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Highlights
Phenotypic plasticity of macrophages
(Mϕs) and dendritic cells (DCs) enables
these cells to adapt their immune func-
tions to local tissue microenvironment
changes.

Leishmania exploits Mϕ and DC pheno-
typic plasticity to establish permissive
conditions for intracellular survival and
chronic infection.

Mϕ polarization andDCmaturation result
from a complex regulatory relationship
between epigenetic and transcriptional
Intracellular parasites have evolved intricate strategies to subvert host cell func-
tions for their own survival. These strategies are particularly damaging to the host
if the infection involves immune cells, as illustrated by protozoan parasites of the
genus Leishmania that thrive inside mononuclear phagocytic cells, causing
devastating immunopathologies. While the impact of Leishmania infection on
host cell phenotype and functions has been well documented, the regulatory
mechanisms underlying host cell subversion were only recently investigated.
Here we summarize the current knowledge on how Leishmania infection affects
host nuclear activities and propose thought-provoking new concepts on the
reciprocal relationship between epigenetic and transcriptional regulation in host
cell phenotypic plasticity, its potential subversion by the intracellular parasite,
and its relevance for host-directed therapy.
gene expression controls.

Leishmania infection changes the host
cell epigenetic and transcription factor
landscapes, resulting in the expression
of a unique, anti-inflammatory host cell
phenotype.

Our review provides an overview of
Leishmania subversion strategies that
hijack epigenetic and transcriptional
control in infected Mϕs and DCs. New
venues for host-directed therapy are
proposed to foster host antimicrobial
functions.
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Macrophage and dendritic cell plasticity: a gateway for Leishmania infection
Intracellular parasites of the genus Leishmania cause a spectrum of severe immunopathologies
termed leishmaniases. These diseases are the direct consequence of the parasites’ capacity to
colonize and subvert essential immune cells, particularly macrophages and dendritic cells (DCs).
Leishmania has evolved a multitude of strategies to render these cells permissive to infection by
taking advantage of their remarkable phenotypic plasticity (see Glossary) (Box 1). Macrophages
and DCs adopt various expression profiles and morphologies, often described as states of
polarization (macrophages) and differentiation/maturation (DCs) that control highly specialized
immune functions, including immune tolerance and response to infection [1]. Recent studies
have shed important new light on the regulation of these alternative phenotypes, revealing a highly
complex interplay between epigenetic, transcriptional, and post-transcriptional mechanisms
involving dynamic changes in DNA methylation, histone modification, transcription factor (TF)
activity, and the expression of noncoding RNAs (Figure 1) [2]. The complexity of this scenario is
further increased by the reciprocal regulatory relationship between epigenetic-regulatory
factors (EpiRFs) that control the expression levels of TFs, which vice versa control the expression
levels of DNA methylases, histone-modifying enzymes (HMEs) and noncoding RNAs (Figure 1).
Thus, in addition to being controlled by individual master regulators, the different cellular states of
macrophages and DCs can be considered an emergent property of self-organizing, regulatory
networks. Intracellular pathogens that infect these immune cells as hosts, such as Leishmania,
have likely coevolved strategies to tap into these networks and exploit established host cell pro-
grams favoring parasite survival and chronic infection. As such, these parasites represent unique
biological probes to investigate pathways regulating phenotypic plasticity of macrophages and
DCs, which, in turn, informs on immunopathological mechanisms underlying leishmaniases. In
this review, we discuss the current knowledge on the regulatory interplay between Leishmania
and the host cell phenotype, how these parasites may subvert the ‘yin–yang’ relationship between
epigenetic and transcriptional control, and how they may exploit existing host cell developmental/
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Box 1. Plasticity of monocytes, macrophages, and DCs

A hallmark of monocytes, macrophages and DCs is represented by their phenotypic plasticity which (i) drives cellular
differentiation, macrophage polarization, and DC maturation, (ii) regulates dynamic, cell-type-specific responses to envi-
ronmental and molecular cues, and (iii) defines the pleiotropic immune functions of those cells [1]. Monocytes differentiate
into different cell type, including macrophages, Langerhans cells, and DCs [65–67].

Macrophages can adopt a spectrum of polarization states whose extremes are represented by classically (M1) and
alternatively (M2a, b, c, d) activated macrophages. M1 cells are characterized by (i) the production of energy via glycolysis,
(ii) the production of proinflammatory cytokines (TNFα, IL-1β, IL-6, IL-12, and IL-23) and antimicrobial oxidants [reactive
oxygen species (ROS) and nitric oxide (NO)], and (iii) the induction of T helper type 1 (Th1) responses that can resolve in-
fection and eliminate tumor cells. In contrast, M2 macrophages are characterized by (i) the use of oxidative phosphor-
ylation/L-arginine metabolism for energy production, (ii) the production of anti-inflammatory cytokines (IL-10, TGFβ),
and (iii) the induction of Th2 responses implicated in tissue homeostasis and wound-healing. Some macrophages,
such as tumor-associated macrophages (TAMs) display features of both M1 and M2 phenotypes [68,69]. Likewise,
Leishmania-infected macrophages seem to express a mixed profile and may define a new polarization state that
remains to be investigated in detail [70]. These macrophage phenotypes are transient and reversible [71–73] and thus
can be exploited for treatment, as illustrated by current efforts to target TAMs for cancer treatment [74].

DC subsets have different and independent ontologies and are divided into myeloid, monocyte-derived, and plasmacytoid
DCs. Myeloid DCs give rise to functionally and phenotypically diverse cells implicated in priming adaptive immune
responses and generating immune tolerance [75]. They are one of the first subsets expected to encounter Leishmania
during parasite transmission by blood-feeding sand flies. Conventional DC1 cells (cDC1) have an intrinsic capacity for
CD8+ T cell activation, cross-presentation and promoting Th1 responses [76]. Conventional DC2 cells (cDC2A and
B) are more efficient for CD4+ T helper polarization, and the induction of Th2, Th17, and regulatory T cell responses
[76–78]. Under inflammatory conditions, DCs can also be derived from monocytes (monocyte-derived DCs, MoDCs) that
further drive CD4+ T helper responses and CD8+ T cell cross-priming [65].

Plasmacytoid DCs (pDCs) express a unique morphology and are specialized in (i) antiviral defense via IFN-α/β production
[79], (ii) antigen presentation, (iii) activation of adaptive immune responses, and (iv) immunoregulation [80]. The phenotypic
and functional plasticity allows these DC subsets to elicit tailored pathogen-specific immune responses [81].

Leishmania parasites can exploit the plasticity of these immune cells and subvert macrophage differentiation, polarization,
maturation, and the activation of the TLR–NF-κB signaling pathway [26,27], which together defines host sensitivity to
infection [70,82].
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Glossary
DNA methylation: reversible addition
of a methyl group regulated by DNA
methyltransferases and demethylases at
the 5′ position on the pyrimidine ring of
cytosine residues resulting in the
generation of 5-methylcytosine in DNA
that can repress or induce gene
transcription. DNA methylation largely
occurs in CpG dinucleotide motifs
present in promoter regions but has also
been observed inside genes and
intergenic regions.
Emergent property: a cellular property
that emerges from the interaction of
individual pathways and represents
more than just the sums of the
pathways’ functions, for example, life is
an emergent property of chemistry.
Epigenetic modulations: an
ensemble of mechanisms that regulate
gene expression without structural
modifications in the DNA sequence by
DNA methylation, post-translational
histone modifications, nucleosome
positioning, chromatin remodeling/
accessibility, and expression of
noncoding RNAs.
Epigenetic-regulatory factors
(EpiRFs): an ensemble of factors
involved in epigenetic regulation,
including histone- and DNA-modifying
enzymes, partners of epigenetic
complexes, and noncoding RNAs.
Histone code: reversible
post-translational modifications of
histone N termini that regulate the
chromatin structure to repress or induce
gene transcription. They include
methylation, acetylation, ubiquitination,
phosphorylation, and SUMOylation, and
they are introduced or removed by
specific histone-modifying enzymes.
Most commonly studied marks are
acetylation (addition of an acetyl group
to lysine residues, such as acetylation of
histone H3 at lysine 4, H3K4Ac) and
methylation (addition of methyl groups to
lysine and/or arginine residues, such as
trimethylation of histone H3 on lysine 27,
H3K27me3).
Host-directed therapy: a strategy to
reduce or eliminate an infectious agent
by targeting host-mediated responses
to infection rather than acting directly on
the pathogen. It is a novel approach to
overcome microbial drug resistance.
Immunometabolomics: an evolving
field of scientific endeavor that combines
immunology and metabolism and inves-
tigates the reciprocal relationship
between the impact of the immune
polarization programs for intracellular survival. We propose the host cell nucleus as a biological
target for Leishmania immune subversion and a pharmacological target for host-directed therapy.

The yin of Leishmania nuclear subversion: exploiting host cell TFs to modulate
epigenetic regulation
The phenotypic plasticity of macrophages and DCs is regulated by a complex interplay between
TFs and epigenetic actors such as microRNAs (Figure 2). Based on regulatory hierarchy and func-
tions, two major classes of TF can be distinguished [2]: first, lineage-determining transcription
factors (LDTFs) are pioneer TFs regulating chromatin accessibility by binding to target
sequences located in closed, silent chromatin at the nucleosome level. LDTFs enable the subse-
quent binding of transcriptional and epigenetic regulators to control tissue-specific gene expres-
sion [3]. For example, PU.1 and C/EBPβ constitute major LDTFs in macrophages and DCs that
induce profound epigeneticmodulations in a genome-widemanner (see Table S1A in the supple-
mental information online), in particular by maintaining the H3K4me1 mark at specific enhancers
[4,5] and rendering DNA accessible to other TFs [6]. PU.1, in addition, modulates DNA methylation
by recruiting the epigenetic modulators TET2 and DNMT3b that respectively induce or repress gene
expression (Table S1A). Thus, LDTFs initiate cooperative interactions with nonpioneer TFs and key
EpiRFs, including chromatin modifiers, histone variants, and repressors [7], which prepares the
chromatin landscape (Table S1A) for the binding of the second class of signal-dependent tran-
scription factors (SDTFs) to the prearranged genome. Consequently SDTFs further regulate stim-
ulus and cell-type-specific transcriptome changes [7] (Table S1B). Interactions between LDTFs,
2 Trends in Parasitology, Month 2021, Vol. xx, No. xx

CellPress logo


LDTFs/SDTFs

EpiRFs

B

D A

TrendsTrends inin ParasitologyParasitology

Figure 1. Model of reciprocal
interaction between epigenetic and
transcriptional regulation. Lineage-
determining transcription factors (LDTFs),
signal-dependent transcription factors
(SDTFs), and epigenetic-regulatory factors
(EpiRFs) act in concert to modulate the
epigenetic profile (A). The resulting changes
in chromatin structure modulate, in turn,
gene expression (B) that can further change
the transcription factor (TF) and EpiRF
landscapes at the protein level (C), and
affect the epigenome, thus closing the
regulatory cycle (D). As indicated by the
flashes, Leishmania parasites (at the center)
interfere with this complex TF and EpiRF
interplay. Abbreviations: lncRNAs, long
noncoding RNAs; miRNAs, microRNAs;
PTMs, post-translational modifications.
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response on cellular metabolisms, and
vice versa, the role of metabolic
processes and individual metabolites in
shaping the function of immune cells.
Lineage-determining transcription
factor (LDTF): a pioneer transcription
factor that activates or represses
tissue-specific genes that determine
cellular phenotype and function.
Noncoding RNAs: RNA molecules
that are not translated into proteins; they
regulate gene expression at the
translational and post-transcriptional
level. They include two categories:
(i) short-chain noncoding RNAs
(including miRNAs with a size <200
nucleotides) that mediate transcriptional
gene silencing, and (ii) long noncoding
RNAs (lncRNAs, size >200 nucleotides)
that change gene expression by
chromatin remodeling, transcriptional
regulation, or post-transcriptional control
of mRNA stability, splicing, and
distribution.
Phenotypic plasticity: the ability of a
cell to display more than one phenotype
when exposed to different
microenvironments. For example, it
allows immune cells to establish
phenotypically distinct ‘subpopulations’
the functions of which are adapted to a
given immunological challenge.
Pioneer transcription factor: a
transcription factor that regulates
chromatin accessibility by binding to
target sequences located in silent, tightly
packed chromatin and nucleosomes.
They can have positive or negative
effects on transcription by recruiting
chromatin-remodeling enzymes to
render DNA accessible to nonpioneer
transcription factors.
Signal-dependent transcription
factor (SDTF): a transcription factor
that modulates gene transcription in
response to a stimulus.
SDTFs, and EpiRFs finally control the transcription of key genes involved in the immune response
[cytokines, chemokines, Toll-like receptors (TLRs), NOS2, TFs, and microRNAs] (Tables S1, S2).
As detailed in the following, there is good evidence that Leishmania acts on these hierarchical, reg-
ulatory circuits to either induce or suppress gene expression.

Leishmania subversion of positive regulatory circuits
TFs can promote an open chromatin structure and induce gene expression by recruiting HMEs
that deposit activating marks or remove repressive marks (Figure 1A), or by changing the expres-
sion levels of HMEs themselves (Figure 1B,C). For example, during M2 polarization of bone-
marrow-derived macrophages (BMDMs), the SDTF STAT6 induces the transcription of the
demethylase Jumonji domain containing 3 (JMJD3) gene to decrease H3K27me3 suppressive
marks at the promoters of various M2 marker genes including ARG1 [8] (Table S1B). Similar
regulatory mechanisms operate during M1 polarization via the NF-κB family member v-rel
avian reticuloendotheliosis viral oncogene homolog A (RELA) – a key SDTF for the proinflamma-
tory response. RELA phosphorylation triggers recruitment of CREB-binding protein (CBP) and
MLL1-2/COMPASS-like complexes that establish active marks on H4 and H3 histones thus
promoting NOS2 expression [9] (Table S1B). Again, aside from these direct effects, RELA
also modulates the expression of epigenetic regulators, such as the long noncoding RNA
lincRNA-Cox2 that, in turn, promotes the expression of late inflammatory-response genes in
lipopolysaccharide (LPS)-treated macrophages [10] (Table S1B).

There is good evidence that Leishmania acts on both of these TFs, likely establishing a mixed
macrophage polarization profile. Leishmania survival has been shown to depend on STAT6
expression, which is induced in an miR146a-5p-dependent fashion during infection and
enhances the expression of the M2 marker protein ARG1, an arginase that catalyzes the conver-
sion of L-arginine into ornithine, known to promote Leishmania replication and survival [11,12].
In contrast, Leishmania infection interferes with NF-κB expression and function, and thus the
antimicrobial M1 polarization profile at multiple levels (Figure 3), by inducing the formation of
Trends in Parasitology, Month 2021, Vol. xx, No. xx 3
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Figure 2. TF/miR landscapes and cell plasticity. Transcription factors (TFs) and microRNAs (miRNAs) constitute dynamic
regulators of polarization and plasticity of monocytes, macrophages, and dendritic cells (DCs). The indicated TFs (A) and miRNAs
(B) were previously linked to the two canonical subsets of polarized macrophages (M1, M2) and tumor-associated macrophages
(TAMs) [6,35,83–90] and the five types of dendritic cell subsets, that is, conventional DC1 and DC2 (cDC1 and cDC2) [91–99],
monocyte-derived inflammatory DCs (moDCs) [100–105], skin-resident Langerhans cells (LCs) [106–110], and plasmacytoid
DCs (pDCs) [79,91,107,111–116]. An increase or decrease of miRNA abundance in these cells is indicated by, respectively, red
and green fonts. Abbreviations: AHR, aryl hydrocarbon receptor; BATF3, basic leucine zipper ATF-like transcription factor 3;
BCL6, B cell lymphoma 6; BCL11a, B cell lymphoma 11a; CEBPs, CCAAT enhancer-binding proteins; CMAF, c
musculoaponeurotic fibrosarcoma; cJUN, Jun proto-oncogene; cMyc, myelocytomatosis oncogene; ETS1, avian
erythroblastosis virus E26 homolog-1; HIF1α, hypoxia-inducible factor 1-alpha; ID2, inhibitor of DNA binding 2; IRFs, interferon
regulatory factors; JUNB, JUN protooncogene homolog B; KLFs, Kruppel-like factors; MAFB, V-maf musculoaponeurotic
fibrosarcoma oncogene homolog B; NFATC3, nuclear factor of activated T cells, cytoplasmic 3; NFIL3, nuclear factor, interleukin
3 regulated; NF-κB1, nuclear factor NF-kappa-B 1; NOTCH2, neurogenic locus Notch homolog protein 2; PPARγ, peroxisome
proliferator-activated receptor gamma; PU1 (purine-rich box-1), a TF encoded by the SPI1 (spleen focus-forming virus proviral
integration 1) gene; RELA, rel avian reticuloendotheliosis viral oncogene homolog A; RELB, rel avian reticuloendotheliosis viral
oncogene homolog B; RUNXs, RUNX family transcription factors; STAT1, signal transducer and activator of transcription 1;
SPIB, Spi-B transcription factor; TBET, T-box expressed in T cells; ZBTB10, zinc finger and BTB domain-containing protein 10;
ZEB2, zinc finger E-box-binding homeobox 2.
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Crel/NF-κB1 or NF-κB1/NF-κB1 dimers (Figure 3A) [13–15], the cleavage of individual NF-κB
members (Figure 3B) [16–18], the inhibition of the nuclear translocation of NF-κB dimers
(Figure 3C) [19], the specific increase of key inhibitors of TLR signaling such as TNFAIP3, TOLLIP,
or IRAKm [20–22], and the inhibition of TRAF3 degradation [23] (Figure 3D). Interestingly,
Leishmania parasites can also interfere with other TFs than NF-κB, including AP-1 or STAT1
[24,25]. We recently extended this plethora of subversion strategies during early infection
by Leishmania amazonensis by revealing (i) the reduced expression of RELA, NF-κB1, and
4 Trends in Parasitology, Month 2021, Vol. xx, No. xx
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Figure 3. Leishmania-driven subversion of NF-κB-mediated gene regulation. At least eight different strategies have
been described to date on how Leishmania promastigotes and amastigotes subvert NF-κB-dependent gene expression that
depend on non-epigenetic (black arrows, A–D) and epigenetic (red arrows, E–H) mechanisms. After 30 min of contact with
macrophages, Leishmania induces the formation of NF-κB1:c-Rel dimers that were associated with increased IL-10
production and suppression of TLR-induced IL12 production [14,15] (A). In macrophages infected with Leishmania, different
members of the NF-κB family are cleaved by parasite effectors such as LmCPb and GP63 [17,18]. Promastigotes cleave
RELA to release the truncated form p35RelA that binds DNA as a heterodimer with NF-κB1, whereas amastigotes cleave the
protein completely [17] (B). Leishmania also inhibits the nuclear translocation of NF-κB1:RELA dimers via the activation of the
host phosphotyrosine phosphatase SHP1 [19] (C). Leishmania infection further inhibits the TLR–NF-κB pathway by inducing
degradation of the positive regulator TRAF3 [23] and increasing expression of the negative regulators OPTN, TNFAIP3,
TOLLIP, and IRAK3 [20–22,26] (D). Various epigenetic mechanisms interfering with NF-κB-dependent gene expression are
described in macrophages harboring intracellular amastigotes (red arrows, E–H), including expression of microRNAs (miRNAs)
that target actors of the TLR–NF-κB signaling cascade, in particular miR-466i during infection by antimony-resistant parasites
[15,40,41] (E), reduced expression of the positive regulator IRAK2 via DNA methylation [48] (F), formation of the NF-κB1:NF-
κB1:HDAC1 repressosome that leads to histone deacetylation of the NOS2 gene promoter [13] (G), and histone H3
hypoacetylation and hypotrimethylation at promoters of NF-κB-related genes that correlates with decreased gene expression
[26] (H). Abbreviations: C-REL, proto-oncogene c-rel; GP63, glycoprotein 63; HDAC1, histone deacetylase 1; IκBα, NF-kappa-
B inhibitor alpha; IRAK3, interleukin-1 receptor-associated kinase 3; LmCPb: Leishmania mexicana cysteine protease b;
NOS2, nitric oxide synthase 2; OPTN, optineurin; PTMs, post-translational modifications; RELA, rel avian reticuloendotheliosis
viral oncogene homolog A; SHP1, Src homology 2 domain-containing tyrosine phosphatase-1; TNFAIP3, tumor necrosis
factor alpha-induced protein 3; TOLLIP, Toll-interacting protein; TRAF3, TNF receptor-associated factor 3.
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NF-κB2 in BMDMs [26], and (ii) the increased expression of RELB in DCs, indicating activation of
the noncanonical NF-κB pathway required for cross-priming [27]. As discussed further below,
these TF expression changes are likely regulated at epigenetic levels.
Trends in Parasitology, Month 2021, Vol. xx, No. xx 5
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Leishmania subversion of negative regulatory circuits
Contrary to the factors described above, various TFs trigger the formation of closed heterochro-
matin and thus inhibit gene expression by directly recruiting HMEs that add repressive or remove
active marks (Figure 1A) or by inducing the expression of noncoding RNAs (Figure 1B) that can
regulate activity and abundance of key TFs and EpiRFs (Figure 1C). For example, the LDTF
PU.1 induces expression of the microRNA mir-424 during monocyte differentiation (Figure 1A,B),
leading to the repression of NFI-A transcription [28] (Table S1A). Recent studies linked infection
with Leishmania to alteration in the miRNA profile [29] (see also section below). During M1 macro-
phage polarization, PU.1 further forms a complex with the corepressor mSin3A and HDAC1 to
reduce the expression of C-MYC, which is a key regulator of M2-like polarization [30]. Conversely,
the SDTF STAT6 reduces the amount of the H3K27Ac activation mark leading to a reduced
expression of key immune actors such as TLR2 and NLRP3 in IL-4 stimulated M2 macrophages,
resulting in decreased responsiveness to proinflammatory stimuli (Table S1B). Leishmania-induced
STAT6 expression thus further promotes an anti-inflammatory host cell phenotype through such
negative regulatory TF circuits. Paradoxically, the proinflammatory SDTF RELA induces the
negative feedback regulator MALAT1, a lncRNA that directly interacts with NF-κB1:RELA and
interferes with its binding to the proinflammatory target promoters IL-6 and TNF (Table S1B).
Enhanced immunity and pathogen clearance in Leishmania donovani-infected, MALAT1–/– mice
indeed indicates that Leishmania may target these endotoxin tolerance pathways to promote its
own survival [31]. Together, these examples illustrate how Leishmania exploits TFs to subvert
host cell epigenetic regulation and to establish an immunometabolomic host cell phenotype
conducive to intracellular parasite survival and chronic infection (Figure 1A–D).

The yang of Leishmania nuclear subversion: exploiting host cell epigenetic
regulation to modulate the TF landscape
Our recent transcriptomic analyses revealed profound changes in TF expression levels in
L. amazonensis-infected DCs [27] and BMDMs [26] (Figure 4A), including (i) suppression of
various proinflammatory NF-κB family members, (ii) induction of the activating transcription factor
3 (ATF3) that negatively regulates inflammatory cytokine gene expression [32], and (iii) reduced
expression of the aryl hydrocarbon receptor (AhR) (Figure 4A), a TF linked to macrophage
polarization and production of tumor necrosis factor (TNF) and nitric oxide synthase (NOS) in
Leishmania major-infected macrophages [33]. These examples uncover a recursive regulatory
network where the TF landscape itself is under transcriptional control, which may involve different
levels of epigenetic regulation. The term ‘epigenetics’ encompasses several types of inheritable
changes in the pattern of gene expression that are linked to structural changes in chromatin
without modification of the DNA sequence. Changes include methylation of the DNA itself,
expression of variant histones, chromatin remodeling factors, noncoding RNAs, or post-
translational modifications of histone proteins. Here we summarize recent evidence that reveals
epigenetics as yet another target for Leishmania immune subversion (Figure 1).

Noncoding RNAs
MicroRNAs (miRNAs) are small RNAs that interfere with the translation of genes into proteins,
each miRNA having thousands of potential transcript targets [34]. They play pivotal roles in innate
and acquired immunity, modulating key processes of macrophages and DCs, including differen-
tiation, activation, polarization, response to infection, maturation, tolerance, immune memory,
inflammation, and wound repair and regeneration [35,36]. miRNAs can either directly control
LDTF and SDTF expression (Figure 4BI, Table S2A) or indirectly affect TF activities, both of
which are exploited by Leishmania. Given that the changes in miRNA expression during
Leishmania infection have been extensively reviewed previously [37], we will here only cite key
examples that illustrate their role in Leishmania subversion of TF functions (Figure 4). For example,
6 Trends in Parasitology, Month 2021, Vol. xx, No. xx
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Figure 4. Leishmania infection changes transcription factor (TF) and epigenetic-regulatory factor (EpiRF)
landscapes in macrophages (Mϕs) and dendritic cells (DCs) by modulating both transcriptional and
epigenetic regulation. (A) Changes in transcriptional regulation. Data are derived from two Affymetrix analyses 24 h
postinfection with Leishmania amazonensis amastigotes in macrophage colony-stimulating factor (M-CSF) differentiated
bone-marrow-derived macrophages (BMDMs) [117] and granulocyte-macrophage colony-stimulating factor (GM-CSF)-
differentiated DCs [27] (the latter condition generating a cDC2 population including also some monocyte-derived
macrophages [118]). Green, reduced expression; red, increased expression. (B) Changes in epigenetic regulation. The
following information is shown: (I) Validated targets of miRNAs (TFs, EpiRFs, histones, translation factors) that were
modulated in primary human macrophages at 24 h after infection with Leishmania major [39]; (II) macrophage gene
promoters that show chromatin changes following infection, that is, modification of histone H3 acetylation/methylation
(L. amazonensis) [13,26] or DNA methylation (Leishmania donovani) [48,119].
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L. major infection of humanmacrophages induced the expression of a series of miRNAs known to
target TFs involved in macrophage polarization and antimicrobial activity [38], which can interfere
with the expression of LDTFs, such as CEBPα and β (hsa-let-7b and hsa-miR-424) [39], and
of the SDTFs STAT1, 3, 5, and 6 (hsa-miR-19b, 28-5p, 106b, 146a, 155, let-7a,), NF-κB1
(hsa-miR-22*, 26a, 28-3p, 30c, 146a, 155, 650, let-7a), or MYC (hsa-miR-19b, 22*, 24, 26,
26b, 155, 200c*, let-7b). In addition, various miRNAs affect proinflammatory signaling and thus
downstream NF-κB activation by (i) reducing TLR expression (miR-let7e) [40], (ii) reducing
MYD88 expression (miR-466i) especially during infection by antimony-resistant Leishmania
parasites [15], or (iii) interfering with NF-κB1:RELA formation and translocation (miR-210) [41]
Trends in Parasitology, Month 2021, Vol. xx, No. xx 7
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(Figure 3E). Together, these parasite-induced miRNAs can affect macrophage differentiation,
polarization state, and proinflammatory potential. In contrast, no information is available yet on
how Leishmania infection affects long noncoding RNAs, another class of regulatory RNAs encoded
in intragenic or intergenic regions and exceeding 200 nucleotides in length [42], even though they
have emerged as major regulators of TFs, such as C/EBPα (ecCEBPA), NF-κB (lncRNA-Cox2,
lncRNA-PACER and lncRNA-Lethe) or HOXA1 (HOTAIRM1) (Table S2B).

DNA methylome
DNA methylation by DNA methyltransferases (DNMTs) generates 5-methylcytosine (5mC) in
regulatory CpG (5′-cytosine-phosphate-guanine-3′-dinucleotide) islands of mammalian gene
promoters. This modification has been associated with both increased and decreased expres-
sion of LDTFs and SDTFs [43]. For example, mCpG dinucleotides can be recognized by
methyl-CpG domain-binding proteins that recruit histone deacetylases promoting local chroma-
tin condensation. This change results in reduced gene expression, which has been observed for
the promoters of TFs (KLF4, PU.1, PPARγ1), and miR-124, the latter resulting in increased
STAT3 expression (Table S2C). Additionally, methylated DNA motifs can also induce gene
expression, notably via specific recruitment of TFs such as C/EBPα and KLF4 [43,44]. In contrast,
the removal of DNAmethylation at cis-regulatory sites has been associatedwith DC differentiation
[45] and increased expression of (i) PPARG (peroxisome proliferator-activated receptor gamma),
a lipid-activated transcription factor that positively regulates myeloid DCmaturation and functions
[46], and (ii) AKT1 (v-akt murine thymoma viral oncogene homolog 1) that plays a critical role in
proinflammatory-mediated DC survival and maturation [47].

Leishmania infection has been shown to modify the chromatin landscape by regulating the DNA
methylome (Figure 4BII). After 24 h of infection with L. donovani promastigotes, 443 CpG sites
were found to be differentially methylated in THP1 cells, including genes that code for proteins
involved in various signaling pathways (JAK/STAT, calcium, MAPK, Notch and mTOR), as well as
cell adhesion (integrin beta 1) and changes in host oxidative phosphorylation [48]. Indeed, increased
cytosine methylation at the promoter correlated with reduced expression of the interleukin-1
receptor-associated kinase 2 (IRAK2) that is involved in NF-κB activation (Figure 3F). Conversely,
CpG methylation was decreased for the nuclear receptor corepressor 2 (NCOR2) and histone
deacetylase 4 (HDAC4) genes. Thus, even though no direct effect on TF expression was reported,
changes in the DNA methylation pattern seem to synergize with other epigenetic mechanisms to
establish permissive conditions for intracellular Leishmania survival.

Histone code
The chromatin architecture is regulated by reversible multiple post-translational modifications of
histone proteins [49]. These modifications constitute a complex and dynamic 'histone code'
that has a central role in regulating the binding of protein cofactors, the regulation of gene expres-
sion, and its dysregulation in pathology, including infection [50]. This code is dynamically regu-
lated by specific HMEs that either add (‘writers’) or remove (‘erasers’) a given activating or
repressive mark in response to developmental or environmental cues. The expression of macro-
phage and DC LDTFs (CEBPs, PU.1) and SDTFs (STATs, NF-κB, PPARγ) are themselves
regulated at the level of histone modification (Table S2C). Recent evidence suggests that
Leishmania subverts the histone code to establish the immunometabolomic conditions for its
intracellular survival. In L. donovani- and L. amazonensis-infected macrophages, reduced
NOS2 expression and production of leishmanicidal NO was linked to induction of histone
deacetylase 1 (HDAC1) and the removal of H3K9Ac activation marks, likely via the formation of
a repressosome with NF-κB1 homodimers (Figure 3G) [13,51]. We have recently provided direct
evidence that L. amazonensis-infected macrophages reduced the expression of various
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Outstanding questions
How does Leishmania interfere with
host cell epigenetic regulation and
transcriptional control?

Is Leishmania nuclear subversion a
passive process resulting from the
metabolomic impact of intracellular
infection, or an active process governed
by the release of parasite proteins
(or both)?

Are Leishmania effector molecules
targeted to the host cell nucleus to
modify host cell nuclear regulation?

Are the nuclear subversion strategies
dependent on the parasite and host
species?

Do virulent/avirulent strains of Leishmania
display similar subversion strategies?

Do antimony-resistant parasites that
cause aggressive pathology rely on simi-
lar subversion strategies as susceptible
strains?

Do Leishmania-infected macrophages
express amixed polarization phenotype
and a unique immunometabolomic
profile?

Are there common subversion
mechanisms between Leishmania
and other intracellular pathogens
known to infect macrophages and
dendritic cells?

What are the key nuclear targets in
Leishmania-infected host cells, and
can they be exploited for host-
directed, antileishmanial therapy?

Can pharmacoepigenetic intervention
restore an antileishmanial phenotype
in infected host cells and be applied
for host-directed treatment?
proinflammatory genes that correlated with H3K9/14 hypoacetylation (Figure 3H), including
genes of the TLR/cytokine receptor pathway, (e.g., the membrane receptors TLR6, 8, 9, and
TNFRSF1b) and genes of the TLR signaling cascade (MYD88, IRAK1/2). Significantly, changes
in H3K9/14 acetylation levels were also observed for promoters of the NF-κB family, with
hypoacetylation and decreased expression demonstrated for IKKB, NFKBIA, NFKB2, and the
TF RELA (Figure 3 and Figure 4BII), while increased H3K9/14ac levels and expression were seen
for the promoter of the TNFAIP3 gene that codes for a major inhibitor of the TLR/cytokine recep-
tor–NF-κB pathway [26]. Thus, Leishmania causes a dual inhibition of the proinflammatory response
by inducing opposite epigenetic marks that reduce proinflammatory but increase anti-inflammatory
gene expression and regulatory circuits.

Concluding remarks
The examples discussed above illustrate that Leishmania parasites have evolved various strategies
to subvert epigenetic and transcriptomic regulation of their host cells. A key challenge for future
studies lies in dissociating the precise mechanisms underlying such pathogenic parasite/host cell
interactions (see Outstanding questions). Likewise, whether the suppression of the immunological
functions of the host cells is a passive process resulting from the metabolic impact of feeding
parasites, or an active process governed by the release of parasite proteins, remains to be
established. Finally, the phenotype of Leishmania-infected macrophages remains only poorly
characterized despite its role in promoting the immunopathologies characteristic of leishmaniases.
The nuclear subversion strategies described in this review provide new opportunities for the design
of novel intervention strategies that are directed towards the host and aim to restore the macro-
phage or DC immunological and antimicrobial potential [52]. Targeting the host for antimicrobial
therapy has been recognized as a new and fertile approach to treat viral, bacterial, and fungal
diseases. Targeting the host rather than the pathogen for antimicrobial therapy increases the
genetic barrier for drug resistance [53–55], which is a major concern in Leishmania clinical infection
given the parasite’s remarkable genomic plasticity that constantly drives fitness gain, including in
response to drug treatment [56,57]. The possibility of host-directed therapy against Leishmania is
supported by reports on the antileishmanial effects of Imiquimod, which acts as a TLR-7/8 agonist
[58], or the compound naloxonazine, which kills intracellular Leishmania by targeting host cell
vATPases [59]. With respect to our review, pharmacological interference with miRNAs or HMEs
represents another fertile, yet underexplored venue for host-directed, antileishmanial therapy.
Inhibition of host cell HDAC activity in L. donovani-infected THP1 cells has been shown to reduce
intracellular parasite burden [51,60] and the antidepressant imipramine was linked to increased
HDAC 11 expression and reduced survival of antimony-resistant L. donovani in experimental infec-
tion [61]. Given that HMEs are key targets for anticancer drug discovery [62], it would be interesting
to screen epigenetic compound libraries for antileishmanial activities. Likewise, TFs are prime
targets in tumor therapy [63], and available antagonists or agonists may be repurposed to treat
leishmaniasis. The remarkable redundancy with which Leishmania is suppressing NF-κB-mediated
responses defines this SDTF as a key target for the discovery of host-directed drug candidates
that can rescue this essential proinflammatory regulator, for example by applying available phenotypic
screening protocols [64] on infected macrophages activated with proinflammatory stimuli.

In conclusion, there is ample evidence in the current literature that Leishmania instrumentalizes
the dynamic interplay between transcriptional and epigenetic regulation to subvert host cell pro-
grams linked to differentiation, polarization, andmaturation. Themajor challenge for future studies
lies in (i) dissociating the hierarchical relationship between these different layers of gene expres-
sion control, (ii) identification of key regulators that are targeted by the parasite and may be
exploited for host-directed drug discovery, and (iii) discovery of Leishmania effector molecules
that are released into the host cell nucleus and directly modify the host cell chromatin landscape.
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