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Abstract vii

Approches Lagrangiennes pour la modélisation et l’optimisation du couplage
hydrodynamique-photosynthèse

Abstract

Microalgae are photosynthetic micro-organisms whose potential has been highlighted in the last decade.
Applications can be found from to renewable energy production and wastewater treatment to some high
added value commercial products e.g., food, pharmaceutical, cosmetics. Nevertheless, finding optimal
growth conditions for full-scale cultivation of microalgae remains challenging in practice. Mathematical
models are therefore of great help to better manage this complex, nonlinear dynamical system. The aim
of this thesis is to better understand how different factors affect microalgal growth.
In a first part, we study the influence of the light attenuation and the optimal condition to maximize
the productivity. In this way, we introduce an optical productivity which enables us to determine the
optimal condition for general light extinction function. A global optimal optical depth is found which
consists in canceling the algal net growth rate at the bottom of the reactors to maximize the optical
productivity. It can be used to characterize the optimization of the areal productivity in some specific
cases, whereas an asymptotic behaviour has been observed in more general case.
We then limit ourselves to a specific reactor - the raceway pond, which is an outdoor circuit basin
combining with a paddle wheel. We start by investigating a resource allocation problem issuing from
the re-distribution of the light resource to the algae by the paddle wheel. A generic mixing device is
considered to assign at each lap the light resource to the algae layers in the raceway. We determine the
optimal allocation strategies to maximize the algal growth.
In a third part, we show how the shape of the topography affects (or not) the algal growth in raceway
ponds. In this way, we consider a hydrodynamical-biological coupled model and introduce an opti-
mization problem associated with the topography to maximize the algal growth. We also combine the
optimization of the topographies with the previous allocation strategies to investigate their influence on
algal production. Non-trivial topographies are obtained numerically to enhance the algal growth.
The mathematical study of these optimization problems leads to new interesting working directions,
improves and clarifies the understanding of influence by different factors on algal growth. We conclude
with some discussions and perspectives of this work.

Keywords: optimization, mathematical modeling, hydrodynamics, dynamical system, resource alloca-
tion, periodic control, nonlinear problem, saint-venant equations, han model, microalgae

Laboratoire Jacques-Louis Lions
Sorbonne Université – Campus Pierre et Marie Curie – 4 place Jussieu – 75005 Paris – France



viii Abstract

Résumé

Les microalgues sont des micro-organismes photosynthétiques dont le potentiel a été mis en évidence
au cours de la dernière décennie. Des applications peuvent être trouvées dans la production d’énergie
renouvelable ou dans le traitement des eaux usées par exemple. Elles peuvent être utilisées dans beaucoup
de produits commerciaux à haute valeur ajoutée comme par exemple dans l’alimentation, la pharmacie
ou les cosmétiques. Néanmoins, trouver des conditions optimales pour la production des microalgues
à grande échelle reste un défi en pratique. Les modèles mathématiques sont donc d’une grande aide
pour mieux gérer ce système dynamique complexe et non linéaire. L’objectif de cette thèse est de mieux
comprendre comment différents facteurs affectent la croissance des microalgues.
Dans un premier temps, nous étudions l’influence de l’atténuation lumineuse et obtenons une condition
d’optimalité pour maximiser la productivité. De cette façon, nous introduisons une productivité optique
qui nous permet de caractériser la fonction d’extinction de la lumière optimale dans un cadre général.
On trouve une profondeur optique optimale globale qui consiste à annuler le taux de croissance net des
algues au fond des réacteurs pour maximiser la productivité optique. Cette étude nous permet de carac-
tériser la productivité surfacique optimale dans certains cas particuliers, et de décrire le comportement
asymptotique des autres cas dans certains régimes.
On se limite ensuite à un réacteur spécifique, le raceway pond, qui est un bassin de circuit extérieur
associé à une roue à aubes. Nous commençons par étudier un problème d’allocation de ressources issu
de la redistribution de la ressource lumineuse aux algues par la roue à aubes. Un dispositif de mélange
générique est envisagé pour affecter à chaque tour la ressource lumineuse aux algues qui se situent
sur differentes couches dans le raceway. Nous déterminons les stratégies d’allocation optimales pour
maximiser la croissance des algues.
Dans une troisième partie, nous montrons comment la forme de la topographie affecte (ou non) la
croissance des algues dans le raceway. De cette façon, nous considérons un modèle hydrodynamique-
biologique couplé et introduisons un problème d’optimisation associé à la topographie pour maximiser
la croissance des algues. Nous combinons également l’optimisation des topographies avec les stratégies
d’allocation précédentes pour étudier leur influence sur la production d’algues. Des topographies non
triviales sont obtenues numériquement pour améliorer la croissance des algues.
L’étude mathématique de ces problèmes d’optimisation conduit à de nouvelles directions de travail,
améliore et clarifie la compréhension de l’influence de différents facteurs sur la croissance des algues.
Nous concluons par quelques discussions et perspectives de ce travail.

Mots clés : optimisation, modélisation, hydrodynamique, système dynamique, allocation des res-
sources, contrôle périodique, problème nonlinéaire, équations de saint-venant, modèle de han,
microalgues
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Chapter 1

Introduction

1.1 Preliminary

1.1.1 Background and Motivation
The greenhouse effect is a process that warms up the Earth’s surface, allowing life by maintaining
Earth’s temperature above freezing. However, this greenhouse effect is getting stronger as human
activities release greenhouse gases in the atmosphere, trapping more and more heat and warming
the climate of our planet. Since the pre-industrial period, it has been shown that Earth’s global
average temperature has increased by about 1 degree Celsius [61]. Among all the greenhouse gas
emissions, carbon dioxide (CO2) contributes up to 68 % of total emissions [24, 65]. According to
a report by the Carbon Dioxide Information Analysis Center (CDIAC)1, CO2 emissions world-
wide have increased from 11 millions metric tons in 1751 to 30619 millions metric tons in 2006.
The continuous increase in emissions will have significant effects on future climates, ocean tem-
perature, as well as on economic systems. Therefore, it is imperative to develop an appropriate
technology to reduce the emissions and accumulation of CO2. CO2 fixation techniques can be
divided into biological and physical methods [73]. Between these two techniques, biological CO2

fixation appears to be a promising economical and environmentally viable technology [65, 76].
This techniques presents an attractive development option as plants or other photosynthetic
organisms naturally capture and use CO2 as part of their photosynthetic process. Although
terrestrial plants are able to sequester vast amounts of CO2 from the atmosphere, their growth
is reduced due to the CO2 availability. On the contrary, phytoplankton have faster growth rates
and their CO2 fixation efficiency is also between 10 and 30 times higher than the terrestrial
plants [35, 79]. The biological mitigation of CO2 by using phytoplankton could therefore offer
huge advantages.

The word phytoplankton originally comes from Greek where phytón means plant and planktós
means drifter. These micro-organisms comprise eukaryotic cells (microalgae) and prokaryotic
cells (cyanobacteria) which can all do photosynthesis. They can grow naturally in all aquatic
environments, for instance oceans, lakes, ponds, and rivers. Despite the fact that phytoplankton
biomass in the oceans corresponds to less than 2% of the total global plant carbon, these organ-
isms collectively capture approximately 40% of the global carbon sequestration per year [25, 49].
Therefore, the microalgae (synonym of phytoplankton in biotechnology and applied physiology)
cultivation becomes an attractive alternative for reducing greenhouse gas emissions [121]. More
precisely, no additional CO2 is created during the photosynthetic process while biofuels could

1https://cdiac.ess-dive.lbl.gov/ftp/ndp030/global.1751_2008.ems
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4 CHAPTER 1. Introduction

be produced from the lipids within the microalgae. Promising production potential of various
secondary metabolites are also expected for numerous high added value commercial applications:
pharmaceutical, cosmetics or food industries [47, 114].

Depending on the source of the light, these microorganisms are generally cultivated at in-
dustrial scale in open or closed photobioreactors. These devices vary from the most simple and
cheapest open reactors to some high-tech closed photobioreactors. They can be run in batch,
or continuously adding growth medium in the reactor. This so called chemostat was first in-
troduced independently by Monod [100] and Novick and Szilard [103] in the 1950s for studying
bacterial cultures. It is a perfectly mixed photobioreactor where the algae are permanently
fed with a nutrient and simultaneously emptied such that the culture volume is kept constant.
This classical device is often used to maintain a nutrient-limitation, which for microalgae can
be modelled by the Droop model [41, 42] as presented in Subsection 1.2.1. Since the late 1960s,
the chemostat has been widely used in microalgae research [69, 81, 98, 109]. At larger scale,
the open raceway pond firstly introduced by Oswald [105] in the 1960s is currently the most
frequently used and cheapest cultivation system for commercial production of microalgae. It is
used worldwide including the United States, France, Thailand, China, Chile, and Israel. The
pond is a shallow artificial hydraulic circuit divided into a rectangular grid, with each rectangle
containing one oval-shaped channel. The water is kept in motion by a powered paddle wheel
which also ensures the mixing. The industrial applications of microalgae for various industrial
sectors, and especially using the cheaper raceway pond technologies, have motivated theoretical
studies for modelling and optimization [8, 66, 67, 117].

1.1.2 Optimization aspects and contributions

There is a strong motivation to improve microalgal productivity and make the involved processes
more efficient. Theoretical developments are complementing the experimental works, in the idea
of guiding the way towards more effective algal production systems.

Researches for enhancing this bio-process followed various directions ranging from determin-
ing growth conditions more efficient for the physiology of the microalgae to the design of more
efficient algal cultivation devices. Different environmental conditions can affect microalgal growth
such as temperature, nutrient availability, light condition and pH. For instance, authors in [111]
have investigated the impact of temperature for outdoor algal production. In [93], authors have
studied the influence of the background turbidity in the photobioreactors on the algal produc-
tion. Light intensity condition in reactors have also been investigated in [92], where authors
have provided an optimal strategy to maximize the productivity in a light-limited chemostat.
The influence of both light condition and nutrient availability has been optimized to improve
the algal production [94]. The design of efficient cultivation devices has also been studied to
optimize the industrial microalgal productivity. For instance, the authors in [77] have studied
the algal productivity optimization on a algal rotating biofilm, where a flashing effect has been
identified, meaning that the biofilm which rotates with an infinity velocity provides the maximal
productivity. The coupling of biological system with hydrodynamics in raceways is studied [67]
in order to optimize the raceway design.

The contributions of this thesis mainly focus on the optimization problems in algal production.
In Chapter 2, we study the influence of light distribution on algal productivity. An optimal
medium turbidity has been identified for general photobioreactors, corresponding to that has
been found in literature [55, 94]. We then focus on a specific photobioreactor consisting of a
raceway pond for the algal growth. We investigate the influence of the two main features of
this device namely the paddle wheel and the topography of the raceway bottom. The idea is
to bring more light resource to the algae at the lower part of the pond, since light is strongly
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attenuated when passing through the algal culture. In Chapter 3, we focus on the optimal mixing
of the paddle wheel. More precisely, we introduce a model to account for the mixing process and
study the periodic regime of the algal growth (see also in [16]). The resulting problem consists
of a specific allocation problem which gives rise to non trivial mixing strategies. We have then
identified a periodic dynamical resource allocation problem, where we have developed a more
complete theory which can be applied to problems other than the algal growth (see also in [15]).
We then study the influence of the topography in Chapter 4. We introduce the methodology
of optimization of the topography through a hydrodynamic-biologic system, where a non flat
topography is observed for non periodic case (see also in [12]). In order to better understand the
impact of the topography, we then extend the previous work to a larger range of setting (see also
in [13]). In some cases, theoretical results enable to identify the critical topography. However,
the increase on algal growth remains very limited when using our optimal topographies, therefore
we combine the topography optimization along with the optimization of the mixing strategy with
the paddle wheel, and an enhancement on the algal growth is then obtained (see also in [14]).

1.2 Biological and hydrodynamical models

In this section, we present some classical models related to the systems considered in this thesis.
We start with the biological models to describe the algal growth, then we introduce the hydrody-
namical models for the algal motion and end up with the light intensity modelling in the turbid
medium which couple these two systems.

1.2.1 Biological model

Here, we give a brief review on some models often considered to describe algal systems. According
to the application, these models account for describing different dynamical aspect of the growth
of microalgae such as light, temperature, nutrient availability, salinity, pH, etc. We mainly focus
on two models: the Droop model and the Han model.

Nutrient-Limited growth - The Droop model

One of the crucial elements which may limit microalgal growth is the nutrients. Co-limitation by
two or several nutrients is more complex and will not be presented here, we refer to [22, 75, 80, 83]
for further details. We rather focus on the case where only one nutrient is influencing microalgal
growth, all the other being introduced in excess. The classical Monod kinetics [99], initially
considered to model bacterial cultures, states that the growth rate denoted hereafter by µ [d−1]
is directly related to the nutrient (inorganic nitrogen) concentration denoted by s [gN m−3] in
the following way:

µ(s) = µmax
s

s+Ks
,

with µmax [d−1] the maximal growth rate, i.e. the growth rate reached at infinite substrate and
Ks [gN m−3] the half saturation constant for substrate uptake. The applicability of the Monod
model has been shown in different works [57, 80, 83]. However, it has been firstly observed
by Droop [41, 42] that microalgae keep growing for some time even after nutrients have been
totally depleted. This behaviour does not correspond to Monod kinetics which are therefore
not suitable to predict microalgae growth under nutrient limitation. In order to take nutrient-
limited growth into account, Droop suggests [41] to separate the nutrient uptake rate denoted
by ρ [gN gC

−1 d−1] from the growth rate µ which is related to the internal elemental nutrient
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quota (amount of intracellular nutrient). This model has ever since then been widely studied
in [9, 78, 119] and thoroughly validated experimentally [10, 42, 112, 119].

In a continuous and homogeneous microalgae culture, the dynamics of nutrient concentration
s, the biomass concentration X [g m−3], and the carbon-specific nitrogen quota q [gN gC

−1] of
the cells are given by 

ṡ = Dsin − ρ(s)X −Ds,
Ẋ = (µ(q)−D)X,
q̇ = ρ(s)− µ(q)q,

where D [d−1] denotes the dilution rates and sin [gN m−3] is the nutrient concentration in the
feed.

In this model, the growth rate functions µ is taken as a Droop function [41]:

µ(q) = µmax

(
1− q0

q

)
,

where q0 [gN gC
−1] stands for the minimal cell quota (µ(q0) = 0), meaning that no algal growth

can take place for cell quota below this level. By taking the initial condition q(0) ≥ q0, it can be
proved that ∀t ≥ 0, q(t) ≥ q0 (as shown in [9]). As for the absorption functions ρ, it is generally
taken as in the model proposed by Michaelis-Menten [28]:

ρ(s) = ρmax
s

s+Ks
,

with ρmax the maximal uptake rate.
Light intensity has a direct effect on algal growth through photosynthesis, on the same time

nitrogen uptake can continue in the dark. However the classical Droop model cannot be used
directly for varying light intensity. In order to account for this effect, an extension of the Droop
model has recently been proposed by Bernard [18]. This approach consists in introducing light
intensity, which will be denoted by I [µmol m−2 s−1], into the parameter µmax = µmax(I):

µ(q, I) = µmax(I)

(
1− q0

q

)
= µmax

I

I +KI

(
1− q0

q

)
,

with KI [µmol m−2 s−1] is the light half saturation coefficient. Note that in this case, the ab-
sorption function ρ also needs to depend on q as shown in [82]

ρ(s, q) = ρmax
s

s+Ks

ql − q
ql − q0

,

with ql > q0.

Photosynthetic production and Photoinhibition - The Han model

The photosynthetic units (PSUs) are usually referred as a set of molecules including chlorophyll
that capture photons to eventually oxidize a molecule of water (H2O), produce dioxygen (O2) or
generate a flux of energetic co-factors such as ATP or NADPH. The PSUs can be associated with
two types of photosystems: photosystem-I (PSI) and photosystem-II (PSII) [58, 53, 116, 120]
where PSII leads to a flux of electrons and PSI generates the energy-rich cell co-factors. Among
these two systems, PSII is generally assumed to play the main role in the photosynthetic dynamics
since it involves a specific molecule (D1) in the reaction centre of the photosystems that is easily
damaged by an excess of energy. For large light intensities, there is a risk that some PSUs are
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damaged, leading to reduced photosynthetic activity. This photoinhibition mechanism must be
taken into account to accurately estimate photosynthetic production at high light intensity [25,
48, 73, 110, 89]. Photoinhibition results in a decrease in photosynthesis rate in plants when they
are exposed to high light intensity. In the last three decades, the understanding of photoinhibition
mechanisms induced by photodamage to PSIIs has been largely improved motivated by the
application of molecular biology [5, 95, 104, 113]. Therefore, quantitative representation of
photoinhibition has received an increasing attention. As a consequence, number of models have
been developed to represent and evaluate the effect of photoinhibition on photosynthesis [43, 44,
45, 60, 59, 91, 106, 125].

Among all these models, the Han model [59], which is initially inspired by the model of Eilers
and Peeters [45], describes the effect of the light intensity and the dynamics of the reaction centres
within the PSUs on microalgae growth. According to the Han model, the main contribution to
photoinhibition is the damage of key proteins in PSUs. This model enables to describe complex
photosynthetic processes only in terms of three possible physiological states of the PSUs, namely:

• A: open and ready to harvest a photon,

• B: closed while processing the absorbed photon energy,

• C: inhibited if several photons have been absorbed simultaneously.

The relations between these three states are schematically presented in Figure 1.1.

A B CσHI kdσHI

τ−1 kr

Photon I Photon I

Figure 1.1: Scheme of the Han model, representing the probability of state transition, as a
function of the photon flux density.

Their evolution satisfies the following dynamical system
Ȧ = −σHIA+ B

τ ,

Ḃ = σHIA− B
τ + krC − kdσHIB,

Ċ = −krC + kdσHIB.

(1.1)

Here A,B and C are the relative frequencies of the three possible states with

A+B + C = 1, (1.2)

This model separates the dynamics into two parts:

• the photosynthetic production corresponds to the transition between open state A and
closed state B. Excitation is assumed to occur at a rate of σHI, with σH [m2 µmol−1]
the effective cross-section of the PSUs, whereas deexcitation is assumed to occur at a rate
of 1

τ , with τ [s] the turnover time of the electron transport chain. In particular, the
photosynthesis rate is thus proportional to σHIA.
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8 CHAPTER 1. Introduction

• the photo-inhibition mechanism occurs at high light intensity which corresponds to the
transition from closed state B to inhibited state C. This process is assumed to occur at a
rate of kdσHI, with kd [-] a damage constant. Finally, the reverse transition from inhibited
state C to closed state B accounts for the repair of damaged PSUs by enzymatic processes
in the cell, a mechanism which is assumed to occur at a constant rate kr [s−1].

The system (1.1) can be then reduced to two equations by using (1.2){
Ȧ = −(σHI + 1

τ )A+ 1−C
τ ,

Ċ = −(kr + kdσHI)C + kdσHI(1−A),
(1.3)

We then complete the system above with initial conditions

(A(0), C(0)) = (A0, C0) ∈ {(x, y) ∈ R2
+|x+ y ∈ [0, 1]}.

The dynamics of the open state A reaches its steady state following a process whose speed
is very high compared to the dynamics of the photoinhibition state C [62] (for instance see Fig-
ure 1.2). This phenomenon is mainly due to the presence of the multiplicative parameter kd which

Figure 1.2: Evolution for open state A and photoinhibition state C with the initial condition
(A(0), C(0)) = (1, 0). Note that we use an Euler Explicit scheme to solve the system (1.3) by
using the parameters presented in Table 1.1. A log scale is also used for the time variable.

is relatively small (see Table 1.1, where an example of possible values for the Han parameters is
given). Since we usually focus on light variation at large time scale (larger than second) in real

kr 4.8 10−4 [s−1]
kd 2.99 10−4 [-]
τ 6.849 [s]
σH 0.0029 [m2 µmol−1]
kH 3.6467 10−4 [-]
Is 1500 [µmol m−2 s−1]

Table 1.1: Han model parameters taken from [77]

life applications, we can then apply a slow-fast dynamics using singular perturbation theory [72].
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More precisely, this consists in equating the first equation of (1.3) to zero and find the pseudo
steady state of A as 1−C

τσHI+1 . Replacing this into the second equation of (1.3), the previous two
equations can finally be reduced to one equation, namely

Ċ = −α(I)C + β(I), (1.4)

where

α(I) = β(I) + kr, β(I) = kdτ
(σHI)2

τσHI + 1
.

As mentioned above, the growth rate is proportional to σHIA. Let us denote by kH [-] the
growth rate coefficient such that the growth rate is defined by

µ(I) := kHσHIA =
kHσHI

τσHI + 1
(1− C) = (1− C)γ(I), (1.5)

where
γ(I) =

kHσHI

τσHI + 1
.

Remark

The net growth rate is defined from the growth rate by removing the respiration rate R [d−1]:

µ(I)−R = −γ(I)C + ζ(I), ζ(I) = γ(I)−R. (1.6)

An interesting property of the Han model is that the open, closed and inhibited states can
be computed analytically from (1.1) as a function of the light intensity I at steady state. For
instance, the steady-state expression Ā corresponding to the open state A is given by

Ā =
1

kd
kr
τ(σHI)2 + τσHI + 1

.

Therefore, one can compute the growth rate at steady state of the system by

µ(I) =
kHσHI

kd
kr
τ(σHI)2 + τσHI + 1

. (1.7)

Remark

Note that (1.4) can be solved explicitly for a constant light flux I. Hence explicit computations
can also be carried out in this case for the average growth rate or the productivity. However,
a continuous time-varying signal I may rapidly increase the difficulty of solving (1.4).

Definition 1.2.1. A growth rate is said to be of Haldane type if it is of the form

µ(I) := µmax
I

I + µmax

θ ( II∗ − 1)2
, (1.8)

where θ is the initial slope of µ, µmax stands for the maximal value of µ and I∗ represents the
optimal light intensity.
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Figure 1.3: Growth rate for light intensity.

Proposition 1.2.1. The growth rate at steady state of the Han model satisfies Haldane-type
description.

Proof. Expanding (1.8), one has

µ(I) =
θI

I2

I∗2
+ ( θ

µmax
− 2

I∗ )I + 1
.

Then it remains to identify the coefficients with (1.7). We find that:

θ = kHσH , I∗ =

√
kr

kdτσ2
H

, µmax =
kHσH

τσH + 2
√

kdτσ2
H

kr

. (1.9)

This concludes the proof.

Remark

The Haldane form highlights the significant parameters of the growth rate as illustrated by
Figure 1.3. This so-called PI curve shows the maximum value of the growth rate µmax, the
corresponding light intensity I∗ and the initial angle of the growth rate θ.

1.2.2 Hydrodynamical model
Research related to geophysical fluid dynamics often consists in understanding the coupled dy-
namics of atmosphere and ocean on Earth or on other planets. The analysis and modeling of
these geophysical flows are usually complex and challenging especially for free surface flows. The
main difficulties come not only from the discretization and the simulation of the Navier-Stokes
equations, but also from the fact that the considered problems may involve dynamics associated
with very different scales. Therefore models with reduced complexity but still capable of repre-
senting complex flows are required. Among all, the Saint-Venant system introduced in [39] is a
well known and efficient approximation of the Navier-Stokes system [115, 52, 90, 51, 21] for a
large class of problems such as dam break, flooding, debris flow, etc.
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1.2. Biological and hydrodynamical models 11

The derivation of the Saint-Venant system from the Navier-Stokes equations is based on two
main approximations namely:

• the vertical acceleration of the fluid can be neglected compared to the gravitational effects.

• the horizontal fluid velocity is approximated by its vertical average.

One can see for instance in [52] for the derivation of this model.
There are two ways to describe the fluid namely the Eulerian description and the Lagrangian

description. The Eulerian description focuses on the macroscopic aspect meaning that a control
volume is defined as well as its related properties such as pressure, velocity or acceleration,
whereas the Lagrangian description pay attention to the properties of individual fluid particles,
such as their positions or velocities, described as a function of time. In this thesis, we are
interested in the Lagrangian description of the flow to adapt to the microscopic behaviour of the
photosynthetic process in a raceway pond.

In this way, we first introduce the smooth steady state solutions of the Saint-Venant equations.
Such steady states are governed by the following partial differential equations:

∂x(hu) = 0, (1.10)

∂x(hu2 + g
h2

2
) = −gh∂xzb, (1.11)

where h [m] is the water elevation, u [m s−1] is the horizontal averaged velocity of the water, the
constant g [m s−2] stands for the gravitational acceleration, and zb [m] defines the topography.
The free surface η [m] is given by η := h+ zb and the averaged discharge Q [m2 s−1] is given by
Q := hu. This system is presented in Figure 1.4. The z axis represents the vertical direction and

0 L

z

0 x
η(x)

Is

zb(x)

h(x)
u(x)

Figure 1.4: Representation of the hydrodynamic model.

the x axis represents the horizontal direction.
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Remark

We assume that the solutions (h, u) are smooth such that we can carry out the following
computation. Moreover, we focus only on the laminar regime of the flow.

Integrating (1.10), we get
hu = Q0, (1.12)

for a fixed positive constant Q0 [m2 s−1], which implies a constant discharge in space. Then (1.11)
can be rewritten as

hu∂xu+ h∂xgh+ h∂xgzb = 0. (1.13)

Remark

This equation is a nonlinear ordinary differential equation, some solutions in specific cases
have been widely studied. For instance, by assuming h > 0 and Q0 = 0, we obtain the steady
state of a lake at rest (see [96] and references therein), defined by

Q0 = 0, h+ zb = cst.

Let us assume that h is strictly positive. Dividing (1.13) by h and using (1.12) to eliminate
u, we get

∂x

( Q2
0

2h2
+ g(h+ zb)

)
= 0.

This equation corresponds to Bernoulli’s principle. Now let us consider two fixed constants
h(0), zb(0) ∈ R. For all x ∈ [0, L], we obtain

Q2
0

2h2
+ g(h+ zb) =

Q2
0

2h2(0)
+ g(h(0) + zb(0)) =: M0,

meaning that the topography zb satisfies

zb =
M0

g
− Q2

0

2gh2
− h. (1.14)

Remark

Define the Froude number for the steady state by Fr := u/
√
gh. The situation Fr < 1

corresponds to the subcritical case (i.e. the flow regime is fluvial) while Fr > 1 is to the
supercritical case (i.e. the flow regime is torrential). In particular, the threshold value of h for
Fr = 1 is given by

hc := (
Q2

0

g
)

1
3 .

Because of (1.14), h is the solution of a third order polynomial equation. The following result
ensures that (1.14) has a unique solution.

Lemma 1.2.1 (Lemma 1 in [96]). Given a smooth topography zb, if

hc + zb +
Q2

0

2gh2
c

− M0

g
< 0.
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there exists a unique positive smooth solution of (1.14) which satisfies the subcritical flow condi-
tion.

Let z(t) be the depth of a particle at time t in the raceway pond. We determine the La-
grangian trajectory of an algal cell which starts at a given position z(0) at time 0. From the
incompressibility of the flow, one has ∇ · u = 0 with u = (u(x), w(x, z)). Here, u(x) is the
horizontal velocity and w(x, z) is the vertical velocity. Note that u only depends on x since a
laminar regime is assumed. This implies that

∂xu+ ∂zw = 0. (1.15)

Integrating (1.15) from zb to z gives:

0 =

∫ z

zb

(
∂xu(x) + ∂zw(x, z)

)
dz

= ∂x

∫ z

zb

u(x)dz +

∫ z

zb

∂zw(x, z)dz

= ∂x
(
(z − zb)u(x)

)
+ w(x, z)− w(x, zb)

= (z − zb)∂xu(x)− u(x)∂xzb + w(x, z),

where we have used the kinematic condition at the bottom (i.e. w(x, zb) = u(x)∂xzb). It then
follows from (1.14) that

w(x, z) = (
M0

g
− 3u2(x)

2g
− z)u′(x).

The Lagrangian trajectory is characterized by the system(
ẋ(t)
ż(t)

)
=

(
u(x(t))

w(x(t), z(t))

)
.

Remark

Note that a Brownian motion can be included in these equations to take into account the fluid
viscosity. In this case, the optimisation procedure requires a large set of simulations and an
averaging strategy. Such questions exceed the scope of this thesis.

Remark

Since the raceway pond is a circuit basin, it is natural to impose h(0) = h(L) (or zb(0) = zb(L)),
meaning that a space periodicity is assumed. One needs to account for this when dealing with
the parameterization in the optimization part.

1.2.3 Light intensity modeling

The light intensity I plays an important role in algal growth, since it triggers photosynthesis.
On the other hand, the position of the algae z(t) will influence the light perceived as well as the
efficiency of the photosynthesis process. Therefore, the light intensity is the main connection
which couples the hydrodynamic model and the physiological evolution of the algae. We will
present in this section a well-known model to describe the vertical light attenuation.
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In most cases, the photobioreactors are illuminated from above by a light intensity denoted
by Is hereafter. The subscript s emphasizes that Is is the light intensity at the illuminated
surface, which is assumed to be a constant. It is often assumed for low-density cultures that all
microalgae in the pond perceive the same light intensity as Is [70]. However, in more general cases
such as industrial applications and aquatic environments, a gradient of light intensity is observed
when moving deeper into the culture medium. This is caused by light absorption and scattering
by light-absorbing substances [17, 1, 74]. In order to take into account this phenomenon, the
Beer-Lambert law is often chosen as a first approximation to determine the light attenuation at
any position in the medium. This law states that I satisfies

∂I

∂z
= −εI,

where ε ≥ 0 [m−1] represents the light extinction coefficient and z ∈ [0, h] denotes the vertical
distance from the illuminated surface to the position of the culture with h [m] the depth of the
reactor. Since the microalgae culture is often assumed to be perfectly mixed, light extinction
coefficient ε does not depend on the depth of the culture z.

Therefore, we can integrate the previous equation to obtain:

I(z) := Is exp(−εz). (1.16)

The light extinction ε summarises the light absorption and diffusion in the system. In the
case of a mono-culture, ε is mainly considered to be correlated to the biomass concentration
X [74]. In a first approximation, one can assume an affine relation between these parameters,
i.e.,

ε(X) := α0X + α1, (1.17)

where α0 > 0 [m2 g−1] stands for the specific light extinction coefficient of the microalgae species
and α1 [m−1] defines the background turbidity due to all non-microalgae components i.e. sus-
pended solids and dissolved colored material. Typical values of the coefficient α0 for some
microalgae species are given in Table 1.2.

Extinction coefficient [m2 g−1] Algae species
0.214 Monodus subterraneu
0.175 Spirulina platensis
0.150 Porphyridium cruentum
0.200 Chlorella pyrenoidosa

Table 1.2: Values of the light extinction coefficient α0 for different microalgae species see in [27].

It is usually assumed that the biomass concentration X is homogeneous. However, in order
to use (1.17), the density of the culture X must be small enough to guarantee that most of the
photons are diffused at most once. For multi-diffusion regimes, the latter condition is generally
not satisfied [50]. Hence, various empirical expressions have been developed to account for multi-
scattering, for instance, in [122] the authors have proposed the following expression:

ε(X) =
β0X

β1 +X
.

with β0 and β1 determined empirically.
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Remark

In this thesis, we focus only on light regime such that the light extinction can be described
using (1.17).

As already mentioned, the light intensity I is the bridge to connect the hydrodynamical sys-
tems with the biological systems. In a raceway pond, it is often assumed that the photosynthetic
units grow slowly such that the variations of biomass concentration X and background turbidity
α1 are negligible over one lap of the raceway. At such a time scale, these two quantities in (1.17)
can be considered to be constant. Thus, the light extinction can be determined by measuring
the light intensity at bottom of the reactor Ib := I(h), so that we obtain for:

ε =
1

h
ln(

Is
Ib

).

From (1.16), one can compute the mean light intensity received by the algae culture

Ī = Is

∫ h

0

e−ε(X)zdz =
Is
ε(X)

(1− e−ε(X)h).

The mean light intensity decreases with ε(X), which confirms the intuition that high biomass
concentration X or background turbidity α1 (see Equation (1.17)) leads to high attenuation and
low value of the mean light.

1.2.4 Mixing device modeling

Except for keeping a constant motion in the raceway pond, the powered paddle wheel also
modifies the elevation of algal cultures each time when they pass through this device. Studies
have shown that this device mixes the algae position to prevent cell sedimentation, to ensure
nutrient homogeneity and to influence light reception at the cell scale in the system [37, 107].
However, modeling this complex device is challenging and involves stochastic behaviour when
going through the device. In this thesis, we consider a generic mixing device and make a perfect
mixing assumption, meaning that at each lap, the algae at the layer n1 are supposed to be
entirely transferred to the layer n2 when passing through this mixing device. In this way, the
mixing process can be modelled by a permutation matrix P ∈ PN , where PN denotes the set
of permutation matrices of size N × N with N ∈ N. Denote also by σ ∈ SN the permutation
corresponding to P where SN denotes the set of permutations of N elements. This mixing
process is depicted schematically on an example in Figure 1.5.

1.3 Periodic Cauchy problem

In this section, we focus on the periodic Cauchy problem associated with the dynamics C (1.4).
This will be useful to study periodic solutions of this biological model.

Let us first consider the Cauchy problem associated with (1.4). Given I ∈ L2(0, T ;R+) and
an initial state C0 ∈ [0, 1]. Find C ∈ C(0, T ; [0, 1]) such that{

Ċ(t) = −α(I(t))C(t) + β(I(t)), t ∈ [0, T ]
C(0) = C0

(1.18)

The theorem below gives existence and uniqueness of a (weak) solution for this problem.
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z1 = zσ(4)

z2 = zσ(1)

z3 = zσ(2)

z4 = zσ(3)

Figure 1.5: Schematic representation of the mixing process over two laps. Here, N = 4 and P
corresponds to the cyclic permutation σ = (1 2 3 4).

Theorem 1.3.1. There exists a unique weak solution of (1.18), i.e. a function C ∈ C(0, T ; [0, 1])
satisfying

C(t) = C0 +

∫ t

0

−α(I(s))C(s) + β(I(s))ds, (1.19)

for all t ∈ [0, T ].

Proof. Since α(I) = kr + β(I), (1.4) can also be written as:

Ċ(t) = −krC(t)− β(I(t))C(t) + β(I(t)).

Note that the light intensity I(t) ≥ 0 for all t ∈ [0, T ]. Since τ, σH are all positive, then one has

β(I(t)) = kdτ
(σHI(t))2

τσHI(t) + 1
≤ kdτ(σHI(t))2.

Consider now the mapping

Φ :

{
C(0, T ; [0, 1])→ C(0, T ; [0, 1])

C 7→ Φ(C)

where Φ(C) is defined for t ∈ [0, T ] by the Duhamel’s formula:

Φ(C)(t) = e−krtC0 +

∫ t

0

e−kr(t−s)
(
− β(I(s))C(s) + β(I(s))

)
ds. (1.20)

Note first that Φ is well-defined: indeed since C ∈ C(0, T ; [0, 1]) and I ∈ L2(0, T ;R), s 7→
−α(I(s))C(s) + β(I(s)) is Lebesgue integrable. Let us now prove that Φ is a contraction. Let
C1 and C2 ∈ C(0, T ; [0, 1]). Since t ≥ s, then exp(−kr(t − s)) ≤ 1 which is a bounded function.
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Therefore, we obtain

‖Φ(C2)− Φ(C1)‖L∞(0,T ;[0,1]) = sup
t∈[0,T ]

|Φ(C2)(t)− Φ(C1)(t)|

= sup
t∈[0,T ]

∣∣∣∣∫ t

0

e−kr(t−s)β(I(s))(C2(s)− C1(s))ds

∣∣∣∣
≤ kdτσ2

H sup
t∈[0,T ]

∫ t

0

I2(s) |(C2(s)− C1(s))|ds

≤ kdτσ2
H ‖C2 − C1‖L∞(0,T ;[0,1])

∫ T

0

I2(s)ds

= kdτσ
2
H ‖C2 − C1‖L∞(0,T ;[0,1]) ‖I‖

2
L2(0,T ;R+) .

According to ‖I‖L2(0,T ;R+), two cases must be considered.

• If ‖I‖L2(0,T ;R+) is small enough, the above inequality implies that Φ is a contraction. We
deduce from the Banach fixed point theorem that Φ has a unique fixed-point, hence (1.18)
admits a unique solution C ∈ C(0, T ; [0, 1]).

• If ‖I‖L2(0,T ;R+) is not small, we consider the partition [0, T ] =
⋃N−1
l=0 [Tl, Tl+1], with T0 = 0

and TN = T , such that ‖I‖L2(Tl,Tl+1;R) is small enough. Then by the Banach fixed-point
theorem that Φ has a unique fixed point on each interval [Tl, Tl+1] for all l ∈ {0, · · · , N−1}.

Finally, by applying Banach fixed-point of Φ, we remark that the right sides of (1.20) and (1.19)
are almost everywhere differentiable and that their derivatives are almost everywhere equal. This
concludes the proof.

We now consider a variant of the previous Cauchy problem, where the initial condition is
unknown and must also satisfy the periodicity condition. Given I ∈ L2(0, T ;R+), this problem
reads:

Find (C0, C) ∈ [0, 1]× C(0, T ; [0, 1]) such that{
Ċ(t) = −α(I(t))C(t) + β(I(t)), t ∈ [0, T ]
C(T ) = C0 = C(0).

(1.21)

To prove the existence and uniqueness of a (weak) solution of this problem, we need the following
result.

Lemma 1.3.1. Given Z0 ∈ [0, 1], let Z ∈ C(0, T ; [0, 1]) be the weak solution of{
Ż(t) = −α(I(t))Z(t), t ∈ [0, T ]
Z(T ) = Z0

(1.22)

For t ∈ [0, T ]:
‖Z(t)‖2 ≤ e

−krt ‖Z0‖2 . (1.23)

Proof. Let t ∈ [0, T ], as a weak solution of (1.22), the function Z is almost everywhere differen-
tiable and a direct computation gives

d ‖Z(t)‖22
dt

= 2〈Z(t),−α(I(t))Z(t)〉 ≤ −2kr ‖Z(t)‖22 , (1.24)
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where we have used the fact that α(I) = β(I) + kr, β(I) ≥ 0 and kr > 0. Defining f(t) :=

d ‖Z(t)‖22
dt

+ 2kr ‖Z(t)‖22 and multiplying both sides by e2krt, we obtain:

de2krt ‖Z(t)‖22
dt

= e2krtf(t),

which gives by integration over [0, t] that

‖Z(t)‖22 = e−2krt ‖Z0‖22 +

∫ t

0

e2kr(s−t)f(s)ds.

Then using (1.24), f(t) ≤ 0. This concludes the proof.

We can now state an existence and uniqueness result in the periodic case.

Theorem 1.3.2. There exists a unique couple (C0, C) ∈ [0, 1]× C(0, T ; [0, 1]) satisfying{
C(t) = C0 +

∫ t
0
−α(I(s))C(s) + β(I(s))ds,

C(T ) = C0
(1.25)

for all t ∈ [0, T ].

Proof. Introduce the mapping Φ : [0, 1]→ [0, 1] defined by

Φ(C0) := C(T ),

where C is the weak solution of (1.18) obtained in Theorem 1.3.1. Given C1
0 ∈ [0, 1] and

C2
0 ∈ [0, 1], define Z0 = C2

0 − C1
0 and Z(t) = C2(t) − C1(t), where C1 and C2 are the weak

solutions obtained by Theorem 1.3.1 with C0 = C1
0 and C0 = C2

0 , respectively. Subtracting the
corresponding weak representations (1.19), we see that Z satisfies the assumptions of Lemma 1.3.1
such that (1.23) holds. As a consequence,∥∥C2(T )− C1(T )

∥∥
2
≤ e−krT

∥∥C2
0 − C1

0

∥∥
2
,

which implies that Φ is a contraction. Applying Banach fixed-point theorem, it follows that there
exists a unique C0 ∈ [0, 1] such that Φ(C0) = C0. The corresponding weak solution C of (1.18)
satisfies (1.25).

This result allows us to study the case when C is assumed to be periodic (see Subsection 4.3.2).

1.4 Adjoint methods for optimization problem

In this section, we briefly recall the basics of the adjoint method which will be used in Chapter 4
to solve the constrained optimization problem. The adjoint method originates from the theory of
Lagrange multipliers in optimization which is presented in the following. Consider the problem

optimize f(x),

subject to g(x) = 0.

where f, g are functions Ω ∈ R of class C1 with Ω an open subset of Rn.
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Theorem 1.4.1. If x∗ is a local minimum or local maximum of f subject to the constraint g = 0
and if ∇g(x∗) 6= 0, then there exists λ ∈ R such that the following system of equation is satisfied
by x∗ and λ:

∇f(x∗) + λ∇g(x∗) = 0,

g(x) = 0.

λ is so-called the Lagrange multiplier.

We refer to [46, Chapter 3, Section 3] for more details about this theorem.
The adjoint method is an extension of this theorem in the framework of optimal control and

optimization. In this way, the variable x is the union of a state variable x̃ and a control state u.
The constraint g(x̃, u) = 0 gives the state x̃ in terms of the control u. In such cases, the Lagrange
multiplier λ is often called the adjoint state. This approach was first developed by Pontryagin [20]
to ordinary differential equations and by Lions [86] to partial differential equations.

We illustrate this method for the time-dependent problem which are often treated by semi-
discretization on the spatial variable of a partial differential equation. Consider the following
problem:

optimize
∫ T

0

f(x, a, t),

subject to h(x, ẋ, a, t) = 0,

g(x(0), a) = 0.

where a represents a vector of unknown parameters, x stands for a (often vector) function of
time, h(x, ẋ, a, t) = 0 is an ordinary differential equation in implicit form and g(x(0), a) = 0 is
the initial condition which may be a function of some of the unknown parameters. Note that
the ordinary differential equation h may be the result of a spatial semi-discretization of a partial
differential equation.

The gradient-based optimization algorithm requires to compute the total derivative

da

∫ T

0

f(x, a, t)dt =

∫ T

0

(∂xfdax+ ∂af) dt.

where dax denotes the total derivative of x with respect to the unknown parameters a which
is challenging to compute in most cases. To overcome this difficulty, we first introduce the
Lagrangian corresponding to the optimization problem:

L =

∫ T

0

f(x, a, t) + λ1h(x, ẋ, a, t)dt+ λ2g(x(0), a),

where λ1, λ2 are two Lagrange multipliers with λ1 a function of time. Taking then the total
derivative of the Lagrangian

daL =

∫ T

0

∂xfdax+ ∂af + λ1 (∂xhdax+ ∂ẋhdaẋ+ ∂h) dt+ λ2

(
∂x(0)gdax+ ∂ag

)
. (1.26)

Integrating by parts helps us to eliminate daẋ as∫ T

0

λ1∂ẋhdaẋdt = [λ1∂ẋhdax]
T
0 −

∫ T

0

(
λ̇1∂ah+ λ1dt∂ẋh

)
daxdt.
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The next step consists in substituting the previous result into (1.26)

daL =

∫ T

0

[(
∂xf + λ1(∂xh− dt∂ẋh)− λ̇1∂ẋh

)
dax+ ∂af + λ1∂ah

]
+ λ1∂ẋhdax|T + (−λ1∂ẋh+ λ2∂x(0)g)|0dax(0) + λ2∂ag.

Since the two constraints h = 0 and g = 0 are always satisfied by construction, then we can set
λ1(T ) = 0 and λ2 = λ1∂ẋh|0∂−1

x(0)g. Finally we can avoid computing dax for all t > 0 by setting

∂xf + λ1(∂xh− dt∂ẋh)− λ̇1∂ẋh = 0,

one finds the total derivative as

da

∫ T

0

f(x, a, t) =

∫ T

0

∂af + λ1∂ahdt+ λ1∂ẋh|0∂−1
x(0)g∂ag.

1.5 Summary

In this section, we give a general summary of each contribution. This thesis can be separated
into three parts:

• In Chapter 2, we focus on the optimal conditions to maximize the productivity in pho-
tobioreactors. More precisely, we investigate the influence of the light extinction and the
background turbidity of the medium on growth and productivity. In this way, a general
light attenuation function relying on biomass concentration is considered which also ac-
counts for the background turbidity of the system. The concept of optical productivity is
introduced to better understand the influence of the optical depth in the system dynamics.
A global optimal optical depth is determined which depends only on the model settings.
From a biological point of view, this optimal condition consists in canceling the net growth
rate of the algae at the bottom of the reactors. This optimal condition can then be used
to characterize the optimization of the surface biomass productivity in some specific cases,
whereas an asymptotic behaviour has been observed in more general case. In practise, this
optimal condition helps to establish a relation between the algal biomass concentration
and the reactor depth. We develop a nonlinear controller and prove the global asymptotic
stability of the biomass concentration towards the desired optimal value. This part of the
work corresponds to a submitted journal article [11].

• Chapter 3 deals with a general class of problem where N resources are distributed to N
activities, each activity then uses the assigned resource to evolve during a given time T > 0
after which the resources will be re-distributed. This problem is part of a large class of
allocation problems, with the particularity that it includes a dynamical system. In such
problems, the goal is to find the best allocation strategies to optimize the cost or the
benefit of the system. We apply this theory to the industrial microalgal raceway where a
mixing device, such as a paddle wheel, is considered to control the rearrangement of the
depth of the algae cultures hence the light perceived at each lap. Non trivial permutation
strategies are obtained with a significant increase in the algal growth. This part of the
work corresponds to the theory we progressively developed in a conference proceeding [16]
and a submitted journal article [15].

• Chapter 4 is dedicated to the analysis of the influence of the shape of the topography on al-
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gal growth in raceway ponds. A coupled biological-hydrodynamical model is considered to
describe this complex dynamical system. For this problem, we apply an adjoint-based op-
timization scheme which includes the constraints associated with the shallow water regime.
On the contrary to a widespread belief, the flat topography is proved to be the optimal
topography in a periodic regime, whereas non-trivial topographies can be obtained in other
contexts, e.g., when the periodic assumption is removed or when an extra mixing strategy
is included in the model. Note that in the examples considered in our numerical tests,
such topographies slightly improved the biomass production, whereas a combination of the
mixing strategies with the topographies can enhance this result. This chapter corresponds
to the conference proceedings [12, 14] and a submitted journal article [13].

1.5.1 Optimal condition for algal production

The biomass production in photobioreactors depends on the photosynthesis efficiency of the mi-
croalgae which mainly relies on the light radiation in the system. As shown in Subsection 1.2.3,
the light intensity decreases rapidly along the photobioreactor depth. This phenomenon can be
described by a Beer-Lambert law (1.16). Although a linear dependence of the biomass concen-
tration has often been used in literature to describe the light extinction (as shown in (1.17)),
experimental studies show that nonlinear behaviour can be obtained in some cases (hence a
general nonlinear formulation must be considered). For instance, Morel calibrates in [101] the
optical behaviour in the attenuation process of radiant energy based on oceanic water for which
phytoplankton and their derivative play a predominant role in determining their optical proper-
ties. The background turbidity of the system may also have an influence on the average growth
rate of the algae [93]. These two parameters are considered here, in order to describe the light
extinction in photobioreactors. In the quest for optimising areal biomass productivity, authors
in [94] have found an optimal condition by using the Droop description (Subsection 1.2.1) of
algal growth rate and a linear light extinction function. This condition expresses that respiration
rate compensates exactly the algal growth rate at the bottom of the reactor. In Chapter 2,
we extend [94] by using a Haldane-type description (1.8) combined with a more general light
extinction function:

ε(X) := α0(s)Xs + α1,

where 0 < s ≤ 1, α0(s) > 0 stands for the specific light extinction coefficient and α1 defines the
background turbidity of the medium due to dissolved turbidity, bacteria, particulate matter and
other microalgae.

In the first part, we introduce the concept of optical productivity P as the product between
the average growth rate µ̄ − R with the optical depth Y := ε(X)h (see (2.8)) and provide the
following result to determine the optimal optical depth Yopt:

Theorem 1.5.1. For a given light intensity Is, there exists an optimum Yopt to maximize the
optical productivity P which satisfies µ (I(Yopt)) = R. This optimum can be computed explicitly
as a function of the growth rate at the surface µ(Is):

Yopt =


ln

(
2IsRµmax
θI∗2

µmax−R+ 2Rµmax
θI∗ −

√
(µmax−R)(µmax−R+ 4Rµmax

θI∗ )

)
, µ(Is) > R,

ln

(
2IsRµmax
θI∗2

µmax−R+ 2Rµmax
θI∗ +

√
(µmax−R)(µmax−R+ 4Rµmax

θI∗ )

)
, µ(Is) ≤ R,

where µmax, θ, I
∗ are defined in Definition 1.2.1.
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The optimal optical depth Yopt represents the case where the growth rate at the bottom of
the reactor equals the respiration rate R. Since the value of Yopt only depends on the choice of
the model parameter (i.e. Is, R, µmax, θ, I

∗), one can use it as a criterion to evaluate the optimum
for different biomass concentrations or different reactor depths. Some results can be deduced
directly from this theorem in particular one concerning the productivity Π (defined in (2.6)) with
a fixed biomass concentration X.

Corollary 1.5.1. For a given biomass concentration X1, there exists a unique h1 satisfied
ε(X1)h1 = Yopt which maximizes the productivity Π(X1, ·).

On the contrary to the previous case, dealing with a fixed reactor depth h is more tricky
since the light extinction function plays an important role. More precisely, we have found the
following result.

Theorem 1.5.2. If α1 > 0, there is no global optimum for the productivity Π(·, ·) in R+ × R+.

We then define a sequence (Xn, hn)n>0 to study the asymptotic behaviour in this situation.
For a given X0, this sequence is defined by:

hn =
Yopt

ε(Xn−1)
, Xn := argmaxX∈R+

Π(X,hn).

Using this sequence, one has the following result on the productivity Π:

Theorem 1.5.3. The productivity Π for the sequence (Xn, hn)n>0 is given by

lim
n→∞

Π(Xn, hn) =

{
P (Yopt)
α0

, s = 1,

+∞, s < 1.

In practise, the reactor depth h is always a fixed constraint (e.g., h = 0.4 m for raceway ponds
and h = 1 mm for biofilm reactors). In this way, choosing a biomass concentration to cancel the
net growth rate at bottom may usually not be an optimal strategy to maximize the productivity
Π. As shown in Figure 1.6, the blue point corresponds to the case when the net growth rate at

Figure 1.6: Productivity (Π) with respect to biomass concentration (X) for h = 0.15 m. Blue
point: ε(X0)h = Yopt Red point: X1 = argmaxX∈R+

Π(X,h).

the bottom is zero and the red point corresponds to the optimal biomass concentration for this
given reactor depth h. In particular, the choice of such biomass concentration can have a huge
impact on the productivity as shown on the right figure. In this case, one needs to have the
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specific formulation of the average growth rate µ̄ (or the productivity Π) to locate the optimal
biomass concentration.

1.5.2 Optimal mixing strategy for algal production
The classical resource allocation problem consists in finding an optimal strategy to assign a
number of resources to the different activities. Due to its simple structure, this problem is
encountered in a number of applications, for instance load scheduling [123], manufacturing [124],
portfolio selection [63] and computational biology [3]. The optimization of these complex systems
is challenging and the available works in the literature, especially when dealing with dynamics,
are still rare.

In this way, we focus on the following problem: Given a period T , and initial time T0 and
a sequence (Tk)k∈N, with Tk = kT + T0, we consider the following resource allocation problem:
Consider N resources denoted by (In)Nn=1 ∈ RN which can be allocated to N activities denoted
by (xn)Nn=1 where xn consists of a real function of time. On a time interval [Tk, Tk+1), each
activity uses the assigned resource and evolves according to a linear dynamics

ẋn = −α(In)xn + β(In),

where α : R → R+ and β : R → R+ are given. At time Tk+1, the resources is re-assigned,
meaning that x(Tk+1) = Px(T−k+1) for some permutation matrix P ∈ PN . In order to evaluate
the quality of the mixing associated with P , we define the benefit attached to each time period
[Tk, Tk+1) by

fk := 〈u, 1

T

∫ Tk+1

Tk

x(t)dt〉,

with u ∈ RN an arbitrary vector. Then the average benefit after K operations is given by
1
K

∑K
k=0 f

k.
The first challenging issue that appears at this step is related to the periodicity of the per-

mutation matrix P . Since we are interested in the average benefit for K operations, then it is
natural to assume the periodicity on the system, meaning that x(TK) = x(T0). This assumption
is very useful when it comes to e.g., crop harvesting or scheduling of appliances. A natural choice
for K would be the order of the permutation associated with P . Indeed, in this case K is the
minimal number of re-assignments required to recover the initial allocation. However, different
permutation matrices may be associated with different order K, and some of these orders K can
be very large such that computations will be time consuming and memory resource demanding.
The following result helps us to overcome this difficulty.

Theorem 1.5.4. (x(Tk))k∈N is a constant sequence and for all k ∈ N, we have

x(Tk) = (IN − PD)−1Pv.

This result shows that every KT−periodic evolution will actually be T−periodic. This prop-
erty is decisive to formulate an optimization problem independent of K. In addition, the com-
putations to solve the optimization problem will be reduced, since the CPU time required to
assess the quality of a permutation will not depend on its order. In this way, let us consider the
functional deduced from the average benefit as

J(P ) := 〈u, (IN − PD)−1Pv〉.

Here lies the second challenge. Since the cardinal of the permutation set is N !, this problem
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cannot be tackled in realistic cases where large values ofN must be considered, e.g., to keep a good
numerical accuracy. To overcome this difficulty, we propose an approximation of this problem
whose optimum can be determined explicitly. For this purpose, we expand the functional J(P )
as follows

〈u, (I − PD)−1Pv〉 =

+∞∑
l=0

〈u, (PD)lPv〉 = 〈u, Pv〉+

+∞∑
l=1

〈u, (PD)lPv〉,

and consider as an approximation of J(P ) the first term of this series, namely

Japprox(P ) := 〈u, Pv〉.

For this sub-problem, the optimal solution can be determined explicitly by using the following
result.

Lemma 1.5.1. Let σ+, σ− ∈ SN such that vσ+(1) ≤ vσ+(2) · · · ≤ vσ+(N) and vσ−(N) ≤
vσ−(N−1) ≤ · · · ≤ vσ−(1) and P+, P− ∈ PN , the corresponding permutation matrices. Then

P+ = argmaxP∈PNJ
approx(P ), P− = argminP∈PNJ

approx(P ).

In other words, this result states that once u and v are given, P+ will be the matrix which
associates the largest coefficient of u with the largest coefficient of v, the second largest coefficient
with the second largest, and so on. In the same way, P− is the matrix which associates the largest
coefficient of u with the smallest coefficient of v, the second largest coefficient with the second
smallest, and so on.

We then provide the next criterion to evaluate this optimal strategy corresponding to this
sub-problem.

Theorem 1.5.5. Assume that u and v have positive entries and define

φ(m1) :=
1

sdm1
2 e

(+∞∑
l=1

dlmaxF
+
(l+1)m1

− dlminF
−
(l+1)m1

)
, (1.27)

where s and F+, F− are independent of the optimum of J(P ) and can be pre-computed explic-
itly (see (3.12) and (3.13) in Chapter 3 Section 3.2.2), dmax := maxn=1,...,N (dn) and dmin :=
minn=1,...,N (dn). Assume that:

max
m1≥2

φ(m1) ≤ 1.

Then the problem maxP∈PN 〈u, (I − PD)−1Pv〉 (resp. minP∈PN 〈u, (I − PD)−1Pv〉) and the
problem maxP∈PN 〈u, Pv〉 (resp. minP∈PN 〈u, Pv〉) have the same solution.

This periodic dynamical resource allocation theory is then applied to the optimization of a
mixing strategy to enhance the growth rate in a microalgal raceway system. In [29], authors have
shown that the paddle wheel, which set the hydrodynamic system in motion in raceway ponds,
homogenises the medium, ensures an equidistribution of the nutrients and guarantees that each
cell will have regularly access to the light. In the present work, the paddle wheel is identified to
a mixing device and modeled by a permutation. We then focus on the influence of the mixing
strategy on the algal productivity in a flat raceway system with a constant average velocity for
which the above resource allocation setting applies. Non-trivial optimal strategies have been
observed, see, e.g., Figure 1.7 where the optimal matrix is represented by its stencil.
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Figure 1.7: Optimal matrix Pmax for N = 11 obtained with functional J(P ) (Left) and P+

for N = 100 obtained with functional Japprox(P ) (Right). The blue points represent non-zero
entries, i.e., entries equal to 1.

As for the quality of the sub-problem and the criterion, one can see in Figure 1.8 that for
large values of time duration T , the optimum approximation almost always coincides with the
true optimum (purple stars). Nevertheless, we observe that the criterion (1.27) becomes less

Figure 1.8: Average net specific growth rate µ̄N for T = 1000 s. Left: N = 5. Right: N = 9.
The red surface is obtained with Pmax and the blue surface is obtained with P+. The purple
stars represent the cases where Pmax = P+ or, in case of multiple solution, µ̄N (Pmax) = µ̄N (P+).
The green circles represent the cases where the criterion (1.27) is satisfied.

efficient for larger N in the sense that it is not satisfied even in the cases where two solutions
coincide (green circles).

1.5.3 Optimal topography for algal production

Studies on the shape of the topography (or the bathymetry) have always been a challenging
problem, since this problem usually involves the free-surface incompressible Navier-Stokes system.
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In particular, explicit computation some time may be difficult to provide due to the complexity
of the chosen model. On the other hand, large computational resources are often needed to
provide numerical simulations and experimental results. The goal of Chapter 4 is to investigate
the influence of the topography of the raceway system. More precisely, we base on a common
belief that some specific topographies can bring more light to the algae (at the lower part of the
raceway), since they are closer to the surface when reaching the peak of these topographies. In
this way, this chapter aims at answering the following question: Do non-flat topographies enable
to increase the light perceived at the lower part of the raceway?

The first challenge to consider is to answer this question coming from the modeling aspect of
this complex system. Indeed, this algal raceway system contains both a macroscopic aspect - the
hydrodynamical behaviour of the fluid transporting the algae culture and a microscopic aspect
- the photosynthesis within the chlorophyll cells. Therefore, finding a model which takes into
account these two aspects is challenging. To overcome it, we limit ourselves to the 1D case and
consider the Saint-Venant model (1.10)- (1.11) to describe the hydrodynamical behaviour and
the Han model (1.1) to describe the photosynthetic process. The crucial element to couple these
two models is the light intensity perceived by the algae culture which is described by the Beer-
Lambert law (1.16). More precisely, we use the Saint-Venant model to compute the Lagrangian
trajectories of the algae cells, which enables us to determine their depth. The trajectory is
then used in the Beer-Lambert law to estimate the perceived light intensities . Finally, the Han
model relates the light to the algal growth dynamics2. Facing at this coupled model, the second
challenge rises up as: How to optimize concretely the topography?

In a first study [12], we consider one lap of the algal movement in the raceway pond and use
the Lagrangian trajectory as an optimization constraint. For the sake of simplicity, we illustrate
here the optimization problem with a single algal culture:

max
a∈RN

1

T

∫ T

0

−γ(I(x, z; a))C + ζ(I(x, z; a))dt,

Ċ = −α(I(x, z; a))C + β(I(x, z; a)),

ẋ = u(x; a),

ż = w(x, z; a).

where w stands for the vertical velocity of the algae cell and a is a parameter that encodes the
topography and is supposed to be optimized. The general form of this problem can be found
in Chapter 4. We then apply the adjoint-based method described in Section 1.4 to solve this
optimization problem. Figure 1.9 represents the optimal topography obtained using a truncated
Fourier series parameterization. The reason using this parameterization is presented in Sub-
section 4.4.2. The optimization procedure starts with a flat topography and ends up with a
non-trivial topography as shown in this figure.

In a further step, a second analysis is given in [13] where we reduce the optimization con-
straints to a single constraint related to C by using the special form of the Lagrangian trajectory
in the Saint-Venant description. The optimization problem for a single algal culture in this case

2Note that one can also use this approach for more complicated hydrodynamical model as soon as the La-
grangian trajectory can be computed.
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Figure 1.9: The initialization (Left) and the final iteration (Right) of the optimization procedure
for truncated Fourier number N = 5. The red thick curve represents the topography (zb), the
blue thick curve represents the free surface (η), and all the other curves between represent the
trajectories for different layers.

reads:

max
a∈RN

1

V

∫ L

0

−γ(I(x, z; a))C + ζ(I(x, z; a))h(x; a)dx,

C ′ =
−α(I(x, z; a))C + β(I(x, z; a))

Q0
h(x; a).

This simplification consists in providing a time free formulation of the Lagrangian trajectories
of the algal cells. It reduces the computational cost of the reconstruction of the hydrodynamical
behaviour of the fluid since high order numerical schemes are often required to compute the
Lagrangian trajectory as a function of time.

Another improvement with respect to the results presented in [12] is related to the periodic
behaviour of the biological state C which is a desirable property for industrial production. In
this case, one can prove directly that the flat topography is a critical point for the previous
optimization problem as stated in the following theorem.

Theorem 1.5.6. Assume the volume of the system is fixed, then flat topography cancels the
gradient of the net average growth rate (4.25) (defined in Chapter 4).

Note that this result is true only in the case where C is periodic. The numerical experiments
show that flat topography is actually optimal as shown in Figure 1.10 where we use a random
initial topography to proceed the optimization procedure.

In the last part of this work, we consider the case where depth can vary, so that the volume
is also optimized. In this case, the biomass concentration X can no longer be considered as a
constant. Therefore we apply the optimal condition found in Chapter 2 to established a relation
between the biomass concentration X with the volume of the system V . In this framework,
maximizing areal productivity is a relevant target. Productivity per unit of surface for a given
biomass concentration X is given by:

Π := µ̄X
V

S
,

Unlike the previous theorem, the flat topography does not cancel the gradient ∇Π.
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28 CHAPTER 1. Introduction

Figure 1.10: The initialization (Left) and the final iteration (Right) of the optimization procedure
for truncated Fourier number N = 5 in the case C periodic.

Theorem 1.5.7. Assume that the net growth rate at the surface satisfies µ(Is) > 0 and that Ia0
solves (4.35). Let ãf = [a0, af ] the flat topography with an average depth a0, then ∇Π(ãf ) 6= 0.

This result shows that no optimal solution can be found in this case.
In a third work [14], we are interested in combining the mixing strategies presented in Chap-

ter 3 with the topographies. The goal is to investigate numerically the optimal shape of the
topographies when including permutation strategies. The optimization problem in this case
reads

max
P∈PN

max
a∈RN

1

V

Nz∑
i=1

∫ L

0

−γ(I(x, zi; a))CPi + ζ(I(x, zi; a))h(x; a)dx,

CPi
′

=
−α(I(x, zi; a))CPi + β(I(x, zi; a))

Q0
h(x; a).

Since Nz! permutation strategies needs to be tested in combination with the optimization of the
topography, one can only test with a small number of Nz.

In this case, the periodic result in [12] is no longer valid since an extra permutation matrix
is added into the optimization problem. Moreover, we have observed in the variable volume
case that the optimization procedure stops because of the violation of the minimal water depth
constraint (in practice 5 cm). Indeed, it appears that a small volume (or in other words a small
water elevation) is better for increasing the productivity. This result is similar to the one found
in Theorem 2.3.3 which shows that the productivity is increasing when considering high level of
concentration and small water depth.
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Chapter 2

Optimal optical conditions for algal
production in photobioreactors

2.1 Introduction

Most of the time, the light attenuation is considered to be described by a Beer-Lambert law where
the light extinction rate varies with the process type and algal concentration. Some studies have
more accurately represented the way light is attenuated in the process, especially to deal with
the very dense multiscattering medium where a photon can be scattered several times before
being eventually absorbed [101]. The influence of the background turbidity and the reactor
depth on the average growth rate of the algae have also been considered in [93]. On the other
hand, a range of biological models with different complexities describe various aspects of the
growth of microalgae considering different mechanisms. For instance, authors in [94] have used
the Droop model [41, 42] combining with the growth rate description in [18] to give an optimal
condition to maximize the surface biomass productivity. This condition consists in cancelling
the net growth rate at bottom of the reactor and is much more convenient in practice to find
the relation between the biomass concentration and the reactor depth, for instance authors
in [13] have used this condition to study the algal growth in a raceway pond with a varying
volume. Optimization of the microalgal productivity has also been studied intensively in the last
decade [55, 15, 38, 34, 33].

On top of light extinction and water depth which have been already deeply studied, in this
chapter, we focus on understanding how the productivity in photobioreactors is also influenced
by the background turbidity of the reactors. Our first contribution was to extend the work
in [94] by choosing a more realistic description of the algal growth dealing with photoinhibition.
Our second contribution consisted in considering a general biomass dependent light extinction
function accounting for the background turbidity of the system. The concept of optical depth
productivity is introduced and a condition is derived on the optical depth for globally maximizing
productivity. This optimum corresponds to the compensation condition, where the respiration
compensates exactly the algal growth rate at the bottom of the reactors. We then use this optimal
condition to characterize the optimization of the surface biomass productivity depending on the
minimum achievable water depth. When the light extinction rate is affine with respect to the
algal biomass, an upper limit to the productivity (obtained for an infinitely small depth) is given.
A nonlinear controller is given and is proved to stabilize the evolution of the biomass towards
the optimal desired value. The optimal behaviours are illustrated in different cases by numerical
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experiments.

This chapter is organised as follows. In Section 2.2, we define the key concepts such as average
growth rate and light distribution. We then study the optimization problem in Section 2.3. More
precisely we investigate the global behaviour of the optical depth productivity and the optimal
condition in Subsection 2.3.1. The optimal biomass concentration for a given reactor depth
to maximize the surface biomass productivity is investigated in Subsection 2.3.2. A nonlinear
controller is then introduced in Section 2.4 to stabilize the biomass concentration towards its
optimal value. We illustrate and discuss the behaviour of the optima in different cases by some
numerical experiments in Section 2.5.

2.2 Description of the model

For a given light intensity I, the growth rate of microalgae is defined by a Haldane-type descrip-
tion like one presented in Definition 1.2.1, which is recalled here:

µ(I) := µmax
I

I + µmax

θ ( II∗ − 1)2
, (2.1)

where θ is the initial slope of µ, µmax denotes the maximum value of µ and I∗ represents the
optimal light intensity. This description results from a mechanical consideration of the light
harvesting dynamics represented by the Han system [59] (see Subsection 1.2.1 for more details).
The light attenuation is described by a Beer-Lambert law

I(X, z) := Is exp
(
ε(X)z

)
, (2.2)

where X represents the biomass concentration, z ∈ [−h, 0] denotes the vertical position of the
algae cells with h the depth and Is is the light intensity at the reactor surface. The light
extinction ε, which summarises the light absorption and diffusion, is considered to be correlated
to the biomass concentration X

ε(X) := α0(s)Xs + α1, (2.3)

where 0 < s ≤ 1, α0(s) > 0 stands for the specific light extinction coefficient of the microalgae
species. It depends on the parameter s. The background turbidity α1 is due to all non-microalgae
components i.e. suspended solids and dissolved colored material. The dependence of s in α0 will
be omitted hereafter when no confusion may occur.

From (2.2) one can compute the mean light intensity received by the algae culture

Ī = Is

∫ 0

−h
eε(X)zdz =

Is
ε(X)

(
1− e−ε(X)h

)
.

This quantity is a decreasing function of ε(X), which confirms the intuition that a higher biomass
concentration or a higher background turbidity leads to lower mean light received in the reactor,
due to stronger light attenuation effect.

Replacing I by (2.2) in (2.1), one can see that the growth rate varies with depth of the reactor.
Lower growth rate in the upper part of the reactor results from the photo-inhibition caused by
high light density. Similarly, the growth rate is weak in the lower part of the reactor because of
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2.3. Analysis of the optimal productivity 31

low light intensity. The mean growth rate in the reactor is defined by

µ̄ :=
1

h

∫ 0

−h
µ(I(X, z))dz. (2.4)

Applying then a change of the variable y = ε(X)z, it can be written as

µ̄ :=
1

ε(X)h

∫ ε(X)h

0

µ(I(−y))dy, (2.5)

so that the mean growth rate depends on the optical depth ε(X)h. This quantity is denoted
by Y [-] hereafter. In this case, the average growth rate (2.5) can also be written as a function
of Y (i.e. µ̄(X,h) = µ̄(Y )). Our aim is to optimize the surface biomass productivity (units:
g ·m−2 · d−1) which is defined by

Π := (µ̄−R)Xh. (2.6)

Remark

The evolution of the biomass concentration X is given by

Ẋ = (µ̄−R−D)X, (2.7)

where R is the respiration rate and D denotes the reactor dilution rate. At equilibrium, the
biomass surface productivity Π is the product between dilution rate (D = µ̄−R) and surface
biomass Xh.
Note that a nonlinear controller for D is introduced in section 2.4 to stabilize (2.7) to the value
of X optimizing productivity.

2.3 Analysis of the optimal productivity

In this section, we investigate the optimization problem associated with the productivity Π. Note
that the biomass concentration X and the depth h are both defined in R+.

2.3.1 Global optimality condition

First of all, let us define the optical depth productivity1 (units: d−1) by

P := (µ̄−R)Y. (2.8)

1also called "optical productivity"
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Remark

According to the definition of the optical depth productivity (2.8), a thin reactor with high
biomass concentration is equivalent to a deep reactor with low biomass concentration as long as
they both share the same optical depth Y . A low value of Y means a weaker photon harvesting
since less light is absorbed. On the reverse, a too high Y means that light hardly reaches the
bottom of the reactor, with an area where respiration (loss of CO2) exceeds growth (fixation
of CO2). Hence, it is necessary to determine the optimal Y value maximizing the efficiency of
the productivity P .

Theorem 2.3.1. Given a surface light intensity Is, there exists an optimum Yopt which max-
imizes the optical productivity P . This value satisfies µ (I(Yopt)) = R and can be computed
explicitly according to the growth rate at the surface µ(Is):

Yopt =


ln

(
2IsRµmax
θI∗2

µmax−R+ 2Rµmax
θI∗ −

√
(µmax−R)(µmax−R+ 4Rµmax

θI∗ )

)
, µ(Is) > R,

ln

(
2IsRµmax
θI∗2

µmax−R+ 2Rµmax
θI∗ +

√
(µmax−R)(µmax−R+ 4Rµmax

θI∗ )

)
, µ(Is) ≤ R.

(2.9)

Proof. For a given Y , the optical productivity P can be written from (2.5) and (2.8)

P (Y ) =

∫ Yopt

0

µ(I(−y))−Rdy +

∫ Y

Yopt

µ(I(−y))−Rdy

=P (Yopt) +

∫ Y

Yopt

µ(I(−y))−Rdy, (2.10)

where Yopt is chosen according to (2.9). On the other hand, for the function

µ(I(−y)) =
µmaxI(−y)

I(−y) + µmax

θ ( I(−y)
I∗ − 1)2

,

there exists a y∗ > 0 with µ(I(−y∗)) = µmax such that µ(I(−y)) is increasing from 0 to y∗

and decreasing from y∗ to 0. According to the value of µ(I(0)) (i.e. µ(Is)), two cases must be
considered:

• if µ(I(0)) = µ(Is) > R, the second term of (2.10) is always negative. Indeed, in the case
where Y is smaller than Yopt, using the concavity of µ(I(−y)), one finds µ (I(−y)) > R,
∀y < Yopt. In other words, the second term of (2.10) removes the microalgae which grow
more than they respire. Otherwise, Y is greater than Yopt, one finds µ (I(−y)) < R,
∀y > Yopt (for the same reason as above). This means that the second term of (2.10) adds
the microalgae which respire more than their growth.

• if µ(I(0)) = µ(Is) ≤ R, then there exists a ỹ ∈ [0, y∗) such that µ(I(−ỹ)) = R. Then if
Y is greater than ỹ, the second term of (2.10) is negative for the same reason as above.
Otherwise, the productivity P (Y ) is negative.

In both cases, the second term of (2.10) is negative. Thus Yopt maximizes the quantity P .
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In order to compute Yopt, one needs to solve µ(I) = R, or equivalently:

Rµmax

θI∗2
I2 + (R− µmax −

2Rµmax

θI∗
)I +

Rµmax

θ
= 0.

The discriminant of this second order polynomial equation is given by ∆ = (µmax − R)(µmax −
R + 4Rµmax

θI∗ ) > 0, which implies that there exists two real roots. The sum and the product of
two roots are both positive, hence both of these two roots are also positive. Finally Yopt can be
determined by the growth rate at the surface µ(Is):

• if µ(Is) > R, then there exists one root in the interval (0, Is) and one root in the interval
(Is,+∞). In this case, one has

Yopt = ln

 2IsRµmax

θI∗2

µmax −R+ 2Rµmax

θI∗ −
√

(µmax −R)(µmax −R+ 4Rµmax

θI∗ )

 .

• if µ(Is) ≤ R, then two roots both lie into the interval (0, Is]. In this case, we choose the
smaller one (since it represents the light at lower part of the reactors)

Yopt = ln

 2IsRµmax

θI∗2

µmax −R+ 2Rµmax

θI∗ +
√

(µmax −R)(µmax −R+ 4Rµmax

θI∗ )

 .

This concludes the proof.

Remark

As shown in (2.9), the value of Yopt only depends on the model parameters (θ, µmax, I∗, R)
and on the light intensity at the reactor surface Is. In other words, the cancellation of the net
growth rate at the bottom of the reactor is the optimal strategy to maximize optical depth
productivity (see in Figure 2.2 for illustrations).

2.3.2 Surface biomass productivity

In this section, we focus on the surface biomass productivity Π. From the definition of Π (2.6)
and the definition of P (2.8), one has

Π =
X

ε(X)
P. (2.11)

In general, it is not possible to apply the same strategy (as in the proof of Theorem 2.3.1)
to optimize Π, since P and Π do generally not have the same behaviour. Only in the case
where s = 1 and α1 = 0, the factor X

ε(X) simplifies, leading to the same optimum. Using then
Theorem 2.3.1, we deduce directly the following results.

Corollary 2.3.1. If the light extinction function defined by (2.3) satisfies α1 = 0 and s = 1, then
Yopt defined by (2.9) maximizes the productivity Π and Yopt is the global optimum. Moreover,
Ỹopt := Yopt/α0 is the optimal surface biomass.
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Proof. Since α1 = 0 and s = 1, Y = ε(X)h = α0Ỹ with Ỹ := Xh the surface biomass.
Meanwhile, using (2.11), one has P (·) = α0Π(·), then following the same analysis, one finds that
Yopt maximizes P (·), therefore the productivity Π(·). Finally, Ỹopt is given by Yopt/α0.

Corollary 2.3.2. If the objective is to reach a biomass concentration X1, there exists a unique
reactor depth h1 which satisfies ε(X1)h1 = Yopt and maximizes the productivity Π(X1, ·) for this
target biomass.

Proof. Since X1 is fixed, then using (2.11), one has directly that the optimum is given by Yopt.
In this case, h1 is defined by Yopt/ε(X1).

In Corollary 2.3.2, we have studied the case with a fixed biomass concentration X. This
result does not depend on the considered law ε(X). However, optimizing X is more tricky,
Corollary 2.3.1 provides a result in the case with a specific value of α1 and s. In more general
case, the strategy used in the proof of Theorem 2.3.1 may fail when optimizing X. In this way,
we focus on the case where the background turbidity α1 is not zero in this section. According to
the value of s, we separate the study into two parts.

The standard case s = 1

Let h1 a given depth and (X1, h1) which satisfies Yopt = ε(X1)h1. For a biomass concentration
X > X1, one has Y = ε(X)h1 > Yopt. Applying then Theorem 2.3.1, one finds P (Y ) < P (Yopt).
On the other hand, one has X

ε(X) > X1

ε(X1) using the definition (2.3) for s = 1. According
to (2.11), it is not clear to see if Π(X1, h1) is larger than Π(X,h1). Indeed, by using the explicit
formulation given in Appendix 2.A, one can show that there always exists X > X1 such that
Π(X,h1) > Π(X1, h1) in the case s = 1.

According to Corollary 2.3.2, the couple (X1, h1) satisfies ε(X1)h1 = Yopt and corresponds to
the optimum of Π(X1, ·) for a given X1. However, this is not the optimal condition to optimize
Π(·, h1) for a given h1. We deduce then the next theorem.

Theorem 2.3.2. If α1 > 0, there is no global optimum for the productivity Π(·, ·) in R+ × R+.

Proof. Let us assume that there exists a global optimum for the productivity Π denoted by
(X∗, h∗). Since (X∗, h∗) is a global optimum, in particular, this is an optimum in the direction
of h. Using Corollary 2.3.2, we find ε(X∗)h∗ = Yopt. However, there exists X̃∗ > X∗ such that
Π(X̃∗, h∗) > Π(X∗, h∗). This contradicts the fact that (X∗, h∗) is a global optimum. Therefore,
the productivity Π(·, ·) has no global optimum.

Since no global optimum for the productivity Π can be found when α1 > 0, then we would
like to study the asymptotic behaviour of Π. In the following, we focus on the optimum in
the direction of X and in the direction of h separately. Given X0 and consider the sequence
(Xn, hn)n∈N defined by

hn =
Yopt

ε(Xn−1)
, Xn := argmaxX∈R+

Π(X,hn). (2.12)

From the definition above, the sequence (Xn−1, hn)n>0 corresponds to the optimum in the di-
rection of h for Xn−1, whereas the sequence (Xn, hn)n>0 corresponds to the optimum in the
direction of X for hn. In plain words, these two sequences defined by (2.12) aims at searching
the local optima by optimizing in the direction of h and in the direction of X alternately. Let
us provide some more information about the sequence (Xn, hn)n>0.
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Lemma 2.3.1. The sequence (Xn, hn) verifies limn→∞ ε(Xn)hn = Yopt, and the growth rate at
the reactor bottom satisfies limn→∞ µ(I(Xn, hn)) = R.

Proof. From the definition of the sequence (Xn−1, hn)n>0, one has ε(Xn−1)hn = Yopt, which
means

lim
n→∞

ε(Xn)hn = Yopt lim
n→∞

ε(Xn−1)

ε(Xn)
= Yopt.

Denoting by Yn = ε(Xn)hn, since µ ◦ I(−y) is a continuous function with respect to y in R+,
one has

lim
n→∞

µ(I(Xn, hn)) = lim
n→∞

µ(I(Yn)) = µ(I(Yopt)) = R.

This concludes the proof.

This lemma enables us to prove the next theorem, without constraint on the minimal reactor
depth.

Theorem 2.3.3. limn→∞Xn =∞, limn→∞ hn = 0 and limn→∞Π(Xn, hn) =
P (Yopt)
α0

.

Proof. Since (Xn)n∈N is a strictly increasing sequence, the sequence (hn)n∈N∗ is strictly decreas-
ing by its construction (2.12). Since for each n ∈ N∗, hn > 0, then this sequence converges to a
limit that we denote by hlim. Assume that hlim > 0, then from (2.12), one has

hlim = lim
n→∞

hn = lim
n→∞

Yopt

ε(Xn−1)
= Yopt lim

n→∞

1

α0Xn−1 + α1
,

which means that limn→∞Xn =: Xlim < ∞. Then (Xlim, hlim) is a global optimum, hence a
contradiction with Theorem 2.3.2. Therefore hlim = 0, which means that Xlim =∞.

On the other hand, by the construction of these two sequences (Xn−1, hn)n>0, (Xn, hn)n>0,
one has

Π(Xn−1, hn) < Π(Xn, hn) < Π(Xn, hn+1).

Using (2.11), one has Π(Xn−1, hn) = Xn−1

ε(Xn−1)P (Yopt) and Π(Xn, hn+1) = Xn
ε(Xn)P (Yopt). Taking

the limit similarly as in the above inequalities gives limn→∞Π(Xn, hn) =
P (Yopt)
α0

. This concludes
the proof.

Case s < 1

In the case s < 1, one can still use the explicit formula of Π given in Appendix 2.A to show
that the couple (X1, h1) satisfying ε(X1)h1 = Yopt is not the optimum in the direction of X for
a given h1. There exists X > X1 such that Π(X,h1) > Π(X1, h1). Therefore, one can keep the
same definition of the sequences (2.12). Lemma 2.3.1 remains true in this case by the definition
of the sequence (Xn, hn). However the last limit in Theorem 2.3.3 will be different as shown in
the next theorem.

Theorem 2.3.4. limn→∞Xn =∞, limn→∞ hn = 0 and limn→∞Π(Xn, hn) = +∞.

Proof. Following the similar strategy as in Theorem 2.3.3, one can show that limn→∞Xn =∞,
limn→∞ hn = 0.

On the other hand, by the construction of the two sequences (Xn−1, hn)n>0, (Xn, hn)n>0,
one has

Π(Xn−1, hn) < Π(Xn, hn) < Π(Xn, hn+1).
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Using (2.11) and passing to the limit, one finds

lim
n→∞

Π(Xn−1, hn) = lim
n→∞

Xn−1

ε(Xn−1)
P (Yopt) =

P (Yopt)

α0
lim
n→∞

X1−s
n−1 = +∞,

lim
n→∞

Π(Xn, hn+1) = lim
n→∞

Xn

ε(Xn)
P (Yopt) =

P (Yopt)

α0
lim
n→∞

X1−s
n = +∞.

Therefore, limn→∞Π(Xn, hn) = +∞.

Note that for real reactors, there is a constraint on the minimal reactor depth hlim (below
which mixing is no more possible). An optimal solution can then be found in this case. Indeed,
as shown in Theorem 2.3.4 (or Theorem 2.3.3), a higher productivity can be obtained for higher
biomass concentration and smaller reactor depth. Considering the minimal reactor depth, one
can find the optimal biomass concentration maximizing the productivity.

2.4 Optimal control implementation in closed loop

As shown in previous section, there exists optimal biomass concentration for a given reactor depth
h. In this section, let us show that the evolution of the biomass concentration X (defined in (2.7))
can be stabilized to a desired biomass concentration by applying an appropriate controller. More
precisely, we consider the dilution rate D in (2.7) as a controller. Let us denote by X? ∈ (0, X(0))
the desired biomass concentration.

Assumption 2.4.1 (H1). We assume that:

a. the quantity Φ := (µ̄(X,h)−R)X is measured on-line from the plant,

b. the growth rate for the influent light intensity is larger than the respiration (i.e. µ(Is) > R),

c. the maximal dilution rate Dmax is larger than the maximal growth rate µmax.

The quantity Φ denotes the average oxygen production which is available from the reactor.
Indeed, oxygen sensors or numerical estimators can be applied to obtain the quantity Φ. In the
sequel, we assume that (H1) holds. Then we have the following result.

Proposition 2.4.1. The control law

D =

{
Dmax X ≥ X̄
(µ̄(X,h)−R) XX? X < X̄

(2.13)

globally stabilizes equation (2.7) towards the positive point X?.

Remark

X̄ > X? is chosen to determine the area where the control will be at its maximum rate. It is
defined so that (µmax −R) X̄X? < Dmax.

Proof. From the definition of (2.13), the control variable D is positive. On the other hand,
µ̄(0, h) > R, limX→∞ µ̄(X,h) = 0 and µ̄(·, h) is continuously decreasing with respect to X. If
the initial state X(0) ≥ X̄, then replacing D = Dmax into (2.7) gives

Ẋ = (µ̄(X,h)−R−Dmax)X.
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In particular, µ̄(X(0), h) − R −Dmax < 0, hence there exists a time t1 > 0 such that the state
X decreases from 0 to t1 and X(t1) = X̄. When t > t1, D = Φ

X? . Replacing D = Φ
X? into (2.7)

gives

Ẋ = (µ̄(X,h)−R)
X

X?
(X? −X) =

Φ

X?
(X? −X). (2.14)

Note that the system is now in the positive invariant region X < X̄ and cannot come back
again to X ≥ X̄. Moreover, 0 < µ̄(X,h) − R < µmax − R. Then, integrating (2.14) gives
∀t ≥ t1, 0 < X? ≤ X(t) ≤ X(0).

In the case the initial state X(0) ∈ (0, X̄), the control variable D = Φ
X? and the evolution

equation (2.7) once again becomes (2.14), hence we follow the small strategy as above.
Finally we find in both two cases that

∀t ≥ 0, 0 < X? ≤ X(t) ≤ X(0).

Therefore, the state X? is globally exponentially stable for the evolution equation (2.7) by using
the control law (2.13).

2.5 Numerical results

In this section, we will illustrate some optimal conditions to maximize the algal productivity. In
this way, we first introduce an algorithm to compute the sequences defined in (2.12). We then
give the parameters that we use for the numerical experiments and show some numerical results.

2.5.1 Numerical algorithm
In practise, one can use the next algorithm to compute two sequences (Xn−1, hn)n>0 and
(Xn, hn)n>0 defined by (2.12).

Algorithm 1 Search Optimum
1: Input: Yopt, nmax and X0.
2: Output: (Xn, hn)n>0

3: Set n := 0.
4: while n < nmax do
5: Set n = n+ 1.
6: Compute hn = Yopt/ε(Xn−1).
7: Compute Xn such that dΠX(Xn, hn) = 0.
8: end while

2.5.2 Parameter settings
The Han model parameters are taken from [54] and recalled in Table 2.1. Then one can use (1.9)
to find µmax, α, I

∗. The considered surface light intensity is set to be Is = 2000µmolm−2s−1.
For s = 1, we take from Table 1.2 the specific light extinction coefficient for the species Chlorella
pyrenoidosa α0 = 0.2 m2 · g−1 and the background turbidity α1 = 10 m−1. Note that for the case
where s < 1, we compute the coefficient α0(s) to find the one providing an extinction coefficient
as close as possible to the reference linear case which is generally the one measured:

α0(s) = argmaxX∈[Xmin,Xmax] |α0(1)X− α0(s)Xs| . (2.15)
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Table 2.1: Parameter values for Han Model.

kr 6.8 10−3 s−1

kd 2.99 10−4 -
τ 0.25 s
σ 0.047 m2 · (µmol)−1

k 8.7 10−6 -
R 1.389 10−7 s−1

2.5.3 Numerical study

In this section, we provide some numerical tests to illustrate the influence of the water depth h,
the biomass concentration X and the light extinction function ε(X) on algal productivity.

Evaluation of different light extinction coefficient

As mentioned in the previous section, the light extinction coefficient α0 needs to be better
estimated when s < 1, in comparison with the reference case s = 1. For this reason, let us set
biomass concentration X in a range of [0, 1000] (g ·m−3). We then use (2.15) to find α0 that
provide the same average extinction rate. Figure 2.1 shows ε(X) for different values of s when
the background turbidity α1 > 0.

Figure 2.1: ε(X) with respect to X for s ∈ {0.2, 0.4, 0.6, 0.8, 1}.

Global optimum of optical depth

The optimal optical depth (Yopt) can be computed explicitly using (2.9) once the light intensity at
the reactor surface Is and the model parameters (θ, µmax, I∗, R) are fixed. Figure 2.2 presents
the evolution of the growth rate µ and optical depth productivity (P ) with respect to y for
different value of s and α1. One can see that the optimum is obtained with Yopt = 6.337, which
also satisfies numerically µ(I(Yopt)) = R in our case. Moreover, as mentioned in Remark 2.3.1,
Yopt does not change for other values of α1 and s.
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Figure 2.2: Growth rate µ and optical depth productivity P with respect to y. Left: s = 1 and
α1 = 10 m−1. Right: s = 0.365 and α1 = 0 m−1.

In the same way, for a given biomass concentration X, Corollary 2.3.2 provides a condition
to determine the optimal depth to maximize the surface biomass productivity Π. Figure 2.3
illustrates this corollary with a biomass concentration X = 50 g ·m−3 for different values of s
and α1. Note that the optimal depth h∗ satisfies the relation ε(X)h∗ = Yopt. In other words,

Figure 2.3: Productivity (Π) and net growth rate (µnet(X,h)) with respect to depth (h) for
X = 50 g ·m−3. Left: s = 1 and α1 = 10 m−1. Right: s = 0.365 and α1 = 0 m−1.

one can see that this optimal satisfies µ (I(X,h∗)) = R. It is worth remarking that the range of
the productivity Π changes for different value of s and α1, this motivates to better understand
how these parameters affect growth.

Influence of the background turbidity and s

Here we study the influence of the background turbidity α1 and the value of s on the productivity
Π. We keep the biomass concentration value X = 50 g ·m−3 and compute h by using the relation
ε(X)h = Yopt for different values of α1 and s. Note that the depth h computed in this way is
the optimum to maximize the productivity for the given biomass concentration. Figure 2.4
represents the optimal surface biomass productivity Π with respect to the background turbidity.
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As we can expect intuitively, the larger the background turbidity is, the smaller the productivity

Figure 2.4: Optimal surface biomass productivity with respect to the background turbidity α1

for X = 50 g ·m−3 and different value of s.

is. Furthermore, the productivity increases with the value of s for a fixed value of turbidity α1.

Local optima in the case s = 1

In real life applications, the depth h depends on the type reactors, for instance, h = 0.1 m−0.5 m
for raceway ponds, h = 1 cm−10 cm for tubular photobioreactors and h = 0.1 m−1 mm for biofilm
reactors (where the microalgal biomass is fixed on a support). By knowing the lowest bound
admissible for the reactor depth (depending on the process type), we only need to optimize
the productivity in the direction of X. Note that the turbidity α1 may change the optimal
condition to maximize the surface biomass productivity Π. Indeed, Figure 2.5 illustrates this for
a reactor depth h = 0.15 m. Note that X0 satisfies the relation ε(X0)h = Yopt which also means

Figure 2.5: Productivity (Π) with respect to biomass concentration (X) for h = 0.15 m. Left:
α1 = 0 m−1. Right: α1 = 10 m−1.

that the net growth rate at the bottom of the reactor is zero (see the blue point in these two
figures). On the other hand, the red point (X1, h) is the optimum which maximizes the surface
biomass productivity Π for this given depth h. One can see that X0 = X1 = 158.427 g ·m−3

in the case the background turbidity is zero in the system (Left), meaning that the optimum
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is the point which cancels the net average growth rate at the reactor bottom as mentioned in
Corollary 2.3.1. However, as mentioned in Subsection 2.3.2, that by taking account into the
background turbidity (Right), these two points are no longer the same and the optimum then
satisfies X1 = 204.190 g ·m−3 > X0 = 108.427 g ·m−3.

The global behaviour of the surface biomass productivity Π is represented on Figure 2.6, for
h ∈ (0, 1] and X ∈ (0, 1000]. To discuss the influence of the background turbidity, we consider
two possible values, α1 = 0 m−1 and α1 = 10 m−1. Note that the blue points in the left figure

Figure 2.6: Global behaviour of productivity (Π) with respect to depth (h) and biomass concen-
tration (X). Left: α1 = 0 m−1. The blue stars represent the optimal couple (X,h) such that
Π finds its global maximum. Right: α1 = 10 m−1. The red circles represent the suboptimal
couple (X,h) where Π finds its maximum in the direction of h for a given X. The black squares
represent the suboptimal couple (X,h) where Π finds its maximum in the direction of X for a
given h.

(X,h) satisfy the relation ε(X)h = Yopt which is also the global optimum. However, by taking
account into the background turbidity (see figure on the right), no global optimum exists in this
case as mentioned in Theorem 2.3.2. Instead, for a given biomass concentration, the optimal
depths can still be found using the relation ε(X)h = Yopt (represented by the red circles in the
right figure). For a given water depth, the optimal concentrations are obtained by cancelling the
derivative of Π(·, h) (represented by the black squares in the right figure). Furthermore, one can
observe that this two suboptima become closer when X increases and h decreases, meanwhile
the productivity also increases in this direction.

Let us setX0 = 50 g ·m−3, α1 = 10 m−1 and nmax = 104. Figure 2.7 illustrates the proprieties
of these two sequences constructed by Algorithm 1. Starting from the figure on the top, the blue
point and the yellow point are the first-two element of the sequence (Xn−1, hn)n>0, the red
point and the purple point are the first-two element of the sequence (Xn, hn)n>0. Recall that the
sequence (Xn−1, hn)n>0 always satisfies ε(Xn−1)hn = Yopt and the net growth rate at the reactor
bottom is always 0. We then only study the asymptotic behaviour of the sequence (Xn, hn)n>0.
As shown in bottom left figure, the surface biomass Xnhn converges to Yopt

α0
and the optical depth

ε(Xn)hn converges to Yopt, as proved in Lemma 2.3.1. The productivity Π(Xn, hn) converges to
P (Yopt)/α0, see bottom right figure as proved in Theorem 2.3.3. Finally, the net growth rate at
the reactor bottom converges to zero, which is the global optimum condition in the case where
the background turbidity is 0 (see Corollary 2.3.1). In particular, since (Xn, hn) are the optima
in the direction of X for each hn, one can see that the net growth rate at the reactor bottom
for these optima are always negative, meaning that the compensation condition is only satisfied
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Figure 2.7: Up: First-two elements of these two sequences. Down Left: Surface biomass (Xnhn)
and optical depth (ε(Xn)hn) for the sequence (Xn, hn)n>0. Down Right: Productivity Π(Xn, hn)
and net growth rate at the reactor bottom µ(Xn, hn)−R for the sequence (Xn, hn)n>0.
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asymptotically.

Local optima in the case s < 1

We start with a similar study as in Figure 2.5 in the case s < 1. Recall that the depth of the
reactor is given by h = 0.15 m and two background turbidity values are given by α1 = 0 m−1

and α1 = 10 m−1. Figure 2.8 illustrates the results for s = 0.365. Recall that the blue point

Figure 2.8: Productivity (Π) with respect to biomass concentration (X) for h = 0.15 m. Left:
α1 = 0 m−1. Right: α1 = 10 m−1.

(X0, h) satisfies the relation ε(X0)h = Yopt which also means that the net growth rate at the
reactor bottom of the reactor is zero, and the red point (X1, h) represents the optimum which
maximizes the productivity for this depth h. In the case α1 = 0 m−1, we find X0 = 13.327 g ·m−3

and X1 = 1149.298 g ·m−3, whereas we obtain X0 = 4.715 g ·m−3 and X1 = 1064.574 g ·m−3 in
the case α1 = 10 m−1. These two points do not coincide even when the background turbidity is
zero, which is different from the case s = 1.

Figure 2.9 shows the global behaviour of surface biomass productivity in the case s = 0.365.
Unlike for the case s = 1 (Figure 2.6), the influence of the background turbidity becomes smaller
when s < 1. However, similarly to this s = 1 case (Right), the productivity becomes larger
when the biomass concentration X increases and the water depth h decreases. Furthermore,
Figure 2.10 shows the divergence of the productivity Π, as proved in Theorem 2.3.4.

Controller test

We present the efficiency of the controller D designed in Proposition 2.4.1. Let us set h = 0.1 m,
s = 1, X(0) = [2500, 50]g m−3, Dmax = 10µmax and keep other parameter settings. Figure 2.11
illustrates the behaviour of the biomass concentration X under our controller D. Note that the
desired biomass concentration X? = argmaxX∈R+

Π(X,h). One can see that the evolution of the
biomass concentration X in closed loop converges to the desired optimal biomass concentration
(after five days).

2.6 Conclusion

The concept of optical productivity P has been defined and a global optimum Yopt has been
found to maximize P . This condition corresponds to a situation where the net growth rate at
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Figure 2.9: Global behaviour of productivity (Π) with respect to depth (h) and biomass concen-
tration (X). Left: α1 = 0 m−1. Right: α1 = 10 m−1. The red circles represent the suboptimal
couple (X,h) where Π finds its maximum in the direction of h for a given X. The black squares
represent the suboptimal couple (X,h) where Π finds its maximum in the direction of X for a
given h.

Figure 2.10: Productivity Π(Xn, hn) for the sequence (Xn, hn)n>0.

Figure 2.11: Evolution of the biomass concentration X in closed loop for two initial conditions.
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the reactor bottom is zero. This optimum can be used to characterize the optimal water depth
which maximizes surface biomass productivity Π for a target biomass concentration value. When
the light extinction rate is affine with respect to the biomass concentration, an upper limit to
the productivity is given which is obtained for an infinitely small depth and an infinitely large
biomass concentration.

The proposed nonlinear controller stabilizes the biomass concentration to its optimal value
X?. It could be improved by integrating an extremum seeking strategy [88, 56] to automatically
target the desired biomass without identifying it in advance.

2.A Explicit computations for average growth rate

In this section, we provide details about the computation on µ̄. As mentioned in Subsection 1.2.1,
the growth rate described by Han model can be easily written in the Haldane description. We
choose to present the corresponding computation hereafter with Han model parameters. From
the definition of µ̄ (2.4), one has

µ̄ =
1

h

∫ 0

−h
µ(I(X, z))dz =

krkσ

hε(X)

∫ Is

Ib

1

kdτ(σI)2 + kr(τσI + 1)
dI,

where Ib = Is exp(−ε(X)h). Define a = kdτσ
2, b = krτσ, c = kr. According to the sign of the

discriminant ∆ of equation aI2 + bI + c, three cases must be considered.

• ∆ > 0 : Then there exists two reel roots denoted by d1 = −b+
√
b2−4ac

2a and d2 = −b−
√
b2−4ac

2a .
Hence one has

µ̄ =
krkσ

ahε(X)

(
e1 ln

∣∣∣∣Is − d1

Ib − d1

∣∣∣∣+ e2 ln

∣∣∣∣Is − d2

Ib − d2

∣∣∣∣ ).
with e1 + e2 = 0 and e1d2 + e2d1 = −1, i.e. e1 = 1

d1−d2 = a√
b2−4ac

and e2 = 1
d2−d1 =

− a√
b2−4ac

. Using e2 = −e1, we find

µ̄ =
krkσe1

ahε(X)
ln

∣∣∣∣ (Is − d1)(Ib − d2)

(Ib − d1)(Is − d2)

∣∣∣∣ .
• ∆ = 0 : Then there exists a unique root denoted by d = − b

2a . And one has

µ̄ =
krkσ

hε(X)

Is − Ib
(Is − d)(Ib − d)

• ∆ < 0 : Then one has

aI2 + bI + c =
4ac− b2

4a

(( I + b
2a√

4ac−b2
4a2

)2
+ 1
)
.

Applying a change of variable by setting y =
I+ b

2a√
4ac−b2

4a2

, one gets

µ̄ =
krkσ

hε(X)

2√
4ac− b2

(
arctan(

2aIs + b√
4ac− b2

)− arctan(
2aIb + b√
4ac− b2

)
)
.
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Since one has the explicit formulation of the average growth rate µ̄, the surface biomass
concentration Π can be then computed explicitly including its derivatives. This is at the basis
of the determination of the optimal biomass concentration X for a given depth h.
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Chapter 3

Periodic resource allocation in
dynamical systems, application to
raceway microalgal production

3.1 Introduction

Considering a fixed amount of the resources and a set of activities, we look for a distribution
strategy which optimizes a given objective function. This is the so-called resource allocation prob-
lem [68]. Due to its simple structure, this problem is encountered in a number of applications
including load scheduling [123], manufacturing [124], portfolio selection [63] and computational
biology [3]. Periodic versions have also been considered. The periodic scheduling problem was
first addressed in [87] in the framework of operation research. Later on, the concept of propor-
tionate fairness constraint has been introduced [6] to design allocation algorithms which schedule
the resources in proportion to task weight. Periodic resource allocation problems are also used in
ecology, e.g., in [32, 108] where the authors investigate long-term behaviour of harvesting policies
for a forest composed of multiple species with different maturity ages. In such problems, the
state can also be described in terms of dynamical systems. As an example, hospital resources
(hospital beds) continuous allocation is studied in [2] as a strategy to control the dengue fever,
associated with a patient recovery rate. In the same way, a population of a single species with
logistic growth in a patchy environment is considered in [102]. The problem here consists of the
maximization of the total population by re-distributing the limited resources among the patches.

In general, resource allocation problems are related to the assignment of a resource to a
sequence of two or more tasks at the same time. However, we focus in this chapter on problems
where N resources are assigned to N tasks over some time intervals. Additionally, we consider
permanent regimes which are often relevant in the case of long term processes, as, e.g., crop
harvesting, scheduling of appliances, etc. Moreover, here we also account for the dynamical
evolution of the system between two re-allocations, further increasing the difficulty of the analysis.
In this way, our work is related to the fields of switched systems [84], impulse control [7, 64] and
to periodic control [31]. These techniques are usually used to tackle stabilization issues. In this
chapter, we consider them in view of optimization issues.

In order to model the allocation process in the periodic system, we study the following resource
allocation problem : Consider a system with N resources and N activities, each activity uses the
allocated resource to evolve during a given time T > 0. At time T , the resources will be re-allocated
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according to a given permutation. It is proven that if the dynamics of the system is periodic,
then it is one period corresponding to one allocation process whatever the order of the considered
permutation matrix is. A nonlinear objective functional to be optimized is then introduced in
order to find best allocation strategies. Since N ! permutations need to be tested in the general
case, it can be numerically solved only for a limited number of N . To overcome this difficulty,
we propose a second optimization problem - a typical assignment problem - associated with a
suboptimal solution of the initial problem, which can be determined explicitly. In addition, a
sufficient condition to characterize cases where the two problems have the same solution is given.

For the sake of concreteness, we illustrate our theory by an industrial application, namely the
mixing of microalgae cells in a cultivation set-up. Outdoor algal cultivation is mainly carried out
in open raceway ponds exposed to solar radiation. This hydrodynamic system is set in motion by
a paddle wheel which homogenises the medium for ensuring an equidistribution of the nutrients
and guarantees that each cell will have regularly access to the light [29]. Microalgae then grow
between two re-distributions depending on the light intensity received in their layer. Different
strategies have been proposed to optimize the production of the biomass in this algal raceway
system [38, 36, 34, 33, 4, 12, 13, 14]. However, the mixing policy has not been investigated up
to now. In the current study, the paddle wheel is identified to a mixing device and modeled by
permutation. We then focus on the influence of the mixing strategy on the algal productivity in
a flat raceway system with a constant average velocity.

This chapter is organized as follows. We introduce our periodic resource allocation problem
and the considered dynamical system in Section 3.2. More precisely, the optimization problem
together with a simpler version based on an approximated functional are introduced in Subsec-
tion 3.2.2. Some technical lemmas are given in Subsection 3.2.3 and a criterion to guarantee that
the original problem and its approximation share the same solution is given in Subsection 3.2.4.
Some implementation remarks conclude this section in Subsection 3.2.5. Section 3.3 is devoted
to the application to algal production. We present the models associated with the biological and
the mixing device in a raceway pond in Subsection 3.3.1. The considered parameters are given
in Subsection 3.3.2. We illustrate the performance of our strategies by numerical experiments in
Subsection 3.3.4. Finally, we conclude with some perspectives of our work in Section 3.4.

Notation. In what follows, N denotes the set of non-negative integers, PN denotes the
set of permutation matrices of size N × N with N ∈ N and SN denotes the associated set of
permutations of N elements. The cardinal of a set E is denoted by #E. Given a matrix M , we
denote by ker(M) its kernel and by Mi,j its coefficient (i, j). In the same way, Wn denotes the
n-th coefficient of a vector W . 〈·, ·〉 denotes the scalar product in R2.

3.2 Description of the problem and optimization

Given a period T , and initial time T0 and a sequence (Tk)k∈N, with Tk = kT + T0, we consider
the following resource allocation problem: Consider N resources denoted by (In)Nn=1 ∈ RN which
can be allocated to N activities denoted by (xn)Nn=1 where xn consists of a real function of time.
On a time interval [Tk, Tk+1), each activity uses the assigned resource and evolves according to
a linear dynamics

ẋn = −α(In)xn + β(In), (3.1)

where α : R→ R+ and β : R→ R+ are given. At time Tk+1, the resources is re-assigned, meaning
that xn1

(Tk+1) = xn2
(T−k+1) for some n1, n2 ∈ {1, . . . , N}. In this way, k ∈ N represents the

number of re-assignments and T−k represents the moment just before re-assignment. This problem
can also be defined using the permutation matrix P ∈ PN . In particular, the assignment process
can be formulated by x(Tk) = Px(T−k ).
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Assume that the resource (In)Nn=1 are constant with respect to time, then the evolution
equation (3.1) can be computed explicitly. Indeed, for a given initial vector of states (xn(T0))

N
n=1,

we have
x(t) = D(t)x(Tk) + v(t), t ∈ [Tk, Tk+1), (3.2)

where D(t) is a time dependent diagonal matrix with Dnn(t) := e−α(In)(t−Tk) and v(t) is a time
dependent vector with

vn(t) :=
β(In)

α(In)
(1− e−α(In)(t−Tk)). (3.3)

The detail about the computations giving rise to (3.2) is presented in Appendix 3.A. For the
sake of simplicity, we write hereafter D, v instead of D(T ), v(T ).

Let u ∈ RN an arbitrary vector. Define

fk := 〈u, 1

T

∫ Tk+1

Tk

x(t)dt〉, (3.4)

the benefit attached to the time period [Tk, Tk+1) after k times of re-assignment. Then the
average benefit after K operations is given by

1

K

K∑
k=0

fk.

Remark

Such a formalization is used in the context of forest maintenance and exploitation in [32]. In
this work, an infinite sum is considered to study the total benefit of all the operations.

3.2.1 Periodic regime

Consider P ∈ PN the permutation matrix describing the resource assignment process. According
to (3.2) and by the definition of P , we have

x(Tk+1) = P (Dx(Tk) + v). (3.5)

Before studying the sequence (x(Tk))k∈N, let us give a first simple result. We denote by I the
identity matrix of size N .

Lemma 3.2.1. Given k ∈ N and P ∈ PN , the matrix IN − (PD)k is invertible.

Proof. Assume IN −PD is not invertible, then there exists a non-null vector X ∈ ker(IN −PD),
which means X = PDX. Let us denote dn = Dnn, n = 1, . . . , N . Denoting by σ the permutation
associated with P , we find that (DX)n = dnXn and Xn = (PDX)n = dσ(n)Xσ(n). In the same
way, we have

Xn =
(
(PD)kX

)
n

= dσk(n) . . . dσ(n)Xσk(n),

where σk(n) denotes the k−times repeated composition of σ with itself. Denoting by K the
order of σ, we have

Xn =
(
(PD)KX

)
n

= dσK(n) . . . dσ(n)XσK(n) = dσK(n) . . . dσ(n)Xn.
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Since, 0 < dn < 1 for n = 1, . . . , N , then 0 < dσK(n) . . . dσ(n) < 1. This implies that Xn = 0,
which contradicts our assumption. Therefore, IN − PD is invertible. That IN − (PD)k is
invertible can be proved in much the same way.

Assume now that the state x is KT -periodic in the sense that after K times of re-assignment,
the state of each activity returns to its initial state xn(TK) = xn(T0). A crucial property of
(x(Tk))k∈N is given in the next proposition.

Theorem 3.2.1. We keep the notation of the previous lemma and assume that the state x is
KT -periodic. Then (x(Tk))k∈N is a constant sequence and we have for all k ∈ N

x(Tk) = (IN − PD)−1Pv.

Proof. Thanks to Lemma 3.2.1, there exists a unique x̄ satisfying x̄ = P (Dx̄ + v). Let us then
define the sequence (ek)k∈N by

ek := x(Tk)− x̄.

We have
ek+1 = (PD)ek.

Since x is assumed to be KT -periodic, we have

e0 = eK = (PD)Ke0.

According to Lemma 3.2.1, IN − (PD)K is invertible, meaning that e0 = 0. It follows that
ek = 0, for k ∈ N. The result follows.

A natural choice for K would be the order of the permutation associated with P . Indeed,
in this case K is the minimal number of re-assignments required to recover the initial state of
x. The previous result shows that every KT−periodic evolution will actually be T−periodic. In
the next section, we show that this property is decisive to formulate an optimization problem.
In addition, the computations to solve the optimization problem will be reduced, since the CPU
time required to assess the quality of a permutation will not depend on its order.

3.2.2 Objective function

Let us take the benefit (3.4) and replace x(t) by its solution (3.2), one has

fk =
1

T
〈u, D̃x(Tk) + ṽ〉 =

1

T
〈D̃u, x(Tk)〉+ 〈u, ṽ〉,

where D̃nn =
∫ Tk+1

Tk
Dnn(t)dt and ṽn =

∫ Tk+1

Tk
vn(t)dt. The only term depends on the re-

assignment process is x(Tk). On the other hand, using Theorem 3.2.1, one finds

〈D̃u, x(Tk)〉 = 〈D̃u, x(T0)〉 = 〈D̃u, (IN − PD)−1Pv〉,

meaning that the benefit is the same for each re-assignment process.
Without loss of generality, let us still denote D̃u by u. We now consider both minimization

and maximization problems associated with the functional

J(P ) := 〈u, (IN − PD)−1Pv〉, (3.6)
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where P ∈ PN . Since #SN = N !, this problem cannot be tackled in realistic cases where large
values of N must be considered, e.g., to keep a good numerical accuracy. To overcome this
difficulty, we propose in this section an approximation of this problem whose optimum can be
determined explicitly. For this purpose, we expand the functional (3.6) as follows

〈u, (IN − PD)−1Pv〉 =

+∞∑
l=0

〈u, (PD)lPv〉 = 〈u, Pv〉+

+∞∑
l=1

〈u, (PD)lPv〉,

and consider as an approximation the first term of this series, namely

Japprox(P ) := 〈u, Pv〉. (3.7)

Without loss of generality (see Appendix 3.B for the details), we assume that the entries of u
are sorted in an ascending order, meaning that u1 ≤ . . . ≤ uN . Note that optimizing Japprox

amount to solving an assignment problem [26]. Indeed, we have for example

min
P∈PN

Japprox(P ) = min
σ∈SN

N∑
n=1

unvσ(n).

This reads as an assignment problem associated with the matrix [uivj ](i,j=1,...,N). To make our
exposition self-contained, we give the solution of this problem in Section 3.2.4.

Remark

A fairly common approach to deal with permutation optimization is to relax the problem by
extending the optimization to the set of bistochastic matrices. As an example, this technique
corresponds to the Kantorovitch relaxation considered in optimal transport [71], see also [19]
for a more general presentation of the linear case, and [85] for a similar strategy in the context
of quantum chemistry. This approach allows the optimization to be performed by gradient-
type methods. At the theoretical level, the goal is then to prove that the convergence takes
place towards extremal points, i.e. permutation matrices. We have tested this approach to the
nonlinear problem (3.6). Our results indicate that the obtained limits are indeed permutation
matrices. However, we have observed that the obtained matrices are not always optimal, which
leads us to conjecture the existence of local non-global minima for this extended form of J .

3.2.3 Some technical lemmas

Let us state some preliminary properties about the permutation set SN that we will use in the
next section. Given k ∈ N, and two arbitrary permutations σ, σ̃ ∈ SN , let us define

Ek(σ, σ̃) :=
{
n = 1, . . . , N | σk(n) 6= σ̃k(n)

}
,

Gk(σ, σ̃) :={n = 1, . . . , N | ∀k′ ≤ k, σk
′
(n) = σ̃k

′
(n)},

and
mk := #Ek(σ, σ̃).

We have the following result.

Lemma 3.2.2. For k ∈ N, we have mk ≤ km1 and #Gk(σ, σ̃) ≥ max(N − km1, 0).
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Proof. To shorten notation, we write in this proof Ek instead of Ek(σ, σ̃), Ek+1 instead of
Ek+1(σ, σ̃), Gk instead of Gk(σ, σ̃), etc. From the definition of Ek, we have:

Ek+1 = (({1, . . . , N} \ E1) ∩ Ek+1) ∪ (E1 ∩ Ek+1).

The first subset in the right hand side satisfies

σ (({1, . . . , N} \ E1) ∩ Ek+1) = σ̃ (({1, . . . , N} \ E1) ∩ Ek+1) ⊂ Ek,

so that # (({1, . . . , N} \ E1) ∩ Ek+1) ≤ #Ek =: mk.
On the other hand, (E1 ∩ Ek+1) ⊂ E1, hence #(E1 ∩ Ek+1) ≤ m1. As a consequence,

mk+1 ≤ mk +m1. This implies mk ≤ km1.
As for Gk, we have:

Gk = (Gk+1 ∩Gk) ∪ (σ−k(E1) ∩Gk). (3.8)

Indeed, let n ∈ Gk, i.e, σk(n) = σ̃k(n). If σk+1(n) = σ̃k+1(n), then n ∈ Gk+1. Otherwise,
σk+1(n) 6= σ̃k+1(n), meaning that σk+1(n) 6= σ̃(σk(n)) which implies σk(n) = σ̃k(n) ∈ E1, so
that n ∈ σ−k(E1). This proves (3.8), and we get as a by-product

(Gk+1 ∩Gk) ∩ (σ−k(E1) ∩Gk) = ∅.

Moreover, since Gk+1 ⊂ Gk, we get Gk+1 ∩Gk = Gk+1. It follows that

#Gk = #Gk+1 + #{σ−k(E1) ∩Gk}.

Since #{σ−k(E1) ∩Gk} ≤ #E1 = m1, we obtain #Gk+1 ≥ #Gk −m1. The result follows.

In what follows, a transposition in SN between two elements i 6= j is denoted by (i j). By
abuse of notation, (n n) denotes the identity for all n = 1, . . . , N . Given a permutation σ ∈ SN ,
we consider the sequence of permutations (σn)n=0,...,N defined by

σ0 = σ

σn = (n σn−1(n)) ◦ σn−1.
(3.9)

For all n ≤ N , it immediately follows from this definition that

σn|{1,...,n} = Id|{1,...,n} and σN−1 = σN = Id,

where Id denote the identity permutation. Let us give two additional properties of this sequence.

Lemma 3.2.3. Let σ ∈ SN and (σn)n=1,...,N−1 defined by (3.9). One has:

{i = 1, . . . , N | σ(i) = i} = {i = 1, . . . , N | ∀n = 1, . . . , N − 1, σn(i) = i} .

Proof. Given i with 1 ≤ i ≤ N , such that σ(i) = i, let us prove that σn(i) = i by induction on
n. Since σ0 = σ, the result holds for n = 0. Suppose it holds at a rank n − 1, meaning that
σn−1(i) = i. By definition of (σn)n=1,...,N , one has:

σn(i) = (n σn−1(n)) ◦ σn−1(i) = (n σn−1(n))(i).

If i = n, then (n σn−1(n))(i) = σn−1(n) = σn−1(i) = i. If i = σn−1(n), then i = σn−1(i) =
σn−1(n) and i = n, so that we conclude as in the previous case. In the other cases, σn(i) =
σn−1(i) = i. The result follows.

Work in progress as of 7th September, 2021



3.2. Description of the problem and optimization 53

Lemma 3.2.4. Let i, j ∈ {1, . . . , N}, with i < j. Let σ ∈ SN σ = (i j) ◦ σ′, where (i j) and σ′
have disjoint supports, i.e., σ′(i) = i and σ′(j) = j. One has: σj = σj−1.

Proof. From the definition of (σn)n=1,...,N , one has

σj = (j σj−1(j)) ◦ σj−1.

We need to prove that σj−1(j) = j. Since σ′ and (i j) are disjoint, then for n < i, σn = (i j)◦σ′n,
where σ′n is defined by (3.9), with the initial term σ′0 = σ′. In particular, σn(i) = j for n < i.

In the case n = i, one has

σi = (i σi−1(i)) ◦ σi−1 = (i j) ◦ σi−1 = (i j) ◦ (i j) ◦ σ′i−1 = σ′i−1.

In particular, σi(j) = j.
Finally, since σ′i−1(i) = i, we find that σ′i = σ′i−1, and it follows by induction that for n > i,

σn = σ′n, which means σn(j) = j. In particular σj−1(j) = j. This concludes the proof.

The sequence (σn)n=0,...,N can be used to decompose J(I)− J(P ) for an arbitrary P ∈ PN ,
as stated in the next Lemma.

Lemma 3.2.5. Let σ ∈ SN and P ∈ PN the associated permutation matrix, we have:

〈u, (IN − P )v〉 =

N−1∑
n=1

(un − uσ−1
n−1(n))(vn − vσn−1(n)).

Proof. Given j ∈ {0, . . . , N}, define Sj =
∑N
n=1 unvσj(n). Since σj(n) and σj−1(n) might only

differ for n = j and n = σ−1
j−1(j), we have

Sj − Sj−1 =

N∑
n=j

un(vσj(n) − vσj−1(n))

= uj(vσj(j) − vσj−1(j)) + uσ−1
j−1(j)(vσj(σ−1

j−1(j)) − vσj−1(σ−1
j−1(j)))

= uj(vj − vσj−1(j)) + uσ−1
j−1(j)(vσj−1(j) − vj)

= (uj − uσ−1
j−1(j))(vj − vσj−1(j)).

The result then follows from 〈u, (IN − P )v〉 = SN−1 − S0.

3.2.4 Solutions of the optimization problems

The previous lemma enables us to solve the problems maxP∈PN J
approx(P ) and minP∈PN J

approx(P ).
Recall that the entries of u are sorted in an ascending order.

Lemma 3.2.6. Let σ+, σ− ∈ SN such that vσ+(1) ≤ vσ+(2) · · · ≤ vσ+(N) and vσ−(N) ≤
vσ−(N−1) ≤ · · · ≤ vσ−(1) and P+, P− ∈ PN , the corresponding permutation matrices. Then

P+ = argmaxP∈PNJ
approx(P ), P− = argminP∈PNJ

approx(P ).
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Proof. Let P ∈ PN and σ ∈ SN the associated permutation, we have

〈u, (P+ − P )v〉 =〈u, (IN − PP−1
+ )w〉

=

N−1∑
n=1

(un − u(σ′n−1)−1(n))(wn − wσ′n−1(n)),
(3.10)

where w = (wn)Nn=1 := (vσ+(n))
N
n=1 and σ′n is the sequence defined by (3.9) with σ′ := σ−1

+ ◦σ the
permutation associated with PP−1

+ . Since (wn)Nn=1 by its definition is an increasing sequence,
σ′n−1(n) ≥ n and (σ′n−1)−1(n) ≥ n, we find that 〈u, (P+ − P )v〉 ≥ 0. The proof of the problem
minP∈PN 〈u, Pv〉 is similar.

We immediately deduce from this lemma that once u and v are given, the matrix P+, P− of
Lemma 3.2.6 can be determined explicitly. More precisely, P+ is the matrix corresponding to
the permutation which associates the largest coefficient of u with the largest coefficient of v, the
second largest coefficient with the second largest, and so on. In the same way, P− is the matrix
corresponding to the permutation which associates the largest coefficient of u with the smallest
coefficient of v, the second largest coefficient with the second smallest, and so on.

Remark

The optimal matrices P+ and P− are not unique as soon as either u or v contains at least two
identical entries.

We focus now on the case where u as well as v have entries with a constant sign. Since the
results in this section hold both for minimization and maximization problems, we can assume
without loss of generality that u, v are both positive. Using the properties given in the previous
section, we will show that in some cases, the problem maxP∈PN J(P ) (resp. minP∈PN J(P )) and
maxP∈PN J

approx(P ) (resp. minP∈PN J
approx(P )) have the same solution.

We keep the notation of Lemma 3.2.6. Define for n = 1, . . . , N ,

p̃n := min
i,j=1,...,N,i6=n,j 6=n

|(un − ui)(vσ+(n) − vσ+(j))|. (3.11)

Denote by in and jn the solutions of the previous problem. Since un, vσ+(n) are sorted in
an ascending order, we find immediately that if n = 1 (resp. N), then in = jn = 2 (resp.
in = jn = N − 1). Otherwise, in = n − 1 or in = n + 1, and the same result holds for jn.
Sort (p̃n)Nn=1 and denote by (pn)Nn=1 the resulting sequence, i.e., p1 ≤, . . . ,≤ pN . Define then for
m = 1, . . . , N

sm :=

m∑
n=1

pn, (3.12)

and

F−m :=

min(m,N)∑
n=1

unvσ−(N−m+n), F+
m :=

N∑
n=max(1,N−m+1)

unvσ+(n). (3.13)

From the definition of these sequences, we have F+
m ≥ F−m . See Appendix 3.C for the case where

u or v negative. We are now in a position to give the main result of this section.
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Theorem 3.2.2. Assume that u and v have positive entries and define

φ(m1) :=
1

sdm1
2 e

(+∞∑
l=1

dlmaxF
+
(l+1)m1

− dlminF
−
(l+1)m1

)
, (3.14)

wherem1 refers to the notation in Lemma 3.2.2, dmax := maxn=1,...,N (dn) and dmin := minn=1,...,N (dn).
Assume that:

max
m1≥2

φ(m1) ≤ 1. (3.15)

Then the problem maxP∈PN 〈u, (I − PD)−1Pv〉 (resp. minP∈PN 〈u, (I − PD)−1Pv〉) and the
problem maxP∈PN 〈u, Pv〉 (resp. minP∈PN 〈u, Pv〉) have the same solution.

Proof. We keep the notation in Section 3.2.3 and give the proof in the case of the maximization
problem. The case of the minimization problem can be handled in the very same way. Let
P ∈ PN and σ ∈ SN the associated permutation, we have

〈u, (I − P+D)−1P+v〉 − 〈u, (I − PD)−1Pv〉 (3.16)

=

+∞∑
l=0

〈u,
(
(P+D)lP+ − (PD)lP

)
v〉

= 〈u, (P+ − P )v〉+

+∞∑
l=1

〈u,
(
(P+D)lP+ − (PD)lP

)
v〉. (3.17)

From the definition Ek(σ+, σ) and Gk(σ+, σ) , we have in particular

E1(σ+, σ) tG1(σ+, σ) = {1, . . . , N}.

Let us denote by (wn)Nn=1 = (vσ+(n))
N
n=1 and by σ′n the sequence defined by (3.9) with σ′0 :=

σ−1
+ ◦σ. From the definition of E1(σ+, σ) and G1(σ+, σ), we have σ(G1(σ+, σ)) = σ+(G1(σ+, σ))

and σ(E1(σ+, σ)) = σ+(E1(σ+, σ)), which implies σ′0(E1(σ+, σ)) = E1(σ+, σ), and for any i ∈
G1(σ+, σ), σ′0(i) = i. Using these properties and (3.10), we have

〈u, (P+ − P )v〉 =

N−1∑
n=1

(un − u(σ′n−1)−1(n))(wn − wσ′n−1(n))

=
∑

n∈E1(σ+,σ)

(un − u(σ′n−1)−1(n))(wn − wσ′n−1(n))

+
∑

n∈G1(σ+,σ)

(un − u(σ′n−1)−1(n))(wn − wσ′n−1(n))

=
∑

n∈E1(σ+,σ)

(un − u(σ′n−1)−1(n))(wn − wσ′n−1(n)).

(3.18)

In the case where there exists a transposition (i i′) with i < i′ in σ′, Lemma 3.2.4 implies that
u(σ′

i′−1
)−1(i′) = ui′ and wσ′

i′−1
(i′) = wi′ . The maximum number of transpositions in σ′0 is m1

2 if
m1 is even, m1−3

2 otherwise. Hence, the smallest number of non-zero terms present in the last
sum of (3.18) is given by m1 − m1

2 = m1

2 if m1 is even, m1−1
2 otherwise. In other words, there
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exists at least
⌈
m1

2

⌉
non zero terms in the last sum of (3.18), which implies

〈u, (P+ − P )v〉 =
∑

n∈E1(σ+,σ)

(un − u(σ′n−1)−1(n))(wn − wσ′n−1(n)) ≥ sdm1
2 e. (3.19)

For n ∈ {1, . . . , N} and l ∈ N∗, let us denote by

dσ,l,n := dσl(n)dσl−1(n) · · · dσ(n).

Considering now the second term of the right hand side of (3.17), we get

< u, (PD)lPv >=

N∑
n=1

undσl(n)dσl−1(n) · · · dσ(n)vσl+1(n) =

N∑
n=1

undσ,l,nvσl+1(n).

Using this notation and Lemma 3.2.2, we find∣∣〈u, (P+D)lP+v − (PD)lPv〉
∣∣

=

∣∣∣∣∣
N∑
n=1

un(dσ+,l,nvσl+1
+ (n) − dσ,l,nvσl+1(n))

∣∣∣∣∣
=

∣∣∣∣∣∣
∑

n 6∈Gl+1(σ+,σ)

un(dσ+,l,nvσl+1
+ (n) − dσ,l,nvσl+1(n))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

n 6∈Gl+1(σ+,σ)

undσ+,l,nvσl+1
+ (n) −

∑
n6∈Gl+1(σ+,σ)

undσ,l,nvσl+1(n)

∣∣∣∣∣∣
≤dlmax

∑
n 6∈Gl+1(σ+,σ)

unvσ+(n) − dlmin

∑
n 6∈Gl+1(σ+,σ)

unvσ−(n)

≤dlmaxF
+
(l+1)m1

− dlminF
−
(l+1)m1

.

(3.20)

This result combined with (3.15), gives∣∣∣∣∣
+∞∑
l=1

〈u, (P+D)lP+v − (PD)lPv〉

∣∣∣∣∣ ≤
+∞∑
l=1

dlmaxF
+
(l+1)m1

− dlminF
−
(l+1)m1

≤sdm1
2 e.

Considering now (3.19), we obtain

|〈u, (P+ − P )v〉| ≥

∣∣∣∣∣
+∞∑
l=1

〈u, (P+D)lP+v − (PD)lPv〉

∣∣∣∣∣ .
It follows that the first term of (3.17) dominates the second one. As a consequence, the former
has the same sign as (3.16). The result follows.
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3.2.5 Implementation Remarks

Let us conclude with some Remarks on the computation of the function φ(m1), more precisely
of the sum in (3.14). Given m1 ∈ {2, . . . , N}, define by l∗ such that

l∗ :=

⌊
N

m1

⌋
− 1.

We have

+∞∑
l=1

(
dlmaxF

+
(l+1)m1

− dlminF
−
(l+1)m1

)
=

l∗∑
l=1

(
dlmaxF

+
(l+1)m1

− dlminF
−
(l+1)m1

)
+

+∞∑
l=l∗+1

(
dlmaxF

+
(l+1)m1

− dlminF
−
(l+1)m1

)
=

l∗∑
l=1

(
dlmaxF

+
(l+1)m1

− dlminF
−
(l+1)m1

)
+

dl
∗+1

max

1− dmax
F+
N −

dl
∗+1

min

1− dmin
F−N .

As for the evaluation of sdm1
2 e, only

⌈
N
2

⌉
terms need to be computed. Examples of behaviour of

sm and F+
m , F

−
m are presented in Figure 3.3, whereas examples of behaviour of the function (3.14)

with respect to m1 are shown in Figure 3.4.

3.3 Application to algal production

In this section, we apply the theory developed in the previous section to an algal production case
and provide some numerical results to evaluate the efficiency of the mixing strategies and their
approximation.

3.3.1 Raceway modeling

We consider the Han model [59] to describe the dynamics of the photosynthetic units charac-
terizing the growth of the algae after each allocation. Each light harvesting unit is assumed to
have three different states: open and ready to harvest a photon (A), closed while processing the
absorbed photon energy (B), or inhibited if several photons have been absorbed simultaneously
leading to an excess of energy (C). Their dynamics is described by the following system

Ȧ = −σHIA+
1

τ
B,

Ḃ = σHIA−
1

τ
B + krC − kdσHIB,

Ċ = −krC + kdσHIB.

Here A,B and C are the relative frequencies of the three possible states with A+B+C = 1, and
I is a continuous time-varying signal representing the photon flux density. The coefficient σH
stands for the specific photon absorption, τ is the turnover rate, kr represents the photosystem
repair rate and kd is the damage rate. As shown in Subsection 1.2.1, one can use a fast-slow
approximation and singular perturbation theory to reduce this system to a single evolution
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equation on the photo-inhibition state C:

Ċ = −α(I)C + β(I), (3.21)

where

α(I) := kdτ
(σHI)2

τσHI + 1
+ kr, β(I) := kdτ

(σHI)2

τσHI + 1
.

The net specific growth rate is obtained by balancing photosynthesis and respiration, which gives

µ(C, I) := −γ(I)C + ζ(I),

where
γ(I) :=

kHσHI

τσHI + 1
, ζ(I) :=

kHσHI

τσHI + 1
−R.

Here, R denotes the respiration rate and kH is a factor which relates the photosynthetic activity
to the growth rate.

We assume that the system is perfectly mixed such that the biomass concentration (X)
in (4.4) is homogeneous. Furthermore, it is often assumed that the photosynthetic units grow
slowly so that the variations of biomass concentration (X) and background turbidity (α1) are
negligible over one lap of the raceway. As a consequence, the turbidity (α1) and the biomass
concentration (X) is supposed to be constant over the considered time scale. In this framework,
we use the Beer-Lambert law to describe the light attenuation as a function of the depth z, i.e.

I(z) = Is exp(εz), (3.22)

where Is is the light intensity at the free surface and ε is the light extinction coefficient. The
average net specific growth rate over the domain is then defined by

µ̄ :=
1

T

∫ T

0

1

h

∫ 0

−h
µ
(
C(t, z), I(z)

)
dzdt, (3.23)

where h is the depth of the raceway pond and T is the average duration of one lap of the raceway
pond.

Let us now see how this model can be included in the framework of Section 3.2. In order to
compute numerically (3.23), we introduce a vertical discretization of the fluid. More precisely,
we consider N layers uniformly distributed on a vertical grid. The depth of the layer n is given
by

zn := −
n− 1

2

N
h, n = 1, . . . , N. (3.24)

For a given initial photo-inhibition state Cn(0), let Cn(t) be the solution of (3.21) at time t.
In this semi-discrete setting, the average net specific growth rate in the raceway pond can be
defined by

µ̄N :=
1

T

∫ T

0

1

N

N∑
n=1

µ(Cn(t), In)dt, (3.25)

where In is the light intensity received in the layer n. The solution of (3.21) can be computed
explicitly to get a formula that takes the form of (3.2). It follows that (3.25) satisfies

µ̄N =
1

NT

(
〈Γ, C(0)〉+ 〈1, Z〉

)
, (3.26)
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where 1 is a vector of size N whose coefficients are equal to 1, and Γ, Z are two vectors such that

Γn :=
γ(In)

α(In)
(e−α(In)T − 1),

Zn :=
γ(In)β(In)

α(In)2
(1− e−α(In)T )− γ(In)β(In)

α(In)
T + ζ(In)T.

The detail about the computations giving rise to (3.26) is presented in Appendix 3.A.
In this framework, the light intensity at different layers represents the resource In in the

system and the photosynthesis at each layer represents the activity. Suppose now that at each
lap, the algae at the layer n1 are supposed to be entirely transferred to the layer n2 when
passing through the mixing device. During a lap, the photosynthesis of the algae follows a (3.1)
type of evolution and the goal is to find the optimal resource allocation strategy to increase
the productivity of the system. This mixing process is depicted schematically on an example in
Figure 3.1. The interest of such a device is to mix the algae to better balance their exposure to

0 T 0 T

Layer four

Layer three

Layer two

Layer one

P z

0

−h

z1 = zσ(4)

z2 = zσ(1)

z3 = zσ(2)

z4 = zσ(3)

Figure 3.1: Schematic representation of the mixing process over two laps. Here, N = 4 and P
corresponds to the cyclic permutation σ = (1 2 3 4).

light and increase the production. Note that in actual raceway ponds, this device is generally a
paddle wheel (see for example [40]).

Focusing on permanent regimes, we assume the system to be KT -periodic. From Theo-
rem 3.2.1, we get immediately that C(0) = (IN − PD)−1PV . Our goal is to maximize the
average growth rate µ̄N . Since only C(0) in (3.26) depends on the permutation matrix P , we
find that the objective function has the form of (3.6) with u = Γ and v = V .

3.3.2 Parameter settings

Consider a raceway whose water elevation h = 0.4 m, which corresponds to typical raceway pond
setting. All the numerical parameters values considered in this section for Han’s model are taken
from [54] and recalled in Table 3.1. Recall that Is is the light intensity at the free surface. In
order to fix the value of the light extinction coefficient ε in (3.22), we assume that only a fraction
q of Is reaches the bottom of the raceway pond, meaning that Ib = qIs, where q ∈ [0, 1] and Ib
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Table 3.1: Parameter values for Han Model

kr 6.8 10−3 s−1

kd 2.99 10−4 -
τ 0.25 s
σH 0.047 m2 µmol−1

kH 8.7 10−6 -
R 1.389 10−7 s−1

is the light intensity at the bottom. It follows that ε can be computed by

ε = (1/h) ln(1/q).

In practice, this quantity can be implemented in the experiments by adapting the biomass har-
vesting frequency, or the dilution rate for continuous cultivation. In what follows, the varying
parameters are Is , the ratio q and T . We consider Is ∈ [0, 2500]µmol m−2 s−1, q ∈ [0.1%, 10%]
and T ∈ [1, 1000]s. The number of layers N remains small as we need to test numerically N !
permutation matrices for each triplet (Is, q, T ).

3.3.3 Examples of optimal devices

In this section, we present some examples of optimal solution of (3.6). Set N = 11 the number
of layers, meaning that we test numerically N ! (i.e. 39916800) permutation matrices. The light
intensity at the free surface is set to be Is = 2000µmol m−2 s−1 which corresponds to a maximum
value during summer in the south of France.

Let us start with a series of tests with the average time duration for one lap of the raceway
pond T = 1000 s. When the light attenuation ratio q = 10%, we find that Pmax = I. When
q = 1%, the optimal permutation matrix Pmax is given by (3.27).

Pmax =



0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0


. (3.27)

When q = 0.1%, the optimal permutation matrix Pmax is given by (3.28). For all three cases,
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P+ = Pmax.

Pmax =



0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0


. (3.28)

We next study a much extreme case where the time duration of one lap T = 1 s. When the
ratio q = 10%, we find the optimal matrix Pmax = I. When q = 1%, the optimal permutation
matrix Pmax is a two-block matrix consisting of a block of identity and a block of anti-diagonal
matrix with one as entries. This matrix is shown in (3.29).

Pmax =



1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0


. (3.29)

When q = 0.1%, we find the optimal matrix Pmax as an anti-diagonal matrix with one as entries.
For all three cases, P+ is an anti-diagonal matrix with one as entries. Note that among all the
previous matrices, some of them are easier to achieve in real life application than others, for
instance the anti-diagonal matrix or the identity/anti-diagonal two-block matrices (3.29).

3.3.4 Further numerical tests

As shown in previous section, Problem (3.6) admits non trivial optimal permutation strategies
which may significantly change according to the parameter settings. In this section, we study
and compare the true and the approximated solutions as well as their efficiency with respect to
the average net specific (3.23).

We start by investigating some properties of the items defined in the previous sections. Recall
that the two sequences u, v used in Section 3.2.2 correspond in our application to Γ, V respectively.
We consider N = 20 layers and two parameters triplets, namely (Is, q, T ) = (2000, 5%, 1000) and
(800,0.5%,1). Figure 3.2 shows the evolution of these two quantities as a function of I. Note that
in both cases, V is positive with sorted entries, as it can be seen in (3.3). On the contrary, the
discretized Γ is negative and not necessarily sorted. We refer to Appendix 3.A for more details
about V and Γ.

We then study the behaviour of the sequences F+
m , F

−
m , sm and φ(m1) defined in Section 3.2.4

for the same two parameters triplets. Note that since Γ is negative, F−m and F+
m are defined as
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Figure 3.2: Γ and V with respect to the light intensity I (Blue curve). Discretisation points
(Red point) chosen for (Is, q, T ) = (2000, 5%, 1000) (Left) and (800,0.5%,1) (Right).

in Appendix 3.C (and not as in (3.13)). We choose N = 7 and N = 20 to check the performance
for two different discretisation numbers of layers. The two figures at the top in Figure 3.3 show
the values of the two sequences F+

m , F
−
m (see (3.13)), whereas the two bottom figures show the

values of sm (see (3.12)). As mentioned in the previous section, one can see that F+
m is always

greater than F−m for all m. Figure 3.4 shows the values of the function φ(m1) (see (3.14)) with
respect to m1. One can see in Figure 3.4 that the maximal value of φ(m1) is always obtained
for m1 = 2, and that the maximal value φ(m1) appears to be an increasing function of N . This
makes the criterion given in Section 3.2.4 less efficient for a large number of layers N . Further
analysis is required to obtain a criterion that does not depend on N .

The next test is devoted to the convergence of the average growth rate µ̄N with respect to
the number of layers N . We keep the two triplets of parameters of the previous test. Due to
the limit of the computer memory, the computation of µ̄N (Pmax) is tractable for small values
of N , in our case lower than or equal to N = 11. Such an issue does not occur in the case of
µ̄N (P+). Figure 3.5 presents the behaviour of µ̄N . For the parameter triplet (2000,5%,1000), the
criterion is satisfied until N = 7 (green circle), which is confirmed in Figure 3.4 (Left) where the
maximal value of φ(m1) is already close to 1. Though the criterion is not satisfied for N > 7,
we observe that P+ = Pmax from N = 2 to N = 11 . As for the triplet (800,0.5%,1), one can
see that P+ = Pmax until N = 3. Figure 3.6 shows the optimal matrices for these two different
parameter triplets in the case N = 11 and N = 100. It can be observed that for the parameter
triplet (2000,5%,1000), the two matrices P+, Pmax have the same form for N = 11 and N = 100
(Figure 3.6 Top). Hence, one can expect Pmax = P+ for larger N . However, this may not be
the case for (800,0.5%,1) since P+, Pmax have already different forms for N = 11 (Figure 3.6
Bottom).

In the following tests, we focus only on two special cases: large lap duration time (T = 1000 s)
and small lap duration time (T = 1 s). In practise, the former corresponds to typical time
required to complete one lap in a raceway pond system, whereas the latter rather corresponds to
the optimal case in a photobioreactor, for instance see [77]. In the small lap duration time case,
we observe the so-called flashing effect. This phenomenon corresponds to the fact that the higher
the light exposition frequency is, the larger the growth rate is. In other words, algae exposed to
high frequency flashing, in our case, a small time duration for one lap, have a better growth. It
can be observed in Figure 3.7, where µ̄N (Pmax) decreases with respect to T for all considered
light intensities. This phenomenon has already been reported in literature, see, e.g. [62, 77].
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Figure 3.3: Example of sequences F+
m , F−m (Top) and sm (Bottom) with respect to m for the two

parameters triplets. Left: N = 7. Right: N = 20.

Figure 3.4: Example of behaviour of φ(m1) with respect to m1 for two parameters triplets and
two different N . Left: N = 7. Right: N = 20.
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Figure 3.5: Average growth rate µ̄N obtained with Pmax and P+ as a function of N for the two
parameters triplets. The green circles mark the case when the criterion is satisfied. The black
squares mark the case when Pmax = P+ is observed.

Figure 3.6: Optimal matrix Pmax for Problem (3.6) and N = 11 (Left) and P+ for Problem (3.7)
and N = 100 (Right) for the two parameters triplets. The blue points represent non-zero entries,
i.e., entries equal to 1.
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Figure 3.7: Average specific growth rate in the case q = 0.1% and N = 7 for four different light
intensities Is.

To assess the influence of the light intensity at the free surface Is and the light attenuation
ratio q, we compute µ̄N for the optimal strategy associated with Pmax. We consider again N = 7
layers, Is ∈ [0, 2500], q ∈ [0.1%, 10%] and T ∈ [1, 1000]. The results are shown in Figure 3.8.
We observe that for a fixed light intensity at surface (Is), the influence of the time duration (T )

Figure 3.8: Average net specific growth rate µ̄N (Pmax) for q ∈ [0.1%, 10%] when Is =
2000µmol m−2 s−1 (Left) and for Is ∈ [0, 2500] when T = 1 s (Right).

is very weak. Moreover, there exists an optimal value for % of the transmitted light (q) which
is around 3%. We also find that for small values of q, there exists a non-trivial optimal light
intensity at surface, e.g., Is ≈ 500µmol m−2 s−1 for q = 0.1%.

We aim at now studying the influence of permutation strategies on the average of net specific
growth rate µ̄N . More precisely, we compute µ̄N for the next four strategies: the optimal matrix
Pmax that solves Problem (3.6), the worst matrix Pmin which minimizes (3.6), the no permutation
case where P = I and the matrix P+ which solves the approximate Problem (3.7). In our test,
we consider N = 7 layers, Is ∈ [0, 2500], and q ∈ [0.1%, 10%]. Figure 3.9 presents the results for
T = 1 s, T = 500 s and T = 1000 s.

We see that the original problem (3.6) and the approximated problem (3.7) coincide much
more often for large values of the lap duration time T . In fact, the four surfaces become closer
one to the others for large values of T .
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Figure 3.9: Average net specific growth rate µ̄N for Is ∈ [0, 2500] and q ∈ [0.1%, 10%]. In each
figure, the red surface is obtained with Pmax, the dark blue surface is obtained with Pmin, the
green surface is obtained with I and the light blue surface is obtained with P+. The black stars
represent the cases where Pmax = I and the purple circles represent the cases where Pmax = P+.
Top: for T = 1 s. Middle: for T = 500 s. Bottom: for T = 1000 s.
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The next test is dedicated to the efficiency of the criterion (3.15). More precisely, we evaluate
the function µ̄N defined by (3.25) for the optimal matrix Pmax which solves Problem (3.6) and
for the matrix P+ which solves the approximated Problem (3.7). We consider two different
discretisation values N = 5 and N = 9. Figure 3.10 shows the results for T = 1 s and T = 1000 s.
We see that for large values of T , the optimum approximation almost always coincides to the true

Figure 3.10: Average net specific growth rate µ̄N for T = 1 s (Top) and for T = 1000 s (Bottom).
Left: N = 5. Right: N = 9. The red surface is obtained with Pmax and the blue surface is
obtained with P+. The purple stars represent the cases where Pmax = P+ or, in case of multiple
solution, µ̄N (Pmax) = µ̄N (P+). The green circle represent the cases where the criterion (3.15) is
satisfied.

optimum. Nevertheless, we observe that the criterion (3.15) becomes less efficient for larger N .
Note that the case corresponding to Is = 0µmol m−2 s−1 is particular since no light is available
in the system, implying that Γ, V equal to zero. In this case the value of the functionals do not
depend on P . Hence µ̄N (Pmax) = µ̄N (P+) when Is = 0µmol m−2 s−1.
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We finally evaluate the efficiency of various mixing strategies. Define

r1 :=
µ̄N (Pmax)− µ̄N (I)

µ̄N (I)
, (3.30)

r2 :=
µ̄N (Pmax)− µ̄N (Pmin)

µ̄N (Pmin)
, (3.31)

r3 :=
µ̄N (I)− µ̄N (Pmin)

µ̄N (I)
, (3.32)

where Pmin ∈ PN is the matrix that minimizes J , (see (3.6)), i.e., that corresponds to the worse
strategy. We consider N = 9 layers. Figure 3.11 presents the results for T = 1 s and T = 1000 s.
Better performance is in most cases obtained for a small time duration T = 1 s. In this way, we

Figure 3.11: Three ratios (3.30)- (3.32) for T = 1 s (Left) and for T = 1000 s (Right). In
each figure, the red surface represents r1, the blue surface represents r2 and the green surface
represents r3.

observe that the relative improvement between the best and the no mixing strategy may reach
15%, whereas the relative improvement between the worst and the best strategy may reach 30%.
In both two cases, a better improvement can be obtained with high values of Is and low values
of q.

To compare the efficiency of the approximation P+ with respect the true optimal mixing
strategy Pmax, we define two extra ratios:

r̃1 :=
µ̄N (P+)− µ̄N (I)

µ̄N (I)
, (3.33)

r̃2 :=
µ̄N (P+)− µ̄N (Pmin)

µ̄N (Pmin)
. (3.34)

Figure 3.12 presents the results for T = 1 s and T = 1000 s. As already mentioned, for a large
lap duration time, the optimization problem (3.7) provides a good approximation.

This can be observed with the blue and red surface in Figure 3.11 (Right) and in Figure 3.12
(Right), both surfaces have the same behaviours. As expected, the approximation becomes less
efficient in the case of short lap duration time. This can be observed in Figure 3.11 (Left)
and in Figure 3.12 (Left). However, the maximal values of r1, r2 are still preserved by their
approximations r̃1, r̃2. This is due to the fact that the maximal value is obtained at the extreme
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Figure 3.12: Two ratios (3.33)- (3.34) for T = 1 s (Left) and for T = 1000 s (Right). In each
figure, the red surface represents r̃1, the blue surface represents r̃2.

case (i.e. Is = 2500µmol m−2 s−1 and q = 0.1%) where µ̄N (Pmax) = µ̄N (P+) as shown in
Figure 3.10 (Top).

3.4 Conclusion

We have presented a periodic resource allocation problem combined with a linear dynamical
system. The periodicity of the problem enables us to reduce the computation to one assignment
process. A significant computational effort is still required when dealing with larger number of
N . We overcome this difficulty by defining a second optimization problem which has an explicit
solution that coincide with the true solution when a given criterion is satisfied.

This developed theory is then applied to a microalgal production system with a mixing de-
vice. Non-trivial optimal mixing strategies can be obtained and the proposed second optimization
problem provides a reliable approximation for large time duration T . Meanwhile, our experimen-
tal results show the significance of the choice of the mixing strategy: the relative ratio between
the best and the worst case reaches 30% in some cases. We also observe a flashing effect meaning
that better results are obtained when T goes to zero.

Further works will be devoted to the improvement of the function φ used in Theorem 3.2.2
in order to improve our approach for large number of N . More complicated dynamical system
can also be considered including nonlinearities.

3.A Explicit Computations

In this appendix, we provide the computational details to solve (3.1) and (3.25) for an arbitrary
number n ∈ {1, . . . , N}. Given two points t1, t2 ∈ [0, T ]. Since In is constant, Equation (3.1)
can be integrated and becomes

xn(t2) = eα(In)(t1−t2)xn(t1) +
β(In)

α(In)
(1− eα(In)(t1−t2)). (3.35)
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The time integral in (3.25) can be computed by∫ T

0

µ(Cn(t), In)dt =

∫ T

0

−γ(In)Cn(t) + ζ(In)dt = −γ(In)

∫ T

0

Cn(t)dt+ ζ(In)T.

Replacing xn by Cn, t2 by t and t1 by 0 in (3.35) and integrating t from 0 to T gives∫ T

0

Cn(t)dt =

∫ T

0

(
e−α(In)tCn(0) +

β(In)

α(In)
(1− e−α(In)t)

)
dt

=
Cn(0)

α(In)
(1− e−α(In)T ) +

β(In)

α(In)
T − β(In)

α2(In)
(1− e−α(In)T ).

Using notations given in Section 3.3.1, we have

Γ =
γ(I)

α(I)
(e−α(I)T − 1), V =

β(I)

α(I)
(1− e−α(I)T ).

From the definition of α(I), β(I), γ(I), we find

β(I)

α(I)
=

β(I)

β(I) + kr
=

kdτ(σHI)2

kdτ(σHI)2 + krτσHI + kr
,

γ(I)

α(I)
=

kHσHI

kdτ(σHI)2 + krτσHI + kr
.

Remark that Γ and V always have the opposite sign. Note also that I 7→ β(I)
α(I) is increasing on

[0,+∞), which is not the case for I 7→ γ(I)
α(I) . It follows that V increases on R+ and Γ is not

monotonic on R+ (see Figure 3.2).

3.B Optimization problem with arbitrary vectors

Let ũ, v ∈ RN two arbitrary vectors. Let Q ∈ PN such that u := Qũ has entries sorted in an
ascending order. Since Q is a permutation matrix, we have QT = Q−1. For any P ∈ PN , let us
denote by P̃ := Q−1PQ, we have P̃ ∈ PN a permutation matrix. Let us denote by ṽ := Q−1v
and by D̃ = Q−1DQ. Note that D̃ is still a diagonal matrix with a different order of the diagonal
coefficients. Using this notation, we find for the objective function (3.6) satisfies

J(P ) := 〈u, (IN − PD)−1Pv〉 = 〈ũ, Q−1(IN − PD)−1QQ−1PQQ−1v〉

= 〈ũ,
(
Q−1(IN − PD)Q

)−1
P̃ ṽ〉

= 〈ũ, (Q−1Q−Q−1PQQ−1DQ)−1P̃ ṽ〉
= 〈ũ, (IN − P̃ D̃)−1P̃ ṽ〉.

For the objective function (3.7), we get

Japprox(P ) := 〈u, Pv〉 = 〈ũ, Q−1PQQ−1v〉 = 〈ũ, P̃ ṽ〉.

Therefore, these problems can still be treated similarly in the general case.
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3.C Remark on F+
m , F

−
m

Let u, v ∈ RN such that the entries of u are sorted in an ascending order. One should be careful
when defining the two sequences F+

m and F−m in Section 3.2.4, since the sign of u and v plays
an important role in the definition of these two sequences. For instance, assume that u is now
negative and v is positive. Let ũ := −u, since u is assumed to be sorted in an ascending order,
ũ is positive and sorted in a descending order. Using the definition in (3.13), one has

F̃+
m :=

min(m,N)∑
n=1

ũnvσ̃+(n), F̃−m :=

N∑
n=max(1,N−m+1)

ũnvσ̃−(2N−m−n+1),

where vσ̃+(1) ≥ vσ̃+(2) ≥, . . . ,≥ vσ̃+(N) and vσ̃−(1) ≤ vσ̃−(2) ≤, . . . ,≤ vσ̃−(N). Let us define by
σ+ := σ̃− and σ− := σ̃+. One has

F̃+
m = −

min(m,N)∑
n=1

unvσ−(n), F̃−m = −
N∑

n=max(1,N−m+1)

unvσ+(2N−m−n+1).

Therefore, in this case we can define F+
m and F−m by

F−m :=

min(m,N)∑
n=1

unvσ−(n), F+
m :=

N∑
n=max(1,N−m+1)

unvσ+(2N−m−n+1).

The case where u is positive and v is negative, or both u, v are negative can be treated in a
similar way.
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Chapter 4

Shape optimization of a microalgal
raceway to enhance productivity

4.1 Introduction

Studies on the shape of the topography (or the bathymetry) have always been a challenging
problem, since this problem usually involves the free-surface incompressible Navier-Stokes system,
for instance see [23, 30, 118, 97]. In particular, explicit computation some time may be difficult
to provide due to the complexity of the chosen model, meanwhile large computational resources
are needed to provide numerical simulations and experimental results. The goal of this chapter
is to investigate the influence of the topography in the raceway ponds. More precisely, we base
on a common belief that some specific topographies can bring more light to the algae (at the
lower part of the raceway), since they are closer to the surface when reaching the peak of these
topographies.

In order to study this complex system, we develop a coupled model to describe the growth of
algae in a raceway pond, accounting for the light that they receive. More precisely, this coupled
model consists in combining the Han photosynthesis equations with an hydrodynamic law based
on the Saint-Venant equations. This approach enables us to formulate an optimization problem
where the raceway topography is designed to maximize the productivity. For this problem, we
present an adjoint-based optimization scheme which includes the constraints associated with the
Saint-Venant regime. On the contrary to a widespread belief, we prove that the flat topography is
optimal in a periodic case for productivity in laminar regime. However, non-trivial topographies
can be obtained in other contexts, e.g., when the periodic assumption is removed or an extra
mixing strategy is included in the model. Note that in the examples considered in our numerical
tests, such topographies only slightly improved the biomass production. Furthermore, some well
chosen mixing strategies can boost this production.

The outline of this chapter is as follows. In Section 4.2, we present the biological and hydrody-
namic models underlying our coupled model. Section 4.3 is devoted to the optimization problem
and a corresponding numerical optimization procedure in different cases. We then provide some
numerical results obtained with our approach in Section 4.4 and conclude in Section 4.5 with
some perspectives opened by this work.
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4.2 Coupling hydrodynamic and biological models

Our approach is based on a coupling between the hydrodynamic behavior of the particles and the
evolution of the photosystems driven by the light intensity they received when traveling across
the raceway pond.

4.2.1 Modeling the photosystems dynamics

We consider the Han model [59] which describes the dynamics of the reaction centres. These
subunits of the photosynthetic process harvest photons and transfer their energy to the cell to fix
CO2. In this compartmental model, the photosystems can be described by three different states:
open and ready to harvest a photon A, closed while processing the absorbed photon energy B,
or inhibited if several photons have been absorbed simultaneously C. Their evolution satisfies
the following dynamical system

Ȧ = −σIA+ B
τ ,

Ḃ = σIA− B
τ + krC − kdσIB,

Ċ = −krC + kdσIB.

Here A,B and C are the relative frequencies of the three possible states with A + B + C = 1,
and I is the photon flux density, a continuous time-varying signal. The other parameters are σ,
that stands for the specific photon absorption, τ which is the turnover rate, kr which represents
the photosystem repair rate and kd which is the damage rate. As shown in Subsection 1.2.1, one
can reduce this system to a single evolution equation:

Ċ = −α(I)C + β(I), (4.1)

where α(I) = β(I) + kr with β(I) = kdτ
(σI)2

τσI+1 . The net specific growth rate is obtained by
balancing photosynthesis and respiration, which gives

µ(C, I) = −γ(I)C + ζ(I), (4.2)

where ζ(I) = γ(I) − R with γ(I) = kσI
τσI+1 . Here, k is a factor that relates received energy with

growth rate and the term R represents the respiration rate. In particular for a constant light
intensity I, the growth rate µ associated with the steady state of (4.1) is given by

µ(I) = −γ(I)C∗(I) + ζ(I),

where
C∗(I) =

β(I)

α(I)
. (4.3)

In this framework, the dynamics of the biomass concentration X in an open system where a
fraction of the biomass is continuously sampled and is derived from the growth rate µ:

Ẋ = (µ̄−D)X, (4.4)

where D is the dilution rate and µ̄ is the average net growth rate which will be defined later.
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4.2.2 Steady 1D Saint-Venant equations

The Saint-Venant system is one of the most popular model for describing geophysical flows, which
is derived from the free surface incompressible Navier-Stokes equations (see for instance [52]). In
the current study, we focus on the smooth steady state solutions of the Saint-Venant equations in
a laminar regime. Such steady states are governed by the following partial differential equations:

∂x(hu) = 0, (4.5)

∂x(hu2 + g
h2

2
) = −gh∂xzb, (4.6)

where h is the water elevation, u is the horizontal averaged velocity of the water, the constant
g stands for the gravitational acceleration, and zb defines the topography. The free surface η is
given by η = h+ zb and the averaged discharge Q = hu. This system is presented in Figure 4.1.
The z axis represents the vertical direction and the x axis represents the horizontal direction.

0 L

z

0 x
η(x)

Is

zb(x)

h(x)
u(x)

Figure 4.1: Representation of the hydrodynamic model.

Furthermore, Is represents the light intensity at the free surface (assumed to be constant).

Integrating (4.5), we get
hu = Q0, (4.7)

for a fixed positive constant Q0, which implies a constant discharge in space. Then (4.6) can be
rewritten as

hu∂xu+ h∂xgh+ h∂xgzb = 0. (4.8)

Let us assume that h is strictly positive. Dividing (4.8) by h and using (4.7) to eliminate u, we
get

∂x

( Q2
0

2h2
+ g(h+ zb)

)
= 0.

This equation corresponds to the Bernoulli’s principle. Now let us consider two fixed constants
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h(0), zb(0) ∈ R. For all x ∈ [0, L], we obtain

Q2
0

2h2
+ g(h+ zb) =

Q2
0

2h2(0)
+ g(h(0) + zb(0)) =: M0,

meaning that the topography zb satisfies

zb =
M0

g
− Q2

0

2gh2
− h. (4.9)

Remark

Define the Froude number for the steady state by Fr = u/
√
gh. The situation Fr < 1

corresponds to the subcritical case (i.e. the flow regime is fluvial) while Fr > 1 is to the
supercritical case (i.e. the flow regime is torrential). In particular, the threshold value of h for
Fr = 1 is given by

hc := (
Q2

0

g
)

1
3 .

Because of (4.9), the water depth h is the solution of a third order polynomial equation.
Given a smooth topography zb, if

hc + zb +
Q2

0

2gh2
c

− M0

g
< 0.

there exists a unique positive smooth solution of (4.9) which satisfies the subcritical flow condition
(see [96, Lemma 1]). The velocity u can then be obtained thanks to (4.7).

4.2.3 Lagrangian trajectories of the algae and captured light intensity

Let z(t) be the depth of a particle at time t in the raceway pond. We first determine the
Lagrangian trajectory of an algal cell that starts at a given position z(0) at time 0.

From the incompressibility of the flow, we have ∇ · u = 0 with u = (u(x), w(x, z)). Here,
w(x, z) is the vertical velocity. This implies that

∂xu+ ∂zw = 0. (4.10)

Integrating (4.10) from zb to z gives:

0 =

∫ z

zb

(
∂xu(x) + ∂zw(x, z)

)
dz

= ∂x

∫ z

zb

u(x)dz +

∫ z

zb

∂zw(x, z)dz

= ∂x
(
(z − zb)u(x)

)
+ w(x, z)− w(x, zb)

= (z − zb)∂xu(x)− u(x)∂xzb + w(x, z),

where we have used the kinematic condition at the bottom (i.e. w(x, zb) = u(x)∂xzb). It then
follows from (4.9) that

w(x, z) = (
M0

g
− 3u2(x)

2g
− z)u′(x).
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The Lagrangian trajectory is characterized by the system(
ẋ(t)
ż(t)

)
=

(
u(x(t))

w(x(t), z(t))

)
. (4.11)

Remark

The geometry of the raceway pond with small dissipation and shear effects (reduced wall
friction and viscosity) justifies a laminar flow modelled by a shallow water model, such as
the Saint-Venant system. This regime also minimizes the mixing energy, hence is favoured at
industrial scale.
A higher mixing energy would lead to a turbulent regime. A possible way to enrich the
representation of the Lagrangian trajectories in this case would consists in adding a Brownian
motion to the definition (4.11). However, getting time-free expressions of the trajectories (as
in Equations (4.12) and (4.16)) in this case is much more challenging so that such a strategy
optimisation procedure would require a large set of simulations together with an averaging
strategy.

The previous expression of the Lagrangian trajectory (4.11) is the general formulation which
is still available even if we change the hydrodynamical model. However based on the special
form of the Saint-Venant system that we have chosen, we can find a simpler formulation of the
Lagrangian trajectory. More precisely, we denote by z(x) the depth of a particle at the position
x. From (4.11), we get

z′ :=
ż

ẋ
= (

M0

g
− 3u2

2g
− z)u

′

u
. (4.12)

Note that from (4.7) and (4.9), we have η = h + zb = M0

g −
u2

2g , which implies η′ = −uu′/g.
Multiplying (4.12) both sides by u and using the formulation of η, η′ gives

z′u+ zu′ = (η − u2

g
)u′ = ηu′ + η′u,

which implies that
(
u(z − η)

)′
= 0. We then obtain

z(x) = η(x) +
u(0)

u(x)
(z(0)− η(0)).

Using (4.7), then the equation above can be re-written as

z(x) = η(x) +
h(x)

h(0)
(z(0)− η(0)). (4.13)

The computation of trajectories in the Saint-Venant system can be carried out with this formula,
where h(0), z(0) and η(0) = h(0) + zb(0) are given as data of the system. On the contrary,
h(x), η(x) will depend on the parameterization of the system. Indeed, if we choose to parameterize
the topography zb(x), then the water depth h(x) can be found naturally by (4.9) and it will then
be used to compute the free surface η(x) = h(x) + zb(x).
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Remark

Since Q0 is chosen to be positive, h is necessarily positive and so does u from (4.7). Moreover,
from (4.13), if z(0) belongs to [zb(0), η(0)], then z(x) belongs to [zb(x), η(x)]. In particular,
choosing z(0) = zb(0) in (4.13) and using (4.7) gives z(x) = zb(x). In the same way, we find
that z(x) = η(x) when z(0) = η(0).

We assume that the system is perfectly mixed such that the biomass concentration X in (4.4)
is homogeneous. Furthermore, it is often assumed that the photosynthetic units grow slowly
so that the variations of biomass concentration X and background turbidity α1 are negligible
over one lap of the raceway. As a consequence, the turbidity α1 and the biomass concentration
X are supposed to be constant over the considered time scale. In this framework, we use the
Beer-Lambert law to describe the light intensity observed on the trajectory z:

I(x, z) = Is exp
(
− ε(η(x)− z)

)
. (4.14)

Here ε is the light extinction coefficient. Combining (4.14) with (4.13), we get the following
expression for the captured light intensity along the trajectory z

I(x, z(x)) = Is exp
(
− εh(x)

h(0)
(η(0)− z(0))

)
. (4.15)

It follows that in this approach, the light intensity I couples the hydrodynamic model and Han
model: the hydrodynamical movement provides the trajectories of the algae and then define the
received light intensity, which is used in the photosystem dynamics.

We can then derive the equation satisfied by C. Indeed, repeating the reasoning done to
get (4.12) with (4.1), we find a time-free reformulation, namely

C ′ :=
Ċ

ẋ
= −α(I)

Q0
hC +

β(I)

Q0
h, (4.16)

where all functions on the right-hand side only depend on x.

4.3 Optimization problem

In this section, we define the optimization problem associated with the biological-hydrodynamical
model. We first introduce our procedure in the case of one single layer, and then extend this to
a multiple layers system. The volume of our 1D system V [m2] is defined by

V =

∫ L

0

h(x)dx. (4.17)

And as we have mentioned in Subsection 4.2.2, a given topography zb corresponds to a unique
water depth h in the subcritical case. Therefore, we choose to parameterize h by a vector a ∈ RN ,
which will be the variable to be optimized, in order to handle the volume of our system. In this
way, we assume the volume is constant with respect to the parameter a. Given a vector a and
the associated h, the optimal topography can be obtained by means of (4.9).
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Remark

In usual Saint-Venant solver, equations of type (4.9) are usually consider to compute water
depth h for a given topography zb in the simulations. Here, we use this equation in the opposite
way, i.e., to recover the topography zb from water depth h.

4.3.1 Optimization problem for non periodic case with time dependent
description

In this section, we study the optimization problem for the time dependent description. Note
that in this case the Lagrangian trajectory is defined by (4.11) and the photoinhibition state is
defined by (4.1). For sake of clarity, we first present the formulation of the optimization problem
for a single trajectory, then we generalize it for multiple trajectories. For simplicity, we omit t
in the notations.

One single trajectory

Our goal here is to optimize the topography to maximize the average net growth rate for one
trajectory µ̄1 which is defined by

µ̄1(a) =
1

T

∫ T

0

−γ(I(x, z; a))C + ζ(I(x, z; a))dt,

where C, x, z satisfy  Ċ = −α(I(x, z; a))C + β(I(x, z; a))
ẋ = u(x; a)
ż = w(x, z; a).

(4.18)

The optimal control problem then reads:
Find a? solving the maximization problem:

max
a∈RN

µ̄1(a). (4.19)

In order to solve this optimization problem, we apply the technique presented in Subsec-
tion 1.4. More precisely, define the Lagrangian of Problem (4.19) by

L(C, z, x, p1, p2, p3, a) :=
1

T

∫ T

0

(
− γ(I(x, z; a))C + ζ(I(x, z; a))

)
dt

−
∫ T

0

p1

(
Ċ + α(I(x, z; a))C − β(I(x, z; a))

)
dt

−
∫ T

0

p2

(
ż − w(x, z; a)

)
dt−

∫ T

0

p3

(
ẋ− u(x; a)

)
dt.

where p1, p2 and p3 are the Lagrange multipliers associated with the constraints (4.18).
The optimality system is obtained by cancelling all the partial derivatives of L. Differentiating

L with respect to p1, p2, p3 and equating the resulting terms to zero gives the corrected model
equations (4.18). Integrating the terms

∫
p1Ċdt,

∫
p2żdt and

∫
p3ẋdt on the interval [0, T ] by
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parts and differentiating L with respect to C, z, x, C(T ), z(T ), x(T ) gives rise to

∂CL = − 1
T γ(I) + ṗ1 − α(I)p1

∂zL =
(

1
T

(
− γ′(I)C + ζ ′(I)

)
+ p1

(
− α′(I)C + β′(I)

))
∂zI + ṗ2 + p2∂zw

∂xL =
(

1
T

(
− γ′(I)C + ζ ′(I)

)
+ p1

(
− α′(I)C + β′(I)

))
∂xI + p2∂xw + ṗ3 + p3∂xu

∂C(T )L = p1(T )
∂z(T )L = p2(T )
∂x(T )L = p3(T ).

(4.20)

Given a vector a, let us still denote by C, x, z, p1, p2, p3 the corresponding solutions of (4.18)
and (4.20). The gradient ∇µ̄1(a) is obtained by

∇µ̄1(a) = ∂aL,

where

∂aL =

∫ T

0

( 1

T

(
− γ′(I)C + ζ ′(I)

)
+ p1

(
− α′(I)C + β′(I)

))
∂aI + p2∂aw + p3∂audt. (4.21)

Remark

Note that in one trajectory case, all the formulations above are presented in continuous form
which may not be the case for multiple trajectories.

Multiple trajectories Problem

We now extend the previous procedure to deal with multiple layers. Let us denote by Nz the
number of layers and Ci the photoinhibition state associated with the trajectory zi. We consider
the semi-discrete average net growth rate over the domain as the objective function, namely:

µ̄Nz (a) =
1

Nz

Nz∑
i=1

1

T

∫ T

0

µ(Ci, Ii(a))dt, (4.22)

where Ci, x, zi verify the constraints (4.18) for i = 1, . . . , Nz.

Remark

Note that the average net growth rate over the domain is defined by:

µ̄∞ :=
1

T

∫ T

0

1

h (x(t))

∫ η(x(t))

zb(x(t))

µ
(
C (x(t), z(t)) , I (x(t), z(t))

)
dzdt. (4.23)

Our approach consequently consists in considering a vertical discretization of µ̄∞, which
gives (4.22). This discretization should not give rise to any problem and is left to Subsec-
tion 4.3.2 for further details.
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The Lagrangian of the problem is defined by

L(Ci, zi, x, p1,i, p2,i, p3, a) :=
1

TNz

Nz∑
i=1

∫ T

0

−γ(I(x, zi; a))Ci + ζ(I(x, zi; a))dt

−
Nz∑
i=1

∫ T

0

p1,i

(
Ċi + α(I(x, zi; a))Ci − β(I(x, zi; a))

)
dt

−
Nz∑
i=1

∫ T

0

p2,i

(
żi − w(x, zi; a)

)
dt−

∫ T

0

p3

(
ẋ− u(x; a)

)
dt.

where p1,i, p2,i, p3 the associated Lagrange multipliers with Ci, zi, x respectively. Similar compu-
tations as in the previous section give rise to the following systems

∂CiL = − 1
TNz

γ(Ii) + ṗ1,i − α(Ii)p1,i

∂ziL =
(

1
TNz

(
− γ′(Ii)Ci + ζ ′(Ii)

)
+ p1,i

(
− α′(Ii)Ci + β′(Ii)

))
∂ziIi + ṗ2,i + p2,i∂zw

∂xL =

Nz∑
i=1

( 1

TNz

(
− γ′(Ii)Ci + ζ ′(Ii)

)
+ p1,i

(
− α′(Ii)Ci + β′(Ii)

))
∂xIi

+

Nz∑
i=1

p2,i∂xwi + ṗ3 + p3∂xu

∂Ci(T )L = p1,i(T )
∂zi(T )L = p2,i(T )
∂x(T )L = p3(T )

where Ii := I(x, zi; a) and wi := w(x, zi; a). Finally, the gradient ∇µ̄Nz (a) is given by

∂aL =

Nz∑
i=1

∫ T

0

( 1

TNz

(
− γ′(Ii)Ci + ζ ′(Ii)

)
+ p1,i

(
− α′(Ii)Ci + β′(Ii)

))
∂aIidt

+

Nz∑
i=1

∫ T

0

p2,i∂awidt+

∫ T

0

p3∂audt.

4.3.2 Optimization problem for periodic case with time independent
description

In this section, we study the optimization problem for the time independent description. Note
that in this case the Lagrangian trajectory is defined by (4.13) and the photoinhibition state
is defined by (4.16). We first present the formulation of the optimization problem then we add
periodic assumption to investigate the optimal topography in this case.

Optimality system

The parameter-dependent average net growth rate over the domain is defined by

µ̄∞(a) :=
1

V

∫ L

0

∫ η(x;a)

zb(x;a)

µ
(
C(x, z), I(x, z; a)

)
dzdx, (4.24)
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Note that this formulation is actually the same as (4.23) (see Appendix 4.B). In order to tackle
numerically this optimization problem, let us consider a vertical discretization. Let us keep Nz
as the number of particles, and consider a uniform vertical discretization of their initial position:

zi(0) = η(0)−
i− 1

2

Nz
h(0), i = 1, . . . , Nz.

From (4.13), we obtain

zi(x)− zi+1(x) =
1

Nz
h(x), i = 1, . . . , Nz,

meaning that the distribution of particles remains uniform along the trajectories. To simplify
notations, we write Ii(a) instead of I(x, zi(x); a) hereafter. Then the semi-discrete average net
specific growth rate in the raceway pond can be defined from (4.24) by

µ̄Nz (a) :=
1

V

∫ L

0

Nz∑
i=1

1

Nz
h(a)µ(Ci, Ii(a))dx =

1

V Nz

Nz∑
i=1

∫ L

0

µ(Ci, Ii(a))h(a)dx. (4.25)

where Ci satisfies the following parameterized version of (4.16)

C ′i = (−α (Ii(a))Ci + β (Ii(a)))
h(x; a)

Q0
. (4.26)

Remark

One of the advantages of the time free formulation is that this expression helps us to reduce
the computational cost. Indeed, in this case the optimization constraint (4.26) reduces to one
single constraint comparing to the constraints (4.18) in time dependent formulation.

In this case, the optimization problem reads:

Find a∗ solving the maximization problem:

max
a∈RN

µ̄Nz (a). (4.27)

The Lagrangian of the problem is then defined by

L(Ci, a, pi) =

Nz∑
i=1

∫ L

0

( 1

V Nz

(
−γ(Ii(a))Ci+ζ(Ii(a))

)
h(a)−pi

(
C ′i+

α(Ii(a))− β(Ii(a))

Q0
h(a)

))
dx

where pi the associated Lagrange multipliers. Similar computations as in the previous section
give rise to the following systems{

∂CiL = − 1
V Nz

γ(Ii)h+ p′i −
α(Ii)
Q0

hpi,

∂Ci(T )L = pi(T ).
(4.28)

As we have mentioned above, one can also see that the optimality system has been much simplified
comparing to (4.20).
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Finally, the partial derivative ∂aL (hence the gradient ∇µ̄Nz (a)) is then given by

∂aL =

Nz∑
i=1

∫ L

0

( 1

V Nz

(
− γ′ (Ii)Ci + ζ ′ (Ii)

)
+ pi
−α′(Ii)Ci + β′(Ii)

Q0

)
h∂aIidx

+

Nz∑
i=1

∫ L

0

( 1

V Nz

(
− γ (Ii)Ci + ζ (Ii)

)
+ pi
−α(Ii)Ci + β(Ii)

Q0

)
∂ahdx.

(4.29)

Periodic problem

We now consider a variant of our problem, where the photoinhibition state C is periodic, with a
period corresponding to a raceway lap. This situation occurs, e.g., when an appropriate harvest
is performed after each lap. To describe the corresponding model, let us first consider a variant
of the usual Cauchy problem for (4.16):

Given I ∈ L2(0, L;R), find (C0, C) ∈ [0, 1]× C(0, L; [0, 1]) such that{
C ′(x) = −α(I(x))C(x)+β(I(x))

Q0
h(x), x ∈ [0, L]

C(L) = C(0) = C0.
(4.30)

A similar theorem as Theorem 1.3.2 gives the existence and uniqueness of a (weak) solution
of the problem (4.30).

Theorem 4.3.1. Given I ∈ L2(0, L;R), there exists a unique couple (C0, C) ∈ [0, 1]×C(0, L; [0, 1])
satisfying {

C(x) = C0 +
∫ x

0
−α(I(s))C(s)+β(I(s))

Q0
h(s)ds ,

C(L) = C0

(4.31)

for all x ∈ [0, L].

The proof follows the same technique given in Subsection 1.3. The optimality system in this
case is obtained as shown in the previous sections.
Remark

Note that the periodicity of Ci implies that pi is also periodic. Indeed, since Ci(L) = Ci(0),
then by differentiating L with respect to Ci(L), we have

∂Ci(L)L = pi(L)− pi(0),

so that equating the above equation to zero gives the periodicity for pi.

Next, we state a result in the case (Ci)i=1,...,Nz are periodic.

Theorem 4.3.2. Assume the volume of the system V is constant. Then ∇µ̄Nz (0) = 0.

Proof. Replacing the formulation for zi (4.13) in (4.14) gives

Ii(a) = Is exp(−ε
i− 1

2

Nz
h(a)). (4.32)

The partial derivative of I with respect to a gives

∂aIi = −ε
i− 1

2

Nz
Ii∂ah.
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Consider now the vector af for representing the parameter in the case where the topography is
flat. In this way, the water depth h(af ) hence the light intensity Ii(af ) are all constant with
respect to x that denote by hf and Ifi respectively. For a given C(0), (4.26) gives

Ci(x) = e−
α(Ii(af ))

Q0
h(af )xCi(0) +

β(Ii(af ))

α(Ii(af ))
(1− e−

α(Ii(af ))

Q0
h(af )x). (4.33)

Since Ci are periodic (i.e. Ci(L) = Ci(0)), we get from the previous equation that Ci(0) =
β(Ii(af ))
α(Ii(af )) . Inserting this value in (4.33), we find

Ci(x) =
β(Ii(af ))

α(Ii(af ))
, ∀x ∈ [0, L],

which corresponds to the steady state (4.3), that we denote by Cfi hereafter. Similar operations
applying on the dynamics of pi

p′i =
1

V Nz
γ(Ii)h+

α(Ii)

Q0
hpi,

gives

pi(x) = − Q0γ(Ii(af ))

V Nzα(Ii(af ))
, ∀x ∈ [0, L],

that denote by pfi hereafter.

On the other hand, since the volume of the system is assumed to be constant with respect to
a, one has

0 = ∂aV = ∂a

∫ L

0

h(x; a)dx =

∫ L

0

∂ahdx.

Replacing a by af in (4.29) gives

∇µ̄Nz (af ) =

Nz∑
i=1

∫ L

0

( 1

V Nz

(
− γ′

(
Ifi

)
Cfi + ζ ′

(
Ifi

) )
+ pfi

−α′(Ifi )Cfi + β′(Ifi )

Q0

)
hf
(
− ε

i− 1
2

Nz
Ifi
)
∂ahdx

+

Nz∑
i=1

∫ L

0

( 1

V Nz

(
− γ

(
Ifi

)
Cfi + ζ

(
Ifi

) )
+ pfi

−α(Ifi )Cfi + β(Ifi )

Q0

)
∂ahdx

=

Nz∑
i=1

[( 1

V Nz

(
− γ′

(
Ifi

)
Cfi + ζ ′

(
Ifi

) )
+ pfi

−α′(Ifi )Cfi + β′(Ifi )

Q0

)
hf
(
− ε

i− 1
2

Nz
Ifi
)

+
( 1

V Nz

(
− γ

(
Ifi

)
Cfi + ζ

(
Ifi

) )
+ pfi

−α(Ifi )Cfi + β(Ifi )

Q0

)] ∫ L

0

∂ahdx

=0.

This concludes the proof.
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Remark

This theorem consequently shows that in the case C periodic, the flat topography is a critical
point for Problem (4.27). On the contrary, in the case C non periodic, (4.33) implies that C
depends also on the space variable x, hence the computations above will no longer hold. In
other words, the flat topography is not an optimum for the case C non periodic, These has been
confirmed by our numerical tests. In particular, we have observed that the flat topography is
actually optimal in the periodic case (see Subsection 4.4.3).

4.3.3 Optimization for non-constant volume problem

In this section, we focus on the case where the volume of the system also changes hence can be
optimized. Let us define a volume related parameter a0 as the average depth of the raceway
system:

a0 :=
1

L

∫ L

0

h(x)dx =
V

L
. (4.34)

In this way, the biomass concentration changes with the system volume, therefore the light
extinction ε can no longer be assumed as a constant. Hence, we consider the general form of ε
as shown in (1.17). As mentioned in Chapter 2, one of the solution to find the relation between
the biomass concentration X with the system volume V is to use the optimal optical depth Yopt
defined by (2.9). This consists in regulating the biomass concentration X to a value such that
the steady state value of the net growth rate µ at the average depth a0 is 0, i.e.

µ(Ia0) = 0. (4.35)

This gives us the following relation:

Yopt = ε(X)a0 = (α0X + α1)a0,

or in other words

X =

Yopt
a0
− α1

α0
.

Optimize areal productivity

In this framework, maximizing areal productivity is a relevant target. Productivity per unit of
surface for a given biomass concentration X is given by:

Π := µ̄X
V

S
,

where S is the ground surface of the raceway pond and µ̄ is defined in (4.24). Note that this is
a general form of the surface biomass productivity defined in (2.6).

Note that the water depth h now depends both on the parameter a and a0, which we will
denote by the extended parameter vector ã = [a0, a] ∈ RN+1 hereafter. Moreover, since we
consider a 1D framework, we have S = L. Let us consider the parameter-dependent objective
function:

Π(ã) =
Yopt − α1a0

α0

1

V Nz

Nz∑
i=1

∫ L

0

µ(Ci, Ii(ã))h(ã)dx,

Work in progress as of 7th September, 2021



86 CHAPTER 4. Shape optimization of a microalgal raceway to enhance productivity

where Ci satisfies (4.26) with a replacing by ã.
The corresponding optimization problem reads:
Find ã∗ solving the maximization problem:

max
ã∈RN+1

Π(ã).

The Lagrangian associated with this problem reads as

L(Ci, pi, ã) =
Yopt − α1a0

V Nzα0

Nz∑
i=1

∫ L

0

(
− γ(Ii(ã))Ci + ζ(Ii(ã))

)
h(ã)dx

−
Nz∑
i=1

∫ L

0

pi
(
C ′i +

α(Ii(ã))Ci − β(Ii(ã))

Q0
h(ã)

)
dx,

where pi is the Lagrangian multiplier associated with the constraint (4.26) for Ci. By computa-
tions similar to that of the previous section, we find the optimality system as{

∂CiL̃ = p′i − pi
α(I)
Q0

h− γ(I)h
Yopt−α1a0
V Nzα0

∂Ci(L)L̃ = pi(L).

However, there is an extra element in the gradient Π(ã), namely the derivative with respect to
a0, meaning that ∇Π(ã) := [∂a0L, ∂aL], where

∂a0L =

Nz∑
i=1

∫ L

0

(Yopt/a0 − α1

LNzα0

(
− γ′ (Ii)Ci + ζ ′ (Ii)

)
+ pi
−α′(Ii)Ci + β′(Ii)

Q0

)
h∂a0Iidx

+

Nz∑
i=1

∫ L

0

(Yopt/a0 − α1

LNzα0

(
− γ (Ii)Ci + ζ (Ii)

)
+ pi
−α(Ii)Ci + β(Ii)

Q0

)
∂a0hdx

−
Nz∑
i=1

∫ L

0

Yopt/a
2
0

LNzα0

(
− γ (Ii)Ci + ζ (Ii)

)
hdx.

(4.36)

∂aL =

Nz∑
i=1

∫ L

0

(Yopt − α1a0

V Nzα0

(
− γ′ (Ii)Ci + ζ ′ (Ii)

)
+ pi
−α′(Ii)Ci + β′(Ii)

Q0

)
h∂aIidx

+

Nz∑
i=1

∫ L

0

(Yopt − α1a0

V Nzα0

(
− γ (Ii)Ci + ζ (Ii)

)
+ pi
−α(Ii)Ci + β(Ii)

Q0

)
∂ahdx..

(4.37)

Periodic problem

Note that the water depth h for a flat topography is a constant (meaning that vector a = 0).
From the definition of a0 (4.34), one has in particular

h(x; [a0,0]) = a0, ∀x ∈ [0, L],

which means that there exists a function h1 such that

h(x; ã) := a0 + h1(x; a),

∫ L

0

h1(x; a)dx = 0, ∀a ∈ RN . (4.38)
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Unlike Theorem 4.3.2, the flat topography does not cancel the gradient ∇Π.

Theorem 4.3.3. Assume that the net growth rate at the surface satisfies µ(Is) > 0 and that Ia0
solves (4.35). Let ãf = [a0, af ] the flat topography with an average depth a0, then ∇Π(ãf ) 6= 0.

Proof. Computations similar to that in the proof of Theorem 4.3.2 gives ∂aL(ãf ) = 0. It follows
from (4.34), that ∂a0h = 1, h(ãf ) = a0. Consider i ∈ {1, · · · , Nz}. Since

Ii(ã) = Is exp
(
− Yopt

a0

i− 1
2

Nz
h(ã)

)
,

we find that

∂a0Ii(ãf ) = −(−Yopt

a0
+
Yopt

a0
)
i− 1

2

Nz
Ii(ãf ) = 0.

Hence the first sum in (4.36) is zero. Keeping the notation of Theorem 4.3.2, and using that
Ii(ãf ) = Ifi , we obtain that Ci := Cfi . In particular −α(Ifi )Cfi + β(Ifi ) = 0, so that (4.36) gives

∂a0L(ãf ) = −
Nz∑
i=1

∫ L

0

( α1

LNzα0

(
− γ

(
Ifi

)
Cfi + ζ

(
Ifi

) ))
dx.

Since µ(Is) > 0, µ(Ia0) = 0 and µ is concave with respect to I, one has µ(Ifi ) = −γ
(
Ifi

)
Cfi +

ζ
(
Ifi

)
> 0. In other words, ∂a0L(ãf ) 6= 0. This concludes the proof.

Remark

Note that the coefficient a0 considered in the previous theorem needs to satisfy hc ≤ a0 to
guarantee that the system remains in a subcritical regime (see Remark 4.2.2).

4.3.4 Optimization problem in periodic case for topographies combin-
ing with mixing strategies

In this section, we present the optimization problem by combining the topography with the
mixing strategy P ∈ PN . As shown in Chapter 3 in a periodic case, the period is actually one
for whatever the permutation matrix is. Therefore, we only focus on the periodic case with
period one in the following. In particular, we cannot keep the proof of the critical topography in
Theorem 4.3.1 since an extra matrix P is added into the system so that the solution of the state
Ci and pi in periodic case can no longer be constant.

Constant reactor volume

In this way, we first define the objective function which is similar as (4.25) for the constant
volume case:

µ̄PNz (a) :=
1

V Nz

Nz∑
i=1

∫ L

0

µ(CPi , Ii(a))h(a)dx, (4.39)
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where CPi satisfies the following parameterized version of (4.16) with a periodic condition{
(CPi )′ =

(
− α(Ii(a))Ci + β(Ii(a))

)h(a)
Q0

,

PCPi (L) = CPi (0).
(4.40)

Our optimization problem then reads:
Find a permutation matrix Pmax and a parameter vector a∗ solving the maximization problem:

max
P∈PN

max
a∈RN

µ̄P∆(a).

For a given permutation matrix P ∈ PN , the Lagrangian of (4.39) can then be written by

L(Ci, pi, a) =
1

V Nz

Nz∑
i=1

∫ L

0

(
− γ(Ii(a))CPi + ζ(Ii(a))

)
h(a)dx

−
Nz∑
i=1

∫ L

0

pPi

(
(CPi )′ +

(
α(Ii(a))CPi − β(Ii(a))

)h(a)

Q0

)
dx,

where pPi is the Lagrange multiplier associated with the constraint (4.40).
The optimality system is obtained by cancelling all the partial derivatives of L. Differentiating

L with respect to pPi and equating the resulting expression to zero gives (4.40). Integrating the
terms

∫
pPi (CPi )′dx on the interval [0, L] by parts enables to differentiate L with respect to CPi

and CPi (L). Equating the result to zeros gives rise to{
(pPi )′ − pPi α(Ii(a))h(a)

Q0
− h(a)

V Nz
γ(Ii(a)) = 0,

pPi (L)− pPi (0)P = 0.
(4.41)

Given a vector a, let us still denote by CPi , pPi the corresponding solutions of (4.40) and (4.41).
The gradient ∇µ̄PNz (a) is obtained by ∇µ̄PNz (a) = ∂aL, where

∂aL =

Nz∑
i=1

∫ L

0

( 1

V Nz

(
− γ′(Ii)CPi + ζ ′(Ii)

)
+ pPi

−α′(Ii)CPi + β′(Ii)

Q0

)
h∂aIidx

+

Nz∑
i=1

∫ L

0

( 1

V Nz

(
− γ(Ii)C

P
i + ζ(Ii)

)
+ pPi

−α(Ii)C
P
i + β(Ii)

Q0

)
∂ahdx.

4.3.5 Variable reactor volume
In this section, we focus on the case where the reactor volume can also vary. Consider the extend
parameter vector ã := [a0, a] ∈ RN+1. From (4.39), the objective function is given by

ΠP (ã) :=
Yopt − α1a0

V Nzα0

Nz∑
i=1

∫ L

0

µ(CPi , Ii(a))h(a)dx. (4.42)

The corresponding optimization problem reads:
Find a permutation matrix Pmax and a parameter vector ã∗ solving the maximization problem:

max
P∈PN

max
ã∈RN+1

ΠP (ã).
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Let us denote by L the Lagrangian associated to (4.42). We follow the same optimization
procedure presented in previous sections. Note that an extra element appears in this gradient,
which is the partial derivative of L with respect to the variable a0. More precisely, we have
∇ΠP (ã) = [∂a0L, ∂aL] where

∂a0L =

Nz∑
i=1

∫ L

0

(Yopt/a0 − α1

LNzα0

(
− γ′(Ii)CPi + ζ ′(Ii)

)
+ pPi

−α′(Ii)CPi + β′(Ii)

Q0

)
h∂a0Iidx

+

Nz∑
i=1

∫ L

0

(Yopt/a0 − α1

LNzα0

(
− γ(Ii)C

P
i + ζ(Ii)

)
+ pPi

−α(Ii)C
P
i + β(Ii)

Q0

)
∂a0hdx

−
Nz∑
i=1

∫ L

0

Yopt/a
2
0

LNzα0

(
− γ(Ii)C

P
i + ζ(Ii)

)
hdx

and ∂aL is similar to the constant volume case.

4.4 Numerical Experiments

In this section, we will illustrate some optimal topographies obtained in various frameworks as
presented in Section 4.3.

4.4.1 Numerical Methods

We start with an algorithm to solve the optimization problem and the numerical solver that we
use for our numerical tests.

Gradient Algorithm

We detail now a gradient-based optimization procedure and apply it to Problem (4.27). The
procedure is given in Algorithm 2.

Algorithm 2 Gradient-based optimization algorithm
1: Input: Tol> 0, ρ > 0.
2: Initial guess: a.
3: Output: a
4: Set err := Tol+1 and define h by (4.43) using the input data.
5: while err >Tol and minx∈[0,L] h(x) > hc do
6: Compute Ii by (4.15).
7: Set Ci as the solution of (4.26).
8: Set pi as the solution of (4.28).
9: Compute the gradient ∇J by (4.29).

10: a = a+ ρ∇J ,
11: Set err := ‖∇J‖.
12: end while

In addition to a numerical tolerance criterion on the magnitude of the gradient, we need to
take into account a constraint on the water depth h to guarantee that the simulated flow remains
in a subcritical regime (minx∈[0,L] h(x) > hc), see Remark 4.2.2 (and in the range of industrial
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constraints, see [29]). Remark that since no interaction between trajectories is considered, the
gradient computation can be partially parallelized when computing Ii (hence Ci) and pi.

Numerical Solvers

To solve our optimization problem numerically, we introduce a supplementary space discretization
with respect to x. In this way, let us take a space increment ∆x, set Nx = [L/∆x] and xnx =
nx∆x for nx = 0, . . . , Nx. We choose to use the Heun’s method for computing Ci via (4.26).
Following a first-discretize-then-optimize strategy, we get that the Lagrange multiplier pi is also
computed by a Heun’s type scheme. Note that this scheme is still explicit since it solves a
backward dynamics starting from pi(L) = 0.

4.4.2 Parameter settings

In this section, we provide the parameter used in the numerical test and the parameterization of
the water depth h.

Parameter for the models

The spatial increment is set to ∆x = 0.01 m so that the convergence of the numerical scheme has
been ensured and the numerical tolerance is set to Tol= 10−10. We set the averaged discharge
Q0 = 0.04 m2 s−1 and zb(0) = −0.4 m to stay in standard ranges for a raceway. The free-
fall acceleration g = 9.81 m s−2. We choose Is = 2000µmol m−2 s−1 which approximates the
maximum light intensity, e.g., at summer in the south of France. All the numerical parameters
values for Han’s model are taken from [54] and recalled in Table 4.1.

Table 4.1: Parameter values for Han Model.

kr 6.8 10−3 s−1

kd 2.99 10−4 -
τ 0.25 s
σ 0.047 m2 · (µmol)−1

k 8.7 10−6 -
R 1.389 10−7 s−1

In order to determinate the light extinction coefficient ε, two cases must be considered:

• constant volume: let us assume that only 1% of light can be captured by the cells at the
bottom of the raceway, i.e. for z = zb, meaning that Ib = 0.01Is. Then ε can be computed
by

ε = (1/h(0; a)) ln(Is/Ib).

• non-constant volume: in this case, the volume related parameter a0 is also to be optimized
and one needs to use (1.17) to take into account of the variation of the volume. We take
from [93] the specific light extinction coefficient of the microalgae specie α0 = 0.2 m2 · g
and the background turbidity α1 = 10 m−1.
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Parameterization

In order to describe the bottom of an optimal raceway pond, we choose to parameterize h by a
truncated Fourier series for our numerical tests. More precisely, h reads:

h(x) = a0 +

N∑
i=1

ai sin(2nπ
x

L
). (4.43)

The parameter to be optimized is then the Fourier coefficients a := [a1, . . . , aN ]. Although other
parameterizations can also be considered, in this chapter, we focus only on this parameterization
based on the following reasons :

• We consider a hydrodynamic regime where the solutions of the Saint-Venant equations are
smooth and hence the water depth can be approximated by (4.43). Hence, the truncated
Fourier number N is set to be small and limit situations where N → +∞ are not considered
in what follows.

• One has naturally h(0) = h(L) under this parameterization, which means that we have
accomplished one lap of the raceway pond.

• We assume a constant volume of the system V , which can be achieved by fixing a0. Indeed,
under this parameterization and using (4.17), one finds V = a0L.

From (4.7) and (4.9), the velocity u and the topography zb read also as functions of a. Once
we find the vector a maximizing the functional µ̄Nz , we then find the optimal topography of our
system. Note that in constant volume case, a0 is fixed to be 0.4, and in non constant volume
case, we keep a0 = 0.4 as the initial guess.

4.4.3 Numerical results

In this section, we provide the numerical support for the optimization problems presented in
Section 4.3.

Convergence of the vertical discretization

The first test consists in studying the influence of the vertical discretization number Nz. For this
purpose, let us set the length L = 10 m and the truncated Fourier number N = 5. We take 100
random initial guesses of a. Note that the choice of a should respect the subcritical condition.
For Nz varies from 1 to 80, we compute the average value of µ̄Nz for each Nz. The results are
shown in Figure 4.2. We observe numerical convergence when Nz grows, showing the convergence
towards continuous model. In view of these results, we take Nz = 40 for the successive studies.

Influence of the truncated Fourier value

The second test is given to study the influence of the truncated Fourier value N on the optimal
average growth rate µ̄Nz . Let us set N = [0, 5, 10, 15, 20] and set flat topography as the initial
guess, meaning that a is set to 0. Meanwhile, we keep the length L = 10 m as in previous
test. Table 4.2 shows the optimal value of our objective function µ̄Nz for different values of N .
There is a slight increase of the optimal value of the average growth rate µ̄Nz when N becomes
larger. However, the corresponding values of µ̄Nz remain close to the one associated with a flat
topography.
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Figure 4.2: The value of µ̄Nz for Nz = [1, 80].

Table 4.2: The value of µ̄Nz for different N

N µ̄Nz (unit d−1) log10(‖∇µ̄Nz‖)
0 1.061 −
5 1.0754 -10.0161
10 1.0763 -10.0248
15 1.0766 -10.0282
20 1.0768 -10.0297

Optimal topography shape in non periodic case

We focus now on the shape of the optimal topography in the case C non periodic. We choose
N = 5 the truncated Fourier series and keep the length L = 10 m as an example to show the shape
of the optimal topography. We consider the flat topography as the initial guess. The optimal
shape of the topography is shown in Figure 4.3. In particular, the resulting optimal topography
is not flat and the a∗ for the final iteration reads a∗ = [0.1043, 0.0503, 0.0333, 0.0250, 0.0201].

Optimal topography shape in periodic case

In this test, we focus on the optimization problem in the case C periodic. We keep the same
parameter settings as in previous case and consider a random topography as initial guess. The
optimal shape of the topography is shown in Figure 4.4. As shown in this figure, the resulting
optimal topography is flat in this case, meaning that the flat topography, proved to be a critical
topography in Theorem 4.3.1, is actually the optimal topography.

Example with a mixing device

The next test aims to simulate a more realistic raceway pond situation where a mixing device
is considered in the system. More precisely, we simulate several laps, with a mixing device that
mix up the algae after each laps. The mixing device is modelled by a permutation matrix P that
rearrange the trajectories at each lap. In our test, P is an anti-diagonal matrix with the entries
one. This choice actually corresponds to an optimum in some parameter settings and has been
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Figure 4.3: The optimal topography at the first iteration (Left) and the final iteration (Right)
for the truncated Fourier number N = 5. The red thick curve represents the topography (zb),
the blue thick curve represents the free surface (η), and all the other curves between represent
the trajectories for different layers.

Figure 4.4: The optimization process at the first iteration (Left) and the final iteration (Right)
for the truncated Fourier number N = 5. The red thick curve represents the topography (zb),
the blue thick curve represents the free surface (η), and all the other curves between represent
the trajectories for different layers.
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shown in [16], where other choices will be investigated. Meanwhile, this permutation matrix P
corresponds to the permutation π which is given by

π = (1 Nz)(2 Nz − 1)(3 Nz − 2) · · · ,

where we use the standard notation of cycles in the symmetric group. Note that π is of order
two. The photo-inhibition state C is then set to be 2-periodic (i.e C1(0) = PC2(L)). The details
about the optimization procedure are given in Appendix 4.C.

We keep the truncated Fourier number N = 5 and set the length L = 100 m. The initial
guess a is still zero. Figure 4.5 presents the shape of the optimal topography and the evolution
of the photoinhibition state C for two laps. Note that here we are still in a periodic regime,

Figure 4.5: The optimal topography (Left) and the evolution of the photoinhibition state C
(Right) for two laps.

unlike the previous test the resulting optimal topography in this case is not flat. However, the
increase in the optimal value of the objective function µ̄Nz compared to a flat topography is
around 0.216%, and compare to a flat topography with non permutation (i.e. P = INz ) case is
around 0.263%, in both cases, the increase remains small. On the other hand, we observe that
the state C is actually 1-periodic for each laps. This result is actually proved in [16] in the case
of a flat topography. In particular, this result enables us to perform the computation for any
permutation matrix by doing one lap of the raceway. In this way, we provide the next test.

Constant volume with mixing device

The current test is dedicated to study the optimal permutation matrix and the associated shape
of the topography for constant volume. To evaluate the efficiency of the corresponding mixing
strategy, define:

r1 :=
µ̄Pmax

Nz
(a∗)− µ̄Pmax

Nz
(0)

µ̄Pmax

Nz
(0)

, r2 :=
µ̄Pmax

Nz
(a∗)− µ̄INzNz

(0)

µ̄
INz
Nz

(0)
. (4.44)

Here r1 defines the gain of the optimal permutation strategy with the optimal topography com-
pare to the optimal permutation strategy with a flat topography, and r2 defines the gain of the
optimal permutation strategy with the optimal topography compare to no permutation strategy
with a flat topography. Let us consider two raceway pond length L = 100 m and L = 1 m re-
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spectively. The optimal matrices Pmax for different L are denoted by PLmax and given in (4.45)
with the associated optimal topographies presented in Figure 4.6.

P 100
max =



0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0


, P 1

max =



1 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0


(4.45)

A non flat topography associated with a non trivial permutation matrix has been observed.

Figure 4.6: The optimal topographies and the associated trajectories for the permutation matri-
ces (4.45). Left: L = 100 m. Right: L = 1 m.

In particular, these optimal matrices corresponds to the optimal matrices obtained with a flat
topography under the same parameter settings in Chapter 3. More precisely, the left hand side
matrix of (4.45) is the same type as (3.27) and the right hand side matrix of (4.45) is the same
type as (3.29). The two ratios defined in (4.44) are r1 = 0.148%, r2 = 1.070% and r1 = 0.001%
r2 = 3.453% respectively.

As we observed in the test above, the length of raceway has a potential influence on the
objective function and the gain, we then provide a test for different values of the length L.
Figure (4.7) shows the objective function µ̄Nz and the two ratios r1, r2 as a function of the length
L. Note that the objective function decreases when L increases except in the neighbourhood of
L = 12.5 m, on the same time, we observe that the influence of topography is very limited
comparing to the influence of the permutation strategies.

Varying volume with mixing device

We consider now that the volume of the system (V ) can also vary, meaning that the volume
related coefficient a0 is also a parameter to be optimized. Let us define two ratios similar
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Figure 4.7: The optimal value of the objective function µ̄Nz (Left) and the two ratios r1, r2

(Right) for L = 100/2{0,...,10}.

as (4.44) to evaluate the efficiency of the permutation strategies,

r̃1 :=
ΠPmax(ã∗)−ΠPmax(ãf )

ΠPmax(ãf )
,

r̃2 :=
ΠPmax(ã∗)−ΠINz (ãf )

ΠINz (ãf )
,

(4.46)

where ãf := [ã∗0, 0, · · · , 0] and ã∗0 is the optimal volume related value. We keep the same length
setting as in the previous test, the optimal matrices PLmax are given in (4.47) and the associated
optimal topographies are presented in Figure 4.8.

P 100
max =



0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0


, P 1

max =



0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0


(4.47)

The optimization algorithm stops before finding an optimum since it is limited by the constraint
subcritical flow, one can see that the water depth becomes very small. This corresponds to
the result that we have mentioned in Chapter 2 where smaller water depths provide better
biomass surface productivity. The two ratios defined in (4.46) are r̃1 = 0.918%, r̃2 = 9.284% and
r̃1 = 0.00003%, r̃2 = 12.714% respectively.

As shown experimentally in the previous test, the influence of the topographies remain lim-
ited, at the same time, non trivial permutation strategies PLmax are obtained for different raceway
length L, in particular these strategies are also different from the case with a fixed volume. More-
over, these strategies have a better improvement when the volume is also optimized. Figure 4.9
shows the objective function ΠP and the two ratios r̃1, r̃2 as a function of the length L. Note that
the average growth rate ΠP increase when L goes to 0. This flashing effect corresponds to the
fact that the algae exposed to high frequency flashing have a better growth. This phenomenon
has already been reported in literature e.g. [16, 77].
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Figure 4.8: The optimal topographies and the associated trajectories for the permutation matri-
ces (4.47). Left: L = 100 m. Right: L = 1 m.

Figure 4.9: The optimal value of the objective function ΠP (Left) and the two ratios r̃1, r̃2

(Right) for L = 100/2{0,...,10}.
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Figure 4.10: The optimization process for length L = 100 m and P = P 100
max in (4.45).

On the other hand, if we just focus on the increase provided by the optimization of the
volume as shown in Figure 4.10. One can see that comparing with the initial state which is a
flat topography with 0.4 m water depth, the value of the objective function Π at its final state
is doubled. Therefore a shallow raceway may provide a more considerable gain comparing a non
flat topography or a mixing strategy.

4.5 Conclusion and future works

A non flat topography slightly enhances the average growth rate. However the gain remains very
limited and it is not clear if the difficulty to design such a pattern could be compensated by the
increase in the process productivity.

A flat topography cancels the gradient of the objective functional in many situations where
C is assumed to be periodic. However, including a mixing device gives rise to an optimal non flat
topography with a slight gain of the average growth rate. Adapting the shape of the raceway to
an original mixing system is an innovative strategy to boost the algal process productivity. To
realize in practice the ideal mixing a system more elaborated than a paddle wheel is required.

If the condition is allowed, a shallow raceway pond may then provide considerable gain
comparing with the topography or mixing strategy design.

4.A Proof of Theorem 4.3.1

Let us give the details about the proof of Theorem 4.3.1. To prove the existence and uniqueness
of a (weak) solution of this problem, we need the following result.

Lemma 4.A.1. Given Z0 ∈ R, let Z ∈ C(0, L;R) be the weak solution of{
Z ′(x) = −α(I(x))h(x)

Q0
Z(x), x ∈ [0, L]

Z(L) = Z0

(4.48)

For x ∈ [0, L]:
‖Z(x)‖2 ≤ e

− krhcQ0
x ‖Z0‖2 . (4.49)
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Proof. Let x ∈ [0, L], as a weak solution of (4.48), the function Z is almost everywhere differen-
tiable and a direct calculation gives

d ‖Z(x)‖22
dx

= 2〈Z(x),−α(I(x))h(x)

Q0
Z(x)〉 ≤ −2

krhc
Q0
‖Z(x)‖22 , (4.50)

where we have used the fact that α(I) = β(I) + kr, β(I) ≥ 0 and h > hc (in subcritical case).

Defining f(x) :=
d ‖Z(x)‖22

dx
+ 2krhcQ0

‖Z(x)‖22 and multiplying both sides by e2 krhcQ0
x, we obtain:

de2 krhcQ0
x ‖Z(x)‖22
dx

= e2 krhcQ0
xf(x),

which gives by integration over [0, x]

‖Z(x)‖22 = e−2 krhcQ0
x ‖Z0‖22 +

∫ x

0

e2 krhcQ0
(s−x)f(s)ds.

Because of (4.50), f(x) ≤ 0, this concludes the proof.

Let us now give the proof of Theorem 4.3.1.

Proof. Introduce the mapping Φ : R→ R defined by

Φ(C0) := C(L),

where C is the weak solution of (4.16). Given C̄1
0 ∈ R and C̄2

0 ∈ R, define Z0 = C̄2
0 − C̄1

0 and
Z(x) = C̄2(x)− C̄1(x), where C̄1 and C̄2 are the weak solutions of (4.16) with initial conditions
C̄1

0 and C̄2
0 , respectively. Subtracting the corresponding weak representations, we obtain that Z

satisfies the assumptions of Lemma 4.A.1 so that (4.49) holds. As a consequence,∥∥C̄2(L)− C̄1(L)
∥∥

2
≤ e−

krhc
Q0

L
∥∥C̄2

0 − C̄1
0

∥∥
2
,

which implies that Φ is a contraction. Applying Banach fixed-point theorem, it follows that there
exists a unique C0 ∈ R such that Φ(C0) = C0. The corresponding weak solution C of (4.16)
satisfies (4.31).

4.B Relation between two growth rate definitions

Let us start with the definition of the average growth rate in time (4.23). Note that the time
duration of one lap of the raceway pond T =

∫ L
0

1
udx and hu = Q0 because of (4.7). By doing a

Work in progress as of 7th September, 2021



100 CHAPTER 4. Shape optimization of a microalgal raceway to enhance productivity

change of variable x = x(t) and using the fact that dx = udt, one has

µ̄∞ =
1

T

∫ T

0

1

h (x(t))

∫ η(x(t))

zb(x(t))

µ
(
C (x(t), z(t)) , I (x(t), z(t))

)
dzdt

=
1∫ L

0
1
udx

∫ L

0

1

h (x)

∫ η(x)

zb(x)

µ
(
C (x, z) , I (x, z)

) 1

u (x)
dzdx

=
Q0∫ L

0
hdx

∫ L

0

1

h (x)u (x)

∫ η(x)

zb(x)

µ
(
C (x, z) , I (x, z)

)
dzdx

=
1

V

∫ L

0

∫ η(x)

zb(x)

µ
(
C (x, z) , I (x, z)

)
dzdx.

Therefore we find the expression (4.24).

4.C System with a paddle-wheel

Let us denote by P the permutation matrix associated with π i.e., 1 as entries on the anti-
diagonal. Let us denote by C1 (resp. C2) the photo-inhibition state for the first (resp. second)
lap of the raceway. We then assume that the state C is 2-periodic, meaning that C1(0) = PC2(L).
From (4.25), we define the objective function by

1

2

2∑
j=1

µ̄jNz (a) =
1

2V Nz

2∑
j=1

Nz∑
i=1

∫ L

0

−γ(Ii(a))Cji + ζ(Ii(a))

Q0
h(a)dx. (4.51)

Let us still denote by L the Lagrangian associated with this optimization problem. It can be
written as

L(C, p, a) =

2∑
j=1

Nz∑
i=1

∫ L

0

−γ(Ii(a))Cji + ζ(Ii(a))

2V Nz
h(a)− pji

(
Cji
′
+
α(Ii(a))Cji − β(Ii(a))

Q0
h(a)

)
dx,

where pji is the Lagrangian multiplier associated with the constraint (4.26) for Cji . Integrating
the terms

∫
pjiC

j
i

′
dx on the interval [0, L] by parts, we get∫ L

0

pjiC
j
i

′
dx = −

∫ L

0

pji
′
Cji dx+ pji (L)Cji (L)− pji (0)Cji (0).

By definition of our paddle wheel model, C2(0) = PC1(L). Differentiating L with respect to
C1(L) and C2(L), we find {

∂C1(L)L = p1(L)− p2(0)P,
∂C2(L)L = p2(L)− p1(0)P.

Then differentiating L with respect to Cji gives the evolution of pji by

∂Cji (L)L = pji
′
− pji

α(Ii(a))

Q0
h(a)− 1

2V Nz
γ(Ii(a))h(a).
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Finally, the partial derivative ∂aL (hence the gradient) is given by

∂aL =

2∑
j=1

Nz∑
i=1

∫ L

0

(−γ′(Ii(a))Cji + ζ ′(Ii(a))

2V Nz
+ pji

−α′(Ii(a))Cji + β′(Ii(a))

Q0

)
h(a)∂aIi(a)dx

+

2∑
j=1

Nz∑
i=1

∫ L

0

(−γ(Ii(a))Cji + ζ(Ii(a))

2V Nz
+ pji

−α(Ii(a))Cji + β(Ii(a))

Q0

)
∂ah(a)dx.

In general, the average growth rate for multiple laps is defined by replacing 2 in (4.51) with
the number of the laps and follow the same computation as above. As one may have noticed, this
computation becomes fastidious especially when the number of the laps increase. Therefore the
periodic result like one presented in Theorem 3.2.1 is very necessary to reduce the computational
cost.
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Conclusion

Main contributions

In this thesis, we provide a deeper insight into different aspects on dynamics of microalgae growth
with three main contributions.

Optimal optical conditions

In Chapter 2, we have extended the results of [94] and [55] where the authors have identified
an optimal strategy for biomass productivity maximization in photobioreactors. This so-called
compensation condition consists in canceling the net growth rate at the bottom of the photo-
bioreactors to maximize the surface biomass productivity. Based on their works, we investigate
the influence of the optical condition for microalgal production. More precisely, we consider a
general light attenuation function relying on biomass concentration and the background turbid-
ity of the system. We introduce the notion of optical depth productivity which is much more
convenient to study the optimal condition of the optical depth of the light intensity. A global
optimal condition for the optical depth is determined which depends only on the parameter of
the model. This optimal condition also coincides with the compensation condition found in lit-
erature in other contexts. Then, we study the classical areal biomass productivity maximization
problem. For a given biomass concentration, it is shown that an optimal water depth exists and
can be determined explicitly using the optimal optical depth. However, optimizing biomass con-
centration for a given reactor depth is more tricky, since the biomass concentration determined
by the compensation condition is not always an optimum. In this case, we find an asymptotic
behaviour both for areal biomass productivity and net growth rate at the bottom of the reactors.
A nonlinear controller is designed to stabilize the evolution of the biomass concentration to its
desired value. In practise, this optimal optical depth helps in establishing a relation between the
biomass concentration and the reactor depth as shown in variable volume case in Chapter 4.

Optimal mixing strategies

In Chapter 3, we identify a class of problem where N resources are distributed to N activities,
each activity then uses the assigned resource to evolve during a given time T > 0 after which
the resources are redistributed. In light of a bibliographic review, this type of allocation problem
is not much documented, especially when dealing with a dynamical system. However, this type
of problem often arises in real life applications. In this way, we develop a complete theory
that can be apply to various applications. As classical resource allocation problems, we study
the allocation strategies which optimize the cost or the benefit generated by the system. For
this purpose, we introduce an objective function related to the average benefit or cost which, in
addition, takes into account a periodic condition associated with the dynamics. We show that the
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periodicity of the resulting problem does not depend on the order of the permutation associated
with the assignment. We then propose a suboptimal problem whose solution can be determined
explicitly a priori and provide a criterion to compare it with the original non linear problem.
We apply finally this theory to the raceway microalgal production where a mixing device, such
as a paddle wheel, is considered to control the rearrangement of the depth of the algae cultures
hence the light perceived at each lap. Non trivial permutation strategies are observed and the
approximation quality of the suboptimal problem has also been examined.

Optimal topographies

In Chapter 4, we study the influence of the shape of the topography on algal growth in raceway
ponds. An intuitive idea is that non-flat topographies could ensure a better distribution of the
light intensity, in particular at the lower part of the pond, by bringing up the algae closer to
the surface. The optimization of this complex system is challenging since it contains both a
hydrodynamical movement and biological evolution. For this purpose, we consider a coupled
biological-hydrodynamical model which enables us to describe this complex dynamical system,
and use it to optimize the topography. We then apply an adjoint-based optimization scheme
which includes the constraints associated with the shallow water regime. On the contrary to
a widespread belief, the flat topography is proved to be the optimal topography in a periodic
regime, whereas non-trivial topographies can be obtained in other contexts, e.g., when we remove
the periodic assumption or when an extra mixing strategy is included in the model. Note that
in the examples considered in our numerical tests, such topographies only slightly improved the
biomass production.

Discussion and Perspectives

Microalgal industrial production is still challenging, especially in full-scale systems subjected
to permanent fluctuations of light intensity. In order to obtain an optimal productivity in the
reactors, an appropriate light intensity must be supplied to guarantee a continuous growth. Note
that low light intensity will limit the growth, especially in dense algal cultures case due to self-
shading. On the other hand, too high levels may lead to photoinhibition of the algal cell which
will also limit their growth. In our work, we mainly focus on the light condition aspect and
provide an optimal condition. The co-limitation problem could be considered in future work to
account for both light and nutrients limitation and test this optimal condition. On the other
hand, other controllers can be investigated for instance by using the extremum seeking strategy
in order to find automatic controller without identifying it in advance.

As for the raceway ponds design, we work on a simplified coupling model to provide some
optimization results in Chapter 3 and Chapter 4. One of the advantages of our coupling system
is that this allows us to provide some explicit computations on this complex system as well
as some theoretical proofs about optimal topographies and mixing strategies. A second order
study on the optimization problem could be investigated to prove that the flat topography is the
local optimal solution in the periodic case. Other investigations could consists of numerical tests
dealing with coupled models closer to real life situations, e.g., in [8], where a coupled multilayer
model (2D multilayer Saint-Venant and Droop) is considered. One can also use the optimal
control strategies (for instance Bocop code) to investigate this coupling optimization problem.

From a hydrodynamical point of view, our study is based on the laminar flow assumption,
therefore future work may account for the turbulent flow where particles can change their ver-
tical positions. Such a dynamic play the role of a mixing device acting continuously along the
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trajectories. Since our work in Chapter 3 shows that a mixing device could enhance the algal
growth, this working direction may provide another insight on the industrial raceway ponds de-
sign. As a preliminary test, one could include a Brownian motion component into the Lagrangian
trajectories to simulate this turbulence as mentioned in Remark 1.2.2.

As for the periodic dynamical resource allocation problem that we present in Chapter 3, we
provide an application to the algal production. Other applications would also be interesting
by applying our theory in other contexts, as mentioned in Remark 3.2. As an example, we
could consider the case where the dynamical system is associated with the growth of different
trees species, as done in [32]. Meanwhile, one can also consider other strategies of solving the
resource allocation problems presented in this chapter, for instance by using the mixed-integer
optimization techniques.

From a theoretical point of view, although our suboptimal problem provides a faithful ap-
proximation for real life simulation cases, the proposed criterion can still be improved. For
instance, other strategies to regroup the permutations can be used to establish a new criteria, or
an improvement on the two bounds provided in the proof of Theorem 3.2.2. Meanwhile, provid-
ing an approximation for small time duration problem is also an interesting working direction.
Although this may be difficult to accomplish in real life algal production, the productivity in this
limit case is still attractive, and this corresponds to the flashing effect observed for other types
of photobioreactors. The main challenge in this case is that the diagonal matrix D in (3.6) tends
to the identity matrix for which (IN − PD)−1 is no longer invertible, therefore it is much more
difficult to identify it and propose an approximation for it. Numerically, we have tested it with
some algorithms which can not always find the optimal permutation matrices. Therefore, this
could be a challenging working direction.
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Approches Lagrangiennes pour la modélisation et l’optimisation du couplage
hydrodynamique-photosynthèse

Abstract

Microalgae are photosynthetic micro-organisms whose potential has been highlighted in the last decade.
Applications can be found from to renewable energy production and wastewater treatment to some high
added value commercial products e.g., food, pharmaceutical, cosmetics. Nevertheless, finding optimal
growth conditions for full-scale cultivation of microalgae remains challenging in practice. Mathematical
models are therefore of great help to better manage this complex, nonlinear dynamical system. The aim
of this thesis is to better understand how different factors affect microalgal growth.
In a first part, we study the influence of the light attenuation and the optimal condition to maximize
the productivity. In this way, we introduce an optical productivity which enables us to determine the
optimal condition for general light extinction function. A global optimal optical depth is found which
consists in canceling the algal net growth rate at the bottom of the reactors to maximize the optical
productivity. It can be used to characterize the optimization of the areal productivity in some specific
cases, whereas an asymptotic behaviour has been observed in more general case.
We then limit ourselves to a specific reactor - the raceway pond, which is an outdoor circuit basin
combining with a paddle wheel. We start by investigating a resource allocation problem issuing from
the re-distribution of the light resource to the algae by the paddle wheel. A generic mixing device is
considered to assign at each lap the light resource to the algae layers in the raceway. We determine the
optimal allocation strategies to maximize the algal growth.
In a third part, we show how the shape of the topography affects (or not) the algal growth in raceway
ponds. In this way, we consider a hydrodynamical-biological coupled model and introduce an opti-
mization problem associated with the topography to maximize the algal growth. We also combine the
optimization of the topographies with the previous allocation strategies to investigate their influence on
algal production. Non-trivial topographies are obtained numerically to enhance the algal growth.
The mathematical study of these optimization problems leads to new interesting working directions,
improves and clarifies the understanding of influence by different factors on algal growth. We conclude
with some discussions and perspectives of this work.

Keywords: optimization, mathematical modeling, hydrodynamics, dynamical system, resource alloca-
tion, periodic control, nonlinear problem, saint-venant equations, han model, microalgae
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Résumé

Les microalgues sont des micro-organismes photosynthétiques dont le potentiel a été mis en évidence
au cours de la dernière décennie. Des applications peuvent être trouvées dans la production d’énergie
renouvelable ou dans le traitement des eaux usées par exemple. Elles peuvent être utilisées dans beaucoup
de produits commerciaux à haute valeur ajoutée comme par exemple dans l’alimentation, la pharmacie
ou les cosmétiques. Néanmoins, trouver des conditions optimales pour la production des microalgues
à grande échelle reste un défi en pratique. Les modèles mathématiques sont donc d’une grande aide
pour mieux gérer ce système dynamique complexe et non linéaire. L’objectif de cette thèse est de mieux
comprendre comment différents facteurs affectent la croissance des microalgues.
Dans un premier temps, nous étudions l’influence de l’atténuation lumineuse et obtenons une condition
d’optimalité pour maximiser la productivité. De cette façon, nous introduisons une productivité optique
qui nous permet de caractériser la fonction d’extinction de la lumière optimale dans un cadre général.
On trouve une profondeur optique optimale globale qui consiste à annuler le taux de croissance net des
algues au fond des réacteurs pour maximiser la productivité optique. Cette étude nous permet de carac-
tériser la productivité surfacique optimale dans certains cas particuliers, et de décrire le comportement
asymptotique des autres cas dans certains régimes.
On se limite ensuite à un réacteur spécifique, le raceway pond, qui est un bassin de circuit extérieur
associé à une roue à aubes. Nous commençons par étudier un problème d’allocation de ressources issu
de la redistribution de la ressource lumineuse aux algues par la roue à aubes. Un dispositif de mélange
générique est envisagé pour affecter à chaque tour la ressource lumineuse aux algues qui se situent
sur differentes couches dans le raceway. Nous déterminons les stratégies d’allocation optimales pour
maximiser la croissance des algues.
Dans une troisième partie, nous montrons comment la forme de la topographie affecte (ou non) la
croissance des algues dans le raceway. De cette façon, nous considérons un modèle hydrodynamique-
biologique couplé et introduisons un problème d’optimisation associé à la topographie pour maximiser
la croissance des algues. Nous combinons également l’optimisation des topographies avec les stratégies
d’allocation précédentes pour étudier leur influence sur la production d’algues. Des topographies non
triviales sont obtenues numériquement pour améliorer la croissance des algues.
L’étude mathématique de ces problèmes d’optimisation conduit à de nouvelles directions de travail,
améliore et clarifie la compréhension de l’influence de différents facteurs sur la croissance des algues.
Nous concluons par quelques discussions et perspectives de ce travail.

Mots clés : optimisation, modélisation, hydrodynamique, système dynamique, allocation des res-
sources, contrôle périodique, problème nonlinéaire, équations de saint-venant, modèle de han,
microalgues
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