

 

Test and graphs 

The value of SPEH can be compared to the corresponding critical value of a N(0, 1). The 

hyperparameters can be compared one by one or with a global test [27]. To compare the 

whole vector of the Q hyperparameters between the two analyses with a global approach, the 

null hypothesis: { B V 0Ψ − Ψ = } can also be tested using the global Wald  test, which statistic 

is given by: 

( ) ( ) ( ) ( )1B V B V B VT² '
−

Ψ = Ψ − Ψ Γ + Γ Ψ − Ψ  (10) 

where VΓ  (respectively BΓ ) is the full variance matrix of estimation in V (respectively in B). 

Asymptotically T²( Ψ ) follows a chi-square with Q degrees of freedom under H0.  
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For tests applied to SPEHS, the K values of simk
qΨ  are sorted and the percentile of 

simk
qΨ , perc, is defined as the number of simk

qΨ  below V
qΨ  divided by K. Then the p-value of 

the two sided test based on the empirical distribution are calculated as: 

((p 2 min perc, 1 perc= × − ))     (11) 

p is compared with 0.05. A Simes procedure can be applied to the Q p-values. To 

illustrate SPEHS, a histogram of the predictive distribution of simulated hyperparameters is 

plotted, on which the estimated value on V, V
qΨ  is overlayed. 

 

Metrics based on the objective function 

The objective function (OF) given in NONMEM corresponds to minus twice the log-

likelihood plus some constant terms. OF can be determined on a dataset V with model MB and 

hyperparameters BΨ  without fitting ( V
nofitOF ; all parameters fixed), or with hyperparameters 

VΨ  after fitting the model on V ( V
fitOF  ; all parameters estimated). Several metrics can be 

defined from these objective functions, with and without Monte Carlo simulation. 

 

Prediction Error on Objective Function (PEOF) 

We compute the difference VOFΔ  between V
fitOF  and V

nofitOF : 

V V V
nofit fitPEOF OF OF OF= Δ = − V

  (12) 

 

Prediction Error on Objective Function with Simulation (PEOFS) 

V
nofitOF  can also be compared to the posterior predictive distribution of the objective 

function estimated from K simulated datasets with MB, yielding to values simk
nofitOF . By using 
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PEOFS, we make the assumption that the simulated dataset have the same number of 

observations. 

 

Prediction Error on Gain in Objective Function with Simulation (PEGOFS) 

As the simulated datasets may have different number of values below the limit of 

quantification, they may have a different number of observations after treating the BQL. The 

empirical posterior distribution for PEOFS does not correct for the varying number of data 

involved in each simulated dataset and we think it is then preferable to compare the observed 

gain of objective function on the simulated dataset.  

A third approach compares therefore the VOFΔ  with its posterior predictive 

distribution. For each simulated dataset k, we estimate parameters with MB and calculate the 

gain in objective function ( ) which is then compared to simk simk
nofit fitOF OF− VOFΔ . 

 

Tests and graphs 

For the metric without Monte Carlo simulation, there is no test to compare V
nofitOF and 

V
fitOF . If the model is true, the difference should be small. V

nofitOF  can be compared to the 

empirical distribution of simk
nofitOF  and a p-value can be obtained as for SPEHS. To compare 

VOFΔ  with the empirical distribution of simkOFΔ , as V
nofitOF  is necessarily higher than or 

equal to V
fitOF , we calculate the p-value of an unilateral test as: 

(p 1 perc= − )       (13) 

The p-value can be compared with 0.05. 

To illustrate PEOFS, we plot histograms of the predictive distribution of simk
nofitOF  or 

simkOFΔ , and we show the estimated value on V, V
qOF  and VOFΔ . 
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RESULTS 

Metrics illustration on the two simulated datasets 

Simulated concentrations versus time data for both Vtrue and Vfalse datasets are 

displayed in Fig. 1. The dashed lines represent the 80 % prediction interval, obtained for each 

time-point as the 10th and 90th percentiles for 1000 simulations under MB. For Vtrue, 167 of 

192 concentrations are inside the 80 % prediction interval, versus only 74 of 190 for Vfalse. It 

is clear from this plot that Vfalse is not well described by MB, with a large number of 

concentrations above the 80 % prediction interval so that no further metric would be needed 

for a real example. In the following, we apply all the metrics described above to these two 

datasets to show how they are able to detect and explain potential adequacies and 

inadequacies of MB and to compare theoretical statistical properties of the metrics. 

 

Metrics based on observations 

The three standardized metrics based on observations are plotted versus time or versus 

predictions. The plots of these three metrics versus time are shown in Fig. 2. SPEY, SPEYS 

and NPDEYS have an homogeneous distribution for Vtrue with low variance (1.15, 1.08, 0.84 

respectively) and are scattered around zero (means of 0.02, 0.04, 0.02 respectively). For Vfalse, 

these metrics have upper variance (4.50, 3.63, 1.68 respectively) and are mainly positive 

(mean are 0.73, 0.58 and 1.35 respectively). SPEYS and NPDEYS were calculated using K = 

1000 simulations.  

The QQ-plot compares the distribution of each of these metrics with a normal N(0, 1) 

distribution (Fig. 3). For Vtrue, points are close to the line y = x. On the contrary, for Vfalse, 

points are systematically biased away from the line y = x, which suggests that SPEY, SPEYS 
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and NPDEYS do not follow a normal N(0, 1) distribution. The NPDEYS seem more sensitive 

visually for the QQ-plot. 

The results of the statistical tests performed on the two datasets for these metrics are 

given in Table II. The mean of the three metrics is not significantly different from 0 for Vtrue, 

and the variance does not differ from 1. For Vtrue, the distribution of both SPEY and SPEYS is 

found to differ significantly from a normal distribution with the SW test even though the data 

were simulated under the model, whereas NPDEYS do not deviate from a normal distribution. 

This illustrates that only NPDEYS have the good theoretical properties of following a N(0, 1) 

under H0 as discussed earlier, without any approximation. 

For Vfalse, the means of the three metrics are significantly different from 0 and the 

variances are significantly different from 1. The distribution of both SPEY and SPEYS is 

found to differ significantly from a normal distibution with the SW test. However NPDEYS 

do not differ from a normal distribution in this exemple. To sum up, for Vfalse, the three 

metrics do not follow a N(0,1) distribution, so we rejected H0. 

The three metrics based on concentration can discriminate Vtrue and Vfalse by visual 

inspection but the trend in the plots are more apparent for NPDEYS than for the two other 

metrics. 

 

Metrics based on hyperparameters 

Table III shows the estimates of the hyperparameters and their standard errors on Vtrue 

and Vfalse after fitting, along with the estimates of the hyperparameters used for MB. Using 

Wald tests on each hyperparameter, the estimates found with Vtrue are not significantly 

different from the previous estimates in B. As expected, there is a significant difference 

between B and Vfalse for CL/F and V/F. The global difference between the vector of estimates 

for B and Vtrue is non significantly different from 0 with a global Wald test ( 2
VtrueT 0.= 79 , 
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p=0.99 for a chi-square with 6 degrees of freedom) but is significantly different from 0 

between B and Vfalse (
2
VfalseT 1= 08 , p<0.0001). 

For hyperparameters with Monte Carlo simulation, the estimated values of the 

population parameters on Vtrue are within the simulated posterior predictive distribution of 

each parameter. This is illustrated on the histograms in Fig. 4 for CL/F and ω²CL/F. There is no 

significant departure from the prediction distribution for CL/F (p=0.69), V/F (p=0.72), Tabs 

(p=0.75), ω²CL/F (p=0.83), ω²V/F (p=0.29) and σ² (p=0.20) using the Simes procedure. 

For Vfalse, the test shows a significant departure, using the Simes procedure, for the 

predictive distribution for CL/F (p<0.0001), V/F (p<0.0001), but not for Tabs (p=0.35), ω²CL/F 

(p=0.68), ω²V/F (p=0.086) and 2σ  (p=0.26), as could be expected given that only CL and V 

were changed in the simulation for Vfalse. 

 

Metrics based on objective function 

For Vtrue, the objective function given by NONMEM with MB is –751 without fitting 

and –754 with fitting. The gain in objective function PEOF from fitting is 3. For the metrics 

based on objective function with Monte Carlo simulation, histograms of the predictive 

distribution of the objective function without fitting and of the gain in objective function are 

displayed in Fig. 5 to illustrate PEOFS and PEGOFS respectively. The vertical line 

corresponds to the value of the objective function when MB is applied to Vtrue without 

estimation (top graph in Fig. 5) or to the value of the gain in objective function from fitting 

(bottom graph in Fig. 5). Compared to the prediction distribution in the simulated datasets we 

do not reject Vtrue both for PEOFS (p=0.092) and for PEGOFS (p=0.90). 

For Vfalse, the objective function with MB is –421 without fitting and –474 with fitting, 

so PEOF is 53. Vfalse is rejected for PEOFS (p<0.0001) based on its prediction distribution in 
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the simulated dataset and is also rejected considering PEGOFS (p<0.0001). Illustrations of 

these two metrics are shown in Fig. 5.  

 The three metrics perform similarly on the two datasets. For each dataset, 192 

observations are simulated but after treating the BQLs, the two datasets have different number 

of observations (192 for Vtrue and 190 for Vfalse). So the method comparing the gain of 

objective function, PEGOFS is more adapted if we compare Vtrue and Vfalse. 

 

Illustration with the real dataset 

Finally these metrics were applied to the real phase I dataset (Vreal), the design of 

which was used to simulate Vtrue and Vfalse. A plot of the concentration versus time data for 

Vreal is displayed in Fig. 6. Here 144 concentrations (out of 179) are inside the 80 % 

prediction interval but the variability of these concentrations seems to be smaller than for 

Vtrue. 

The results of the tests performed for the metrics based on observations are given in 

Table IV. The mean of the SPEY is significantly different from 0, but the means of SPEYS 

and NPDEYS are not. The variance of the three metrics is significantly different from 1 and 

their distributions do not follow a normal distribution according to the SW test. The scatter 

plots versus time of the three metrics, SPEY, SPEYS and NPDEYS are displayed in Fig. 7. 

and visually rejected Vreal. 

Concerning metrics based on hyperparameters without Monte Carlo simulation as 

shown in Table V, the differences between estimated CL/F, Tabs, ω²Cl/F, and σ² for B and Vreal 

are significantly different from 0 with a Wald test, while there was no significant difference 

for V/F and ω²V/F. However, when the whole vector of the 6 hyperparameters between the 

dataset B and Vreal are compared with a global Wald test, we do not reject the null hypothesis 

( 2
VrealT 7.= 93  and p=0.24 for a chi-square with 6 degrees of freedom). Using the predictive 
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distribution for the hyperparameters obtained using Monte Carlo simulation, significant 

departures from the predictive distribution were found for CL/F (p<0.0001), Tabs (p<0.0001), 

ω²CL/F (p<0.001), ω²V/F (p=0.03), and σ² (p<0.0001) but not for V/F (p=0.93) using the Simes 

procedure. Histograms of the predictive prediction of simulated hyperparameters (CL/F and 

ω²Cl/F) are displayed in figure 4. 

For Vreal, the objective function with MB is –600 without fitting and –661 with fitting. 

So PEOF is 61. For the metrics based on objective function with Monte Carlo simulation, 

histograms of the predictive distribution of the objective function without fitting and of the 

gain in objective function are displayed in Fig. 5, with the observed value as a vertical line. 

We therefore do not reject Vreal using PEOFS (p=0.062) but we reject it using PEGOFS 

(p<0.0001). After treating the BQL measurements, Vreal has finally 179 data (instead of 192 

for Vtrue) which may explain the discrepancy.  

 

In conclusion, model MB, developed on a dataset of 209 phase II patients, did not 

adequately predict the data observed in Vreal, the dataset collected from 12 healthy volunteers. 

The main differences were lower number of subjects, higher clearance in the phase I subjects, 

as well as lower inter-individual variability and lower residual error. Metrics based on 

observations (concentrations here) were consistent in showing model misfit, while metrics 

based on hyperparameters highlighted the differences between the two datasets. Finally, 

PEGOFS was more powerful than metrics based on likelihood to detect the differences, 

because of the large number of BQL in Vreal. 

 

DISCUSSION 

Model assessment consists in the evaluation of how well a model describes a dataset. 

In this paper, we consider external evaluation, a comparison between a validation dataset and 

 23

H
A

L author m
anuscript    inserm

-00189557, version 1
H

A
L author m

anuscript    inserm
-00189557, version 1



 

the predictions from the population model built from the learning dataset using design 

information from the validation dataset. We illustrate known, as well as new or improved 

metrics to perform external evaluation using two simulated and one real validation datasets. 

These metrics are based on observations, hyperparameters or objective function. Some 

metrics are built with Monte Carlo simulations, which are performed using the estimated 

population model to be evaluated with the design of the validation dataset. In this example, 

the model MB is a pharmacokinetic model, so the observations are concentrations but it is 

possible to apply these metrics to a pharmacodynamic model. 

In this paper, we used real data obtained during the development of gliclazide, an 

antidiabetic drug. A population pharmacokinetic model of gliclazide was first built using data 

from two phase II studies. We found that the variance of the residual error was lower in the 

study where electronic pillboxes (MEMS) were used. Indeed, the observance was better taken 

into account using MEMS because the records of dates and times of drug administration were 

more accurate.  

External evaluation of the model MB was then performed using the dataset from a real 

phase I study (Vreal). Two datasets were also simulated using the design of this Phase I study 

(Vtrue and Vfalse). Vtrue was simulated according to the model and to the hyperparameters 

values estimated in the phase II studies. Vfalse was simulated using the same model but with a 

bioavailability multiplied by two, that is, dividing by two the values obtained for CL/F and 

V/F. We simulated these two datasets to illustrate the ability of the metrics to validate Vtrue 

and reject Vfalse.  

The metrics most often used in model evaluation are prediction errors and 

standardized prediction errors (SPEY, called WRES in NONMEM) on observations [28]. The 

term “WRES” is widely used by NONMEM users but “standardized prediction error” is a 

general term used in the FDA guidance and by other authors in the context of model 
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validation. Indeed, these metrics are called “residuals” when they are applied to the same 

dataset (internal validation) but when applied to an external validation dataset, the 

denomination “error” is more appropriate than “residual” although they are computed 

similarly and are reported as WRES in NONMEM tables. SPEY is not an optimal metric for 

external model evaluation because pharmacokinetics models are generally nonlinear whith 

respect to the parameters (although the pharmacokinetics of a drug is often assumed to be 

linear with respect to dose.) SPEY relies on a linear approximation of the mixed-effect model 

around the mean as in the FO estimation method even if the FOCE estimation methods is used 

for estimation [29]. In the present work, this problem appears since SPEY did not follow a 

normal distribution even when the dataset has been simulated using the true model under H0. 

A somehow more refined strategy consists in using simulations to recover the empirical mean 

and variance of the predictive distribution for each observation, thus computing what we 

called SPEYS. However these SPEYS suffer from some of the same theoretical flaws as 

SPEY. However SPEY and SPEYS present good behavior to reject our Vfalse as judged by 

graphically inspection. Moreover, SPEY (or WRES) present the advantage to be 

automatically given by softwares such as NONMEM. Also noticing that WRES is a poor 

metric (because based on the FO approximation), Hooker et al. proposed computing another 

metric that they called conditional WRES (CWRES) in which the FOCE approximation is 

used for the computation of the mean and the variance of the model [30]. We did not apply 

this metric here because we have computed SPEYS, which calculate the mean and of the 

variance of the model based on simulations as opposed to using the FOCE approximation. 

The main limitations of all these metrics (SPEY, SPEYS and CWRES) is that they come from 

the theory of linear models and that they implicitly assume that the observations are normally 

distributed around the mean which is not true for nonlinear models. 
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We use a new approach based on the calculation of prediction errors on observations, 

called PDEYS or NPDEYS in their normalised version [19]. This metric does not require any 

assumption on the distribution of the observations, and, when computed with a large number 

of simulations, has a known theoretical distribution which can be tested. This metric was 

applied in the present paper but was improved as compared to the previous applications [19, 

20] in that the within subject correlation between observations is now taken into account. 

Using the uncorrelated version of the NPDEYS, their variance was significantly different 

from 1 for Vtrue (0.65) as opposed to the correlated version of the metric. In the previous paper 

this metric was named the prediction discrepancy, here we use the name prediction errors to 

be more homogenous in the paper with the other metric (SPEY, SPEYS…) and also because 

now that they are normalized and decorrelated these metrics are more in the spirit of an error 

than of a measure of discrepancy.  

Regarding the tests applied to the different metrics, the null hypothesis is that the 

model is correct, so that we can only invalidate a model when we reject H0, never accept it. 

To test H0 using metrics based on observations, we propose to use simultaneously a mean test, 

a variance test and a normality test. The Shapiro Wilks has become the preferred test of 

normality because of its good power as compared to a wide range of alternative tests. The 

Kolmogorov Smirnov test that was used in the previous paper [19] is very general to test any 

distribution and may have lower power compared to other normality tests like Anderson-

Darling test, Cramer-von- Mises test or Shapiro Wilks test. Because the Kolmogorov Smirnov 

test is very conservative, there is a high likelihood of not rejecting normality. Mean tests 

should be more efficient to detect problems with fixed effects (as here with Vfalse). 

The three metrics were able to reject Vfalse by visual inspection, however the trend is 

more visible for NPDEYS. Applying statistical tests on these metrics, SPEY and SPEYS 

showed a significant difference in the mean and variance tests for Vfalse, but the SW test was 
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significant on both datasets Vfalse and Vtrue. On the other hand, the approach based on 

NPDEYS does not reject Vtrue and, based on the combination of the three tests, also rejected 

Vfalse corresponding to the expected theoretical properties. However, although the mean and 

variance tests were significant for Vfalse, the NPDEYS are still normal according to the SW 

test (p=0.09) in this example. We do not have an explanation, and further investigations are 

needed to assess the power of the various metrics to detect model misspecifications.  

Metrics based on hyperparameters without Monte Carlo simulation were also 

interesting for external evaluation. The Wald test assessed whether the population estimates 

were significantly different in the building and validation datasets, taking into account the 

precision in the estimation of the hyperparameter. A correction for multiple tests was applied 

with the Simes procedure, and we were able to pick up the differences in the fixed effects. 

The global Wald test was also used, but this test, when significant, did not allow us to detect 

which parameters were different between the two datasets. Note that the Wald test assumes  

the normality of the estimators. Metrics with Monte Carlo simulation did not make this 

assumption and provided the same results in this simple example. Simulation carries however 

a large computational burden, because all the simulated datasets have to be re-fitted. 

Finally, we introduce new metrics based on objective function. The metrics performed 

similarly on the simulated validation datasets but we recommend the use of the metric based 

on the gain in objective function evaluated by simulation (PEGOFS) for the following reason. 

In this paper we deal with BQL data using a standard method in population pharmacokinetics 

which consists in replacing the first BQL measurement in a series with the value LOQ/2 and 

censoring the following BQL measurements. We applied this method to both the original and 

the simulated datasets. The distribution of the objective functions resulting from the fit of the 

simulated datasets therefore arises from datasets with potentially different number of 

observations, and objective functions are obtained as minus twice the log-likelihood up to a 
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constant which depends on the number of observations. Therefore the empirical posterior 

distribution of the objective function (PEOFS) obtained using the simulated data may not be 

as accurate as expected. On the other hand, PEGOFS are defined as the difference in objective 

function between fitted and non-fitted models, and therefore the constant is eliminated from 

their expression, so that PEGOFS do not suffer from the same problem as PEOFS in the 

presence of a varying number of BQL measurements. As an alternative, we could also 

account for the presence of BQL by computing the contribution of BQL data to the likelihood, 

but this would require complex computations in NONMEM. 

Yano, Beal and Sheiner defined posterior predictive check (PPC) [10] and proposed 

three approaches to compute the posterior distribution of the parameters estimated through the 

maximum likelihood estimation [31, 32]. Here the metrics NPDEYS, SPEHS, PEOFS and 

PEGOFS are all forms of PPC. They were built without considering the estimation error, the 

simplest of the three approaches implemented by Yano et al, who have shown it to perform 

well in large enough datasets.  

The metrics were finally applied to a real dataset, Vreal. Model MB was not found to be 

valid when applied to this dataset collected from 12 healthy volunteers according to most of 

the metrics proposed above. The metrics based on observations or on objective function 

demonstrated model misfit, while metrics based on hyperparameters highlighted the 

differences between the two datasets (learning and validation datasets). Using metrics based 

on hyperparameters, the main differences were a higher apparent clearance in the phase I 

subjects, as well as a lower interindividual variability for CL/F and V/F and a smaller residual 

error variance. These results can be explained by the differences between a phase I and a 

phase II study. In a phase I study, there are few subjects, participants are healthy volunteers 

(except for oncology studies), young, often male and have normal body weight and normal 
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biological functions, and the pharmacokinetics in patients may show a number of 

modifications. 

All the evaluation methods we presented aim at providing one or a small set of metrics 

to assess model adequacy. As such they are criteria combining information about various 

sources of model misspecification and it is not always easy to assert which part of the model 

should be improved. For instance for evaluation through predicted concentrations, a model 

with or without covariates should have correct standardized prediction errors if the estimation 

of inter-individual variability is adequate [28]. Also misspecification of the error model may 

lead to errors in the model of the random effects, which are not always easy to find when 

exploring only the post-hoc distribution [33]. We therefore recommend to use several 

approaches or metrics to evaluate a model in order to provide a more informative overview. 

 

CONCLUSION 

In conclusion, the three groups of metrics discussed here can be used to evaluate a 

population model. The choice of the metrics depends on the objectives of the analysis. Model 

evaluation based on observations is crucial if the model is to be used for clinical trial 

simulation or for therapeutic drug monitoring. Amongst the first type of metrics based on 

concentration, SPEY (WRES) are easily computed and were able to pick out the problem in 

Vfalse according to the visual inspection of the metrics and two of the three statistical tests but 

their calculation are based on the first order method which is not always used in modelling. 

As simulations are often used in population analyses to calculate confidence intervals or to 

perform visual predictive check, we can use the same simulations to compute SPEYS and 

NPDEYS and apply statistical tests. We recommend in a final step to use NPDEYS over 

SPEY or SPEYS since they do not depend on an approximation of the model. If the aim is to 

compare two populations, metrics based on hyperparameters are very useful to highlight 

differences between the datasets. Model evaluation based on objective function is a good 
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approach to evaluate a series of models during the building process. These last metrics based 

on objective function are an interesting new tool for external evaluation. Amongst the three 

metrics based on objective function proposed, we recommend using the metrics based on the 

empirical distribution of the difference in objective function between fitted and no-fitted 

models (PEGOFS), obtained through simulations. Metrics based on hyperparameter, SPEHS 

or on the delta of objective functions, PEGOFS, need a simulation and an estimation step. So 

these methods are time consuming and should be applied to the final model or in the building 

process only if the model is simple enough. 
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TABLES 

 

 Table I Estimated population pharmacokinetic parameters of gliclazide (estimate and 

relative standard error of estimation, RSE), pooling the data of two phase II studies. 

 
 

Population parameters    Estimate    RSE (%) 

CL/F   (L/h)            1.0           4.2 

θV         (L)          39.8           5.8 

Tabs     (h)            6.6           3.3 

θD          - 0.5         12.4 

ω2
CL/F              0.35         16.2 

ω2
V/F                0.17         24.9 

σ2
1                   0.06         10.5 

σ2
2                   0.11         12.7 
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 Table II p-values of the tests performed on the three standardised metrics based on 

observations, for Vtrue and Vfalse: mean, variance and Shapiro-Wilks (SW) normality tests. 

 

 
 

Dataset Metric Mean test Variance test     SW test 

 SPEY       0.21         0.15     < 0.0001 

Vtrue SPEYS       0.92         0.19     < 0.0001 

 NPDEYS       0.96         0.10        0.79 

 SPEY    < 0.0001      < 0.0001     < 0.0001 

Vfalse SPEYS    < 0.0001      < 0.0001        0.003 

 NPDEYS    < 0.0001      < 0.0001        0.09 
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Table III Population pharmacokinetic parameters of gliclazide (estimate and relative standard 

error of estimation, RSE) used for MB. The second and third columns are the parameters of 

Vtrue and Vfalse estimated with independent population analyses. P is the p-value of the Wald 

test for each population parameter of Vtrue and Vfalse compared to B. 

 

 

Hyperparameter 
              B                 

estimate    RSE (%) 

               Vtrue                     

estimate   RSE (%)   P 

              Vfalse                      

estimate    RSE (%)    P 

CL/F   (L/h)     1.0        (4.0)   0.98      (16.3)     0.96      0.48    (16.7)   < 0.0001 

V/F      (L)   40.0        (5.8) 42.0          (3.3)     0.59   20.0        (7.5)   < 0.0001 

Tabs    (h)     6.6        (3.3)   6.5          (7.9)     0.78     7.0        (0.1)      0.08 

ω²CL/F                 0.35    (17.1)   0.27      (48.1)     0.56     0.34    (38.2)      0.99 

ω²V/F                  0.11    (27.2)   0.09      (33.3)     0.55     0.06    (33.3)      0.16 

σ²                       0.06    (10.0) 0.05      (10.0)     0.31       0.06    (10.0)      0.82 
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Tables IV Different tests proposed for normalized metrics based on concentration for Vreal: 

mean and variance tests and and Shapiro-Wilks (SW) normality tests. 

 

 

 

Dataset Metric Mean test Variance test SW test 

 SPEY         0.03      < 0.0001    < 0.0001 

Vreal SPEYS         0.72         0.0044    < 0.0001 

 NPDEYS         0.85         0.0005       0.01 
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Table V Population pharmacokinetic parameters of S 5702 (estimate and relative standard 

error of estimation, RSE) with data from the phase I study (Vreal). P is the p value of the Wald 

test for each hyperparameter compared to MB.  

 

 
 
 
 

Population parameters 
               Vreal                     

estimate    RSE (%)     P 

CL/F     (L/h)   2.0         (7.5)     < 0.0001  

V/F       (L) 40.6         (6.5)        0.82 

Tabs      (h)   5.7         (4.6)        0.009 

ω²CL/F    0.06     (33.3)     < 0.0001 

ω²V/F    0.05     (40.0)        0.054 

σ²   0.10     (10.0)        0.003 
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FIGURES LEGENDS 

 

Figure 1 Simulated concentrations versus time for Vtrue (top) and Vfalse (bottom). The dashed 

lines represent the 80 % predicted interval, obtained for each time-point as the 10th and 90th 

percentiles of 1000 simulations under MB. 

 

Figure 2 Metrics based on observations plotted versus time on Vtrue (left) and on Vfalse (right). 

Top: SPEY; middle: SPEYS; bottom: NPDEYS. The dashed lines represent the 95 % 

prediction interval for a normal distribution. 

 

Figure 3 QQ-plots of the metrics based on observations versus the theoretical N(0,1) 

distribution for Vtrue (left) and Vfalse (right). The line y = x is shown to evaluate the adequacy 

between the theoretical and the observed distribution. Top: SPEY; middle: SPEYS; bottom: 

NPDEYS. 

 

Figure 4 Histogram of the predictive distribution of simulated hyperparameters estimated 

using MB: for CL/F (top) and ω²CL/F (bottom). The values of the corresponding parameters 

found for Vtrue, Vfalse and Vreal using an independent population analysis are shown as vertical 

lines. 

 

Figure 5 Histogram of the predictive distribution of the objective function when model MB is 

applied to the 1000 datasets without estimation (top) and the gain in objective function 

(bottom). The values of the the objective functions or of the gain found for Vtrue, Vfalse and 

Vreal using MB are shown as dotted lines. 

 

 

H
A

L author m
anuscript    inserm

-00189557, version 1
H

A
L author m

anuscript    inserm
-00189557, version 1



 

Figure 6 Concentrations versus time for Vreal. The dashed lines represent the 80 % predicted 

interval, obtained for each time-point as the 10th and 90th percentiles of 1000 simulations 

under MB. 

 

Figure 7 Metrics based on observations plotted versus time on Vreal. Top: SPEY; middle: 

SPEYS; bottom: NPDEYS. The dashed lines represent the 95 % prediction interval for a 

normal distribution. 
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