Competitive graph searches ${ }^{\star}$

Binh-Minh Bui-Xuan ${ }^{\text {a,* }}$, Michel Habib ${ }^{\text {b }}$, Christophe Paul ${ }^{\text {a }}$
${ }^{\text {a }}$ CNRS - LIRMM - Univ. Montpellier II, 161 rue Ada, 34392 Montpellier Cedex 5, France
${ }^{\mathrm{b}}$ CNRS - LIAFA - Univ. Paris Diderot, 2 place Jussieu, Case 7014, 75251 Paris Cedex 05, France

Received 7 February 2007; received in revised form 13 September 2007; accepted 30 October 2007

Communicated by O. Watanabe

Abstract

We exemplify an optimization criterion for divide-and-conquer algorithms with a technique called generic competitive graph search. The technique is then applied to solve two problems arising from biocomputing, so-called Common Connected Components and Cograph Sandwich. The first problem can be defined as follows: given two graphs on the same set of n vertices, find the coarsest partition of the vertex set into subsets which induce connected subgraphs in both input graphs. The second problem is an instance of sandwich problems: given a partial subgraph G_{1} of G_{2}, find a partial subgraph G of G_{2} that is partial supergraph of G_{1} (sandwich), and that is a cograph. For the former problem our generic algorithm not only achieves the current best known performance on arbitrary graphs and forests, but also improves by a $\log n$ factor when the input is made of planar graphs. However, our complexity for intervals graphs is slightly lower than a recent result. For the latter problem, we first study the relationship between the common connected components problem and the cograph sandwich problem, then, using our competitive graph search paradigm, we improve the computation of cograph sandwiches from $O\left(n(n+m)\right.$) down to $O\left(n+m \log ^{2} n\right)$, where n is the number of vertices and m of total edges.

© 2007 Elsevier B.V. All rights reserved.
Keywords: Graph search; Divide-and-conquer algorithm; Common connected graph component; Sandwich graph problem

1. Introduction

The classical divide-and-conquer algorithmic framework (see e.g. [10,21]) can be summarized as dividing the input problem into some sub-problems; then conquering the subproblems by making recursive calls; and combining the sub-solutions into a global solution. The best known examples probably are standard sorting algorithms and dynamic programming algorithms. Without specific assumptions, the method helps with designing algorithms running in quadratic worst case time. Classical optimization techniques to improve this bound mostly consist of holding some condition on the recursive computation, e.g. with merge-sort, median computation [4], and algorithms derived from the planar separator theorem [20].

[^0]
ARTICLE IN PRESS

Actually, even when no condition is placed on the recursive computation, it is acquired that cutting down the divide and combine part also improves the global computing time [1,19]. However, applied examples of this paradigm are scant in our knowledge. This paper gives a series of such examples. To this aim we consider the problem of, given a graph and a list of one representative vertex per connected component, visiting all connected components but the largest. We depict how a so-called competitive graph search can solve the problem in linear time on the size of the visited vertices and edges. Notice that the size of the largest component might be very close to that of the initial graph. In this case the competitive graph search records a small time complexity.

Using the competitive graph search, we first give a solution to a problem arisen from computational biology: given two graphs G_{1} and G_{2} on the same vertex set V, find the coarsest partition of V into V_{1}, \ldots, V_{k} such that, for all $1 \leq i \leq k$, both induced subgraphs $G_{1}\left[V_{i}\right]$ and $G_{2}\left[V_{i}\right]$ are connected $[2,16]$. Depending on the data structure, our solution can be used for different graph classes. Its performance equals the best known so far for arbitrary graphs [14] and forests [11]. For planar graphs, we improve the performance by a $\log n$ factor, namely with an $O(n \log n)$ computing time. Our complexity for interval graphs is in $O(n+m \log n)$, while a recent result improved this to $O(m+n \log n)$ [12]. Finally, we study the relationship between the common connected components problem and another class of problems issued from biocomputing, namely sandwich graph problems [15], and improve the computation of cograph sandwiches from $O(n(n+m))$ [15] to $O\left(n+m \log ^{2} n\right)$ as a corollary of competitive graph searching.

2. Algorithmic aspects

2.1. Divide and conquer paradigm

This paper addresses the following formalism. Let \mathcal{P} be a problem on a set \mathcal{S} of data structures, and Size a function from \mathcal{S} to \mathbb{R}^{+}. \mathcal{H} is a divide-and-conquer algorithm with respect to Size solving \mathcal{P} if:

- there exists a set $\mathcal{T} \subseteq \mathcal{S}$ of trivial inputs on which \mathcal{H} solves \mathcal{P} in O (1) time;
- any $S \in \mathcal{S}$ with $\operatorname{Size}(S) \leq 1$ is a trivial input, namely $S \in \mathcal{T}$;
- for all $S \notin \mathcal{T}, \mathcal{H}(S)$
first divides S into some subinstances S_{1}, \ldots, S_{k} holding $\operatorname{Size}\left(S_{i}\right)>0$ for all i and holding $\operatorname{Size}\left(S_{1}\right)+\cdots+$ $\operatorname{Size}\left(S_{k}\right) \leq \operatorname{Size}(S)$,
then recurses with $\mathcal{H}\left(S_{1}\right), \ldots, \mathcal{H}\left(S_{k}\right)$,
. and finally combines the results in order to provide the output of $\mathcal{H}(S)$.
Let $C(S)$ be the total computing time of $\mathcal{H}(S), \operatorname{Div}(S)$ be the time for finding S_{1}, \ldots, S_{k}, and $\operatorname{Com}(S)$ for combining the subsolutions into the output of $\mathcal{H}(S)$. Then, for all $S \notin \mathcal{T}, C(S)=\operatorname{Div}(S)+\sum_{i=1}^{k} C\left(S_{i}\right)+\operatorname{Com}(S)$ straight from definition. Let $n=\operatorname{Size}(S)$. If $\operatorname{Div}(S)+\operatorname{Com}(S)=O(n)$, then there is a naive bound $C(S)=O\left(n^{2}\right)$ (see e.g. [10,21]). Well-known optimization techniques divide S into two subproblems S_{1} and S_{2} of equal size. This yields $O(n \log n)$ time algorithms such as Merge sort (see e.g. [10,21]).

Besides, the naive quadratic bound is known to improve as recursive calls decrease. For instance, most famous algorithms such as the median computation [4] or algorithms deriving from the planar separator theorem [20] reach linear worst case time bound by avoiding a fraction of S on recursive calls, namely by granting $\frac{\operatorname{Size}\left(S_{1}\right)+\cdots+\text { Size }^{2}\left(S_{k}\right)}{S \text { Size }(S)}<1$. The success of such examples might explain why minimizing the divide and combine time $\operatorname{Div}(S)+\operatorname{Com}(S)$ usually is disregarded in standard optimization approaches. In this paper, we address the case when recursive calls have to be applied on all parts, namely when $\frac{\operatorname{Size}\left(S_{1}\right)+\cdots+\operatorname{Size}\left(S_{k}\right)}{\operatorname{Size}(S)} \leq 1$ with the bound reached. As a result of a larger theorem in [1], minimizing $\operatorname{Div}(S)+\operatorname{Com}(S)$ here becomes fruitful according to an "avoid the largest" idea. Within our terminology, it could be stated as follows:

Proposition 1 ([1]). Let \mathcal{H} be a divide-and-conquer algorithm, and α be such that, for all $S \in \mathcal{S} \backslash \mathcal{T}, \operatorname{Div}(S)+$ $\operatorname{Com}(S) \leq \alpha \times\left(\operatorname{Size}(S)-\max _{i=1}^{k} \operatorname{Size}\left(S_{i}\right)\right)$, where S_{1}, \ldots, S_{k} is the partition of S given by $\mathcal{H}(S)$. Then, for all input $S \in \mathcal{S}, \mathcal{H}(S)$ runs at most in $\alpha \times \operatorname{Size}(S) \log \operatorname{Size}(S)$ time. This bound is best possible.

Proof. By induction on $s=\operatorname{Size}(S)$. If S is not trivial and S_{1}, \ldots, S_{k} are such that $s_{k}=\operatorname{Size}\left(S_{k}\right)$ is greater than any $s_{i}=\operatorname{Size}\left(S_{i}\right)$, then

$$
\begin{aligned}
\operatorname{Div}(S)+\operatorname{Com}(S)+\sum_{i=1}^{k} C\left(S_{i}\right) & \leq \alpha \times\left(\sum_{i=1}^{k-1} s_{i}+\sum_{i=1}^{k} s_{i} \log s_{i}\right) \\
& \leq \alpha \times\left(\sum_{i=1}^{k-1} s_{i}+\sum_{i=1}^{k-1} s_{i} \log \frac{s}{2}+s_{k} \log s\right) \\
& \leq \alpha \times s \log s
\end{aligned}
$$

Now, let \mathcal{P} and \mathcal{H} be such that there exist $S_{0} \in \mathcal{T}$ and $S_{q}(q \geq 1)$ where \mathcal{H} divides S_{q} into two subinstances that are both identical to S_{q-1}. Then, \mathcal{H} computes at least in $\alpha \times \operatorname{Size}\left(S_{q}\right) \log \operatorname{Size}\left(S_{q}\right)$ time on S_{q}.
Remark. The standard optimization technique used in Merge sort results in the same bound. However, the size of the input given to Merge sort is granted to geometrically decrease (by half) as inductive levels grow, implying that the induction depth is lesser than $\log \operatorname{Size}(S)$. On the other hand, our result still holds even when the induction depth is linear on $\operatorname{Size}(S)$.

Though it may be straightforward to avoid the largest part for linear data structures such as ordered arrays, it is less easy in other cases, for instance when dealing with graphs. Indeed, the challenge is to avoid some "largest" graph component without exploring the whole graph. We exemplify the practical potential of Proposition 1 on graphs with a so-called competitive graph search technique.

2.2. Competitive graph search

Let $G=(V, E)$ be a graph. We define the size of G as its number of vertices and edges: $\operatorname{Size}(G)=|V|+|E|$. All vertices of a vertex subset A belong to the induced subgraph $G[A]$. An edge of G belongs to $G[A]$ if both extremities of the edge belong to A. Sometimes we refer by abusiveness to the size of a vertex subset as the size of the subgraph it induces. This section addresses two problems.
Exploring Connected Components: Let Rep be a list of pointers to one representative vertex per connected component of G. The first problem consists of, given G and Rep, visiting all connected components of G but the largest. To this aim, a competitive graph search proceeds as follows. At the beginning, all components are competitors via their corresponding representative vertex in Rep. Then, each step of the search visits one new element - vertex or edge (the "or" is exclusive) - of each competitor. The competitors for which no new element is found are discarded. This process continues as long as there are at least two remaining competitors. Obviously the last competitor C is the largest and has not been entirely visited. Indeed, if s^{\prime} is the size of the second largest competitor C^{\prime}, then only s^{\prime} elements of C have been visited, which leads to the following result.

Proposition 2. Given a graph G and a list of pointers to one representative vertex per connected component of G, a competitive graph search visits all connected components of G but the largest component C in time bounded by $2 \times\left(s_{G}-s_{C}\right)$ with s_{G} the number of vertices and edges of G, and s_{C} the number of vertices and edges of $G[C]$.

Proof. The exact visiting time is $\left(s_{G}-s_{C}\right)+s^{\prime}$ with s^{\prime} the size of the second largest component.
Exploring Induced Subgraphs: Let $\left\{V_{1}, \ldots, V_{k}\right\}$ be a vertex partition of G, described by k lists, and oracle (v, w) be true if and only if the vertices v and w belong to the same V_{i}. The second problem consists of, given G, $\left\{V_{1}, \ldots, V_{k}\right\}$, and oracle, visiting all induced subgraphs $G\left[V_{1}\right], \ldots, G\left[V_{k}\right]$ but the largest. Here, let Rep be a list of pointers to the first element of each V_{i}. We still start with the list Rep representing the competitors V_{1}, \ldots, V_{k}. Then, each step still tries to visit one new element (vertex or edge) of each competitor using any standard graph search on the corresponding vertex list V_{i} and the adjacency list of G. The hitch is that inter-edges, namely those in $I E=\left\{v w \in E \mid \exists i \neq j\right.$ s.t. $v \in V_{i}$ and $\left.w \in V_{j}\right\}$, belong to none of the competitors. However, thanks to oracle, the search can check at any moment whether an edge is inter-edge, and avoid going out off the current $G\left[V_{i}\right]$. To sum up, for each competitor, each step of the graph search either discovers a new vertex, or checks the outgoing edges until one edge belonging to that competitor is found. The remaining of the search behaves like before.
$-\mathrm{G}_{1}$
$\cdots \cdots \mathrm{G}_{2}$

i

ii

Fig. 1. i. G_{1} not cycle free and (b) violated. ii. G_{1} not a path and (c) violated.
Proposition 3. Given a graph $G=(V, E)$, a partition $\left\{V_{1}, \ldots, V_{k}\right\}$ of V, and a function oracle testing whether two vertices belong to the same V_{i}, a competitive graph search visits the subgraphs $G\left[V_{1}\right], \ldots, G\left[V_{k}\right]$ but the largest in time bounded by $2 \times\left(s_{G}-s_{C}\right)+M$ with M the number of inter-edges between the subgraphs, s_{G} the number of vertices and edges of G, and s_{C} the number of vertices and edges of the largest subgraph.

Proof. The exact visiting time is $\left(s_{G}-s_{C}\right)+s^{\prime}+M^{\prime}$ with s^{\prime} the size of the second largest subgraph, and M^{\prime} the number of visited inter-edges.

To conclude, the main technical difficulty of a competitive graph search is to manage an entry to each competitor before starting and to maintain this as an invariant during the recursive process. Notice that this generic competitive search can be applied to other discrete structures such as directed graphs, hypergraphs or matroids. Let us examine the paradigm on two graph problems.

3. Common connected component computation

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$, a common connected set A of $\left(G_{1}, G_{2}\right)$ is a vertex subset of V such that both $G_{1}[A]$ and $G_{2}[A]$ are connected. a common connected component is a common connected set that is maximal. Fig. 2 presents an example of a tree and a forest whose common connected sets all are singletons (and so are components). This problem was introduced in [6] for the study of the genes structure. One graph is obtained by the distance between genes in the sequence with respect to a given threshold, the other graph can be any graph on the same set of genes generated by some chemical reaction. The problem also arises from comparative genomics, e.g. in the search of gene-teams where G_{1} and G_{2} are two graphs defined by two genomic sequences on the same set of genes [2]. Adjacency between genes is given by their distance in the sequence with respect to a given threshold. Let F denotes the family of common connected sets of a given pair of graphs. As usual when dealing with families of subsets, it is interesting to check under which conditions the family is equipped with a lattice structure. Let us first consider the basic properties:
(a) Let $A, B \in F$ and $A \cap B \neq \emptyset$ then $A \cup B \in F$.
(b) Let $A, B \in F$ and $A \cap B \neq \emptyset$ then $A \cap B \in F$.

In fact (a) is obviously true, but (b) does not necessarily hold (see Fig. 1).
Lemma 1. If G_{1} and G_{2} are forests then F satisfies (b).
Proof. Let us consider two vertices $a, b \in A \cap B$. By definition there exist a chain from a to b in $G_{1}[A]$, and a chain from a to b in $G_{1}[B]$. Since G_{1} is a forest this chain is necessarily unique and therefore included in $A \cap B$.

As defined in [9], weak partitive families satisfy (a), (b) and the following:
(c) Let $A, B \in F$ that overlap, then $A \backslash B, B \backslash A \in F$.

Lemma 2. If G_{1}, G_{2} are forests of chains, then F satisfies (c).
Proof. Let us consider $x, y \in A \backslash B$. If x, y are not connected in $G_{1}[A \backslash B]$, then the unique chain joining x and y goes through a vertex z in $G_{1}[A \cap B]$. Since it exists at least a vertex $t \in B \backslash A$, then the connected set of G_{1} containing x, y, z, t is not a chain, a contradiction.

i

ii

Fig. 2. i. A sequence $\left(\mathcal{G}_{q}\right)_{q>1}=\left(\left(G_{1}^{q}, G_{2}^{q}\right)\right)_{q>1}$ of instances for which our common connected component computation runs in $\Theta(n \log n)$. ii. Details of \mathcal{G}_{4}. Notice that all common connected sets/components of this sequence are and only are singletons.

Noticed that if G_{1} and G_{2} only are supposed to be forests, then (c) might be violated (e.g. in Fig. 1). However, in case of forests of chains, F is a weak partitive family. Then, a theorem in [9] implies the existence of a unique decomposition tree for the family F. Using this tree, recursiveness can easily be conducted on each common connected set. This corresponds to a well-studied case and the computation of the decomposition tree can be done in $O(|V|)$ by adding some slight modifications to the computation of common intervals of two permutations [23] (here the two chains can be seen as two permutations). Another equivalent version of this problem is the computation of the modular decomposition tree of a permutation graph and we can use algorithms from [3,7] which also run in $O(|V|)$. Let us now address the general case and consider an algorithm scheme based on the following simple partitioning lemma.

Lemma 3 ([14]). Let us suppose that there is no edge between X and $V \backslash X$ in one graph among $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$. Then, the common connected components of $\left(G_{1}, G_{2}\right)$ are those of $\left(G_{1}[X], G_{2}[X]\right)$ plus those of $\left(G_{1}[V \backslash X], G_{2}[V \backslash X]\right)$.

Firstly, one can suppose w.l.o.g. that $E_{1} \cap E_{2}=\emptyset$ by recursively merging together vertices x and y if $(x, y) \in E_{1} \cap E_{2}[14]$. Besides, if none of G_{1} and G_{2} is connected, a preliminary standard graph search can build the subinstances $\left(G_{1}[X], G_{2}[X]\right)$ for all connected components X of G_{1}. Lemma 3 states that computing the common connected components of (G_{1}, G_{2}) results in computing those of the latter subinstances. Hence, we suppose w.l.o.g. G_{1} connected. Finally, another preliminary graph search can compute a list of one representative vertex per connected component of G_{2} before launching our main recursive algorithm.

Concisely, the main algorithm addresses the problem of finding the common connected components of two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$, given along with a list Rep such that $E_{1} \cap E_{2}=\emptyset, G_{1}$ is connected, and Rep has exactly one representative vertex per connected component of G_{2}. It proceeds as follows:

- If $k=\mid$ Rep $\mid=1$ then return V.
- Otherwise, let V_{1}, \ldots, V_{k} be the connected components of G_{2}. Then, for all $1 \leq i \leq k$, we compute $G_{1}\left[V_{i}\right]$, $G_{2}\left[V_{i}\right]$, and a list Rep_{i} containing one representative vertex per connected component of $G_{1}\left[V_{i}\right]$.
- By inverting G_{1} and G_{2}, we make recursive calls on ($G_{2}\left[V_{i}\right], G_{1}\left[V_{i}\right], \operatorname{Rep}_{i}$) and return all results.

The correctness follows from Lemma 3. Obviously, the above operations can be done using standard graph searches, which would yield a naive $O(n(n+m))$ solution. However, we can benefit from competitive graph searches to improve the bound. Let $s(G)=\operatorname{Size}(G)=|V|+|E|$ for any graph $G=(V, E), s_{i}^{1}=s\left(G_{1}\left[V_{i}\right]\right), s_{i}^{2}=s\left(G_{2}\left[V_{i}\right]\right)$, and $s_{i}=s_{i}^{1}+s_{i}^{2}$. Let the "sum of all but the $\max ^{\prime} \operatorname{sam}_{i \in I} s_{i}$ be a shortcut for $\sum_{i \in I} s_{i}-\max _{i \in I} s_{i}$.
Lemma 4. If s_{i}^{1}, s_{i}^{2} are positive and $s_{i}=s_{i}^{1}+s_{i}^{2}$ for all $i \in I$, then:

$$
\operatorname{sam}_{i \in I} s_{i}^{p} \leq \operatorname{sam}_{i \in I} s_{i}, \quad \text { with } p \in\{1,2\} .
$$

Proof. Let i_{0} and i_{1} be such that $s_{i_{0}}=\max _{i \in I} s_{i}$ and $s_{i_{1}}=\max _{i \in I} s_{i}^{1}$. Obviously, $s_{i_{0}}^{1} \leq s_{i_{1}}^{1} \leq s_{i_{1}}$. Besides, $\sum_{i \in I \backslash\left\{i_{0}, i_{1}\right\}} s_{i}^{1} \leq \sum_{i \in I \backslash\left\{i_{0}, i_{1}\right\}} s_{i}$. Adding the two inequalities allows to conclude.

As already mentioned a competitive graph search on the connected components of G_{2} computes all $G_{2}\left[V_{i}\right]$ except for $G_{2}\left[V_{i_{2}}\right]$ with $s_{i_{2}}^{2}=\max _{1 \leq i \leq k} s_{i}^{2}$, as well as all V_{i}, except for $V_{i_{2}}$. During the search, we label the vertices in V_{i} ($i \neq i_{2}$) so that they can be distinguished afterwards. Those in $V_{i_{2}}$ keep their old label so that they also come as a distinct $k^{\text {th }}$ class. We define oracle which tests whether two vertices have same labels. By removing from G_{2} vertices and edges of the $k-1$ computed graphs, we compute $G_{2}\left[V_{i_{2}}\right]$. Likewise, by removing from V vertices of the other V_{i}, we compute $V_{i_{2}}$. The operations so far run in $O\left(\operatorname{sam}_{1 \leq i \leq k} s_{i}^{2}\right)$ time.

Using the computed V_{1}, \ldots, V_{k} and the function oracle, a competitive graph search on the induced subgraphs of G_{1} computes all $G_{1}\left[V_{i}\right]$ except for $G_{1}\left[V_{i_{1}}\right]$ with $s_{i_{1}}^{1}=\max _{1 \leq i \leq k} s_{i}^{1}$. Let $I E$ contain all inter-edges in G_{1} between the subgraphs $G_{1}\left[V_{i}\right]$. By removing from G_{1} vertices and edges of $G_{1}\left[V_{i}\right]\left(i \neq i_{1}\right)$, plus the inter-edges in $I E$, we compute $G_{1}\left[V_{i_{1}}\right]$. These operations take $O\left(|I E|+\operatorname{sam}_{1 \leq i \leq k} s_{i}^{1}\right)$ time.

As $G_{1}\left[V_{i}\right]\left(i \neq i_{1}\right)$ are of size small enough, we simply compute $\operatorname{Rep} p_{i}\left(i \neq i_{1}\right)$ thanks to standard searches on those graphs (such as the breadth-first graph search). This latter step takes O ($\operatorname{sam}_{1 \leq i \leq k} s_{i}^{1}$) time. From Lemma 4 all operations so far run in $O\left(|I E|+\operatorname{sam}_{1 \leq i \leq k} s_{i}\right)$. Finally, we assume that $\operatorname{Rep}_{i_{1}}$ is computed by some routine \mathcal{R}, and result in the following main theorem.
Routine \mathcal{R} : Given a connected graph $G_{1}=\left(V, E_{1}\right)$ and a vertex partition V_{1}, \ldots, V_{k}, the routine \mathcal{R} computes a list Rep $_{i_{1}}$ containing one representative vertex per connected component of $G_{1}\left[V_{i_{1}}\right]$, where $G\left[V_{i_{1}}\right]$ is the largest among $G\left[V_{1}\right], \ldots, G\left[V_{k}\right]$.

Main Theorem. Given a routine \mathcal{R} as defined above, the common connected components of two graphs $G_{1}=$ $\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ can be computed in $O\left(n+m \log n+t_{\mathcal{R}}\right)$ time, where $n=|V|, m=\left|E_{1}\right|+\left|E_{2}\right|$, and $t_{\mathcal{R}}$ stands for the global computing time (through recursions) of the routine \mathcal{R}.

Proof. The preliminary operations for computing Rep and for rendering $E_{1} \cap E_{2} \neq \emptyset$ and G_{1} connected run in $O(n+m)$. Now, our main algorithm follows the divide-and-conquer paradigm. Therein, the combine time of each step is $O(1)$. Moreover, except for the " $|I E|$ " terms due to inter-edges and the cost of calls to the routine \mathcal{R}, the divide time fulfils requirements of Proposition 1. According to this, we split the global complexity analysis of the main algorithm into three parts. The first counts the " $|I E|$ " terms, the second the total cost of \mathcal{R}, and the third the remaining. Let $G_{1}^{\prime}=\left(V^{\prime}, E_{1}^{\prime}\right)$ and $G_{2}^{\prime}=\left(V^{\prime}, E_{2}^{\prime}\right)$ be the input graphs given to the main algorithm. Let $n^{\prime}=\left|V^{\prime}\right|$ and $m^{\prime}=\left|E_{1}^{\prime}\right|+\left|E_{2}^{\prime}\right|$. Then, the " $|I E|$ " part is in $O\left(m^{\prime}\right)=O(m)$ since an edge can be "inter-edge" only once throughout the running of the main algorithm. The second part was denoted by $t_{\mathcal{R}}$. From Proposition 1, the third complexity part is in $O\left(\left(n^{\prime}+m^{\prime}\right) \log \left(n^{\prime}+m^{\prime}\right)\right)=O(m \log n)$ because $m^{\prime} \leq m \leq n^{2}$, and G_{1}^{\prime} connected implies $n^{\prime}=O\left(m^{\prime}\right)$. Whence, the whole running is in $O\left(n+m \log n+t_{\mathcal{R}}\right)$.

Implementation of routine \mathcal{R} : The idea of computing $\operatorname{Rep}_{i_{1}}$ is the following. Let $O G$ be the outgoing vertices in G_{1} from $G_{1}\left[\cup_{i \neq i_{1}} V_{i}\right]$ to $G_{1}\left[V_{i_{1}}\right]$, namely $O G=\left\{y \in V_{i_{1}} \mid \exists x \notin V_{i_{1}}\right.$ s.t. $\left.(x, y) \in E_{1}\right\}$. Since G_{1} is connected, Rep $_{i_{1}} \subseteq O G$. Computing $O G$ only takes $O\left(|I E|+\operatorname{sam}_{1 \leq i \leq k} s_{i}^{1}\right)$ time. Our idea is to filter $O G$ efficiently until we obtain Rep $_{i_{1}}$.
Tool boxes B_{1} and B_{2} : To this aim, we will use two tool boxes. The first tool box B_{1} computes a spanning-forest of a given graph G, and for each vertex in G a pointer to the identifier of the spanning tree it belongs to. Given a graph G and one such spanning-forest representation of G, plus an edge e in G, the second tool box B_{2} computes the spanning-forest representation of $G \backslash\{e\}$, and update the pointers to spanning tree identifiers.

Thanks to B_{1}, right before launching the main recursive algorithm of the common connected component problem, we compute the spanning-forest representations of the two input graphs. At each recursive step we use the oracle function to compute the inter-edge set $I E$ in $O\left(|I E|+\operatorname{sam}_{1 \leq i \leq k} s_{i}^{1}\right)$ time. Using B_{2} we delete all edges of $I E$ of the corresponding spanning-forest representation. Then, each vertex in $O G$ has a pointer to the identifier of its spanning tree in the current G_{1}. We then sort those identifiers using standard sorting. Finally we scan the sorted identifiers and only keep one vertex of $O G$ per identifier, which will form the list $\operatorname{Rep}_{i_{1}}$.

Sorting the identifiers would take $O(|O G| \log |O G|)=O(|I E| \log |I E|)=O(|I E| \log m)$ time. The sum of all the $|I E|$ terms throughout the computation is bounded by m. Hence, except for the cost of calls to B_{1} and B_{2}, the complexity still is in $O(n+m \log n)$.

Forests: If the input graphs given to the main algorithm are forests, they form their own spanning forests. The only thing to be cared about is keeping a pointer for each vertex to the identifier of the spanning tree it belongs to. This, for B_{1} can be done easily in $O(n+m)$ time. For B_{2}, let the edge to be deleted be $e=(x, y)$. We only need to update the identifiers of the spanning tree that has contained e before the deletion. The deletion of the edge e will split the old spanning tree into two parts, x and y could be seen as representatives for each of both part. Then, a competitive graph search will update the identifier of the smaller part in time proportional to the size of the smaller one, and the task of B_{2} is complete. The complexity of B_{2} thus is $O(m \log m)$ from Proposition 1. Finally, $m=O(n)$ in case of forests. We conclude that $t_{\mathcal{R}}=O(n \log n)$.

Corollary 1. The common connected components of forests can be computed in $O(n \log n)$ time.
Nonforest cases: For arbitrary graphs, we benefit from results of [18] on the so-called ET-tree data structure [17]. Let m^{\prime} be the number of edges in the two graphs given as input to the main algorithm, and n^{\prime} be the number of their vertices. Then, the cost for B_{1} in this case is in $O\left(\left(n^{\prime}+m^{\prime}\right) \log ^{2} n^{\prime}\right)$ [18], or $O\left(m^{\prime} \log ^{2} n^{\prime}\right)$ as m^{\prime} is higher than n^{\prime} (one of the two graphs is connected). Finally, the cost for B_{2} in this case is in $O\left(\log ^{2} n^{\prime}\right)$ per operation [18]. As before, we note that an edge can be "inter-edge" only once during the whole computation, thus the total cost for calls to B_{2} is in $O\left(m^{\prime} \log ^{2} n^{\prime}\right)$. Hence, $t_{\mathcal{R}}=O\left(n+m \log ^{2} n\right)$. Likewise, we use results on edge-ordered dynamic tree [13] for planar graphs. The corresponding B_{1} and B_{2} respectively run in $O\left(m^{\prime} \log n^{\prime}\right)$ and $O\left(\log n^{\prime}\right)$, and the total running time of both tool boxes is $O\left(m^{\prime} \log n^{\prime}\right)$. Notice that the number of edges in a planar graph is bounded by three times the number of vertices, and $t_{\mathcal{R}}=O(n \log n)$. For interval graphs, the same idea can be effected using clique-path representation [16] for an $O\left(m^{\prime}\right) B_{1}$, an $O\left(\log n^{\prime}\right) B_{2}$, and a total $t_{\mathcal{R}}=O(n+m \log n)$ running time.

Corollary 2. We can compute the common connected components of arbitrary graphs in $O\left(n+m \log ^{2} n\right)$ time; of planar graphs in $O(n \log n)$ time; and of interval graphs in $O(n+m \log n)$ time.

Our algorithm turns out to be a generic algorithm for all the related graph classes. As a consequence, mixing different classes is allowed, and yields the computing time equals to the upper one. For instance, the common connected computing time for a planar graph G_{1} and an interval graph G_{2} is in $O(n+m \log n)$.

4. Application to sandwich cographs

We now address the graph sandwich problems defined by Golumbic, Kaplan and Shamir (1995) [15]:
Input: $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ two undirected graphs such that $E_{1} \subseteq E_{2}$ and Π be a graph property.
Results: a sandwich graph $G=(V, E)$ satisfying property Π and such that $E_{1} \subseteq E \subseteq E_{2}$.
Edges of E_{1} are forced, those of E_{2} optional, and those of $E_{3}=\overline{E_{2}}$ forbidden. Unfortunately most cases are NPcomplete, e.g. with Π : G being comparability, chordal, strongly chordal, etc. Only few polynomial cases are known, among which cographs [15], and sandwich homogeneous set (i.e. module) [5,8]. Therefore it is a natural question to ask for efficient algorithms for these polynomial cases.

The following result exhibits a strong relationship between the cograph sandwich problem and common connected components. Let us recall that the class of cographs is the smallest class of graphs containing the one vertex graph and closed under series and parallel composition. Therefore any cograph can be seen as a modular decomposition tree without prime nodes. Equivalently cographs can be defined as the class of graphs excluding P_{4} as induced subgraph [22], where P_{4} denotes the path of length 4.

Theorem 1. Let $G_{1}=\left(V, E_{1}\right)$ be a graph of required edges, and $G_{2}=\left(V, E_{2}\right)$ with $E_{1} \subseteq E_{2}$ be a graph of possible edges. The dual graph $G_{3}=\overline{G_{2}}$ of G_{2} is defined as the graph of forbidden edges. Then, there exists a sandwich $G=(V, E)$ between G_{1} and G_{2} (meaning $E_{1} \subseteq E \subseteq E_{2}$) which is a cograph if and only if the common connected components of G_{1} and G_{3} are singletons.

Proof. Suppose there is a cograph $G=(V, E)$ with $E_{1} \subseteq E \subseteq E_{2}$. G cannot be both connected and coconnected, since the root of the modular decomposition tree of G is not a prime node. Let V_{1}, \ldots, V_{k} be the partition of V into connected components of: G if it is not connected, \bar{G} otherwise. That $E_{1} \subseteq E \subseteq E_{2}$ implies there is no inter-edge between the vertex subsets V_{i} in one graph among G_{1} and G_{3}. Then, using the partitioning Lemma 3, the common connected components of G_{1} and G_{3} exactly are the union of those of $G_{1}\left[V_{i}\right]$ and $G_{3}\left[V_{i}\right]$ for all i. Obviously, $G\left[V_{i}\right]$

ARTICLE IN PRESS

is a sandwich of $G_{1}\left[V_{i}\right]$ and $G_{2}\left[V_{i}\right]$. Furthermore, $G\left[V_{i}\right]$ is a cograph, otherwise it would contain an induced P_{4}, and so would G. Hence, an inductive argument on the vertex subsets V_{i} will allow to conclude that all common connected components of G_{1} and G_{3} are singletons.
Conversely, suppose that all common connected components of G_{1} and G_{3} are singletons. We build a graph $G=(V, E)$ as follows. If $|V|=1, E=\emptyset$. Otherwise, the instance can be divided into two cases. If G_{1} is not connected, let V_{1}, \ldots, V_{k} be its connected components. We define E such that any pair (x, y) satisfying $x \in V_{i}$, $y \in V_{j}$, and $i \neq j$ implies $(x, y) \notin E$. If G_{1} is connected, then necessarily G_{3} is not connected (otherwise V is a common connected component). Let V_{1}, \ldots, V_{k} be the connected components of G_{3}. We define E such that any pair (x, y) satisfying $x \in V_{i}, y \in V_{j}$, and $i \neq j$ implies $(x, y) \in E$. In both cases $\left(G_{1}\right.$ not connected or G_{3} not connected), the definition of E within each V_{i} follows inductively on V_{1}, \ldots, V_{k}. The fact that all common connected components of G_{1} and G_{3} are singletons guarantees that, for all pairs $(x, y) \in V^{2}$ with $x \neq y$, we have chosen whether (x, y) belongs to E without contradictory definitions. Hence, G is well-defined. Then, using standard cograph characterizations, G can be proved to be a cograph. (We actually have built the decomposition tree of the cograph.) One can also verify that G is a sandwich between G_{1} and G_{3} by its construction.

The above proof is constructive: if all common connected components of G_{1} and G_{3} are singletons, an algorithm is depicted to compute a cograph that is a sandwich of G_{1} and G_{2}. Therein, each step divides the graph into subgraphs induced by some V_{1}, \ldots, V_{k}, then decides whether edges between the V_{i} exist, and finally recurses in the subgraphs. This actually follows a divide-and-conquer scheme, with a $O(1)$ combining time. Moreover, deciding the adjacency between the V_{i} results in labelling the corresponding node in the modular decomposition tree with series or parallel, which can be done in $O(1)$ time. Finally, identifying the subgraphs induced by the V_{i} can be taken care of by a competitive graph searching. Hence, when a sandwich cograph exists, we can build one such in $O(n+m \log n)$ time, where n denotes the number of vertices, and m the number of edges of G_{1} and G_{3}.

Corollary 3. The sandwich cograph problem can be solved by a robust - in the sense of certifying - algorithm in $O\left(n+m \log ^{2} n\right)$ time, where n is the number of involved vertices, and m the number of forced edges and forbidden edges.

Proof. We first compute in $O\left(n+m \log ^{2} n\right)$ time the common connected components of the graph G_{1} of forced edges and the graph G_{3} of forbidden edges. Suppose that all common connected components of G_{1} and G_{3} are singletons. Then, a sandwich cograph can be build in $O(n+m \log n)$ as depicted in the proof of Theorem 1 . We now suppose that there is some common connected component C that is not a singleton. Then, any sandwich G of G_{1} and G_{2} verify that $G[C]$ is both connected and co-connected $\left(G[C]\right.$ is partial supergraph of $G_{1}[C]$ and $\bar{G}[C]$ is partial supergraph of G_{3}). We deduce that $G[C]$ is not a cograph and must contain and P_{4}, and so must G. Thus, C is our certificate to state that no sandwich of G_{1} and G_{2} can be a cograph. In this case, one can verify in linear time that both $G_{1}[C]$ and $G_{3}[C]$ are connected and deduce that every sandwich of G_{1} and G_{2} must contain a P_{4}.

The above result improves the $O(n(n+m))$ complexity of the algorithm proposed in [15]. However, we think that

Conjecture. There exists a linear time algorithm to solve the sandwich cograph problem.
Such an algorithm would imply a linear characterization of the totally degenerate case of the common connected component problem, when all components are singletons. Similarly the P_{4}-structure of common connected components is worth being further studied as shows the following proposition, which is highly related to Theorem 1, and states that common connected components must contain many P_{4} 's.

Proposition 4. Let C be a common connected component of $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ with $E_{1} \cap E_{2}=\emptyset$, then both $G_{1}[C]$ and $G_{2}[C]$ contain a P_{4}.

Proof. Consider the root of the modular decomposition tree of $G_{1}[C]$. It cannot be a parallel node since $G_{1}[C]$ is connected, nor can it be a series node since $E_{1} \cap E_{2}=\emptyset$ and $G_{2}[C]$ is connected. Therefore it is a prime node. Hence $G_{1}[C]$ is not a cograph and must contain a P_{4}. Similar argument holds for $G_{2}[C]$.

	best so far	this paper	conjecture
forests of trees	$O(n \log n)[11]$	$O(n \log n)$	$O(n)$
interval graphs	$O(m+n \log n)[12]$	$O(n+m \log n)$	$O(n+m)$
unit interval graphs	$O(n \log \Delta \log n)[2]$	$O(n \Delta \log n)$	$O(n+m)=O(n \Delta)$
planar graphs	$O\left(n \log ^{2} n\right)[14]$	$O(n \log n)$	$O(n)$
permutation graphs	$O\left(n \log n+m \log ^{2} n\right)[14]$	$O\left(n+m \log ^{2} n\right)$	$O(n+m)$
arbitrary graphs	$O\left(n \log n+m \log ^{2} n\right)[14]$	$O\left(n+m \log ^{2} n\right)$	$O(n+m \log n)$

Fig. 3. Common connected component computation time, with n the number of vertices, m the total number of edges, and Δ the maximum vertex degree.

5. Conclusion and perspectives

This paper gives a generic common connected components computation, which also exemplifies an infrequent divide-and-conquer optimization scheme. Since divide-and-conquer is a very basic method, our algorithm is simply structured while holding some efficient performances (Fig. 3). We also improve the computation of cograph sandwiches as a corollary of this algorithm.

In general, as soon as some dynamic data structure satisfying our requirements on the tool boxes B_{1} and B_{2} (see Section 3) is provided, our general algorithmic scheme will apply. We hope that this technique could be helpful in solving other problems, e.g. with common strongly connected components, and be extended to probabilistic algorithms on problems of a very large size.

References

[1] L. Alonso, E. Reingold, R. Schott, Multidimensional divide-and-conquer maximin recurrences, SIAM Journal on Discrete Mathematics 8 (3) (1995) 428-447.
[2] M.-P. Béal, A. Bergeron, S. Corteel, M. Raffinot, An algorithmic view of gene teams, Theoretical Computer Science 320 (2-3) (2004) 395-418.
[3] A. Bergeron, C. Chauve, F. de Montgolfier, M. Raffinot, Computing common intervals of k permutations, with applications to modular decomposition of graphs, in: 13th Annual European Symposium on Algorithms, ESA05, in: LNCS, vol. 3669, 2005, pp. 779-790.
[4] M. Blum, R. Floyd, V. Pratt, R. Rivest, R. Tarjan, Time bounds for selection, Journal of Computer and System Science 7 (2) (1973) 36-44.
[5] C. Bornstein, C.M.H. de Figueiredo, V.G.P. de Sá, The pair completion algorithm for the homogeneous set sandwich problem, Information Processing Letters (2006) 87-91.
[6] F. Boyer, A. Morgat, L. Labarre, J. Pothier, A. Viari, Syntons, metabolons and interactons: An exact graph-theoretical approach for exploring neighbourhood between genomic and functional data, Bioinformatics 21 (23) (2005) 4209-4215.
[7] B.-M. Bui Xuan, M. Habib, C. Paul, Revisiting T. Uno and M. Yagiura's Algorithm, in: 16th International Symposium of Algorithms and Computation, ISAAC05, in: LNCS, vol. 3827, 2005, pp. 146-155.
[8] M.R. Cerioli, H. Everett, C.M.H. de Figueiredo, S. Klein, The homogeneous set sandwich problem, Information Processing letters 67 (1998) 31-35.
[9] M. Chein, M. Habib, M.C. Maurer, Partitive hypergraphs, Discrete Mathematics 37 (1) (1981) 35-50.
[10] T. Cormen, C. Leiserson, R. Rivest, Introduction to Algorithms, The MIT Press, 1990.
[11] F. Coulon, M. Raffinot, Identification of maximal common connected sets of interval graphs and tree forests, in: 1st International Conference on Algorithms and Computational Methods for Biochemical and Evolutionary Networks, CompBioNets'04, 2004
[12] F. Coulon, M. Raffinot, Fast algorithms for identifying maximal common connected sets of interval graphs, Discrete Applied Mathematics 154 (12) (2006) 1709-1721.
[13] D. Eppstein, G. Italiano, R. Tamassia, R. Tarjan, J. Westbrook, M. Yung, Maintenance of a minimum spanning forest in a dynamic plane graph, Journal of Algorithms 13 (1992) 33-54.
[14] A.-T. Gai, M. Habib, C. Paul, M. Raffinot, Identifying common connected components of graphs, Technical Report RR-LIRMM-03016, LIRMM, Université de Montpellier II, 2003.
[15] M.C. Golumbic, H. Kaplan, R. Shamir, Graph sandwich problems, Journal of Algorithms 19 (1995) 449-473.
[16] M. Habib, C. Paul, M. Raffinot, Common connected components of interval graphs, in: 15th Annual Symposium on Combinatorial Pattern Matching, CPM04, in: LNCS, vol. 3109, 2004, pp. 347-358.
[17] M. Henzinger, V. King, Randomized dynamic graph algorithms with polylogarithmic time per operation, in: 27th Symposium on Theory of Computing, vol. 787, 1995, pp. 519-527.
[18] J. Holm, K. de Lichtenberg, M. Thorup, Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity, in: 30th Annual ACM Symposium on Theory of Computation, 1998, pp. 79-89.
[19] Z. Li, E. Reingold, Solution of a divide-and-conquer maximin recurrence, SIAM Journal on Computing 18 (6) (1989) 1188-1200.
[20] R. Lipton, R. Tarjan, Applications of a planar separator theorem, SIAM Journal on Computing 9 (3) (1980) 615-627.
[21] K. Mehlhorn, Data Structures and Efficient Algorithms, in: EATCS Monographs, Springer Verlag, 1984.
[22] D. Seinsche, On a property of the class of n-colorable graphs, Journal of Combinatorial Theory Series B (1974) 191-193.
[23] T. Uno, M. Yagiura, Fast algorithms to enumerate all common intervals of two permutations, Algorithmica 26 (2) (2000) $290-309$.

[^0]: ${ }^{4}$ Research supported by the ANR project Graph Decompositions and Algorithms.

 * Corresponding author. Tel.: +33 4674186 05; fax: +33 467418500.

 E-mail addresses: buixuan@lirmm.fr (B.-M. Bui-Xuan), habib@liafa.jussieu.fr (M. Habib), paul@lirmm.fr (C. Paul).

