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ARTICLE OPEN
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The role and biological significance of gene-environment interactions in human traits and diseases remain poorly understood. To
address these questions, the CHARGE Gene-Lifestyle Interactions Working Group conducted series of genome-wide interaction
studies (GWIS) involving up to 610,475 individuals across four ancestries for three lipids and four blood pressure traits, while
accounting for interaction effects with drinking and smoking exposures. Here we used GWIS summary statistics from these studies
to decipher potential differences in genetic associations and G×E interactions across phenotype-exposure-ancestry combinations,
and to derive insights on the potential mechanistic underlying G×E through in-silico functional analyses. Our analyses show first
that interaction effects likely contribute to the commonly reported ancestry-specific genetic effect in complex traits, and second,
that some phenotype-exposures pairs are more likely to benefit from a greater detection power when accounting for interactions. It
also highlighted modest correlation between marginal and interaction effects, providing material for future methodological
development and biological discussions. We also estimated contributions to phenotypic variance, including in particular the
genetic heritability conditional on the exposure, and heritability partitioned across a range of functional annotations and cell types.
In these analyses, we found multiple instances of potential heterogeneity of functional partitions between exposed and unexposed
individuals, providing new evidence for likely exposure-specific genetic pathways. Finally, along this work, we identified potential
biases in methods used to jointly meta-analyze genetic and interaction effects. We performed simulations to characterize these
limitations and to provide the community with guidelines for future G×E studies.

European Journal of Human Genetics (2022) 30:730–739; https://doi.org/10.1038/s41431-022-01045-6

INTRODUCTION
The precise role of gene-environment interactions (G×E) in
complex human traits and disease traits remains unclear.
Although genome-wide G×E studies have been conducted for
many phenotypes, the number of identified G×E is very small
relative to the large number of genetic variants identified in
traditional genome-wide association studies (GWAS). A number of
issues related to the identification of G×E have been well
described in the literature [1–3], including in particular very low
power [4]. As a result, the required sample size needed to detect
G×E is substantially larger than for marginal genetic effect (i.e.,
genetic effect estimated from a model not accounting for G×E).
Moreover, few studies have explored potential differences in G×E

across ancestry, assessed the contribution of G×E to the variance
of human phenotypes, or explored enrichment of G×E for specific
functional mechanisms.
The Gene-Lifestyle Interactions Working Group [5] within the

Cohorts for Heart and Aging Research in Genetic Epidemiology
(CHARGE) is an international initiative that has the potential to
address some of these challenges. It is a large-scale, multi-ancestry
consortium that aims at systematically evaluating genome-wide
gene-lifestyle interactions on cardiovascular disease-related traits
using genotypic data from up to 610,475 individuals. The
consortium published a series of genome-wide single nucleotide
polymorphism (SNP) by smoking and drinking interaction screen-
ings focusing on four blood pressure phenotypes: diastolic blood
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pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP),
mean arterial pressure (MAP), and three lipid levels: triglycerides
(TG), high-density lipoprotein cholesterol (HDL), and low-density
lipoprotein cholesterol (LDL). For each pair of a phenotype and an
exposure, a genome-wide interaction studies (GWIS) using the 1
degree of freedom (df) test for G×E interaction and the 2df joint
test of main genetic effect (i.e. the estimate of genetic effect from
the interaction model) and G×E interaction effects [6] has been
conducted. The results from these analyses have been published
in five papers: SNP-by-alcohol interaction [7] and SNP-by-smoking
interaction [8, 9] on blood pressure, and SNP-by-alcohol interac-
tion [10] and SNP-by-smoking interaction on lipids [11].
Here we first synthesize the GWIS results for all phenotype-

exposure combinations. We highlight the importance of our large-
scale initiative, providing evidence that interacting variants might
differ by genetic ancestry, and show that accounting for G×E can
help to discover new loci, especially for certain phenotype-
exposure pairs. We then performed a series of analyses comparing
interaction effects against marginal genetic effects derived from
both our studies and from previous GWAS. Contrary to a
commonly assumed hypothesis [12], we found only modest
correlation between interaction effect and marginal effect, high-
lighting additional challenges for future G×E interactions studies.
Estimated variance explained by main and interaction effect for
the outcomes under study also showed that in general,
interactions explain a very small amount of phenotypic variance
on top of the marginal genetic effect for these traits. However,
these limitations were balanced by stratified heritability analyses.
Partitioning the genetic variance in exposed and unexposed
individuals separately, using both functional and cell-type
annotations, we observed differential enrichment patterns
between the two groups in multiple instances. This suggests
G×E might still play an important role in these phenotypes, with
some exposures potentially triggering new molecular mechanisms
or reducing the contribution of pathways involved in unexposed
individuals.

METHODS
Data and processing
We considered four blood pressure phenotypes (DBP, SBP, PP, MAP), and
three lipids levels (TG, HDL, LDL). Two binary smoking exposures, current
smoking and ever smoking, were considered and measured similarly across
all smoking GWIS. The current smoking variable was coded as 1 if the
subject smoked regularly in past year and as 0 otherwise. Ever smoking
status was coded as 1 if the subject smoked at least 100 cigarettes during
his/her lifetime and 0 otherwise. For alcohol consumption, two binary
variables were considered, referred further as current drinking and drinking
habit. All studies conducted a two-stage approach. In stage 1 (referred to
as Discovery), a standard GWIS was performed using up to 18 million
genetic variants. In stage 2 (referred to as Replication), only a subset of
variants with a p value for either 1df or the 2df test below a certain
threshold (P < 10−6 or P < 10−5) at stage 1 were further considered. For
each outcome exposure, we had access to complete meta-analysis
summary statistics of both the discovery and the replication stages for
four different ancestries (European, African, Asian, and Hispanic) after
quality control filtering. To ensure a fair comparison, we re-processed all
results for each outcome-exposure-ancestry combination using the same
pipeline. More details are provided on the data and pre-processing are
available in the supplementary notes and in the corresponding publica-
tions [7–11].

Identification of independent signals and associated loci
We defined two levels of association when reporting genome-wide
significant variants in the combined meta-analyses (P < 5 × 10−8): inde-
pendent signal (lead SNPs after clumping) and associated locus (genetic
regions of 1 Mb with at least one independent signal). Independent signals
represent independent SNPs associated at genome-wide significance level.
Independent signals were defined using the clumping framework from the
PLINK software [13], using a linkage disequilibrium (LD) threshold of 0.2

and a maximum physical distance from the lead SNP (i.e., the most
associated variant) of ±500 kb. The LD was derived using 1000 Genomes
Project [14] individuals as a reference panel while accounting for ancestry.
We used the EUR, AFR, combined EAS-SAS, and AMR samples as proxies for
the individuals from European ancestry (EA), African ancestry (AA), Asian
ancestry (ASA), and Hispanic ancestry (HA), respectively. For the trans-
ancestry analyses, we built our reference panel by merging all those
reference populations. Associated loci are genetic regions of 1 Mb or more
harboring at least one genome-wide associated SNPs. To define associated
loci, we first derived region 500 kb upstream and downstream of each and
every independent signal (as defined above). All overlapping regions were
then merged to form the loci. Further details are provided in the
Supplementary Note

Interaction effect conditional on marginal effect
We assessed potential enrichment for interactions effects for SNPs displaying
marginal genetic association. To increase independence between our
interaction effect GWIS and the marginal GWAS, we used summary statistics
from previous studies on blood pressure traits [15–17] and lipid traits [18–21].
However, note that there might be a small overlap of samples between some
of these previously published marginal GWAS and the 1df and 2df GWIS from
the CHARGE consortium. For this analysis, we considered only individuals of EA,
in order to maximize the sample size while limiting potential issues due to
genetic heterogeneity, where the top variants might differ across populations.
In practice we used the 1df interaction test from the combined analysis
derived in European sample in CHARGE, and for external studies, we used only
the GWAS conducted in European populations. Moreover, to avoid enrichment
driven by a single locus, we performed a clumping of the previously published
GWAS of marginal genetic effect with PLINK [13], so that all lead SNPs
considered are independent from each other. We first derived the proportion
of interaction effect nominally significant at type I error rate (alpha) threshold
of 0.05 among bins of SNPs grouped based on their marginal association (i.e.,
we derive the proportion of SNPs with interaction p value below 0.05 and
p value for marginal effect in bins [1, 0.1], [0.1, 0.01], [0.01, 0.001], etc). Note that
the aforementioned clumping of SNPs avoids any biased enrichment due to
pairwise SNP correlation. For the last bin, including only SNPs previously
identified at genome-wide significance level (5 × 10−8) in marginal effect
GWAS, we also performed three complementary association tests [4] to assess
interaction effects that would have been missed by single SNP G×E interaction:
an omnibus test, an unweighted genetic risk score (uGRS) test, and a weighted
genetic risk score (wGRS) (see Supplementary Note).

Variance explained and heritability
For each ancestry and each phenotype-exposure combination, we derived
from the combined (stage 1 and stage 2) results the fraction of phenotypic
variance explained by top SNPs was decomposed into main effects,
interaction effects and those effects jointly using the R package VarExp
[22]. The significance of the variance explained by interaction effects was
derived using an approximation of the joint test of all interaction effects.
For EA samples, we further assessed potential differences in heritability
across exposure-specific strata using stage 1 genome-wide association
results using the LDSC approach [23]. We used the pre-computed LDscore
relative to EA samples provided with the software. When unavailable from
the original studies, stratified results were derived from the interaction
model using J2S [24]. For each exposure stratum, genetic heritability was
further partitioned by both cell-type-specific and general annotations [25]
using two distinct sets of annotations: baseline and GenoSkyline+. The
significance of the annotation enrichment was assessed using a Bonferroni
corrected significance threshold of P < 0.000277. Tissue-specific heritability
was also derived following Finucane et al. [26]. Except when specified
otherwise, enrichment analyses compared median enrichment between
exposure strata. We avoided comparison of significance level here, which
would be biased by differences in sample size. Additional details of these
analyses are provided in the Supplementary Note.

RESULTS
Overview
We investigated results from 28 GWIS on three lipid and four
blood pressure phenotypes, each examining G×E interaction with
two smoking and two alcohol exposures (Table 1). All outcome-
exposure pairs were analyzed using a two-stage approach
involving up to 610,475 individuals. In stage 1, a GWIS was
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performed in up to 29 cohorts with a total of up to 149,684
individuals from four ancestries: EA, AA, ASA, and HA. In stage 2,
involving up to 71 additional cohorts including 460,791 indivi-
duals, also from multiple ancestries, studies focused on the
replication of a subset of variants from stage 1. The total sample
size (discovery and replication) varied substantially across the trait
analyzed, with an average of 311 K for lipids and 457 K for blood
pressure traits. Moreover, our analyses explored not only the 28
primary trans-ancestry GWIS, but also the 112 corresponding
ancestry-specific GWIS. To ensure a fair comparison across all
analyses, we re-processed all GWIS summary results using the
same pipeline. Stage 1 quantile-quantile (QQ) plots for both the
1df and the 2df test are presented in Fig. S1, and frequency of the
exposure are presented in Fig. S2 and Table S1. Finally, note that
the primary association results from the original studies and our
analyses are highly concordant, but minor differences might exist
because of slight differences in the analysis pipeline.

Identifying single SNP G×E is challenging but accounting for
G×E still boost power
Despite the reasonably large sample size available in our studies,
there was only one significant interaction signal with the 1df

interaction test across the 28 trans-ancestry GWIS when combin-
ing discovery and replication (rs1626071 on chr10 near gene
LINC01517, interaction with current smoking on MAP, P1df= 3.19 ×
10−8). For the ancestry-specific meta-analysis, the 1df interaction
test identified 8 loci reaching genome-wide significance, all
observed in the African ancestry population (Table S2). They
involved the smoking exposure only, and are associated with both
lipids and blood pressure traits. Four of those loci were also
detected at genome-wide significance with the 2df test in the
African ancestry population, while the remaining four associations
achieve suggestive significance with that test (P2df between 1.9 ×
10−6 and 6.3 × 10−8).
In sharp contrast with the 1df interaction test, the 2df joint test

identified a large number of variants in both the trans-ancestry
(Table 1) and ancestry-specific (Tables S3 and S4) meta-analyses.
Altogether, the 2df trans-ancestry analyses identified a total of
1698 loci-phenotype associations (see “Methods” for the definition
of loci), when summing results over all phenotypes and all
exposures. Among those, a total of 54% of the loci (N= 926)
harbored a single independent association signal, while others
display multiple independent signals (Fig. S3). Many loci over-
lapped across the exposures tested. For example, there were 108

Table 1. Summary of trans-ancestry GWIS results for 2df joint and 1df interaction tests.

Outcome Exposure # variants Sample sizea

(disc)
Sample sizea

(rep)
# Loci (signals)b

2df
# loci (signals)b

1df

Lipids HDL Current drinking 7,505,310 127,252 231,043 111 (584) 0 (0)

Drinking habits 6,848,811 118,899 217,468 109 (528) 0 (0)

Current smoking 6,306,314 133,508 253,467 69 (335) 0 (0)

Ever smoking 7,269,995 133,816 251,711 74 (370) 0 (0)

LDL Current drinking 7,448,913 118,654 171,142 92 (492) 0 (0)

Drinking habits 6,834,699 111,093 155,280 78 (446) 0 (0)

Current smoking 6,261,354 125,629 188,109 53 (251) 0 (0)

Ever smoking 7,251,615 125,638 186,230 45 (163) 0 (0)

TG Current drinking 7,410,534 104,716 221,722 71 (413) 0 (0)

Drinking habits 6,839,760 103,214 210,623 72 (365) 0 (0)

Current smoking 7,122,377 111,900 241,140 52 (220) 0 (0)

Ever smoking 8,438,564 111,909 238,972 49 (226) 0 (0)

Blood pressure SBP Current drinking 7,489,960 121,948 426,121 55 (106) 0 (0)

Drinking habits 10,639,279 62,479 114,058 29 (47) 0 (0)

Current smoking 6,849,695 127,730 474,475 66 (139) 0 (0)

Ever smoking 7,928,860 127,733 458,034 68 (137) 0 (0)

DBP Current drinking 7,490,269 121,947 426,177 57 (101) 0 (0)

Drinking habits 10,639,829 62,479 114,111 31 (42) 0 (0)

Current Smoking 6,784,799 127,730 474,531 70 (138) 0 (0)

Ever smoking 7,930,829 127,730 458,089 66 (136) 0 (0)

MAP Current drinking 7,489,903 121,947 426,112 48 (71) 0 (0)

Drinking habits 10,639,231 62,479 113,287 32 (46) 0 (0)

Current smoking 6,848,964 127,730 474,465 69 (144) 1 (1)

Ever smoking 7,932,503 127,730 458,024 67 (137) 0 (0)

PP Current drinking 7,489,921 121,947 420,767 39 (67) 0 (0)

Drinking habits 10,639,279 62,479 114,111 18 (27) 0 (0)

Current smoking 7,934,402 127,730 473,514 54 (92) 0 (0)

Ever smoking 7,934,402 127,730 457,073 54 (90) 0 (0)

HDL high-density lipoprotein, LDL low-density lipoprotein, TG triglycerides, SBP systolic blood pressure, DBP diastolic blood pressure, MAP mean arterial
pressure, PP pulse pressure, 1df 1 degree of freedom interaction test, 2df 2 degrees of freedom joint test, disc Discovery stage, rep replication stage.
aMaximum sample size across all variants analyzed.
bPlain text number corresponds to the count of associated loci (region of 1 Mb or more harboring at least one GWAS hit), while the number of independent
association signals (associated SNPs remaining after clumping) is provided in parenthesis.
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and 103 loci identified for HDL when including interaction
between current drinking and drinking habits, respectively.
However, 92 of those loci were identified in both analyses.
Merging all overlapping loci unraveled by different exposure
scans, the 2df scans found a total of 112, 98, 77 loci for HDL, LDL,
TG, and 74, 75, 75, and 59 loci for SBP, DBP, MAP, and PP
respectively. On average, 13% of the loci were identified by a
single exposure scan, while 41% were identified by all four
exposure association studies for each phenotype (Fig. 1a).
We compared the trans-ancestry 2df results against 599 significant

marginal genetic effect association on the two primary blood
pressure traits (DBP and SBP) [15–17] and the three lipid traits
[20, 27] retrieved from previous studies (Tables S5, S6, Fig. S4, and
“Methods”). Among those, 294 were also found genome-wide
significant in our studies, and 305 associations did not reach this
significance threshold. Conversely, the trans-ancestry 2df screenings
identified 119 novel loci-outcome associations. Most of the new
association results for lipids were identified when accounting for
interaction with drinking exposures, while the majority of new blood
pressure associations were identified when accounting for interac-
tion with smoking exposures (Table 2). Part of these observed
differences might be explained by heterogeneity in sample size (e.g.
N was substantially smaller for BP and drinking habits as compared
to BP and other exposure). However, sample size for all other
phenotype-exposure pairs were fairly very similar (<14%) and
unlikely to explain difference in number of replicated signal (e.g. for
HDL, Ndrinking habits= 379 K, Ncurrent smoking= 384 K, and number of
replicated signals equals 17 and 11, respectively). We also derived
the association signal from the combined stage 1 and 2 SNPs that
would have been obtained using a standard marginal genetic effect
in the CHARGE data, while adjusting for the effect of the exposure,
but not modeling the interaction. The marginal model replicated
only at a similar proportion of signal, 48% (N= 289) as compared to
49% (N= 294) of the 599 previously reported associations. Among
the 119 new associations detected by the 2df test, 29% (N= 35) did
not passed the genome-wide significance level with the marginal
model, highlighting the importance of accounting for G×E to detect
new associated variants.

G×E effects might vary by exposure and ancestry
When stratifying the 2df joint test results by exposure, accounting
for interaction with drinking tended to identify more lipids
associations, while accounting for interaction with smoking
identified more associations for blood pressure phenotypes
(Fig. 1b–e). Looking at cross-phenotypes results, GWIS accounting
for current drinking and drinking habits captured 81% and 61% of
all loci, respectively, and current smoking and ever smoking scans
identified 75% and 72% of all loci respectively. Note that the lower
number of signals for drinking habits is likely partly explained by
the smaller sample size used for that exposure (307 K on average
versus 440 K for the other exposures), especially for the BP GWIS
that used a different definition for drinking habits (see “Methods”).
To understand the differences observed across other exposures,
we used the HDL results as a case study. First, we noticed that the
chi-squared from the 2df joint test from overlapping loci across
the four exposure scans were highly correlated (Fig. S5a). This is
expected, as most studies have approximately the same sample
size at discovery and replication stages, and contribution of the
interaction effect is assumed to be limited. Nevertheless, we
noticed a larger mean interaction effect chi-square at those same
loci for the drinking exposures (χ2= 1.57, P= 8.7 × 10−5 and 1.58,
P= 1.2 × 10−4) as compared to the smoking exposures (χ2 = 1.07,
P= 0.32 and 1.09, P= 0.28), suggesting a potential contribution of
SNP-by-drinking interaction effect (Fig. S5b).
Over the two stages, 63% of the individuals (N= 380,612) were of

European, 27% (N= 162,370) of Asian, 6% (N= 34,901) of African
and 4% (N= 22,334) of HAs. For the 2df joint test, the total number
of significant associations per ancestry was, as expected, significantly
positively correlated to the available sample size (r2= 0.42, 95% CI =
[0.25, 0.57], P= 1.1 × 10−5) (Table S3). When merging results from all
phenotype-exposure pairs, there were 1,285, 383, 135, and 148
phenotype-variants associations identified after clumping by this
approach in EA, ASA, AA, and HA ancestries, respectively. The vast
majority of the loci found in the ASA (95%) and HA (99%) ancestries
were also identified in the larger EA studies (Fig. 2a). Conversely, 32%
(43 out of 135) of the associations identified in AA were exclusively
identified in this ancestry and mostly involved variants not present in

Fig. 1 Loci identified by the trans-ancestry 2df joint test across the four exposures. We assessed the relative performance of the trans-
ancestry joint 2df test across the four exposures. a Overlapping loci for the 2df test across the four exposures. We further decomposed these
results by exposure, for current drinking (b), drinking habit (c), current smoking (d), ever smoking (e). The corresponding radar plots show the
proportion (from 0% to 100%) of the total number of loci identified for that phenotype.
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all ancestries except in AA (in non-AA ancestry populations, 60% of
those variants were filtered out at stage 1 because of low frequency).
The trans-ancestry analysis identified 1276 (94%) of all ancestry-
specific associations, while uncovering an additional 148 associations.
All associations missed in the trans-ancestry analyses were found in a
single ancestry from ASA (N= 6), AA (N= 36), EA (N= 41), and HA
(N= 1). To account for sample size differences and assess whether
top variants were consistent across ancestries, we extracted the top
variants for each ancestry-specific association and checked for
nominal significance (P < 0.05) in other ancestries screenings from
stage 1. Figure 2b shows that the overlap across all phenotypes and
per phenotype is modest. These results, along the aforementioned
1df significant signals unique to the AA samples, suggest the
presence of ancestry-specific variants and G×E s, and in AA in
particular.

Correlation between marginal genetic and interaction effect
are negligible
To understand further the contribution of G×E to significant 2df
results, we derived for each phenotype-exposure-ancestry combi-
nation (N= 12,302, see Table 1 and Table S3) the number of SNPs
inducing an enhanced genetic effect in exposed individuals (when
main genetic effect and interaction effect have the same
direction) and those inducing a reduced genetic effect (when
main and interaction have opposite signs). In practice, we used
the marginal genetic effect as a proxy for the main effect, as the
former parameter has better properties for such an analysis (i.e.,

the marginal effect is expected to be independent of the
interaction effect under the null [12], while the main effect does
not [4]). Note that this subtlety has almost no impact on the
results as the main and marginal are highly correlated (ρ= 0.99)
among the significant 2df variants. Overall, the direction of
marginal and interaction effects estimated using the 1df test
tended to be randomly distributed among those SNPs, although
we observed a slight enrichment, with 13 out of 91 trios showing
disequilibrium for either concordant or discordant effects (one
sided binomial test P= 6 × 10−4, Fig. S6). Four of them, all in the
trans-ancestry analyses, displayed discordant marginal and inter-
action effect that remained significant after correcting for multiple
testing (P < 5.5 × 10−4): LDL showed larger genetic effects in both
current (P = 4.3 × 10−4) and ever smokers (P = 3.7 × 10−4), DBP
showed larger genetic effects in current drinkers (P = 1.6 × 10−4),
and SBP showed smaller genetic effects among ever smokers (P =
9.9 × 10−5). Among sets of variants displaying interaction effects
discordant with marginal genetic effects, we also searched for
those inducing an opposite effect between exposed and
unexposed individuals. Although the 2df joint test is supposed
to outperform substantially the marginal test in this scenario [4],
there were only 66 such associations (0.6% of all associations),
suggesting this pattern is quite rare in these data.
We next assessed potential enrichment for interaction effects

across variants previously identified in marginal effect GWAS
[15–17, 20, 27] (Tables S5 and S6) and available in the trans-
ancestry stage 1 analyses. Among those variants, the smallest single

Table 2. Association signal overlap between the 2df joint test (accounting for interactions) and previous GWAS of marginal genetic effect.

Phenotype Overall CHARGE only, per exposure

External GWAS only Both CHARGE only Current drinking Drinking habits Current smoking Ever smoking

HDL 70 83 21 18 17 11 11

LDL 60 63 30 25 17 6 6

TG 91 57 15 9 11 6 5

SBP 33 37 35 21 6 27 28

DBP 47 46 26 16 4 22 17

All 301 286 127 89 55 72 67

HDL high-density lipoprotein, LDL low-density lipoprotein, TG triglycerides, SBP systolic blood pressure, DBP diastolic blood pressure, 1df 1 degree of freedom
interaction test, 2df 2 degrees of freedom joint test, disc discovery stage, rep replication stage.

Fig. 2 Overlapping associations for the 2df test across ancestries. We derived the overlap in association signal for the joint 2df test of main
and interaction effects across the four ancestries: Asian (ASA), African American (AA), European (EA), and Hispanic (HA). a A Venn diagram
focusing only on loci found at genome-wide significance level after the meta-analysis of stages 1 and 2. In b we extracted genome-wide
significant SNPs per ancestry (i.e., reference population) after the meta-analysis of stages 1 and 2, and extracted the p value for those SNPs in
other populations (i.e., the matching populations) from stage 1. The barplot shows for each reference population, the proportion of SNPs in
the matching population that achieve a p value below 0.05. For each comparison, we also derived the expected number of hits based on the
effect size estimate in the reference population and the sample size in the matching population.
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SNP 1df interaction p value was observed for rs1260326 (for
G×Drinking habits on TG, P1df = 3.3e−6), a missense variant in
GCKR previously found associated with alcohol consumption [28, 29].
However, besides this particular signal, the distribution of interaction
effects at those variants did not indicate any clear trend (Fig. S7) and
the joint test of all single SNP [30] did not find any significant
enrichment for interaction effect among these variants (see
Supplementary Notes, Table S7). We also explored potential
enrichment for interaction at non-significant SNPs. Such enrichment
would be of particular interest to increase power of G×E test through
2-step approaches [12, 31, 32] (see for example Fig. S8). The most
common 2-step approach consists of filtering out SNPs displaying a
marginal genetic p value larger than a given α1 significance
threshold. To assess the potential of this strategy in our data, we
quantified the enrichment of nominally significant variants (i.e. P<
0.05) for G×E interaction effect while varying α1 between 0.1 and
10−6 applied to the aforementioned previous marginal GWAS
summary statistics. Some phenotype-exposure pairs show a slight
increase in the proportion of significant G×E interactions, including in
particular TG and drinking habits (11% of the SNPs against the 5%
expected for α1= 10−5). However, as illutrated in Fig. 3 which display
the enrichment along 0.05 and 1 × 10−4 confidence interval, no
enrichment remains significant after correction for multiple testing in
our data. We also considered using marginal genetic effect derived
from the stage 1 in CHARGE (Fig. S9). This analysis displayed a
modest enrichment for interaction with drinking exposure for lipids
and with current smoking for TG, with enrichment for some bins
falling outside the stringent confidence interval (i.e., P< 1 × 10−4).

Small contribution of G×E at top variants but differences in
heritability stratified by exposure
We first used VarExp, a tool we recently developed [22], to
estimate the variance explained by marginal genetic effects, the

joint genetic and G×E interaction effects, and the interaction
effects only, at the top genome-wide significant variants in each
locus for each phenotype-exposure-ancestry analysis (Table S8).
Marginal genetic effects explained between 0.09% and 8.72% of
the total phenotypic variance with an average of 3.59%. The
fraction of variance explained by the interaction effects only were
substantially smaller, varying between 0% and 0.41%, but were
statistically significant for many analyses. The largest amount of
variance explained was observed for lipids traits, (average of
4.47% for the 2df, as compared to 0.81% for blood pressure
phenotypes). Looking at ancestry-specific results, we noted a
larger fraction of variance explained in the European ancestry
samples than in other ancestries, with greater differences
observed in lipids phenotypes and drinking exposures (7.11% of
explained variance in individuals from European ancestry versus
5.11% in other ancestries on average). We also noted a slightly
higher contribution of G×E in the African ancestry population
(0.15%) than in other ancestries (around 0.04%), in agreement
with the higher number of significant interactions identified for
this ancestry.
Second, we estimated potential changes in the heritability of

the three lipids and two blood pressures (DBP and SBP) traits
across all individuals and in strata defined by exposure, using the
LDSC approach [23] applied to summary statistics from the stage 1
analyses performed in the European ancestry population (Fig. 4,
Table S9). Because of potentially biased heritability estimates, we
performed a sensitivity analysis, re-deriving the heritability after
filtering out SNPs based on their p value for heterogeneity in the
meta-analysis and selected the most reliable estimate (see Fig. S10
and Supplementary Notes). Based on those estimates, we
observed that heritability among exposed individuals was on
average smaller than among non-exposed individuals for current
smoking (h2 = 0.06 and h2 = 0.11, respectively) and for drinking

Fig. 3 Potential power for 2-step approach. We plotted for each environmental exposure, current drinking (a), drinking habits (b), current
smoking (c) and ever smoking (d), the proportion of independent SNPs displaying an interaction p value (Pint) below 0.05 in CHARGE across
bins of variants selected from an independent marginal effect GWAS. Those bins were defined as sets of independent variants with p value for
marginal genetic effect (Pmarg) lower than a given threshold (x axis). Each of the five phenotypes are represented by a plain color line. All
analyses used stage 1 1df interaction results from European ancestry individuals. Under the null hypothesis of no correlation, the proportion
follows a binomial distribution with parameter 0.05 (the black dashed line), independent of the threshold for Pmarg. Gray areas indicate the
Wilson score confidence interval for an alpha threshold of 0.05 (dark gray) and 1 × 10−4 (light gray).
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habits (h2 = 0.12 and h2 = 0.15, respectively). Conversely, herit-
ability was on average larger for current drinkers than non-current
drinkers (h2 = 0.15 and h2 = 0.11, respectively). However, only one
outcome-phenotype pair showed borderline nominal significance
(HDL and drinking habits, with h2 = 0.19, P= 7.0 × 10−17, and h2=
0.13, P= 3.1 × 10−10 for unexposed and exposed, respectively, P=
0.052), and this difference did not remain statistically significant
after correction for multiple testing.

Differential pathways across exposures
To explore further differences in genetic effect between exposure
strata, we partitioned the genetic heritability estimated in
individuals from European ancestry across different functional
annotations [25, 26]. We first considered baseline annotations
provided with the LDSC package and the GenoSkyline [33]
annotation set, a cell-type-specific annotation database derived
mainly from the Roadmap Epigenomics [34] (Figs. S11–15).
Because of the relatively modest sample size in some strata (N =
12,578 in the smallest strata, see Table S1), we focused on the
distribution of the estimated enrichment coefficient between
exposed and unexposed. The majority of phenotype-exposure
pairs exhibited a similar enrichment pattern (Fig. S16). For
example, the enrichment estimates were significantly correlated
for drinking habits exposure and lipids (correlations equal 0.76 (P =
9.5 × 10−24), 0.60 (P = 5.8 × 10−13) and 0.40 (P = 7.7 × 10−6) for

HDL, LDL and TG, respectively), suggesting that potential G×E
interactions for those phenotypes do not involve new pathways.
Conversely, LDL shows substantial variability in enrichment for the
three other exposures (correlations equal 0.10 (P = 0.25), 0.22 (P =
0.01), and 0.17 (P = 0.07), for current drinking, current smoking,
and ever smoking, respectively), suggesting those exposures might
activate new genetic pathways while reducing the effect of genetic
variants involved in unexposed individuals. We also noted
substantial variability for the phenotypes-exposure pairs showing
the largest differences in heritability (lipids and current smoking,
and BP and drinking habits, see Fig. 4). However, part of that
variability might be due to the reduced sample size in one of the
two strata, thus making interpretation challenging.
We next investigated whether exposures tended to display

systematic enrichment in specific tissues [26]. For each phenotype,
heritability was stratified based on annotation from 205 cell types
linked to 9 tissues (adipose, blood/immune, cardiovascular, central
nervous system, digestive, endocrine, liver, musculoskeletal/
connective, and other), in unexposed and exposed individuals
separately (Fig. 5, Figs. S17–S21). Because of unbalanced sample
size between strata, we focused on the relative differences in
median enrichment between exposed and unexposed by tissue,
and reported the proportion of cell types nominally significant for
enrichment in each tissue. Overall, liver and adipose were the
most enriched and most significant tissues for lipids traits, while

Fig. 4 Heritability by exposure group. Heritability of the three lipids and two blood pressure phenotypes (DBP and SBP) derived using the
LDSC applied to summary statistics from the European ancestry samples meta-analysis. Heritability was derived for all individuals (All, yellow
bar) and for subset of unexposed (Une, teal bar) and exposed (Exp, purple bar) individuals. Error bars represent the 95% confidence intervals.
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showing variability between exposed and unexposed individuals.
LDL also showed some significance and variability for cell types
mapped to digestive tissue for the drinking exposures and current
smoking (Fig. 5a). There was less significant enrichment and a less
marked difference for BP traits, although we noticed a substan-
tially larger enrichment in liver tissue among heavy drinkers versus
low-drinkers for DBP (Fig. 5d).

Genetic heterogeneity, power, and risk of bias for the test of
interaction in trans-ancestry analysis
Throughout this work, we used G×E interaction effect estimates
and p values derived using the standard 1df inverse-variance
meta-analysis scheme as described in Willer et al. [35], and applied
to the 1df interaction effect from each contributing cohort
similarly to the original GWIS papers. On the other hand, we
used the main genetic effect estimates and p values derived from
the 2df framework as described in Manning et al. [36]. Although,
the 2df framework provides a joint estimation of the main and
interaction effect coefficients along with standard errors, we did
not use the interaction effect parameters from that model as we
identified potential biases in those estimates through several
simulation studies (see Supplementary notes for more details and
Table S10). Heterogeneity for both the main genetic effect and the
proportion of exposed individuals between the two cohorts (e.g.,
higher genetic effect in one cohort combined to a higher level of
exposure) can bias the interaction effect estimates in the 2df

framework and result in a severe type I error rate inflation,
inducing false-positive associations (Fig. S22). However, main
genetic effects estimates are not biased in the 2df framework in
the case of a binary exposure (Fig. S23) but can be noisy in the
case of a continuous exposure (Fig. S24). These simulation studies
highlighted the special care required to interpret results from the
2df framework.

DISCUSSION
In this study, we assembled and synthesized the results from 28
G×E interaction GWIS on lipid and blood pressure phenotypes
performed across four ancestries. Overall, we found the trans-
ancestry 2df test to be efficient for SNP discovery, with the vast
majority of associations identified in ancestry-specific analyses
being confirmed in the trans-ancestry analysis, while allowing for
a 10% increase in detection. However, our data also pointed
toward ancestry-specific patterns for interaction effects, espe-
cially for African ancestry populations. Differences were also
observed when comparing results across exposures. We noted a
greater increase in detection for lipid-associated variants when
accounting for interaction with drinking, and a greater increase
in detection for blood pressure-associated variants when
accounting for interaction with smoking. When leveraging
marginal genetic effect reported from previous studies to select
potential candidates for interaction effects, we did not observe

Fig. 5 Stratification of heritability by tissue. Cell-type partitioned heritability for each exposure was performed and further merged into nine
primary tissue categories. The top panels show the results for lipids: LDL (a), HDL (b), and TG (c), and the bottom panels show the results for
blood pressure: DBP (d), and SBP (e). For each phenotype-exposure pair we derived the difference in enrichment defined as the median
enrichment in unexposed minus the median enrichment in exposed individuals (Δenrichment) per tissue. To highlight the significance of
enrichment within each cell type, we scaled the size of each data point by the proportion of cell types that are nominally significant (i.e., P <
0.05) after merging exposed and unexposed results.
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any significant enrichment for interaction effects whatever the
significance level used. This is in agreement with our in-depth
comparison of main genetic and interaction effects using the
consortium data, which found only modest correlation between
the interaction and main effects coefficients. Finally, our
assessment of variance explained by interaction effects suggests
that, even if small, accounting for interaction can help push
signals above the stringent genome-wide significance threshold.
Furthermore, the stratification of heritability by functional
annotations highlighted that exposures can induce divergent
mechanisms of phenotype production with modification in the
associated genetic pathway and cell type involved.
Our estimation of the phenotypic variance explained by

marginal genetic effect and interaction shows, in agreement with
previous studies, that the contribution of G×E terms on top of
marginal genetic effect is relatively modest. It confirms the likely
limited impact of discovering G×E for prediction purposes in the
general population [37]. The variability between non-smokers and
drinkers observed in the exposure-specific heritability is intriguing,
but might potentially be explained by other factors which cannot
be sorted out using these data. Further work is needed not only to
understand this heterogeneity but also to assess potential gain in
predictive power of polygenic risk score derived by exposure
strata [38]. Importantly, a modest contribution of G×E to
phenotypic variance does not rule out the potentially important
role of G×E in the etiology of these traits. And, for example, our
stratified heritability analyses suggest a potential change in the
genetic architecture of LDL conditional on smoking and BP traits
conditional on current drinking.
The statistical power of the GWIS varied substantially across

analyses. Taking the average sample size across all phenotype-
exposure pairs analyzed per ancestry, there was 80% power at an
alpha threshold of 5 × 10−8 to detect interaction effect explaining
0.0096% (trans-ancestry, N = 440 K), 0.016% (EA, N = 271 K), 0.15%
(AA, N = 27 K), 0.034% (ASA, N = 123 K), and 0.22% (HISP, N = 19 K)
of the outcome variance. The observed enrichment for interaction
effects in AA as compared to other ancestries is therefore quite
striking, and further investigation in larger data is required. It would
also be of interest to explore whether interactions play a role in the
well documented differences in prevalence of both blood pressure
outcomes (e.g. hypertension [39]) and lipids (e.g. low HDL [40]) in
individuals from African-American ancestry. The sample size was
also critical when deriving heritability. Here, we only considered
the European ancestry data as sample size for other cohorts was
too small to derive meaningful estimates. Nevertheless, statistical
power remains limited in EA for LDSC stratified analyses based on
functional annotation, and future larger studies are also required to
validate the observed enrichments.
We fully appreciate that the results from the several experi-

ments we conducted are challenging to aggregate into a single
uniform framework. Our analysis rather suggests first that even
though related traits share some features; they can also display
substantial heterogeneity at other levels. For example, all lipids
harbor more signals when accounting for drinking exposures, but
at the same time display very different patterns when investigat-
ing functional enrichment. It also suggests that the links between
heritability, genetic mechanisms involved, and the resulting
distribution of G×E effect across SNPs are not straightforward.
Finally, our careful assessment of each step of the analyses
highlights that complexity also shows up at the methodological
level, with a potential for introducing bias at several stages, and so
the extra care needed for interpretation. Despite those limitations,
we argue that systematic and careful evaluation of G×E across
multiple phenotype-exposure-ancestry combinations, as done in
this study, still provides critical insight of the interplay between
genetic and environmental factors, offering long-term opportu-
nities for numerous additional follow-up analyses down to the

biological mechanisms underlying the phenotypes and their
interaction with the environment.
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