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Abstract 12 

Devastating pandemics, such as that due to COVID-19, can provide strong testimony to our 13 

knowledge of the genetic and evolutionary determinants of infectious disease susceptibility 14 

and severity. One of the most remarkable aspects of such outbreaks is the stunning 15 

interindividual variability observed in the course of infection. In recent decades, enormous 16 

progress has been made in the field of the human genetics of infectious diseases, and an 17 

increasing number of human genetic factors have been reported to explain, to a great extent, 18 

the observed variability for a large number of infectious agents. However, our understanding 19 

of the cellular, molecular, and immunological mechanisms underlying such disparities 20 

between individuals and ethnic groups, remains very limited. Here, we discuss recent findings 21 

relating to human genetic predisposition to infectious disease, from an immunological or 22 

population genetic perspective, and show how these and other innovative approaches have 23 

been applied to deciphering the genetic basis of human susceptibility to COVID-19 and the 24 

severity of this disease. From an evolutionary perspective, we show how past demographic 25 

and selection events characterizing the history of our species, including admixture with 26 

archaic humans, such as Neanderthals, facilitated modern human adaptation to the threats 27 

imposed by ancient pathogens. In the context of emerging infectious diseases, these past 28 

episodes of genetic adaptation may contribute to some of the observed population differences 29 

in the outcome of SARS-CoV-2 infection and the severity of COVID-19 illness. 30 

  31 
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Introduction  32 

A striking observation in the current COVID-19 pandemic, as observed in several previous 33 

outbreaks of other diseases, is that infection with the causal agent (SARS-CoV-2 in this case) 34 

does not affect everyone equally. More than five million people have already died from 35 

COVID-19, as of February 2022, but death is disproportionately likely in certain individuals, 36 

including men and the elderly. After decades of intensive research in human genetics, it is 37 

now widely accepted that the large phenotypic variability observed in the course of infection 38 

is not random (1-3) and can stem, at least partly, from natural differences in the genetic make-39 

up of humans (4, 5). Our co-evolution with — and co-adaptation to — infectious agents over 40 

thousands of years has left molecular signatures in our genomes, which can still be partly 41 

disclosed through the use of population and evolutionary genetic approaches. Over the last 42 

decade, an increasing number of genes involved in immune functions and host-pathogen 43 

interactions have been identified as candidate targets of positive Darwinian selection due to 44 

the long-standing pressures imposed by pathogens (4, 6, 7). Remarkably, such pressures may 45 

have important consequences for human health today, including greater resistance to 46 

emerging diseases, as testified by the iconic case of ancient selection at the CCR5 locus and 47 

present-day resistance to human immunodeficiency virus (8, 9). However, selectively 48 

advantageous genetic variants are often unevenly distributed within and between populations, 49 

and may, thus, underlie interindividual heterogeneity in the outcome of infection. 50 

Furthermore, rare deleterious variants that disrupt or abolish the function of essential immune 51 

system genes, can exacerbate disparities in susceptibility to infectious disease.  52 

In this review, we will focus on how human and population genetic approaches have 53 

facilitated the dissection of the molecular and cellular determinants of critical COVID-19. We 54 

will rapidly review how state-of-the-art knowledge on human predisposition to viral disease 55 

has led to the discovery of the strongest monogenic predispositions to COVID-19 pneumonia 56 
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identified to date. We will also review the main loci identified in genome-wide association 57 

studies (GWAS) as underlying more complex, but also broader predispositions to COVID-19 58 

at the population level. In this context, we will outline previous studies aiming to unravel the 59 

grounds for population differences in response to infection, and discuss them in the context of 60 

COVID-19. Finally, we will discuss how evolutionary genetics approaches have provided 61 

insight into the genetic determinants of COVID-19 susceptibility. Specifically, we will 62 

comment on the contribution of past admixture with Neanderthals to present-day 63 

susceptibility to viruses, and how particular DNA segments of Neanderthal origin present in 64 

the genomes of current non-African populations can alter modern human predisposition to 65 

severe COVID-19.   66 

 67 

Monogenic predisposition to COVID-19 68 

Over the last two years, with the support of unprecedented epidemiological observations of 69 

COVID-19 pathophysiology at a worldwide scale, researchers have sought to answer an 70 

intriguing question: why would a typically healthy child, teenager or young adult require 71 

admission to an intensive care unit following SARS-CoV-2 infection? Since the early 20
th

 72 

century, epidemiological, genetic and molecular studies have garnered compelling evidence 73 

that human genetic factors play a fundamental role in determining the outcome of infectious 74 

disease (10-12). Definitive proof that inborn errors of immunity (IEI) — rare genetic defects 75 

of the immune system — are related to an increase in susceptibility to an individual infectious 76 

agent was first provided in 1996, by studies demonstrating that IFNGR1 deficiency underlies 77 

infections with non-virulent mycobacteria (13). Predispositions to many infections have since 78 

been shown to be controlled by a narrow set of core genes, specific to each type of infection. 79 

For example, since 2015, it has been shown that life-threatening influenza pneumonia is 80 

linked to inborn errors of TLR3-, IRF7-, and IRF9-dependent type I interferon (IFN) 81 



 5 

immunity (14, 15). These groundbreaking discoveries paved the way for the first 82 

breakthrough in dissecting the genetic basis of susceptibility to severe COVID-19.  83 

A pioneering study led by the international COVID Human Genetic Effort consortium 84 

(www.covidhge.com), based on exome or genome sequencing data from 659 critically ill 85 

COVID-19 patients of various ancestries, revealed a significant enrichment in biochemically 86 

deleterious variants of the three core genes for influenza susceptibility (TLR3, IRF7 and IRF9) 87 

and 10 other closely related viral genes (odds ratio [OR] = 8.28; p = 0.01) in these patients, 88 

relative to 534 subjects with asymptomatic or benign infections (16). The genetic 89 

homogeneity underlying susceptibility to influenza and COVID-19 was not particularly 90 

surprising, given that both these conditions are respiratory infections caused by RNA viruses 91 

and transmitted by droplets and small airborne particles.  92 

Independently of influenza, the essential role of type I IFNs in COVID-19 pathogenesis 93 

was supported by the discovery that critical COVID-19 pneumonia in 16 unrelated men 94 

carrying deleterious X-linked TLR7 variants was caused by low type I IFN production of 95 

plasmacytoid dendritic cells (pDCs) in response to SARS-CoV-2 (17). Yet, other studies have 96 

brought supporting evidence for the implication of type I IFN-independent genes as 97 

monogenic etiologies of COVID-19. For example, genetic variants in the CFTR gene, 98 

including those causing cystic fibrosis, have been found to be overrepresented among 99 

critically ill COVID-19 patients (18-20), consistent with previous associations of the gene 100 

with susceptibility to respiratory tract infections (21). Likewise, a genetic polymorphism in 101 

the androgen receptor (AR) gene that correlates with low serum testosterone level has been 102 

associated with severe COVID-19 in men (22). However, immunological and clinical data 103 

supporting the implication of these type I IFN-independent genes in COVID-19 pathogenesis 104 

remain circumstantial. 105 

http://www.covidhge.com/
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Further evidence for the pervasive role of type I IFNs in modulating COVID-19 severity 106 

was provided by multiple independent observations showing that many individuals with 107 

critical disease carry autoantibodies neutralizing type I IFNs (23-26), a phenocopy of the 108 

inborn errors. This observation was in line with previous studies describing autoimmune 109 

phenocopies of IEI for type II IFN, IL-6, IL-17A/F, and granulocyte-macrophage colony-110 

stimulating factor, underlying mycobacterial disease, staphylococcal disease, mucocutaneous 111 

candidiasis, and nocardiosis, respectively. Importantly, in all cases in which data were 112 

available, the autoantibodies were found to have been present before SARS-CoV-2 infection, 113 

supporting the notion that they are the cause rather than a consequence of the disease (16). 114 

The contribution of these studies to improving our understanding of the genetic architecture 115 

of COVID-19 severity has been such that it is now estimated that ~20% of patients with 116 

critical COVID-19 over 80 years of age, and ~20% of patients of all ages who died from the 117 

disease, carried autoantibodies neutralizing type I IFNs. Interestingly, a subsequent study 118 

showed that the prevalence of type I IFN autoantibodies in the general population was higher 119 

in men than in women (27). This, together with the findings in the TLR7 (17) and AR (22) 120 

genes, provides cues as to the genetic and biological mechanisms underlying the observed sex 121 

bias among critical COVID-19 cases (28). Furthermore, it was noted that the prevalence of 122 

type I IFN autoantibodies increases significantly with age (27), consistent with the early-123 

established higher risk of death from COVID-19 in the elderly population (28). Studies based 124 

on clinical genetic approaches have, thus, shown that IEI and their autoimmune phenocopies 125 

contribute to the pathogenesis of about 15-20% of patients with critical COVID-19 126 

pneumonia, representing a major burden in individuals over 80 years old. 127 

 128 

Complex predisposition to COVID-19 129 
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By contrast to the strong allelic effects of IEI as monogenic determinants of COVID-19 130 

illness (ORs typically >5), common variants (frequency >5%) are expected to underlie more 131 

subtle, complex patterns of susceptibility (ORs <1.5), usually orchestrated by several genes. 132 

Other international efforts were established early in the pandemic, to determine the 133 

contribution of common variants to either susceptibility to infection with SARS-CoV-2 or to 134 

COVID-19 severity. Specifically, the COVID-19 Host Genetics Initiative (COVID-19 HGI), 135 

GenOMICC (Genetics Of Mortality In Critical Care), the 23andMe COVID-19 Team and the 136 

Severe Covid-19 GWAS Group conducted GWAS with an unprecedented number of cases 137 

and controls in the field of infectious disease genomics research (29-32). The largest study to 138 

date, a meta-analysis including 125,584 cases and over 2.5 million controls across 60 studies 139 

from 25 countries conducted by COVID-19 HGI, has identified 23 loci significantly 140 

associated with disease severity or susceptibility to infection (33). These loci include a region 141 

on chromosome 3 (3p21.31) and the ABO locus, these genomic regions being the most 142 

frequently replicated to date (six and five times, respectively). The most promising evidence 143 

concerning the greater susceptibility to SARS-CoV-2 infection associated with the 3p21.31 144 

locus points to involvement of the SLC6A20 gene, encoding a sodium transporter interacting 145 

with ACE2, the well-known receptor for SARS-CoV-2 on the cell surface (34). Consistent 146 

with this, the most recent analyses performed by the COVID-19 HGI have identified a 147 

polymorphism (rs190509934) close to the ACE2 gene that is known to lower ACE2 148 

expression (35) and is associated with a lower risk of infection. Interestingly, an earlier study 149 

showed a significant association between ACE2 allelic variation and COVID-19 severity (36). 150 

The ABO locus has also been found to be more strongly associated with susceptibility to 151 

infection rather than COVID-19 severity (29), with blood groups O and A protecting against 152 

and increasing the risk of infection, respectively.  153 
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The remaining significant hits in GWAS have been less frequently replicated, but the 154 

associations of IFNAR2 and TYK2 with COVID-19 severity (29, 30) merit discussion, given 155 

the key immunoregulatory functions of the proteins they encode. A potential role of IFNAR2, 156 

encoding the second chain of the type I IFN receptor, in modulating disease severity is 157 

consistent with the known role of type I IFNs in protection against COVID-19 severity. A 158 

similar, but more controversial finding is the association of TYK2 variants with critical 159 

COVID-19, with the rs34536443 variant reportedly causal for the underlying phenotype (29). 160 

This suggested causal role of rs34536443 is supported by its functional role in protection 161 

against multiple autoimmune disorders (37), and the established link between complete TYK2 162 

deficiency and susceptibility to severe recurrent infections (38). However, the rs34536443-CC 163 

genotype has been shown to selectively impair cellular responses to IL-23, but not those to 164 

IFN-α or IL-10, consistent with rs34536443 being a common monogenic etiology of 165 

tuberculosis, but not of viral infectious diseases (39, 40). Finally, albeit the variant has not 166 

been found by GWAS, a common TLR3 missense variant, impairing perhaps type I IFN 167 

immunity, has been reported as a marker of COVID-19 severity (41).    168 

GWAS have identified other genetic variants associated with either critical illness or 169 

susceptibility to infection with SARS-CoV-2, including variants in the OAS-RNase L and 170 

DPP4-DPP9 clusters, which we will discuss later, MUC5B and FOXP4, previously 171 

associated with lung-related phenotypes, and three human leukocyte antigens (HLA) binding 172 

to epitope peptides prompting pathogen recognition by the immune system (29, 30). HLA-G 173 

rs9380142 and rs143334143, in the vicinity of HLA-C, were found to be associated with 174 

COVID-19 severity in both the HGI and GenOMICC studies, whereas HLA-DPB1 rs2071351 175 

reached genome-wide significance in the susceptibility analysis of the HGI. Many of these 176 

GWAS hits have already been identified in previous studies of lung-related phenotypes, 177 

autoimmune or inflammatory diseases (37, 42-44), but further replications and analyses of the 178 
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underlying cellular mechanisms are required to improve our understanding of the clinical 179 

value of these findings in the context of COVID-19. 180 

 181 

Genetic ancestry and differences in COVID-19 susceptibility 182 

The human genetic factors reported to be associated with COVID-19 in GWAS, despite the 183 

uneven representation of different ancestries in these studies, are not equally distributed 184 

between populations across the globe. We can therefore wonder whether, as with age, sex or 185 

socioeconomic status (45, 46), genetic ancestry, which reflects past differences in population 186 

demographic history and adaptation, can also help to explain COVID-19-related health 187 

disparities between populations of individuals from different ethnic backgrounds. This is 188 

probably not the case for individuals presenting with IEI, who are, by definition, 189 

immunocompromised, a notion extending beyond the differences imposed by geographic 190 

barriers. For COVID-19, this is consistent with the high risk (OR >8) associated with the 191 

carriage of monogenic lesions in type I IFN-related genes (16), and the observation that the 192 

two strongest genetic associations reported by the trans-ancestry analysis of the 23andMe 193 

COVID-19 Team, at the ABO and 3p21.31 loci, did not explain differences in risk between 194 

populations (32). However, the same study also showed that non-European ancestry was a 195 

significant risk factor for hospitalization, after accounting for sociodemographic factors and 196 

pre-existing health conditions, supporting the notion that complex genetic architectures, as 197 

opposed to strong allelic effects, may account for population-level differences in the outcome 198 

of SARS-CoV-2 infection. In support of this hypothesis, efforts to quantify differences 199 

between ancestries in rates of SARS-CoV-2 infection and COVID-19 clinical manifestations 200 

in England showed that ethnic minorities had higher risks of testing positive for SARS-CoV-2 201 

and of adverse COVID-19 outcomes, after accounting for differences in sociodemographic, 202 

clinical, and household characteristics (47). 203 
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More generally, these observations are supported by previous studies exploring the extent 204 

and nature of population differences in immune responses (48, 49). For example, differential 205 

transcriptional responses to viral and bacterial stimuli have been described between 206 

individuals of African and European descent. More recently, a single-cell RNA-sequencing 207 

study of influenza-infected immune cells from individuals of European and African ancestry 208 

reported ancestry-dependent gene signatures under the control of human genetic factors (here, 209 

cis-expression quantitative trait loci, eQTLs) differing between ancestries (50). Interestingly, 210 

the overlap in the immune system genes underlying susceptibility to both influenza and 211 

COVID-19 suggests that a similar situation may apply to COVID-19, although single-cell 212 

studies investigating population differences in immune responses to SARS-CoV-2 infection 213 

are still lacking.  214 

The underlying causes of such differences in immunity post-infection between ethnic 215 

groups can also be investigated by adopting a different strategy, based on population and 216 

evolutionary genetics approaches. In this context, one recent study sought to quantify the 217 

impact of past coronavirus-like epidemics across the globe, by screening for signatures of 218 

selection at loci for 420 coronavirus-interacting human proteins (CoV-VIPs) in different 219 

populations (51). Surprisingly, none of the 26 populations examined worldwide presented a 220 

signature of adaptation at the CoV-VIP loci, with the exception of populations of East Asian 221 

ancestry, consistent with the geographic origin of several modern coronavirus epidemics. In 222 

short, the authors found a cluster of 42 CoV-VIP loci displaying consistent patterns of 223 

adaptive evolution, dating back to 20,000 years ago, in East Asian populations, reflecting 224 

long-term selection pressures exerted by coronavirus-like viruses on the ancestors of modern-225 

day East Asians. Possible geographically restricted positive selection at immune loci has also 226 

been detected in a Japanese population, in which the DPB1*04:01 HLA allele was found to 227 

have undergone a strong recent increase in frequency (52). In line with a putative protective 228 
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effect of this variant against hepatitis B virus (HBV) infection (53), the authors speculated 229 

that this increase in frequency in the Japanese population resulted from past pathogen-driven 230 

selection. Collectively, these studies support a role for local human adaptation in response to 231 

past and present infectious agents in increasing immune response disparities between 232 

populations around the world.  233 

 234 

Ancient admixture with Neanderthals and RNA viruses 235 

The observed differences in the genetic make-up of populations from different ancestries 236 

result not only from their past demographic or adaptive history, but also from differences in 237 

their past history of admixture (or hybridization) with other types of humans that are now 238 

extinct (Figure 1). Anatomically modern humans interbred with these archaic hominins, such 239 

as Neanderthals and Denisovans, on multiple occasions and in several locations (54). As a 240 

result, all non-African groups share ∼2% Neanderthal ancestry in their genomes, whereas 241 

some south-east Asian and Oceanian populations have accumulated up to 5-6% of combined 242 

(Neanderthal and Denisovan) archaic ancestry (55). There is evidence to suggest that 243 

purifying selection has been the dominant selective force acting against the introgression of 244 

archaic DNA material, leading to a steady decrease in haplotypes of an archaic nature in the 245 

genomes of modern humans over time (56).  246 

However, in some cases, hybridization events appear to have facilitated the acquisition of 247 

advantageous traits, a phenomenon known as ‘adaptive introgression’ (57). Neanderthals and 248 

Denisovans inhabited Eurasia for at least 300,000 years before modern humans arrived, and 249 

are thought to have become genetically adapted to their local climates, nutritional resources 250 

and pathogens over this period. Unsurprisingly, there is increasing evidence to suggest that 251 

archaic introgression has facilitated the acquisition, by modern humans, of beneficial variants 252 

of immunity-related genes, attesting to the long-term adaptation of the archaic species to 253 
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pathogens outside of Africa. Interestingly, an early, influential work showed an enrichment in 254 

Neanderthal ancestry among innate immunity genes, as a whole, in Europeans (58). Similarly, 255 

high levels of Neanderthal or Denisovan ancestry have been detected in the genomes of 256 

modern humans at the loci for antiviral OAS genes, the TLR1-6-10 gene cluster or the 257 

inflammation-related TNFAIP3 gene in several non-African populations around the world 258 

(59-61). 259 

Remarkably, two studies found an enrichment in Neanderthal ancestry for genetic variants 260 

associated with gene expression variation, eQTLs, in monocytes and macrophages in 261 

Europeans. This enrichment was particularly evident for genetic variants associated with 262 

antiviral responses (48, 49), suggesting that Neanderthal introgression, in particular, 263 

facilitated the genetic adaptation of early Eurasians to viral challenges. Consistent with this 264 

theory, human genes encoding proteins that interact with viruses were also found to display 265 

significantly high levels of Neanderthal ancestry, particularly those encoding proteins 266 

interacting with RNA viruses, such as influenza, hepatitis C virus or coronaviruses (62). 267 

Another study explored the impact of Neanderthal ancestry on the human regulatory genetic 268 

landscape, including promoters, enhancers and miRNA-mediated regulation (63). A massive 269 

colocalization of Neanderthal variants with active enhancers in adipose-related tissues and 270 

various types of primary T cells was observed. Collectively, these studies shed light on the 271 

extent to which archaic introgression has contributed to modern human adaptation to new 272 

environments, by modulating human immunity to newly encountered pathogens, including 273 

RNA viruses in particular. 274 

 275 

Neanderthal heritage and the current COVID-19 pandemic 276 

Recent studies driven by the COVID-19 pandemic have provided additional support for the 277 

links between Neanderthal introgression and human immunity to viruses. Two GWAS hits 278 
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from the aforementioned human genetic determinants of COVID-19 susceptibility and 279 

severity overlap with genomic regions inherited from Neanderthals. One of these regions 280 

includes genetic variants at the chr12q24.13 locus, which are mostly absent from Africans but 281 

were present in Neanderthals. These variants define a ~75 kb haplotype in individuals of 282 

European ancestry that has been found to be associated with a 22% lower risk of 283 

hospitalization for COVID-19 (29, 30, 64). The locus concerned covers the OAS-RNase L 284 

cluster, which encodes enzymes essential for antiviral immunity (65, 66). However, the 285 

cellular mechanism underlying this improvement in COVID-19 outcomes is not yet fully 286 

understood. In this context, one recent study sought to delineate the causal variant associated 287 

with COVID-19 protection from more than a hundred linked variants within the same 288 

associated haplotype, by focusing on the rs10774671 variant, a candidate OAS1 splice 289 

acceptor variant (67). The authors tested associations in different ancestry groups with 290 

markedly different levels of linkage disequilibrium (LD). By focusing on individuals of 291 

African ancestry, in whom LD levels are lowest and rs10774671 segregates independently of 292 

the other variants, the authors were able to identify a causal connection between the 293 

rs10774671-G allele and COVID-19 illness. These findings highlight the role of the OAS1 294 

isoform p46, encoded by the splice site variant at this locus, in effective protection against 295 

hospitalization for COVID-19, at least in individuals of European or African descent 296 

(OR = 0.92-0.94, p = 5.8 x 10
-10

-0.03). 297 

In stark contrast, the other COVID-19-related genomic region of Neanderthal origin, a 298 

locus on chromosome 3, 3p21.31, has been associated with greater susceptibility to the 299 

development of severe forms of COVID-19. It spans a 50-kb haplotype containing six genes 300 

(SLC6A20, LZTFL1, CCR9, FYCO1, CXCR6 and XCR1). The contribution of one of these 301 

genes, SLC6A20, to susceptibility to infection has already been discussed. GWAS data 302 

suggest that the risk of hospitalization for COVID-19 is 60% higher in carriers of the 303 
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Neanderthal haplotype, which is at least three times more frequent in individuals of South 304 

Asian descent (> 50%) than in individuals with European ancestry (16%) (68). This, together 305 

with unaccounted sociodemographic factors, may partly explain the higher risk of infection or 306 

hospitalization for COVID-19 in minorities of South Asian ancestry living in the UK (47). 307 

Two independent studies aiming to determine the cellular basis of the increase in the risk of 308 

severe disease associated with this locus have suggested that this outcome may result from a 309 

decrease in CXCR6 levels (69, 70).  310 

Finally, a genetic variant in the promoter region of the DPP4 gene, encoding a receptor for 311 

another coronavirus, MERS-CoV, but not forSARS-CoV-2, was also inherited from 312 

Neanderthals and has been shown to double the risk of developing critical COVID-19. The 313 

Neanderthal variant did not reach genome-wide significance in GWAS studies, but variants of 314 

DPP9, a homolog of DPP4, are, on the contrary, significantly associated with severe COVID-315 

19 in GWAS, supporting a potential role for DPP4 in COVID-19 pathogenesis (30). 316 

Together, these observations lend further support to the notion that Neanderthal introgression 317 

has had profound consequences for the adaptation of our species to viral challenges, and that 318 

such past adaptation events can affect the present-day health status of individuals infected 319 

with SARS-CoV-2.  320 

 321 

Conclusions 322 

The COVID-19 pandemic has had devasting humanitarian consequences. Vaccines were 323 

rapidly developed and have prevented the most harmful outcomes of infection with the virus. 324 

Nevertheless, the “miracle” brought about by vaccines simply reinforces the importance of 325 

prior decades of basic scientific research, without which no amount of investment could have 326 

provided us with better solutions so rapidly. In this respect, the field of human genetics of 327 

infectious diseases, driven by clinical, population and evolutionary genetic studies, has made 328 
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spectacular breakthroughs over the last decade. Prompted by duty, and perhaps a fear of 329 

COVID-19, the scientific community has rapidly organized unprecedented international 330 

efforts, and provided scientific results more successfully and rapidly than ever before. For 331 

example, the discovery that the pathogenesis of the disease in 20% of patients with critical 332 

COVID-19 pneumonia can be explained by either IEIs of type I IFN immunity, or pre-333 

existing autoantibodies neutralizing type I IFNs is an outstanding finding for common 334 

infections, for which monogenic lesions have never been shown to underlie more than 1% of 335 

cases for other conditions (39). The contributions of GWAS have also been substantial, 336 

particularly given the unprecedent number of cases (125,000) and controls (2.5 million) 337 

recruited for such studies, the second largest infectious GWAS in terms of case numbers 338 

being that performed by the 23andMe consortium on 107,769 cases of chickenpox and 15,982 339 

controls (71).  340 

Importantly, trans-ancestry analyses in GWAS have revealed population disparities in 341 

terms of susceptibility to infection or disease severity. The strongest genetic determinants of 342 

COVID-19 reported to date have similar effects on individuals across the globe, but non-343 

European ancestries have been shown to confer a higher risk of developing severe forms of 344 

COVID-19. These studies have once again highlighted the importance of including diverse 345 

and underrepresented human populations in genomic studies, to delineate variants differing 346 

between ancestries that may, under complex genetic architectures, underlie population 347 

differences in disease outcome (72). Such ancestry-inclusive efforts are of major importance 348 

in the context of drug development, as drug efficiency may depend strongly on the genetic 349 

make-up of the population. An eQTL study in the context of influenza infection in 350 

populations of African and European ancestry has already supported the notion that, in some 351 

conditions, variants differentially represented across ancestries can result in different genetic 352 

signatures, possibly attesting to an ancestry-specific activation of biological pathways (50). 353 



 16 

Finally, the sequencing of archaic hominin genomes has made it possible to unravel some of 354 

the essential features of immunity responsible for facilitating the adaptation of early non-355 

Africans to newly encountered pathogenic environments. Studies of the genetic legacy of 356 

archaic hominins in the genomes of modern humans extend well beyond questions relating to 357 

molecular anthropology, as attested by the surprising finding that the genetic legacy of ancient 358 

admixture with Neanderthals around 50,000 years ago still affects the health of humans today, 359 

even in the specific context of the COVID-19 pandemic. 360 

  361 
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 584 

Figure 1. Ancient admixture and present-day immunity to infection.  585 

Graphical representation of the contribution of admixture with archaic humans and exposure 586 

to ancient viruses to differences in the response to infection between present-day populations. 587 

On the left of the figure, genetic material from archaic humans, such as Neanderthals or 588 

Denisovans, is shown to be inherited by non-Africans, a process that began ~50,000 years 589 

ago. When beneficial, this event is known as ‘adaptive introgression’, and is thought to have 590 

facilitated the acquisition of advantageous variants by modern humans, accelerating their 591 

adaptation to Eurasian pathogens (“pathogen group E”), which here are hypothesized to be 592 

different from African pathogens (“pathogen group A). Continuous high-level exposure of the 593 

ancestors of modern East Asians to coronaviruses over the last ~20,000 years has left 594 

signatures of selection at CoV-VIP loci in the genomes of modern East Asians (51), a pattern 595 

that is not observed in other human populations. Together with other genetic or environmental 596 

factors, these historical events underlie some of the disparities observed today in 597 

predisposition to COVID-19 between human populations. Created with BioRender.com. 598 


