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Abstract

Numerous bacteria and viruses use cells from another species to ensure their pro-
liferation. This mode of reproduction implies the pathogen must escape the host
immune system and reprogram its metabolism to sustain its own needs. These
changes are often detrimental to the host cell and cause pathologies or death. The
intracellular bacteria which use this mode of operation have been the focus of many
studies aiming to understand their "hijacking" mechanisms. Recent advances in
genomics have largely stimulated research in this field by offering the possibility
to decipher the sequence of genes expressed during infection. Several intracellular
bacteria secrete "effector" proteins into the host cytoplasm which interact with its
proteins and affect its genetic expression program. Recently, studies in Legionella
pneumophila, an experimental model for intracellular bacteria, have shown it was
able to alter the epigenetic state of its host. Such modifications allow rapid physio-
logical changes and are intimately linked to the spatial organisation of the genome.
3D genome organisation plays an important part in many biological processes, for
example by modulating gene expression through long range interactions in the
sequence. Throughout this work, we develop computational tools to explore and
measure spatial changes occuring in the genome, and exploit them to investigate the
changes taking place during infection by intracellular bacteria. We use the model
species Legionella pneumophila and Salmonella enterica to explore structural changes
taking place in the host chromosomes and their link with genetic expression.
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Résumé

De nombreuses bactéries et virus utilisent les cellules d’autres espèces pour assurer
leur prolifération. Ce mode de reproduction implique que le pathogène doit échap-
per au système immunitaire de son hôte et reprogrammer son métabolisme pour
subvenir à ses propres besoins. Ces changements s’opèrent souvent au détriment
de la cellule hôte et causent des pathologies ou la mort. Les bactéries intracellu-
laires utilisant ce mode de fonctionnement et font l’objet de nombreuses études
qui visent à comprendre leurs mécanismes de "piratage". Les récents progrès en
génomique ont largement stimulé la recherche dans ce domaine en offrant la pos-
sibilité de déchiffrer la séquence des gènes exprimés durant l’infection. Plusieurs
bactéries intracellulaires sécrètent des "effecteurs" dans le cytoplasme de leur hôte
qui vont interagir avec ses protéines et affecter son programme d’expression géné-
tique. Récemment des études dans la légionelle (Legionella pneumophila), un modèle
expérimental pour les bactéries intracellulaires, ont démontré qu’elle était capable
d’altérer la régulation épigénétique de son hôte. Ce genre de modifications per-
met des changements physiologiques rapides et est intimement lié à l’organisation
spatiale du génome. L’organisation 3D du génome joue un rôle important dans de
nombreux processus biologiques, par exemple en modulant l’expression génétique
par la formation d’interactions entre des éléments éloignés dans la séquence d’ADN.
A travers ce travail, nous développons des outils computationels pour explorer et
mesurer les changements spatiaux du génome, et nous les exploitons pour étudier les
changements qui ont lieu pendant l’infection par des bactéries intracellulaires. Nous
utilisons en particulier les modèles Salmonella enterica et Legionella pneumophila
pour explorer les changements de structure qui surviennent dans les chromosomes
de leurs hôtes et leurs liens avec l’expression génétique.
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I

Introduction

„Flattery isn’t the highest compliment –
parasitism is.

— Gregory Benford
Shipstar

In this first part, we introduce the complex relationships between hosts
and their parasites and discuss the evolutionary implications of these
associations. We then focus on two model systems for infection biology:
Salmonella enterica and Legionella pneumophila. We then provide an
overview of how recent advances in genomics have pushed the knowl-
edge of these systems and their current limitations.



1 Host parasite interactions

A large number of organisms throughout the tree of life establish stable interactions
with other species. Such biological interactions are observed at different scales, from
nanometer-scale virophages infecting giant viruses to fungi forming mycorrhyzal
networks spanning several meters [1, 2] allowing exchange of nutrients with plants
root systems. These interactions are often classified according to their perceived
impact on the Fitness of their members: we traditionally refer to parasitism for
interactions with one-way benefits, and to mutualism when the interaction has a
positive impact on all parties involved. Rather than a dichotomous classification,
the difference between parasitism and mutualism is better regarded as a continuum,
depending on the fitness cost and benefit of the relationship to the host (Fig. I.A).

These biological interactions shape the evolutionary trajectories and genomic land-
scapes of the species involved. These changes can sometimes result in drastic
transitions in the organisms’ lifestyle.

This can be the case for example with intracellular bacteria forming symbiosis
with their host cells, known as endosymbionts. The Wolbachia genus is a famous
example of endosymbiotic bacteria infecting arthropod species. These bacteria are
reproductive parasites which can be transmitted vertically through infection of the
host female’s eggs [3]. Some Wolbachia have altered the reproductive capabilities
of their sexual host species to reproduce asexually by Parthenogenesis [4]. This
effectively removes all males from the host population, benefiting the bacterium
which can only be transmitted through females. In some species, infection by
Wolbachia has even become essential to reproduction. While the bacterium takes
advantage of its host reproduction, it also provides numerous advantages such as

ParasitismMutualism

Host fitness benefit

Host fitness cost

Commensalism

Fig. I.A: Parasitism - Mutualism spectrum: A spectrum of host fitness cost underlies common
terms used to described a biological interaction.
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resistance to viruses in flies and mosquitoes [5, 6] and help with vitamin synthesis
in bed bugs [7], illustrating the blurry line between parasitism and mutualism.

In this work, we focus on bacterial endosymbionts. Living directly inside of their
host’s cytoplasm, their genomic fate is most tightly linked to their host.

1.1 Evolutionary context of intracellular parasitism

Intracellular bacteria can either be facultative or obligatory endosymbionts. Oblig-
atory endosymbionts can only replicate inside of their host cells. This is the case
of several genera of obligate intracellular bacteria, such as Rickettsia or Chlamydia.
These parasites are unable to reproduce outside of their host and become reliant on
it for most metabolic pathways. The host cytoplasm being an isolated environment,
obligate intracellulars have limited opportunity to recombine with other strains.
Small populations of asexual organisms unable to recombine are at the mercy of
Muller’s ratchet, the progressive accumulation of mutations and loss of genetic mate-
rial. They undergo a process known as genome reduction: Pathways provided by
the host need no longer be encoded by the parasite and are therefore lost [8]. This
process eventually leads to the parasite becoming completely reliant on its host for
survival.

Facultative parasites bacteria opt for a different strategy, often with larger host
ranges. These bacteria can complete their life cycle without the need for a host.
They can reproduce in the extracellular space and be transmitted between different
species. An analogy often used to describe the evolutionary dynamics of intracellular
parasites with their hosts is the "arms race". Each organism is under constant
selective pressure and must evolve novel strategies (i.e. weapons) to improve its
own fitness at the expense of the other, a manifestation of the Red Queen hypothesis1

[9, 10]. This is the case for intracellular bacteria such as Legionella or Salmonella,
which secrete a large arsenal of effector proteins into their host’s cytoplasm. These
proteins manipulate host signalling and metabolic pathways to sustain the parasite’s
reproduction and protect it against host defenses. Many of these proteins are
redundant in the sense that they interact with the same host proteins or pathways
and can complement each other if one is defective [11].

Perfectly redundant genes within the bacterial genome should be subject to low
selective pressures, making them susceptible to genetic drift and therefore unstable

1The hypothesis states: "For an evolutionary system, continuing development is needed just in order
to maintain its fitness relative to the systems it is co-evolving with". It is named after the quote
from Lewis Carroll’s novel "Through the Looking Glass": "It takes all the running you can do, to
keep in the same place".
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[12]. It is therefore thought that the functions of redundant genes in intracellular
bacteria have partial overlap, such as different affinity for certain substrates or the
ability to function in different conditions or infection stages [11]. Selective pressure
would therefore be applied on these specific characters. This is likely an important
phenomenon for parasites with a broad range of hosts, or encountering multiple
environments susceptible to changes.

Most intracellular bacteria incorporate genes from their hosts into their genome.
Such genetic transfers are known as Horizontal Gene Transfer (HGT) and are a major
contributor to bacterial genomes, with an estimated 80% of genes being involved
in HGT at some point in their history [13]. More recently, HGT from bacteria to
eukaryotes have also been detected in eukaryotic genomes. Although much less
frequent (0.04-6.49% of genes in microbial eukaryotes [14]), gene transfers from
intracellular microorganisms to eukaryotic hosts are thought to have catalyzed major
shifts in environmental niche. Examples are the terrestrial colonization of plants,
and extremophile eukaryotes such as sea ice diatoms which acquired ice binding
proteins from prokaryotes [14].

All these exchanges illustrate the complex evolutionary dynamics of intracellular
life; genetic material can be passed not only from the host to the parasite, but also
between different endosymbionts, and to the host.

1.2 Amoebae as a host model

Free living amoebae are ubiquitous unicellular organisms found in soil and vari-
ous bodies of water, such as rivers, lakes [15] or even puddles [16]. They graze
on bacterial biofilms, feeding on microorganisms by phagocytosis. This lifestyle
exposes them to a large number of bacteria and viruses and they are host to many
endosymbionts.

Amoebae offer a great experimental model, as many species are relatively easy to
grow in laboratory conditions and can be used for infection experiments. Despite
their extensive use as an infection model, only a few species have high quality
genome assemblies available, and the genomics of free living amoebae remain still
largely unknown. For example the Acanthamoeba castellanii genome has evidence
for highly variable ploidy levels [17] and horizontally acquired genes [18]. These
peculiar genomic features are likely important in their interactions with endosym-
bionts. For instance, high ploidy levels have been proposed as a mean for asexual
amoebae to escape Muller’s ratchet through homologous recombination between
haplotypes [17].

4 Part I Introduction



Similarly, the amoeba Paulinella chromatophora has photosynthetic organelles whose
genome benefits from HGT from endosymbionts, as they counteract Muller’s ratchet.
This exciting observation provides an interesting track to investigate the conservation
of horizontal gene transfers in the genome of free living amoeba A. castellanii [18].

Their long coevolution with endosymbionts make free living amoebae an interesting
model for evolutionary biology and ecology. In addition, they are also highly relevant
to public health concerns, as they are the reservoir of several human pathogens such
as Legionella pneumophila. Besides, many free living amoebae have a biphasic life
cycle, living as trophozoite to feed and reproduce, and transforming into cysts in
harsher conditions. This encystation process makes them even more important from
a public health standpoint, since intracellular bacteria infecting amoebae are able to
survive water chlorination or antibiotic treatments using the encysted amoebae as
shelters.

1.3 Legionella pneumophila

L. pneumophila is an important model for studying intracellular bacteria. It infects
a range of 15 species of amoebae and ciliated protozoa in the wild [19], and can
also infect lung macrophages of humans and other mammalians. In humans, this
can cause a severe pneumonia known as Legionnaire’s disease [20]. Human to
human transmission of L. pneumophila is extremely rare [21], making infection of
macrophages an evolutionary dead-end for the bacterium. L. pneumophila is a major
public health concern as it can contaminate water distribution systems and cause
major outbreaks. The outbreak which lead to the identification of this bacterium
and after which the bacteria was named happened at a convention of the American
legion, Philadelphia in 1976 resulting in 182 cases, 29 of them fatal. Since then,
outbreaks are associated to Legionella every year with over 32,000 cases reported
between 1995 and 2005 [22].

Unlike other bacteria on which phagocytic cells prey (Fig. I.Ba), when engulfed by a
predatory cell Legionella evades the lysosomal degradation pathway and survives in
a special vacuole, the Legionella Containing Vacuole (LCV) (Fig. I.Bb). It does so
by using a type IV secretion system to secrete ∼300 effector proteins into the host
cytoplasm, and rewire the host metabolic and signalling pathways. Many of those
effectors contain eukaryotic domains and likely originate from inter-domain HGT
[23]. Through their secretion, the bacterium is able to create a niche inside of the
host cell with stable conditions and ample nutrients where it can proliferate.
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1.3.1 Life cycle

L. pneumophila follows a biphasic life cycle. It can survive in the extracellular
environment and thrives in fresh water. It can either spread planktonically as a free
living organism using its flagella to reach new hosts, or by associating with biofilms
[24, 25]. This extracellular phase is called the "transmissive form", as bacteria will
search for new host cells but will not replicate [26]. In contrast, when entering a
host cell, the bacterium enters the "replicative form". In that stage, the bacterium
takes advantage of the abundant resources and nutrient available in the host cell to
replicate as much as possible.

Switching between replicative and transmissive phases requires consequent morpho-
genetic and metabolic changes, mobilizing expression changes in almost half of the
known genes [25]. Low nutrient and high stress conditions cause L. pneumophila to
enter transmissive phase, activating genes related to motility and virulence, such
as its type IV secretion system. When entering the replicative phase, genes related
to sugar and gluconate uptake and amino-acid catabolism are upregulated instead.
The bacteria become acid resistant and replicate in the LCV until the nutrient pool is
depleted.

Comparison of gene expression profiles between L. pneumophila grown in vitro in
the absence of host, and in vivo in the amoeba A. castellanii revealed that changes
associated with progression from exponential growth to stationary phase are similar
to those observed between replicative and transmissive phases [27]. In in vitro
cultures, stationary phase refers to the time when bacteria stop replicating for lack
of nutrients. This suggests that the biphasic life cycle of L. pneumophila is governed
mostly by nutrients present in the environment [28].

The master regulator underlying this switch is thought to be the carbon storage
regulator protein A (CsrA). CsrA is an RNA binding protein with over 400 target
transcripts identified, including 40 effector proteins and genes related to virulence
and motility. In replicative phase, CsrA binds its target transcripts to repress their
translation. When nutrients are running low, L. pneumophila produces the alarmone
(p)ppGpp, which triggers the expression of noncoding transcripts with strong affinity
for CsrA. This prevents CsrA from binding its targets and enables the translation of
virulence genes [29].

1.3.2 Host interactions

While inside the host, L. pneumophila consumes products from the host cell for
energy production. It relies mainly on serine, threonine and other amino acids
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but can also scavenge carbohydrates such as gluconate [27]. Those nutrients are
transferred from the host cytoplasm to the LCV by transporters on the LCV membrane
[30]. The bacterium can increase the availability of nutrients in the host cell using
its effector proteins. One example is the AnkB effector which can poly-ubiquitinate
host proteins, causing their degradation by the host proteasome, resulting in amino
acids which can then be imported into the LCV and consumed [31]. Other effectors
block host protein translation to increase the pool of free amino acid available for
consumption by L. pneumophila [32].

The host trafficking system is also hijacked, resulting in the recruitment mitochondria
and Endoplasmic Reticulum (ER) membrane vesicles to the LCV. This is likely
achieved by modulating the activity of host GTPases, such as Arf1, Sar1 and Rab1
[33]. Some Legionella effectors directly affect the host actin cytoskeleton, which is
important in many cellular processes including vesicle trafficking [34, 35].

L. pneumophila also ensures successful infection by promoting host cell survival. The
effector SdhA interferes with host cell apoptosis by inhibiting caspases [36]. All
these interference with the host cell signalling pathways are likely bound to affect
its expression program. It was recently found that one of the effectors secreted
by L. pneumophila directly affects the host epigenetic state. This effector, named
RomA, is a histone methyltransferase which can alter the histone methylation state
throughout the host genome and affects the expression of a large number of genes
[37].

There is still much to learn about the interaction between Legionella effectors and its
host regulation, but that the bacteria is able to modify directly nucleosomes of the
host unveiled a new level of intimacy between bacterial endosymbionts and their
host, with fascinating perspectives. Besides, epigenetics and gene expression are
tightly connected with spatial genome organization in eukaryotes [38, 39], providing
a new angle to approach the study of host-pathogen interactions.

1.4 Salmonella enterica

Unlike L. pneumophila, S. enterica infects not only mammals but also birds and
reptiles [40]. It is also a model for intracellular bacterial infections and a ma-
jor human pathogen. Salmonella is a facultative intracellular parasite which can
infect macrophages, dendritic, epithelial and microfold (M) cells. It is usually trans-
mitted by ingestion of contaminated food and colonizes the gastrointestinal tract.
Salmonella isolates are classified into 2,500 serovars based on their lipopolysaccha-
rides and flagellar antigens. While most serovars, referred to as "non-typhoidal" cause
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salmonellosis, a self-limiting enteritis, "typhoidal" serovars are human restricted and
cause a systemic disease known as typhoid fever [41].

Every year, it is estimated that there are 16.6 million cases of typhoid fever causing
600,000 deaths in the world, and 1.3 billion cases of acute gastroenteritis associated
with Salmonella, responsible for 3 million deaths [42]. Most of the current knowledge
on Salmonella infection biology was built on the non-typhoidal serovar S. enterica
subsp. enterica serovar Typhimurium [41]. Much like Legionella, when Salmonella
enters the host cell, it is engulfed into a Salmonella Containing Vacuole (SCV) and
secretes effector proteins into the host cytoplasm. This is done via two independent
type 3 secretion systems (T3SS) named SPI1 and SPI2. These two systems are
encoded by and named after the Salmonella pathogenicity island, which Salmonella
likely acquired through horizontal gene transfer [43].

The mechanisms employed by Salmonella to infect host cells are similar to Legionella.
For example, they encode effectors that also activate the host gene Arf1 to promote
bacterial uptake and actin polymerization [41]. Although no effector of Salmonella
is known to directly affect the host epigenetic state, a global rewriting of histone
modifications and DNA methylation [44, 45] is observed in Salmonella-infected cells.
Furthermore, histone modifications was associated with susceptibility to Salmonella
infection in chickens [46], further highlighting the importance of investigating
chromatin changes during bacterial infection.
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Fig. I.B: Infection by Legionella: a Non infectious bacteria (green) are phagocytized by
amoebae or macrophages (1), the early and late endosomes (pink) acidify the
compartment (2), and it finally merges with the lysozome (3) where the bacteria
is degraded. b Upon phagocytosis, Legionella uses its type IV secretion system
to secrete effector proteins (red triangles) into the cytoplasm and evades the
endosome route (1). Instead, it stays in a "Legionella containing vesicle" (LCV)
and recruits mitochondria (orange) and endoplasmic reticulum-derived vescicles
(yellow) (2). The bacteria keeps replicating in the LCV until it bursts out and
infects other cells.
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2 Infection through the lense of genomics

Discoveries in biology are typically associated with progresses and advances in tech-
nological development, and the toolbox to detect and investigate bacterial infection
traditionally included biochemical assays and microscopy. The recent advances in
DNA sequencing have spurred a rapid extension of sequencing-derived, genomewide
methods. Here we introduce the different ways these genomics approaches can
provide biological insights into the biology of bacterial pathogens.

2.1 Pathogen characterization

A key task related to infection in biomedical research is the detection and character-
ization of infectious agents. This is of public health relevance, as it allows testing
patients who present suspicious symptoms for the presence of known pathogens, or
determine the pathogenicity of a particular strain.

Genotyping, i.e. the determination of one sample’s genetic make-up from DNA analy-
sis, can be achieved using molecular biology techniques such as Restriction Fragment
Length Polymorphism (RFLP) or Pulsed Field Gel Electrophoresis (PFGE) [47]. These
techniques use gel electrophoresis, which relies on the negative charges carried by
DNA molecules. When put in a polymer gel submitted to an electromagnetic field,
these acidic molecules migrate along the electrical current towards the positive
pole of the field. The migration distance depends on the density of the gel polymer
meshwork that impairs progression of DNA, and is proportional to the size of DNA
molecules. After migration is complete, the gel can be treated with chemical reagent
such as ethidium bromide, a fluorescent agent that intercalates between bases pairs.
These treatments allow highlighting the position of DNA molecules. A large DNA
molecule can be fragmented using a Restriction enzyme into smaller segments of
sizes able to migrate in the gel. Those will generate discrete bands of similar-length
DNA fragments once revealed by chemical reagents. Together these bands form
a bar-code of the larger molecule, and can be interpreted by the scientist to draw
conclusions about its presence or nature. In the case of RFLP, the entire genome is
digested by restriction enzymes beforehand. The digestion will result in a series of
discrete fragments whose lengths can be seen on the gel. Bacterial genotypes have
different mutations which will affect the digestion pattern and resulting barcode on
the gel.
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While these methods work well to determine differences between alleles, they do not
inform us on the actual DNA sequence involved. The advent of DNA sequencing made
it possible to directly link phenotype with associated sequences of nucleotides. In
theory, Whole Genome Sequencing (WGS), the process of determining the nucleotide
sequence of an entire genome at a single time, provides accurate information on
an organism’s nucleotidic or structural polymorphisms compared to the genome
sequences of related strains, allowing to define genotypes at a finer scale. The main
shortcoming of WGS is its higher cost than other genotyping techniques, but the
recent plummeting of sequencing costs have made it relatively affordable. These
advantages have made WGS a popular approach in clinical settings.

2.2 Genomics to probe homeostasis

When host cells are exposed to or infected by a pathogen, their homeostatic state is
disrupted. This disruption is a combination of alterations caused by the pathogen to
colonize the host cell and host-triggered immune reactions to improve its survival.
Multiple levels of regulation are affected upon infection, from signalling to epigenetic
modifications [48]. Over the years, a vast arsenal of NGS techniques has been
developed to characterize and investigate these regulatory states.

The most widely used approach consists in gene expression analysis (RNA-seq). The
total transcribed RNAs present in a biological sample made of cells (infected or
not) can be extracted, and reverse-transcribed into cDNA. That cDNA can be then
sequenced and the relative abundance of each gene’s transcript determined. This
allows the quantification of the expression of all genes in the genome, known as
the transcriptome. Typical transcriptome analysis consists in comparing different
conditions, to find out which genes undergo perturbations (increase or decrease of
expression levels) during infection.

Many levels of regulation allow eukaryotes to fine tune their gene expression (Fig.
I.C). Regulatory elements encoded in the sequence, such as enhancers, can trigger
or facilitate the recruitment of protein complexes to modulate gene expression [49].
Regulation can also apply at the post-translational level, for example by degrading
proteins [50] or applying chemical modifications such as phosphorylation or acety-
lation to modulate their activity [51]. Epigenetic changes, in the form of chemical
modification of histone proteins offer yet another way to regulate gene expression in
eukaryotes. These chemical modifications are thought to collectively form a "histone
code" [52] - a combinatorial set of instructions dictating the regulatory state of
DNA sequences. Although the role of many histone modifications is still partially or
completely unknown, there are many examples of histone marks affecting chromatin
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Fig. I.C: Regulation of transcription in eukaryotic cells. Visual summary of the different lev-
els at which transcription can be regulated. At the largest scale (1), the chromatin
environment can form structures affecting transcription. The open space between
nucleosome can also affect accessibility of protein complexes to gene sequences
(2). Chemical modifications on histone proteins form an epigenetic code defining
the recruitment of transcriptional complexes on the genome (3). The availability
of those factors (4) and the proximity of regulatory sequences such as enhancers
(5) provide another level of transcriptional regulation. Reprinted from “Regulation
of Transcription in Eukaryotic Cells”, by BioRender.com (2020). Retrieved from
https://app.biorender.com/biorender-templates

structure [53, 54] and gene transcription (Tab. I.A). The amount of epigenetic
marks can be quantified along the genome using another NGS-derived technique
known as Chromatin Immuno-Precipitation Sequencing (ChIPseq). In ChIPseq, the
chromatin sample is crosslinked with formaldehyde, a fixative molecule that will
generate covalent bonds between proteins and DNA. The sample is then sonicated
to break the DNA into smaller fragments. Beads coated with antibodies targeted
against a protein of interest (e.g. an epigenetic mark) are then used to precipitate
and isolate DNA molecules bound to the protein of interest from the pool of total
DNA. The crosslink is then reversed and the DNA fragments purified. This allows
one to retrieve all genomic regions that were bound to the protein of interest.
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Mark Regulatory state Type Sources

H3K4Me1 primed enhancers active [55]

H3K4Me3 active promoters active [56, 57]

H3K9Me2 facultative heterochromatin repressive [58]

H3K9Me3 constitutive heterochromatin repressive [59]

H3K27Me3 repressed genes repressive [60]

H3K27Ac active enhancers active [61]

H3K36Me3 transcribed gene bodies active [62]
Tab. I.A: Examples of commonly studied histone modifications of histone subunit 3 and

their impact on transcriptional regulation.

2.3 Capturing chromosome conformation

Most eukaryotic chromosomes are made of a linear DNA molecule which is not
randomly organized into the nuclear space. This long polymer can fold back on
itself, resulting in three-dimensional structures which have several useful properties.
One of the of most obvious, direct advantages of folding consists in compactness:
for example, the human chromosome 1 is made of 250 millions nucleotides, each
spaced by 0.34nm [63]. If straightened, the chromosome would be 85mm long,
yet the whole genome fits into a nucleus of ∼10µm in diameter. Another benefit of
genome folding lies in its potential to contribute to the regulation of gene expression
through the formation of multi-scale structures [64]. Compacting large regions of the
genome by spreading of Heterochromatin can repress their activity [65]. Smaller scale
structures, such as chromatin loops, appear also involved in the fine tuning of gene
regulation [64]. For example, it is suspected that such Chromatin loops play a role
in bridging enhancers and promoters, even though these sequences can be separated
by large genomic distances [66–68]. Chromatin can also organize into compact self-
interacting neighbourhoods forming local "domains", with distinct domains being
isolated from each other. Here too, the significance of such local structures remains
relatively elusive, and is being investigated in a number of Eukaryotic species. In
mammals, Topologically Associating Domain (TAD)s are also associated with large
scale, cohesin-dependent loops [69], while in other species such as the budding
yeast and fruit fly, self-interacting domains could be more delimited by supercoiling,
as they display highly expressed genes at their extremities [70, 71]. Transcription
per se could therefore be a direct player of chromosome folding, but the reciprocal
interplay between transcription and folding remains also elusive and investigated.
Nevertheless, characterizing the regulation of these different levels of chromosome
folding is an essential step towards understanding their potential interplay with
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chromosome function, including the coordination of the gene expression program
with other cellular processes.

2.3.1 3C technologies

The use of genomics to investigate the 3D folding of genomes started with the
invention of the Chromosome Conformation Capture (3C) technique [72]. This
technique allowed researchers to quantify the relative frequencies of physical con-
tacts between pairs of DNA segments in a genome (Fig. I.D, left). This is done
by crosslinking the genome with formaldehyde, a small chemical fixative molecule
that forms stable bonds between DNA and proteins, and subsequently digesting
the genome with a restriction enzyme. Genomic regions closer in space will be
crosslinked together more frequently. Performed over a population of cells, this
will result in DNA-protein complexes, where chromatin fragments from genomic
regions that were on average spatially closer to each other will be over-represented
compared to DNA segments that were on average more distant from each other.
A DNA ligase is then added to the mix, resulting in the ligation of DNA segments,
with a strong bias towards segments that have been trapped together within the
same DNA-protein complex. As a result, on average, DNA segments that were closer
to each other will be preferentially ligated together compared to segments distant
from each other in the population of cells. The crosslink is then reversed. In the
original 3C protocol, the relative frequency of religation events between segments
of interest (i.e. presumed to reflect their relative contact frequency, hence spatial
proximity) was assessed using semi-quantitative PCR. Primers designed to hybridize
on two regions of interest were used to perform a semi-qPCR. Quantified onto a gel,
the amount of amplified product, once normalized, reflected the relative contact
frequency of two known genomic loci. Some limitations of the technique are the
requirement to select regions to monitor and the design of qPCR oligonucleotides,
which could also lead to a number of biases and caveats. Nevertheless, 3C was
successfully used in the seminal study by Dekker et al. [72] to characterize the
overall conformation of budding yeast chromosome III from a 12 x 12 contact map
(reflecting the number of qPCR primers designed). This contact map was further
converted into a distance matrix, itself useful to generate a 3D representation of the
chromosome. These remarkable data remained fully consistent over the next two
decades with results obtained using improved protocols offering increasingly high
resolutions.

From then on, many derivatives of the 3C technique were developed. The most
significant improvement was enabled by the possibility to perform paired-end high-
throughput sequencing, which led to the development of a genome-wide application
of 3C, called Hi-C (Fig. I.D, right). This method shares the main steps of 3C, the
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Fig. I.D: Chromosome conformation capture protocol: Chromosome conformation capture
protocols share common steps (top): The chromatin is first crosslinked to form
covalent DNA-protein bonds and then digested using a restriction enzyme. The
Hi-C protocol subsequently differs from the original 3C protocol. In 3C (left),
fragments are religated, the crosslinked is reversed and specific primers are added
to amplify a pair of known loci. This allows the quantification of interactions
between 2 loci. In Hi-C (right), the fragments ends are filled with biotinylated
nucleotides (pink), religated and the crosslinked is reversed. Streptavidin beads
are then used to pull down religation products which are then sequenced.

main difference being that pair-end sequencing is used instead of qPCR. In Hi-C,
fragment ends are filled with biotin prior to religation [73] and religated products
are enriched through pull-down using streptavidin beads (which have high affinity
for biotin). After ligation, sequencing primers are directly plugged to the extremities
of the 3C enriched library. Paired-end sequencing is performed, and each read of
the pair is then aligned onto the reference genome to determine its original position.
This procedure allows the quantification contact frequencies of all versus all loci in
the genome instead of using specific primers for a single pair of loci.

The information generated by Hi-C experiments therefore consists in counting how
many times pairs of restriction fragments were found ligated together. This results in
a list of contacts between all (in theory) pairs of restriction fragments in a genome.
These contacts are most commonly visualized and interpreted using matrices, also
called contact maps (Fig. I.Ea), which are two-entry tables represented as color-
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coded heat maps. The color of each value in the matrix corresponds to its value
relative to the others, reflecting the contact frequency between the associated pair
of fragments. Those contact maps are an indirect representation of the presumed
tri-dimensional folding of chromosomes. When processed and associated with other
"omics" data, or performed in various mutant contexts, they are rich in information
regarding chromosome regulation.

The various folding structures formed by chromatin can result from the direct or
indirect action of DNA binding proteins. In mammals (and most metazoans), a
typical example is the CCCTC-binding factor CCCTC-binding binding factor (CTCF),
a transcription factor that also appears to act as an "architectural protein" structuring
chromatin. Molecular motors such as the members of the Structural Maintenance
of Chromosomes (SMC) complexes (cohesin, condensin...) and other proteins fam-
ilies slide along DNA to operate various roles. When cohesin is loaded onto the
chromosome, it can extrude two strands of DNA in opposite directions through
its ring-shaped structure, a process known as loop extrusion [74]. When cohesin
encounters a roadblock protein such as CTCF the extrusion stops, forming a chro-
matin loop and maintaining contact between the two DNA strands. Depending on
the location of those roadblocks, this can form stable interactions between distant
genomic regions.

Spatial structural features of chromatin are reflected on Hi-C contact map by specific
patterns (Fig. I.Eb). At the largest scale, chromosomes are relatively independent
from each other in the nucleus, reflecting both their polymer nature, as intra (cis)
contacts are favored over extra (trans) contacts, as well as their propensity to occupy
distinct non-random "chromosome territories". Such large-scale disposition was
unveiled in a broad variety of species using fluorescent in situ hybridization (FISH)
of individually labelled chromosomes [75–78]. In genome-wide Hi-C contact maps,
chromosomes therefore appear as squares of darker intensities along the diagonal,
reflecting the fact that, on average, each chromosome makes more contacts within
itself than with any other chromosome (Fig. I.Ea).

In several plants, mammals, as well as Drosophila [73, 79, 80], chromosomes are
segmented into active and inactive compartments, commonly known as "euchro-
matin" and "heterochromatin" or A/B compartments. The A (active) compartment
has higher GC content, gene density and gene expression than its counterpart [73,
81]. A and B compartments also occupy separate spaces in the nucleus; whereas the
A compartment is located towards the middle of the nucleus, the B compartment
is relegated to the nuclear periphery and associated with lamina domains [82].
This spatial segregation results in enriched contacts between regions segregating
within the same type of compartment, which are reflected on Hi-C contact maps by
a plaid-like pattern.
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Within each chromosome, chromatin forms "self-interacting domains" where DNA
appears more prone to interact with other DNA segments in the same region than
outside, Topologically Associating Domain (TAD) in mammals [83–85]. Genes and
regulatory elements sharing the same domain are in close proximity, while being
isolated from genes in neighbouring domains. Although genes within the same
domain have more similar expression [84], the global impact of domains on the
maintenance of expression is modest [86]. On contact maps, domains form dark
squares along the diagonal of a chromosome, due to the enriched intra-domain
interactions at the expense of inter-domain contacts (Fig. I.Eb, bottom). These
contact patterns are an ensemble average structure from millions of cells observed
through bulk Hi-C. Although, well conserved across experiments and functionally
important, domains are variable across single cells [87]. One emerging thought is
that TADs should be more precisely defined based on their mechanism of formation
rather than their appearance on contact maps [88–90]. At a finer scale, chromatin
loops are visible on contact maps as dots away from the diagonal (Fig. I.Eb, middle).
The coordinates of those dots correspond to the genomic positions of roadblocks
which stopped the extrusion process [74, 91].

2.3.2 Processing and analysis of Hi-C data

The most visible element on any chromosome contact map is the diagonal gradi-
ent reflecting the power-law relationship between genomic distance and contact
frequency. This is often called the distance-decay function or P (s) where s means
genomic distance and P probability of contacts. The slope of the P (s) in itself holds
information on the relative contribution of short range and long range contacts in
the chromosome, which is presumably linked to chromosome compaction and can
vary depending on the environmental, cellular or genetic conditions (mutants, cell
cycle stage, etc.)

Due to the high intensity of this P (s) gradient, patterns of biological relevance, that
deviate from polymer expectations/predictions, are often obscured on the contact
map (especially at short scales). A common preprocessing step to account for this
variation in the contact frequencies, and ponder it, is to apply an observed over
expected (o/e) normalization of the Hi-C map, where each pixel is divided by the
average of its diagonal (Fig. I.Fa) [92, 93]. Lower intensity patterns such as domains,
compartments and chromatin loops become then easier to perceive on the resulting
map.

After o/e normalization, the compartment signal is generally the most salient feature
on the contact maps. It can be extracted by decomposing the normalized contact map
using Principal Component Analysis (PCA) [94], a dimension reduction technique
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Fig. I.E: Interpretation of Hi-C contact maps: a: The Hi-C protocol (left) generates millions
of read pairs representing contacts between genomic loci in a population of cells.
Those contacts can be stored into an all-versus-all contact matrix (right) averaging
all contacts in the population. Each chromosome in the matrix forms a square
of strong self-interactions along the diagonal due to chromosomal territories. b:
Within each chromosomal map, different contact patterns reflect specific confor-
mations (right). The main feature of a contact map is the diagonal gradient (top)
caused by the contact decay according to genomic distances. Chromatin loops
between two anchor loci are visible as dots away from the diagonal (middle).
Insulation domains form squares along the diagonal of a chromosome where loci
within the same domain interact strongly, but interactions between domains are
depleted.

which produces unit vectors retaining as much variability in the data as possible. The
vector (i.e. principal component) explaining the most variance (Fig. I.Fb) can then
be retrieved to get the compartment signal. In some cases where the compartment
signal is weak (e.g. noisy datasets), it may not be contained in the first eigenvector.
A robust approach is to select the principal component with the strongest absolute
correlation to an external signal known to be associated with active chromatin,
such as gene expression or GC content [95] (Fig. I.Fc). The sign of the principal
component is arbitrary, and it must be "phased" with the feature by flipping its sign
to ensure a positive correlation with the said feature. In the phased vector, regions in
the A compartment will contain positive values and vice versa. The positions at which
the sign changes are boundaries between different compartments (Fig. I.Fd).
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Fig. I.F: Representation and analysis of chromatin compartments in Hi-C. a: observed over
expected (o/e) normalization is applied to the balanced contact map to remove
the distance-decay gradient. Higher frequency of interactions within the same
compartment result in a plaid-like pattern on chromosome contact maps. b: PCA is
applied to the o/e normalized contact map and the first few principal components
(PC) are retained. For visualization, each PC is shown alongside its outer product,
yielding the rank-1 reconstruction of the contact map. The outer product matrix
is binarized (negative=blue, positive=red) to show the compartmentalization. c:
The correlation of each PC with GC content is computed, to select the PC with the
highest absolute correlation. d: The sign of PCs being meaningless, the selected PC
is phased (by changing its sign in case of negative correlation) to ensure positive
values represent A compartment.

Many eukaryotic genomes are segmented into insulating domains containing fre-
quently interacting loci, named TAD in mammals. TADs form a multi-scale hierarchi-
cal organization and often contain genes and their associated regulatory elements
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[96]. Regions in separate TADs present various degree of insulation from each other,
and the strength of this relative insulation can be quantified using an "insulation
score". The insulation score of a given region can be simply defined as the intensity
of contacts across that region (upstream with downstream) within a pre-defined dis-
tance [97] and can be represented as a numerical track along the genome. Improved
metrics such as the relative insulation score have since been developed to improve
the detection of TADs [98]. The relative insulation score (RI) at a locus s between
bins k and k+1 with a predetermined window size w is defined as:

U(w, s) =
−1∑

i=−w

i+1∑
j=0

Mk+i,k+j (2.1)

D(w, s) =
w∑

i=1

w+1∑
j=i+1

Mk+i,k+j (2.2)

B(w, s) =
0∑

i=−w+1

w+i∑
j=1

Mk+i,k+j (2.3)

RI(w, s) = U(w, s) +D(w, s)−B(w, s)
U(w, s) +D(w, s) +B(w, s) (2.4)

Where U and D are contacts in the upstream and downstream regions respectively,
and B are the contacts between U and D. This can be visually represented as a
triangle sliding along the diagonal of the Hi-C matrix (Fig. I.G). By contrast the
original insulation score consisted only in computing B (Eq. 2.3).

At a smaller scale, chromatin loops contain valuable information regarding inter-
actions between regulatory elements such as enhancers and promoters, and their
characterization has unveiled unknown layers of regulation complexity. Accurately
calling the positions of the loops is therefore of interest, and many tools have been
developed for this purpose. These computational approaches typically search for
local enrichment of contacts, appearing as dots away from the diagonal, in mam-
malian, or large metazoan genomes contact maps [99, 100]. However, current loop
detection algorithms suffer from low detection rates (recall). As such, an alternative
approach is to focus on a set of genomic intervals of interest (e.g. binding sites of a
transcription factor) and compute a window average of all pairs of intervals. The
resulting average, often called pile-up, can be used to visualize the presence and
strengths of chromatin loops between regions, or be compared between mutants or
experimental conditions [101].

Identifying and quantifying contact changes proved important in the study of many
biological processes, such as differentiation or cell cycle progression [102–104].
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Fig. I.G: Visual illustration of the relative insulation score. Computing the relative insulation
score at bin k involves computing the average interactions between upstream (U)
and downstream (D) regions, denoted as B, as well as the average contacts within
U and B. The key parameter when computing insulation is the window size (w),
determining the size of the U, B and D. Figure adapted from [98]

In that regard, a direct, global and quite approximate comparison is to compute a
similarity metric between pairs of samples. This metric recapitulates very general
patterns, and is very imprecise at identifying discrete changes, but can be convenient
as a quality control, notably to estimate technical (replicates) and biological (condi-
tions) variability. Different comparison metrics have been used, such as the sum of
differences between Hi-C matrices [105], correlation coefficients [106] or distance
between the matrix eigenvectors [107].

Rather than computing a single metric for each sample, most applications of Hi-C
require the identification of regions where the chromatin behaviour changes. Several
methods aiming to achieve this are adapted from existing count-based algorithms
designed for RNA-seq [108–110]. In this analogy, they consider each bin of the
genome as a "gene" and their contacts as an expression count. A discrete probability
distribution is then fitted to the bin counts and used to identify bins with significant
contact changes consistent across replicates. This approach relies on solid statistical
grounds, but it often does not address the question at hand. When analyzing Hi-C
data, one is sometimes more interested in finding specific structures appearing or
disappearing rather than identifying discrete simple contact change at a region. The
development of methods to discover relevant changes in chromatin conformation
patterns is still an active area of research.
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2.4 Combining layers of biological information

The central dogma of biology - "DNA→ RNA→ protein" - describes a linear set of
reactions carrying the flow of information in living organisms. It is now known that
these reactions by themselves are hardly sufficient to explain the complexity of bio-
logical processes. The fine tuning required for proper regulation is achieved through
feedback loops and cross-talk between the different types of molecules (Fig. I.H).
Common examples are methylation of DNA by proteins to reduce gene expression
[111], noncoding RNAs recruiting proteins to repress transcription [112] or directly
repressing translation by preventing ribosome binding [113, 114]. More generally,
gene expression is affected by transcription factors binding to surrounding regulatory
DNA sequences. The arrangement of those sequences along the genome form what
has been coined the cis-regulatory code [115] and regulates gene expression in
coordination with transcription factor concentrations. Spatial interactions have been
proposed as an additional player in the regulatory code, through the delineation of
"gene domains", consisting of insulated domains (i.e. small TADs) which connect
genes with the appropriate regulatory sequences [116, 117].

DNA

RNA

Protein

transcription

translation

miRNA
lncRNA

sRNA

DNA methylation
Histone modifications

Translational regulation

Transcriptional regulation

Fig. I.H: Central dogma of molecular biology. Products and reactions from the central
dogma are shown in green, with grey arrows showing some of the regulatory
interactions between the different biomolecules.

There is now a growing area of research focusing on the development of methods
that combine these layers of information. They aim to gain an integrative view of
biology to better model the behaviour of molecular networks. This is done by com-
bining "omics" datasets measuring various biomolecules, gene expression, protein
binding, histone modifications or protein abundance and identify relationships with
phenotypes of interest.

One of the main challenges is to find efficient ways to combine this information to
extract meaningful biological information. More often than not, they are analysed
separately to find regions of deregulation common to the different layers. Another
challenge is the difficulty to combine different datasets due to technical heterogene-
ity or biological variations, such as different strains, heterozygosity, experimental
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conditions. Nevertheless, there have already been attempts at integrating these
levels of information [118, 119].
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3 The importance of genome assembly

Most of the genomic techniques presented earlier cannot be performed without
having a high quality sequence of the genome of the species investigated at hand.
Ideally, a complete reference would consists to a telomere-to-telomere genome,
as downstream analyses will rely on the relative positions of different biological
elements on the genome sequence to draw biological conclusions.

The availability of several sequenced genomes closely related to the species of
interest is also crucial for comparative analyses. Among other things, it enables
identification of HGT events, comparative genomics analysis, and investigation of
the evolution of molecular processes. However, for many species, full reference
genomes remain incomplete or nonexistent. Several worldwide efforts have been
undertaken to generate catalogs of the genomes of all existing species, broadening
the number of species with their full genome being sequenced. Until recently, the
only eukaryotic genomes with telomere-to-telomere sequences, and (almost) no gaps
within the chromosomes, consisted in fungi with compact genomes species such as
Saccharomyces cerevisiae or Schizosaccharomyces pombe, the worm Caenorhabditis
elegans [120, 121]. Here we describe in more detail the process of genome assembly
and its relevance to infection genomics.

3.1 From reads to chromosomes

Genome assembly consists in reconstructing the linear sequence of the genome
from the readings of DNA by different sequencing technologies. Although the final
assembly depends on the quality of these readings, the algorithms used to combine
their information are also crucial.

In the early days of genome sequencing, the Sanger and Gilbert methods were used
to read DNA sequences [122, 123].These are low throughput, but highly accurate
sequencing methods. These technologies allowed to unveil the complete genome
sequences of viruses [124–126] followed by chromosome III of S. cerevisiae, the first
eukaryotic chromosome to be sequenced [127]. A common practice at the time, was
to clone small genomic regions of ~10-30 kb into a plasmid resulting in a bacterial
artificial chromosome, amplify it in bacteria and extract it [128]. The positions
of those clones and relative order on the chromosome were then determined by
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digesting them into restriction fragments and hybridizing them to identify overlaps
and construct a physical map of the chromosome [129]. Each clone was then
randomly fragmented and sequenced. The sequencing readout, in the form of gels,
had to be deciphered by scientists, one nucleotide at a time. The cloned region was
then assembled manually by searching for overlaps between fragments.

Further technological improvements enabled the automation of the sequencing pro-
cess to tackle the assembly of larger eukaryotic genomes. Early genome sequencing
projects were performed using laborious and costly experimental methods, such as
Bacterial Artificial Chromosome (BAC), which involved cloning long overlapping
pieces of DNA of the genome into bacteria. These pieces were then experimentally
amplified and sequenced in parallel. Overlapping ends from each of those sequences
had to be aligned to recover the entire chromosome sequence. The first genome
sequencing projects were sizable undertakings requiring the collaboration of many
research groups throughout the world [127, 130, 131], but technological advance-
ments progressively reduced the cost and time required. A decisive change was the
development of shotgun sequencing [132], which involves randomly sequencing
regions to cover the entire genome.

With the advent of Next Generation Sequencing (NGS), shotgun sequencing became
the standard for whole genome sequencing. NGS has much higher throughput than
Sanger sequencing, allowing to sequence megabases of DNA very quickly. However,
it can only read short sequences at a time, referred to as Reads. Classic overlap-based
genome assembly algorithms used in previous sequencing projects could not scale to
such large numbers of short reads. This called for the development of more efficient
genome assembly algorithms.

The goal of an assembler is to generate a highly contiguous genome sequence from
a large number of short reads. Early algorithms computed pairwise alignments
between all reads to build an overlap graph (Fig. I.Ia). The genome could then be
assembled by finding the Hamiltonian path of the graph, which passes once through
every node. However, finding this approach is computationally expensive and cannot
be used with high sequencing throughput [133]. This lead to the development of de
Bruijn-based assembly algorithms, which many modern assemblers still use [134,
135]. de Bruijn assemblers split reads into short K-mers which they use to generate a
de Bruijn graph. In these graphs, k-mer sequences represent edges, and the overlap
between adjacent k-mers within reads are the nodes (Fig. I.Ib). To assemble a
genome, assemblers need to find the Eulerian path, which passes through every
edge once. However this is often not possible because of repeated sequences in the
genome, sequencing errors and haplotypes [136]. Whenever a repeated sequence
is longer than the read itself, the graph can not be solved and heuristics have to be
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Fig. I.I: Graphs in genome assembly: A small circular genome is sequenced and the resulting
reads are shown in color a: Early assembling techniques computed all pairwise
alignments between reads to represent them as nodes in an overlap graph and their
overlaps as edges. The genome sequence can be retrieved by finding a path going
through each read exactly once. b: Modern assemblers first split reads into their
constituent k-mers and represent the k-mers as edges in a de Bruijn graph where
nodes are the k-1 overlap between two k-mers located in the same read. The path
going through each edge once is computed to solve the graph. K-mers are extracted
from the edges visited to retrieve the genome sequence. Adapted from [133]

used. Rather than a single fully resolved genome, the resulting assemblies usually
have a relatively high number of independent pieces called Contigs.

Third generation sequencing partially alleviates this issue by generating long albeit
less accurate reads. Read lengths up to hundreds of thousands of basepairs can be
generated, which can span most repeated regions. Recently, these technologies were
used to generate telomere-to-telomere assemblies of several human chromosomes
[137, 138]. Third generation sequencing techniques still suffer from their lower
base calling accuracy resulting in assemblies with high point error rates (>10%) and
indels [139, 140]. To remove these errors, some methods have been developed to
correct long reads before assembly, either by correcting long reads among themselves
[141], or using a separate set of short accurate reads to erase sequencing errors in
long reads [142]. Most long reads correction tools are also unable to differentiate
between SNPs and sequencing errors, which result in the loss of haplotype informa-
tion and prevents the generation of haplotype-resolved assemblies. Some long read
correction methods have recently been developed to preserve haplotypes information
[143]. One major drawback of read correction methods is their high computational
cost, as they require to align high number of reads to each other. An alternative
strategy is to use the uncorrected reads to assemble the genome and perform error
correction directly on the assembly, a process known as Polishing. Traditional short
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read polishers work by aligning short reads to the assembly and replacing each posi-
tion of the assembly by the consensus of short reads [144]. Additionally, they can
correct larger scale misassemblies such as indels by using the pair-end information
and alignment discrepancies [145]. Some polishers have obtained better polishing
accuracy by combining the information in short and long reads [146].

The last sequencing technology in date is the HiFi platform from Pacific Biosciences
which produces fairly long (10-25kb) but very accurate (<1% error rates) reads,
thus offering a comfortable middle ground between Nanopore and Illumina reads
[147]. This trade-off has made HiFi reads popular for genome assembly [148, 149].
Their low error rates have also enabled algorithmic developments with drastically
lower computational costs for the assembly of large metagenomes [150].

Recently, the emergence of specialized technologies aimed at scaffolding have al-
lowed the generation of even more contiguous and correct genomes at reduced
costs. One example is the recent rebirth of optical mapping to introduce fluorescent
probes into chromosomes at specific sites [151]. The order of these probes and
their relative distance form barcodes which can then be used to scaffold genome
assemblies, reorder and merge contigs. This is often combined with Hi-C to generate
highly continuous assemblies even in the presence of repeated sequences.

A growing number of genome assemblies combine several of these different tech-
nologies to bring the number of scaffolds as close as possible to the real number of
chromosomes (Fig. I.J).

correction assembly polishing scaffolding

Shotgun
External

information

Long reads Genome

Fig. I.J: Example of a typical assembly pipeline using third generation sequencing. The
error prone long reads are first corrected by pairwise comparisons. The corrected
reads are assembled into contigs using their overlaps. The remaining sequencing
errors in the assembly are removed by polishing with accurate short reads. Other
sources of information can then be used to combine contigs into scaffolds.

3.2 Phylogenetic representation

A common way to analyse the genome of new microorganisms is to compare it to
other species. To achieve this, one needs to have other closely related genomes
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available. A common case where dense species genome representation is required is
when attempting to detect HGT.

HGT detection methods often rely on discordance between gene trees and species
trees. A horizontally transferred gene between two distant species would show
strong sequence similarity [152]. For this reason, detection of recent events requires
genomes of closely related organisms as a comparison point.

?

?

?

Species tree Gene treea

b

Fig. I.K: Phylogenetic representation of an HGT event. a: An HGT event between two
species (shown with a green arrow) can be detected through discrepencies between
the species (left) and gene (right) trees. b: In cases where genomes of closely
related species are unavailable (greyed out organisms), the origin of the horizontal
transfer cannot be accurately inferred (possible events shown with grey arrows).

Another frequent analysis when comparing a group of strains or species of microor-
ganisms is to define the set of genes they contain, known as pangenome. This
also allows the identification of genes specific to a subset of these genomes, known
as accessory genome. Such sets can be helpful to determine metabolic reactions
associated with species or niches, however they heavily depend on the proportion of
available species in the group.
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Lately, several large consortia [153–155] undertook the daunting task of sequencing
thousands of organisms throughout the tree of life. For the aforementioned reasons,
these large collaborations are likely to greatly improve the power of comparative
genomic analyses results in the future.

3.3 The transition to genome graphs

Until recently, all reference genomes were exclusively stored as linear (or circular)
sequences of DNA. This linear sequence is often obtained from a mix of multiple
individuals, or alleles within an individual. It is effectively a semi-arbitrary combina-
tion of multiple haplotypes collapsed into an artificial consensus sequence. A more
accurate alternative is to produce a reference sequence graph instead [156]. Given a
collection of haplotypes, individuals, or strains of a species, one can generate a graph
where identical regions are collapsed, while sample-specific variants form bubbles
retaining the genetic variability. As this approach is relatively recent, few algorithms
have been developed to operate on sequence graphs, making their applications very
limited.

The shift to genome graphs is promising for the analysis of bacterial samples, where
alignment can be performed on multiple strain references at the same time. Doing
this with a collection of linear genomes incurs mapping bias due to ambiguous
alignments of redundant regions between references [157]. Similarly, genome
graphs also allow systematic alignment to different alleles in polyploid organisms,
solving the issue of allele-specific mapping bias in linear references [158].
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4 Thesis objectives

Throughout this first part, we have laid out the scope of host-pathogen interactions
and summarized the current state of genomics in relation to regulation and 3D
genomes. Genomics is a fast changing field and there is a need for computational
tools to extract meaningful biological information from the wealth of data.

Throughout the next part, we will introduce our contributions to the field and main
results. In the first chapter, we explain our methodological developments related
to chromosome conformation capture technologies. In the second chapter, we will
present our chromosome scale genome assembly of A. castellanii. We then use this
resource for our main findings on the genomic changes happening during infection
by L. pneumophila. In the last chapter we will focus on murine bone macrophages
infection by S. enterica and the genomic alterations it entails. We will end with
part 3 where we discuss various aspects of genomics in infection biology, including
prospects and limitations.

In this work, we develop accessible and performant methods to extract information
from 3C technologies and use them to identify changes happening during infections
in various organisms. We then use external data such as gene expression to assess
the genes involved in those alterations and discuss how they could be associated
with the infection process.
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II

Results

„Unfortunately, no one can be told what The
Matrix is. You’ll have to see it for yourself.

— Morpheus
The Matrix

In this second part, we present new results produced in the frame of this
work. We start by describing tools and algorithms developed to address
the questions at hand. In later parts, we dive into the biological results
and discuss their significance.



1 Extracting biological signal from contact
maps

Most genomics methods generate a large amount of data. The information contained
in these data is not always readily accessible, and in addition most of it is often not
directly relevant for the problem at hand. One of the main challenges emanating
from genomics data is therefore process the data to extract meaningful information,
and then distill this information and extract only the relevant signal.

In the case of Hi-C and other related derivative genomics techniques, the resulting
signal is a collection of contacts recorded between pairs of genomic segments. These
contacts reflect the average genome structure from a population of cells. However,
in addition to reflecting the average of a population of cells, the data themselves are
subject to various biases intrinsic to their generation.

The specific contacts revealing spatial features and changes of interest are therefore
sometimes hard to detect and, importantly, to quantify and validate statistically.
They can be faint, reflecting events that occur only in a fraction of the cells in the
population, or masked by experimental noise. This is especially true regarding data
generated from species that are not heavily investigated and for which optimization
of the protocols was not performed. The quality of the data has indeed strongly
improved over the last 10 years, allowing the reduction of bin sizes from 1 Mb for a
human contact map in 2009 [73], to 1 kb in more recent papers. In yeast, bacteria,
or Archaea, several years passed before protocols reaching a decent resolution (e.g.
~20 kb bin) were developed. Only recently contact maps of bacteria reached bin
sizes of 1 kb [159]. Detecting and quantifying the changes in these contact maps
of variable quality therefore requires a set of bias correction and signal detection
methods which are still under continuous development, drawing from innovation in
computer science and algorithmic fields.

In this section we review the recent methodological developments that allow cor-
recting the Hi-C signal and present new methods to extract, quantify and assess the
relevance of biological features from these datasets. These developments proved
necessary to tackle the questions raised in the following chapters.
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1.1 Streamlined and reproducible Hi-C
processing

Pre-processing of Hi-C data, which consists in converting Next Generation Sequenc-
ing (NGS) reads into chromosomal contact matrices involves several steps that will
impact the resulting signal. The sequencing reads themselves can be the result from
religation of two distinct loci (Fig. II.A). These chimeric reads cannot be aligned reli-
ably with generic methods and need to be cut for proper alignment [94]. Chimeric
reads become more problematic when increasing the read size relative to restriction
fragment length.

Fig. II.A: Chimeric reads in Hi-C: Example of a Hi-C fragment resulting in a chimeric read.
The Hi-C fragment contains 3 different regions (green, orange and grey) which
have been religated together. The paired-end sequencing reads are shown as
dotted line. The sequencing read spanning the green and orange region will be
chimeric and not map to a unique region.

Not all read pairs generated by Hi-C experiments represent valid spatial interactions.
Some restriction fragments are sequenced without religation and other fragments
religate on themselves (Fig. II.B) [160]. The various interaction types can be
separated based on the strand of origin of their individual reads. In theory, and
in practice at long ranges, one would expect religations to be strand agnostic and
to have an equal abundance of all four possible combinations (++, −−, +−, −+).
In reality, this is never the case at short range contacts, due to the enrichment of
dangling ends (or uncut fragments, +−) and self-circles (or loops, −+) (Fig. II.Bb,
c) [160].

These biases must be accounted for when processing Hi-C data. This can be achieved
by identifying and filtering out faulty interactions based on their strands.

This preprocessing is often performed using custom scripts and prone to errors,
bugs and lack of informations about parameters. In an effort to improve repro-
ducibility and accessibility of Hi-C analysis, we developed hicstuff, an open source
Hi-C pipeline that incorporate all the aforementioned steps, along with several
downstream processing utilities (Fig. II.C).

Hicstuff can properly align chimeric reads, by digesting them in-silico at religation
sites, or using iterative mapping (Fig. II.D) where reads are truncated and iteratively
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c d

Fig. II.B: Types of interactions generated from Hi-C experiments: a: Valid interaction
resulting from the religation of two distant loci in physical contact. b: Spurious
event caused by the sequencing of a single restriction fragment, or undigested
sequence. c: Spurious event resulting from the self-religation and breakage of a
fragment. d: Interactions caused by PCR duplicates. Both reads have the exact
same coordinates for all PCR duplicate pairs.

extended until they align unambiguously. The Hi-C pairs are then assigned a numer-
ical index according to the restriction fragment they originate from (Fig. II.E) and
artifactual contacts are filtered out using the strand information. Contacts in each
bin combination are then summed into a "contact matrix", which is stored in sparse
format to spare memory (Fig. II.F). To allow compatibility with various programs, it
can generate sparse matrices in 3 possible formats: COO, bedgraph2d and cool. COO
(COOrdinate format) and bedgraph2D are text-based sparse matrix representations,
while cool [161] is a specification based on the binary HDF5 (hierarchical data
format) to represent Hi-C data. The cool format is seeing widespread adoption in
the research community and offers several advantages, including low storage space,
ease of use and fast random access compared to text formats.

Hicstuff is meant to be easily accessible [162], even to non-expert users. It has
a comprehensive online documentation and tutorials, and the program and its
dependencies are installed with a single command. The program is written in python
and is accessible both via a Command Line Interface (CLI) to use it as an executable,
and an Application Programming Interface (API) to import it as a python library.
It is covered by unit tests which are automatically executed on each new release,
on the cloud through a continuous integration service to reduce the likelihood of
bugs. Hicstuff runs well with default parameters, but has many options to fit most
common use cases. It works regardless of genome size or organism.

The pipeline also provides reproducibility through an automatic logging of every
intermediate result in the pipeline as well as the input parameters used.
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Fig. II.C: Overview of the hicstuff pipeline: Consecutive steps towards the generation of a
contact map from sequencing reads, along with the intermediate files are shown
as a directed acyclic graph.

The project has already fostered a modest community of users which are offering
their contributions, suggest features or report issues they encounter. The Hicstuff
pipeline is distributed through the python package index (PyPI) and its source code
is available on github: https://github.com/koszullab/hicstuff.
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Fig. II.D: Iterative alignment of a Hi-C pair: The Hi-C fragment consists of 3 regions
religated together (top). One sequencing read spans two regions (orange and
green). Iterative alignment is used to uniquely align the resulting chimeric read
(left). The read is truncated to a short length (e.g. 20bp) and iteratively extended
until it aligns to a unique position in the genome. Alternatively, reads which do
not map uniquely can be digested in-silico at known religation sites (right) to
remove the chimeric part. The digested reads are then realigned.
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Fig. II.E: Fragment attribution of Hi-C contacts: The genome is segmented into discrete bins
according to the positions of restriction sites. Hi-C reads are assigned an index
according to the restriction fragment to which they aligned.
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Fig. II.F: Dense and sparse matrix representations: . In Hi-C, matrices are very sparse (i.e.
mostly contain 0s), (left). In dense matrix representation, we store all values
explicitely. The information stored is highly redundant (middle). Such matrices
can be stored efficiently using a sparse representation where only non-zero values
are stored explicitely along with their coordinates (right).
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1.2 Feature detection with Chromosight

The downstream analysis of chromosome contact maps often involves looking for
signals reflecting biologically relevant spatial interactions. Several specialized ap-
proaches for pattern detection have been proposed in the past [95, 163, 164]. Each
of these methods use a set of specific rules to detect one particular type of pattern.
For example, HICCUPS [164] detects chromatin loops by scanning each pixel of the
contact map for contact enrichment compared to surrounding pixels.

These specialized methods present several drawbacks, including strong reliance on
parameter values, poor generalization to non-model species and poor detection rates.
These shortcomings motivated us to work on a more generalized pattern detection
method to identify arbitrary patterns in chromosome contact maps. We developed
a python package named Chromosight, which performs pattern detection on Hi-C
matrices in cool format.

Chromosight uses template matching to identify features on a chromosome contact
map. This technique consists in scanning the input Hi-C matrix with a smaller
"kernel" image corresponding to the pattern of interest (e.g. a loop) to identify input
regions bearing similarity to the kernel. This has the added benefit of allowing the
user to swap the kernel to detect a different feature.

One of the main algorithmic challenges of applying a convolution-based method to
Hi-C data is the size of matrices. Hi-C matrices are notoriously large, but they are
also extremely sparse (most loci do not interact with each other). As a consequence,
sparse matrix representation is generally used to handle Hi-C data (Fig. II.F). In the
case of large genomes, such as that of Homo sapiens, an entire chromosome’s contact
can consist of to 30,000 x 30,000 bins of 10 kbp. One of the main drawbacks of
sparse representation is that most algorithms are slower and harder to implement on
such structures. No implementation of convolution for sparse matrices was openly
available, which prompted us to write an efficient method to scan the billion of
pixels from Hi-C maps in reasonable time. Fortunately, the convolution problem
can be reformulated as a matrix multiplication by transforming the input matrices
(see A.1), and matrix multiplication is a standardized operation that has been highly
optimized in low level libraries, including for sparse matrices.

During the development of Chromosight, we put special attention on good software
practices mentioned in section 1.1 to make it easy to use and accessible. This was
done by spending time documenting the python API and the CLI as well as publish-
ing publicly accessible tutorials and examples on a dedicated readthedocs website
(https://www.chromosight.readthedocs.io/). Furthermore, the program is cov-
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ered by a suite of unit tests set up with continuous integration. On every new
release, Chromosight is automatically distributed on PyPI, bioconda and dockerhub
to accomodate the different use cases and pipelines.

Chromosight’s algorithm, results and benchmark against state of the art loop de-
tection methods are presented in details in the following pages. The algorithmic
details used to tackle the sparse convolution problem are presented in Appendix
A.1. Additionally, a case study demonstrating Chromosight capabilities is shown in
appendix B.

38 Part II Results



ARTICLE

Computer vision for pattern detection
in chromosome contact maps
Cyril Matthey-Doret 1,2, Lyam Baudry 1,2,5, Axel Breuer3,5, Rémi Montagne1, Nadège Guiglielmoni 1,

Vittore Scolari 1, Etienne Jean1, Arnaud Campeas3, Philippe Henri Chanut3, Edgar Oriol 3, Adrien Méot3,

Laurent Politis3, Antoine Vigouroux4, Pierrick Moreau 1, Romain Koszul 1✉ & Axel Cournac 1✉

Chromosomes of all species studied so far display a variety of higher-order organisational

features, such as self-interacting domains or loops. These structures, which are often

associated to biological functions, form distinct, visible patterns on genome-wide contact

maps generated by chromosome conformation capture approaches such as Hi-C. Here we

present Chromosight, an algorithm inspired from computer vision that can detect patterns in
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Proximity ligation derivatives of the chromosome con-
formation capture (3C) technique1 such as Hi–C2 or ChIA-
PET3 determine the average contact frequencies between

DNA segments within a genome, computed over hundreds of
thousands of cells.These approaches have unveiled a wide variety
of chromatin 3D structures in a broad range of organisms. For
instance, in all species studied so far, sub-division of chromo-
somes into self-interacting domains associated with various
functions have been observed4,5 (Fig. 1a). In addition, chromatin
loops bridging distant loci within a chromosome (from a few kb
to a Mb) are also commonly detected by Hi–C, such as during
mammalian interphase6 or yeast mitotic metaphase7–9. Other
spatial structures are more peculiar, and sometimes specific to
some organisms. For instance, the contact maps of most bacteria
display a secondary diagonal perpendicular to the main one10–12,
reflecting the bridging of chromosome replichores (i.e. arms) by
the structural maintenance of chromosome complex (SMC)
condensin10, a ring-shaped molecular motor able to entrap and
travel along DNA molecules13. Smaller straight, or loosely bent,
secondary diagonals, also perpendicular to the main diagonal, can
also be observed in some maps, reflecting potentially long DNA
hairpins or dynamic sliding asymmetrical contacts (Fig. 1a). Such
“hairpin-like” configuration is for instance observed near the
origin of replication of the Bacillus subtilis genome, were it was
originally described as a “bow shaped” structure10. The formation
of these different structures can vary depending on the stage of
the cell cycle,7,10,14, the state of cell differentiation15 or viral

infection16. Different molecular mechanisms have been proposed
to explain the patterns visible on the contact maps, and for a
similar pattern, these mechanisms or their regulation can differ.
Although detailing these mechanisms is beyond the scope of the
present work, one can note that in mammals the CCCTC-binding
factor (CTCF) protein is enriched at loop anchors (i.e. the regions
bridged together). It has been proposed that CTCF acts as a
roadblock to the SMC molecular motor cohesin, which travels
along chromatin. Cohesins promote the formation of chromatin
loops, potentially through a loop extrusion mechanisms in which
two chromatin filaments are extruded through the cohesin
ring17). When cohesin encounters a roadblock along one of the
filament, chromatin displacement stops in this direction. As a
consequence, two roadblocks at two distant loci will stop cohesin
progression along both filaments, resulting in a stabilised loop.
Such stable loops are then visible in bulk genomics techniques
such as Hi–C (for more insights on the putative mechanisms, see
for instance17,18). Other patterns such as the perpendicular
“hairpin” can be explained by alternative scenarios, for instance
where cohesin is continuously loaded at a discrete position along
the chromatin while being unloaded before hitting a roadblock. A
single roadblock combined with continuous cohesin loading in an
adjacent locus could result in a bent, bow-shaped pattern, as
proposed in10,19,20. A large body of work, exploiting genetics and
chromosome engineering approaches, aims at characterising the
regulation and the functional relationships of these 3D features
with DNA processes such as repair, gene expression or
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segregation. Although most structural features can be identified
by eye on the contact maps, automated detection is essential to
quantify and facilitate the biological and physical interpretation of
the data generated through these experiments. While border
detection can be achieved quite efficiently using different methods
(segmentation, break-point detection, etc; ref. 21), the calling of
loops, as well as other more peculiar features such as “hairpin-
like” signals, remains challenging.

Most tools aiming at detecting DNA loops in contact maps rely
on statistical approaches and search for pixel regions enriched in
contact counts, such as Cloops22, HiCCUPS23, HiCExplorer24,
diffHic25, FitHiC226, HOMER27. These programs can be com-
putationally intensive and take several hours of computation for
standard human Hi–C datasets (reviewed in ref. 22), or require
specialised hardware such as GPU (HiCCUPS). In addition, most
if not all of them were developed from, and for, human data. As a
consequence, they suffer from a lack of sensitivity and fail to
detect biologically relevant structures not only in non-model
organisms but also in popular species with compact genomes
such as budding yeast (Saccharomyces cerevisiae) or bacteria
where the scales of the structures are considerably smaller than in
mammalian genomes. Here we present Chromosight, an algo-
rithm that, when applied on mammalian, bacterial, viral and yeast
genome-wide contact maps, quickly and efficiently detects and/or
quantifies any type of pattern, with a specific focus on chromo-
somal loops. Different species were chosen to reflect the diversity
of genome-wide contact maps observed in living organisms. For
instance, loop contact patterns have been observed in these four
clades, but with very different scales and visibility. In human
(genome size: ~3 Gb), interphase chromosomes display loops
bridging chromatin loci separated by ~20 kb to 20Mb. The
structures are reflected by well-defined, discrete dots in the
contact maps, away from the main diagonal. In contrast, the
mitotic chromosomes of S. cerevisiae and fission yeast Schizo-
saccharomyces pombe (genome sizes: ~12Mb) organise into
arrays of loops spanning ~5–50 kb, i.e. much smaller than the
loops observed along mammalian interphase chromosomes7–9.
Because of their proximity to the main diagonal in standard Hi–C
experiments, the signal generated by those loops is more difficult
to call. Loops have been observed in bacteria as well. For instance,
in B. subtilis (genome size: 4.1 Mb), a few weak, discrete loop
signals were observed but never directly quantified10. In addition
to loops, self-interacting domains have also been described in
these different species, that differ in size and nature. For instance,
topologically associating domains4,28 have a mean size of 1 Mb
(from 200 kb to 6Mb) in human and mice, compared to the
small, chromosome interacting domains (CID) of bacteria that
range in size between a few dozens to a couple hundreds
kb10,29,30. Besides this limitation, most programs are limited to
domain or loop calling and remain unable to call de novo dif-
ferent contact patterns such as DNA hairpins or the asymmetric
patterns seen in species such as B. subtilis10.

Results
Presentation and benchmark of Chromosight. Chromosight
takes a single, whole-genome contact map in sparse and com-
pressed format as an input. It applies a balancing normalization
procedure31 to attenuate experimental biases. A detrending pro-
cedure, to remove distance-dependent contact decay due to
polymeric behaviour, is then applied, which consists in dividing
each pixel by its expected value under the polymer behaviour
(Fig. 1b). A template (kernel) representing a 3D structure of
interest (e.g. a loop, a boundary,...) is fed to the program and
sought for in the image of the contact map through two steps
(Fig. 1b). First, the map is subdivided into sub-images correlated

to the template; then, the sub-images with the highest correlation
values are labelled as template representations (i.e. potential
matches, see Methods). Correlation coefficients are computed
by convolving the template over the contact map. To reduce
computation time, the template can be approximated using
truncated singular value decomposition (tSVD) (Supplementary
Note 132). To identify the regions with high correlation values
(i.e. correlation foci), Chromosight uses Connected Component
Labelling (CCL). Finally, the maximum within each correlation
focus is extracted and its coordinates in the contact map
determined.

We decided to benchmark Chromosight against 4 existing
programs by running them in loop-calling mode on synthetic
Hi–C data mimicking mitotic chromosomes of S. cerevisiae
(“Methods” and Supplementary Fig. 1). Whereas Chromosight
displays a precision (i.e. proportion of true positives among
detected patterns) comparable to the other programs, its
sensitivity (i.e. proportion of relevant patterns detected) is more
than threefold higher (~70%) compared to the second-best
program Hicexplorer (~20%) (Fig. 1c). As a result, Chromosight’s
F1 score, a metric that considers both precision and sensitivity, is
also threefold higher, reflecting the effectiveness of the program at
detecting more significant loops in this synthetic case study
(Supplementary Fig. 2a). To further benchmark the program’s
performance, we ran the three best CPU-based programs
(Cooltools, Hicexplorer, Chromosight) on high resolution (10
kb), human genome-wide experimental contact maps. Chromo-
sight outperforms existing methods regarding computing time
(Fig. 1d), without straining RAM (Fig. 1e). For instance, on a
single CPU core, it detects loops at maximum distance of 5 Mb
within ~5min compared to ~17 and 30 min for Cooltools and
Hicexplorer, respectively.

To get a sense of the differences between the softwares when
applied to experimental human contact maps, we compared them
with default parameters on Hi–C data generated from GM12878
cell lines33. Compared to Chromosight, we first noticed that other
programs missed multiple loops which were clearly visible on the
maps (e.g. Supplementary Fig. 3a). For instance, Chromosight
found 85% of the loops detected by Cooltools, the software with
the highest precision in our benchmark, while overall identifying
a much larger number of loops (37,955 vs. 6264, respectively)
(Supplementary Fig. 3c). We then measured the proportion of
loops with both anchors overlapping CTCF peaks identified from
ChIP-seq34. Almost all (~95%) loops detected by Hiccups and
Cooltools, the most conservative programs, co-localize with
CTCF enriched sites, compared to ~64% for the loops detected
by Chromosight and Hicexplorer (Supplementary Fig. 3b).
Chromosight (and Hicexplorer) indeed detects multiple weaker
loops, visible on the maps and arranged in grid-like patterns, but
often with only one anchor falling into a well-defined CTCF
enriched site. Some of these weaker loops’ anchors may be less
enriched in CTCF, which would cause ChIP-seq peak calling
algorithms to discard them because of parameters such as
intensity thresholds, or minimum inter-peak distances. This
means that more sensitive loop callers could result in lower CTCF
peak overlap, not because of inaccurate detection, but rather
because of the CTCF peaks cutoffs. On the other hand, less
sensitive loop callers would call the strongest loops associated
with the strongest CTCF peaks. We can also not exclude that a
portion of the less intense loops called by Chromosight are linked
to different protein complexes or mechanisms. More investiga-
tions will further dissect the nature of these loops.

Detection and quantification of loops in a compact genome.
Hi–C contact maps of budding and fission yeast chromosomes
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generated from synchronised cells during meiosis35 and mitosis7–9

display arrays of chromatin loops. Recent work further showed
that S. cerevisiae mitotic loops are mediated and regulated by the
SMC complex cohesin7,8. Chromosight loop calling on data from
ref. 8 identified 974 loops along S. cerevisiae mitotic chromosomes
(Fig. 2a). An enrichment analysis shows that half (50%) of the
anchors of those mitotic loops consist in loci enriched in the
cohesin subunit Scc1 (Fig. 2b), (P < 10−16). The loop signal
spectrum in mitosis shows the most stable loops are ~20 kb long
(Fig. 2c). This size is also found in the S. pombe yeast, which has
longer chromosomes.

On the other hand, loop calling on contact maps generated
from cells in G1, where cohesin does not stably binds to
chromosomes, yielded only 115 loops (Fig. 2d and Supplementary
Fig. 4a). Interestingly, this pool of loops appears different from
the group of loops detected during mitosis suggesting that
cohesin independent processes act on chromosomal loop
formation in yeast (Fig. 2d and Supplementary Fig. 4a). Notably,
loop anchors were enriched in highly expressed genes (HEG)
(Supplementary Fig. 4a).

To validate the biological relevancy of the loops detected by
Chromosight during mitosis, we further analysed their depen-
dency and association to cohesin using the quantification mode
implemented in the program (Methods and Supplementary Fig.
5a). This mode allows to precisely compute the correlation scores
on a set of input coordinates with a generic kernel. We computed

the “loop spectrum” (Loop score versus size) for pairs of cohesin
ChIP-seq peaks separated by increasing genomic distances. A
characteristic size of 20 kb was clearly visible on the spectrum
during mitosis, whereas the spectrum in G1 appeared flat
(Supplementary Fig. 5b). This analysis highlights the role of
cohesin in mediating regular loop structures during mitosis and
shows how Chromosight can be used to precisely quantify spatial
patterns like chromosome loops.

To test the ability of Chromosight to detect loops in a
genetically disturbed context, they were called on contact data of
a mutant depleted for the SMC holocomplex member Pds5 (Pre-
cocious Dissociation of Sisters)7. This protein regulates cohesin
loop formation through two independent pathways7, and its
depletion leads to the formation of loops over longer distances
than in wild-type yeast. One anchor of loops in Pds5 depleted
cells appeared to be the centromeres, as suggested by visual
inspection of the maps7. However, loop patterns are shadowed by
a strong boundary signal appearing at the centromeres, which
makes their visual identification challenging. Loop calling using
Chromosight confirmed this observation, as the anchors of the
loops called were strongly enriched at centromeric regions
(Supplementary Fig. 4b, P < 10−16)). This analysis shows that
Chromosight is able to robustly quantify global reorganisation of
genome architecture.
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Finally, we called domain boundaries (Fig. 1a, border kernel)
on the G1 maps, identifying 473 instances of boundaries mostly
associated with HEG as well (Supplementary Fig. 4b).

Exploration of various genomes and patterns. To further test
the versatility of Chromosight, we called all three kernels
described in Fig. 1a, i.e. loops, borders and hairpins (Supple-
mentary Fig. 6) in Hi–C contact maps of human lymphoblastoids
(GM12878)36 (Fig. 3a).

With default parameters, Chromosight identified 18,839 loops
(compared to ≃10,000 detected in ref. 6) whose anchors fall
mostly (~ 58%, P < 10−16) into loci enriched in cohesin subunit
Rad21 (Fig. 3b). Decreasing the detection threshold (Pearson
coefficient parameter) allows to detect lower intensity but relevant
patterns (Supplementary Fig. 7a). The program also identified
9638 borders, ~75% of which coincide with CTCF binding sites,
compared to ~14% expected (P < 10−16). In human, TADs are
known to be delimited by CTCF-enriched sites, suggesting that
Chromosight does indeed correctly identify boundaries involved
in TADs delimitation. Finally, Chromosight detected 3,782
hairpin-like structures (Fig. 3b), a pattern not systematically
sought for in Hi–C maps. The chromosome coordinates for this
pattern appeared enriched in cohesin loading factor NIPBL (2
fold effect, P < 10−16), suggesting that these hairpin-like struc-
tures could be interpreted as cohesin loading points (Supple-
mentary Fig. 6). To test for a role of cohesin and NIPBL in
generating these patterns, we quantified loops and hairpins on
contact maps generated from cells depleted either in cohesin or
NIPBL. Both conditions were associated with a disappearance of
the detected patterns (Supplementary Fig. 8), further supporting
their formation hypothesis. Finally, we called loops de novo along
the genomes of various animals from the DNA Zoo project37,
showing that stable loops of ≃100–150 kb are a conserved feature
of animal genomes (Supplementary Fig. 9).

The loop detection efficiency was also tested using noisier,
compact genomic contact maps. We applied it on the 3C-seq data
generated from bacterium B. subtilis10. Chromosight identified
109 loops distributed throughout the chromosome (Fig. 3c).
Annotation of loop anchor positions showed a strong enrichment
with the bacteria Smc-ScpAB condensin complexes (Fig. 3c).
Some of these loops were surprisingly large, bridging loci
separated by more than 100 kb (Supplementary Fig. 10) (for a
genome size of 4.1 Mb). Several of these large loops may
correspond to the bridging of replichores at positions symmetric
with respect to the origin of replication (Supplementary Fig. 10).
This is in agreement with10 which showed how SMC condensin
SMC-ScpAB complexes loaded at sites adjacent to the origin of
replication of the chromosome tether the left and right
chromosome arms together while traveling from the origin to
the terminus.

Finally, we used Chromosight to detect loops on contact data
generated using pair-end tag sequencing (ChIA-PET)38, which
captures contacts between DNA segments associated to a
protein of interest. We used ChIA-PET data for CTCF from
human lymphoblastoids38 binned at a very high resolution
(500 bp). Lymphoblastoids are immortalised B lymphocytes,
they contain episomes of the Epstein Barr Virus (EBV), a DNA
virus that is approximately 172 kb in size and is involved in the
development of certain tumours39. Surprisingly, Chromosight
detected several loops (5) inside the genome of the Epstein Barr
virus38. These loops, of a few dozen kb in size, coincide with the
position of the cohesin (Rad21) and CTCF binding sites present
along the viral genome (Fig. 3d). Such interactions have been
suggested from 3C qPCR data40. Automatic detection now
unambiguously supports a specific viral chromosome structure

that could impact the transcriptional regulation and metabo-
lism of the virus40.

Application to different proximity ligation protocols. Besides
Hi–C, Chromosight can be applied on contact data generated
with alternative protocols developed to explore various aspect of
chromosomal organisation (Fig. 4a). We retrieved publicly
available datasets from asynchronous human cells spanning a
range of techniques (i.e. ChIA-PET, DNA SPRITE, HiChIP and
Micro-C) from the 4D Nucleome Data Portal41, and applied
loops detection in the resulting contact maps. In situ ChIA-PET42

quantifies the contact network mediated by a specific protein of
interest thanks to the addition of an immunoprecipitation step.
Chromosight required adjustment of a single parameter to pro-
duce visually satisfying loop calling in in situ ChIA-PET data. We
then performed loop detection on DNA Split-Pool Recognition of
Interactions by Tag Extension (SPRITE) data43. This approach
requires cross-linking and fragmentation of chromatin but does
not use ligation. Instead, it splits the content into 96-well plates
with barcode molecules in each well. The barcode signature
allows clustering of complexes that were originally part of a
higher-order chromatin structure in the nucleus. Chromosight
was able to detect patterns that visually correspond to loops,
although the noise present in this original proof-of-principle
dataset made detection challenging. We then analysed HiChIP
data44, a protocol similar to ChIA-PET but with a better signal-
to-noise ratio, and that requires a lower amount of input DNA.
The results of loop calling on HiChIP matrices were very close to
those from Hi–C (Fig. 4a). Finally, loops were called on the
Micro-C data recently generated from human embryonic stem
cells (hESC)45. Micro-C uses MNase digestion and a dual cross-
link procedure, which allows a contact resolution down to the
nucleosome scale. This approach resulted in the highest number
of loops (~45,000 Fig. 4b); a visual inspection confirmed that
most of them appeared relevant. The number of detected loops in
each protocol is directly dependent on the coverage, but these
analyses show that Chromosight can conveniently be used for the
analysis of data generated through various proximity ligation
protocols with minimal, if any, tuning.

In parallel to the loop calling mode, we also used Chromosight
in its quantify mode to measure the loop signal between pairs of
cohesin peaks as a function of their genomic distance for the
different protocols in asynchronous human cells (Fig. 4c). The
resulting spectra were quite similar, with loop scores peaking
around 120 kb for each protocol. Surprisingly, a secondary peak
was also clearly visible at 250 kb, corresponding to about twice the
fundamental frequency. This peak was clearest with the Micro-C
data. These peaks were absent from dataset generated directly on
mitotic condensed chromosomes (T= 0 from ref. 46), but using
the same ChIP-seq dataset (Supplementary Fig. 8c). The median
distance between cohesin peaks called from ChIP-seq was 468 kb,
suggesting that this parameter didn’t introduce a bias accounting
in the 120 kb. This double peak in the distribution of cohesin
contacts as a function of their genomic distance in interphase cells
remains to be validated independently, and its signification
characterised.

Point and click mode. In addition to the kernels presented here
(loops, borders, hairpins), visual inspection of the contact maps
may inspire scientists to seek for new patterns of interest for
quantitative analysis. We have therefore included a “point and
click” mode that allows easy manual inspection of Hi–C contact
maps to select patterns identified by users. The user clicks on
positions corresponding to patterns of interests. For each posi-
tion, a window will be drawn by the program. A new kernel is
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then automatically generated by summing all windows and
applying a Gaussian filter to attenuate the fluctuations resulting
from the small number of selected positions. This kernel can then
be used in the other modes of Chromosight (detection, quanti-
fication) for further analyses.

We illustrate this functionality to investigate the pattern of
centromere-centromere interactions in yeast. Yeasts contact maps
are scattered with cross-shaped dots corresponding to inter-
chromosomal contacts between peri-centromeric positions. This

cross-shaped pattern is characteristic of the Rabl configuration of
those genomes, where all centromeres are maintained in the
vicinity of each other at the level of the microtubule organising
center47,48. As a result, peri-centromeric regions collide with each
other more frequently than with the rest of the genome, resulting
in a distinct trans pattern. In budding yeast, the 16 centromeres
result in 120 discrete, inter-chromosomal cross-shaped dots. We
selected (by double-clicking) 15 patterns of these S. cerevisiae
centromere contacts. The resulting kernel was then used to
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perform the detection of similar structures in the genome contact
map of another yeast species, Candida albicans, a diploid
opportunistic pathogen which contains 8 pairs of chromosomes
(resolution: 5 kb, ref. 49).

Using the kernel generated de novo from the S. cerevisiae
contact map, Chromosight automatically detected 26 out of the
28 inter-centromeric patterns of C. albicans, along with one false
positive (most likely a genome misassembly, located at the edge of
the map) (Fig. 5). These positions are nevertheless sufficient to
point at centromere positions, and can for instance then be used
to characterise their genomic coordinates47.

Note that, although subtelomeric regions in yeast tend to
cluster in yeast nuclei and therefore display discrete contacts
reminiscent of those of peri-centromeric contacts, Chromosight
was able to discriminate between those two patterns, detecting
specifically inter-centromeric interactions. The program was
therefore able to correctly assess the subtle geometrical differences
between these two patterns. Overall, this analysis shows the ability
of Chromosight to quickly detect any type of user-defined
pattern. We anticipate that many more patterns will be added to
the catalogue of visual patterns linked to different molecular
mechanisms of chromosome architecture.

Discussion
In this work, we present Chromosight, a computer vision pro-
gram to detect 3D structures in chromosome contact maps. We
show that Chromosight outmatches other programs designed to
detect chromosome loops, and that it can be used to extract other
biologically relevant patterns generated through different chro-
mosome capture derivatives.

Chromosight is versatile and we expect that additional pattern
configurations will be added by the community, such as stripes,
bow-shaped patterns, patterns associated to misassemblies or
structural variations (e.g. inversions, translocations...) or any
pattern of interest that the user can propose. The approach could
therefore be used to investigate structural rearrangements in
cancer cells, for instance, although the sensitivity of the program
to detect rearrangements taking place in only a fraction of a
population of cells remains to be tested. Similarly, the potential of
the approach to develop new Hi–C based genome scaffolding
algorithms could also be explored in the future50,51. The program

has a great flexibility that allows to work with diverse biological
data and address different questions, either using the de novo
calling mode or the quantification mode. For instance, the pos-
sibility of varying the size of the loop kernel allows to optimise it
for different conditions: larger kernels are more tolerant to noisy
data (Fig 3c) as they dampen the fluctuations whereas smaller
kernels allow to detect loops very close to the main diagonal
(Supplementary Fig. 7).

A possible extension of the present approach is the addition of
an iterative feedback step to the general flowchart of the current
algorithm. Indeed, the output pileup after the first run of detec-
tion can be reused in another iteration of detection on the same
data. This step could allow a finer adaptation to the data and to
detect patterns a little further away from the initial kernel while
keeping the basic characteristics.

With decreasing sequencing costs, new experimental protocols
and optimised methods for amplifying specific genomic regions,
we expect that the folding of the genomes of many species will be
investigated in the near future using chromosome contact tech-
niques. The algorithmic approach we present here provides a
computational and statistical framework for the discovery of new
principles governing chromosome architecture.

Methods
Simulation of Hi–C matrices. Simulated matrices were generated using a boot-
strap strategy based on Hi–C data from chromosome 5 of mitotic S. cerevisiae7 at 2
kb resolution. Three main features were extracted from the yeast contact data
(Supplementary Fig. 1): the probability of contact as a function of the genomic
distance (P(s)), the positions of borders detected by HicSeg v1.152 and positions of
loops detected manually on chromosome 5. Positions from loops and borders were
then aggregated into pileups of 17 × 17 pixels. We generated 2000 simulated
matrices of 289 × 289 pixels. A first probability map of the same dimension is
generated by making a diagonal gradient from P(s) representing the polymer
behaviour. For each of the 2000 generated matrices, two additional probability
maps are generated. The first by placing several occurrences of the border pileup on
the diagonal, where the distance between borders follows a normal distribution
fitted on the experimental coordinates. The second probability map is generated by
adding the loop kernel 2–100 pixels away from the diagonal with the constraint
that it must be aligned vertically and horizontally with border coordinates. For each
generated matrix, the product of the P(s), borders and loops probability maps is
then computed and used as a probability law to sample contact positions while
keeping the same number of reads as the experimental map. This simulation
method is implemented in the script chromo_simul.py, which can be found on the
github repository: https://github.com/koszullab/chromosight_analyses_scripts.

Generate-config

Detection

Whole genome of S. cerevisiae, bin = 10 kb Whole genome of C. albicans, bin = 10 kb

Manually selected Automatically detected

N=27 Output

a b c

Fig. 5 Point and click mode. a Whole-genome contact map of S. cerevisiae8 with 15 inter-centromere patterns that were selected by hand. Darker means
more contacts. b Chromosight generates a new kernel by summing all the selected patterns and applying a Gaussian filter. c Chromosight detection of the
inter-centromeres patterns in the whole-genome contact map of C. albicans49 with the resulting pileup plot of the 27 detections.
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Benchmarking. To benchmark precision, sensitivity and F1 score, the simulated
Hi–C data set with known loop coordinates were used. Each algorithm was run
with a range of 60-180 parameter combinations (Supplementary Fig. 2) on
2000 simulated matrices and F1 score was calculated on the ensemble of results for
each parameter combination separately (Supplementary Table 1). For each soft-
ware, scores used in the final benchmark (Fig. 1) are those from the parameter
combination that yielded the highest F1 score.

For the performance benchmark, HiCCUPS and HOMER were excluded. The
former because it runs on GPU, and the latter because it uses genomic alignments
as input and is much slower. The dataset used is a published high coverage Hi–C
library36 from human lymphoblastoid cell lines (GM12878). To compare RAM
usage across programs, this dataset was subsampled at 10%, 20%, 30%, 40% and
50% contacts and the maximum scanning distance was set to 2Mbp. To compare
CPU time, all programs were run on the full dataset, at different maximum
scanning distances, with a minimum scanning distance of 0 and all other
parameters left to default. All programs were run on a single thread, on a Intel(R)
Core(TM) i7-8700K CPU at 3.70 GHz with 32 GB of available RAM.

Software versions used in the benchmark are Chromosight v0.9.0, hicexplorer
v3.3.1, cooltools v0.2.0, homer 4.10 and hiccups 1.6.2. Input data, scripts and
results of both benchmarks are available on Zenodo (https://doi.org/10.5281/
zenodo.3742095)

Preprocessing of Hi–C matrices. Chromosight accepts input Hi–C data in cool
format53. Prior to detection, Chromosight balances the whole-genome matrix using
the ICE algorithm31 to account for Hi–C associated biases. For each intrachro-
mosomal matrix, the observed/expected contact ratios are then computed by
dividing each pixel by the mean of its diagonal. This erases the diagonal gradient
due to the power-law relationship between genomic distance and contact prob-
ability, thus emphasising local variations in the signal (Fig. 1b). Intra-chromosomal
contacts above a user-defined distance are discarded to constrain the analysis to
relevant scales and improve performances.

Calculation of Pearson coefficients. Correlation coefficients are computed by
convolving the template over the contact map. Convolution algorithms are often
used in computer vision where images are typically dense. Hi–C contact maps, on
the other hand, can be very sparse. Chromosight’s convolution algorithm is
therefore designed to be fast and memory efficient on sparse matrices. It can also
exclude missing bins when computing correlation coefficients. Those bins appear
as white lines on Hi–C matrices and can be caused by repeated sequences or low
coverage regions.

The contact map can be considered an image IMGCONT where the intensity of each
pixel IMGCONT[i, j] represents the contact probability between loci i and j of the
chromosome. In that context, each pattern of interest can be considered a template
image IMGTMP with MTMP rows and NTMP columns.

The correlation operation consists in sliding the template (IMGTMP) over the
image (IMGCONT) and measuring, for each template position, the similarity
between the template and its overlap in the image. We used the Pearson
correlation coefficient as a the measure of similarity between the two images. The
output of this matching procedure is an image of correlation coefficients IMGCORR

such that

IMGCORR ½i; j� ¼ Corr IMGCONT i�MTMP

2
: iþMTMP

2
; j� NTMP

2
: jþ NTMP

2

� �
; IMGTMP

� �

ð1Þ
where the correlation operator Corr( ⋅ , ⋅ ) is defined as

Corr IMGX ; IMGYð Þ ¼ cov ðIMGX ; IMGY Þ
std ðIMGXÞ � std ðIMGY Þ

¼

P
ðm;nÞ2X\Y
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
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where IMG ¼ 1

jX\Y j
P

ðm;nÞ2X\Y IMG½m; n�, X ∩ Y is the set of pixel coordinates that

are valid in image IMGX and in image IMGY, and ∣X ∩ Y∣ is the number of valid pixels
in IMGX and IMGY. A pixel in IMGCONT is defined as valid when it is outside a region
with missing bins.

Separation of high-correlation foci. Selection is done by localising specific local
maxima within IMGCORR. We proceeded as follows: first, we discard all points (i, j)
where IMGCORR[i, j] < τCORR. An adjacency graph Adxd is then generated from the d
remaining points. The value of A[i, j] is a boolean indicating the (four-way)
adjacency status between the ith and jth nonzero pixels. The scipy implementation
of the CCL algorithm for sparse graphs54 is then used on A to label the different
contiguous foci of nonzero pixels. Foci with less than two pixels are discarded. For
each focus, the pixel with the highest coefficient is determined as the pattern
coordinate.

Patterns are then filtered out if they overlap too many empty pixels or are too
close from another detected pattern. The remaining candidates in IMGCORR are

scanned by decreasing order of magnitude: every time a candidate is appended to
the list of selected local maxima, all its neighbouring candidates are discarded. The
proportion of empty pixels allowed and the minimum separation between two
patterns are also user defined parameters.

Biological analyses. Pairs of reads were aligned independently using Bowtie2
(v2.3.4.1) with --very-sensitive-local against the S. cerevisiae SC288 reference
genome (GCF000146045.2). Uncuts, loops and religation events were filtered as
described in ref. 55. Contact data were binned at 2 kb and normalised using the ICE
balancing method31. Hi–C matrices were generated from fastq files using hicstuff
v2.3.056. Detection for biological analyses of yeast and human data was performed
with default parameters using a 7 × 7 loop kernel available in Chromosight using
--pattern loops_small unless mentioned otherwise. For enrichment analysis,
cohesin peaks were defined using ChIP-seq data from57. Raw reads were aligned
with bowtie2 and only mapped positions with Mapping Quality superior to 30 were
kept and signals were also binned at 2 kb to synchronise with Hi–C data. Peaks of
cohesins were considered with ChIP/input > 1.5 and peaks closer than 10 kb to
centromeres or rDNA were removed.

Annotation of highly expressed genes was done using RNA-seq data from8.
Alignment was done as above. The distribution of the number of reads for each 2
kb bin was computed and the top 20% of the distribution were considered bins
with high transcription. For border annotation, a set of plus or minus 1 bin on the
detected positions is used. For human data, hg19 genome assembly was used with
same strategy for alignment, construction and normalisation of contact data.
ChIPseq peaks were retrieved from UCSC database (Supplementary Table 2). B.
subtilis data were aligned with the PY79 genome version and the SMC signal was
extracted using ChIP-chip data from58 and processed as described previously10,59.
Peaks were annotated with the find_peaks function from scipy (v1.4.1), with
parameters threshold= 0.1, width= 50. ChIA-PET data were processed as Hi–C
data except that the contact maps were binned at a 500bp resolution. Epstein-Barr
virus (EBV) genome, strain B95-8 (V01555.2) sequence was used to align the reads
from EBV. For the detection in the different proximity ligation protocols, we
retrieved publicly available data sets from the 4D Nucleome Data Portal41, and
applied loops detection in the resulting contact maps of the mcool files at 10 kb
resolution with the default settings by possibly changing one option that is
indicated in (Fig. 4a).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data associated with this study are publicly available and their reference numbers are
listed in Supplementary Tables 2 and 3. Intermediate results, benchmark code and data
are available on Zenodo (https://doi.org/10.5281/zenodo.3742095).

Code availability
Software and documentation available at https://github.com/koszullab/chromosight. All
scripts required to reproduce figures and analyses are available at https://github.com/
koszullab/chromosight_analyses_scripts.
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Supplementary Note 1

Fast 2D-convolution via SVD

Optionally, Chromosight’s convolution algorithm can be accelerated further by approximating the

template. This is done using truncated singular value decomposition (tSVD) to decompose the

template into two sets of vectors whose product contain most of the information in the template, while5

reducing the number of operations needed in the convolution. This note explains the acceleration of

2D-convolution by using the SVD decomposition of the kernel. It was inspired from section 6.4.2 in

Computer and Robot Vision Vol. I by Haralick and Shapiro (1992) [1].

The general case

Suppose that the contact map imgcont and the template imgtmp have respectively size10

(Mcont, Ncont) and (Mtmp, Ntmp).

The convolution of imgcont by imgtmp, noted imgcont ∗ imgtmp, is an array such that

(imgcont ∗ imgtmp) [i, j] :=

Mtmp−1∑

m=0

Ntmp−1∑

n=0

imgcont [i+m, j + n] × imgtmp[m,n] (1)

for i = 1, . . . ,Mcont − Mtmp + 1 and j = 1, . . . , Ncont − Ntmp + 1. Otherwise stated

imgcont∗tmp := imgcont ∗ imgtmp is an array of size (Mcont −Mtmp + 1, Ncont −Ntmp + 1).15

The computation of (imgcont ∗ imgtmp) [i, j] requires 2MtmpNtmp operations, composed of

MtmpNtmp additions and MtmpNtmp multiplications.

The separable case20

Suppose that the template is separable i.e. there exists two vectors utmp and vtmp, with respective

size (Mtmp) and (Ntmp), such that

imgtmp[m,n] = utmp[m]vtmp[n]. (2)

The operations in equation (1) can then be re-arranged more efficiently:

(imgcont ∗ imgtmp) [i, j] =

Mtmp−1∑

m=0

(
Ntmp−1∑

n=0

imgcont [i+m, j + n] × vtmp[n]

)
× utmp[m] (3)

=

Mtmp−1∑

m=0

imgcont∗vtmp [i+m, j] × utmp[m] (4)

where

imgcont∗vtmp [i, j] :=

Ntmp−1∑

n=0

imgcont [i+m, j + n] × vtmp[n] (5)

2



The computation of an element imgcont∗tmp[i, j] costs Ntmp multiplications and Ntmp additions.25

According to equation (4), the computation of imgcont∗vtmp [i, j] requires Mtmp +Ntmp multiplica-

tions and Mtmp +Ntmp additions.

Consequently, the evaluation of imgcont∗tmp[i, j] costs 2 (Mtmp + Ntmp) operations in the

separable case, which compares favorably to the 2MtmpNtmp operations required in the general30

case.

The SVD case

Next, suppose that the template has a representation as the sum of K separable kernels:

imgtmp[m,n] =
K∑

k=1

utmp[m, k]vtmp[k, n]. (6)

The number of operations involved in evaluating imgcont∗tmp[i, j] is 2 (Mtmp + Ntmp) for each35

kernel plus K − 1 additions necessary to sum up the contribution of each kernel. In total, there are

hence 2K (Mtmp +Ntmp) +K − 1 operations.

The template imgtmp is not necessarily equal to the superposition of K separable kernels, but

it can always be approximated by such a superposition. The (truncated) SVD algorithm discussed40

below allows to construct such an approximation.

The Singular Value Decomposition (SVD) factorizes any rectangular matrix A of size (M,N) as

A = U DV (7)

where U is a (M,M) orthogonal matrix, V is a (N,N) orthogonal matrix and D is a (M,N)

matrix all of whose nonzero entries are on the diagonal and are positive.45

Given any template imgtmp, it is possible to approximate it by retaining only the K largest singular

values in the SVD of A = imgtmp, such that:

utmp[:, k] =
√
D[k, k]U [:, k] (8)

vtmp[k, :] =
√
D[k, k]V [k, :] (9)

(10)

Let’s give a toy example of the operations spared by using a SVD approach. Suppose that

Mtmp = Ntmp = 17, the standard convolution would require 2×17×17 = 578 operations per point.50

In contrast, if we use a SVD convolution with K = 1, the number of operations reduces to 68, which

represents only 12% of the brute force approach. Even with K = 8, we are below 50% of the brute

force approach.

3
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Supplementary Figure 1: Strategy for the generation of simulated contact data for

benchmark tests of different loop calling algorithms a, The simulated data were generated with a

bootstrap approach based on contact data generated for yeast S. cerevisiae in mitotic phase [2]. Three

main features of the contact data were extracted: the probability of contact as a function of the

genomic distance (P(s), Polymer matrix), presence of borders and presence of loops. The positions and

intensity of border and loop patterns were defined thanks to pile-up signals from patterns detected by

eye on the contact maps. Their positions were chosen according to a law of probabilities based on

experimental data (see Methods). The product of the 3 feature matrices results in a probability matrix

(a, right). This matrix is used as a probability law to sample contact positions while keeping the same

number of reads as the experimental map. b, Zoom of contact maps for experimental and simulated

data showing patterns of loops and borders. (Icons: [3], Perhelion / Wikimedia Commons,

CC-BY-SA-3.0.)
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chromosight
cooltools
hicexplorer

homer
hiccups

Supplementary Figure 2: Comparison of different loop callers on simulated data. a, Example

region from a synthetic matrix with real loop calls (top left) and loops detected by all algorithms used

in the benchmark using the combinations of parameters which yielded the highest F1 score. b, Precision

and sensitivity for all algorithms on synthetic matrices, on the whole range of parameters tested. c,

Distribution of F1 Scores for each algorithm for the range of parameters. Medians are shown as a black

band inside boxplots. Hinges show the first and third quartiles and whiskers extend from the hinge to

the furthest value within 1.5 times the inter-quartile distance (between first and third quartiles).
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a

c

b

94%95%

62%
64%

Supplementary Figure 3: Comparison of different loop callers on experimental data. a,

Contact maps representating a region of +/- 1Mb around the CCCTC-binding factor (CTCF) gene of

GM12878 (GSE63525, [4]), at 10kb resolution with coordinates of detected loops for different loop

calling softwares, with default parameters. b, Proportion of loops with both anchors overlapping CTCF

peaks [5]. An overlap is considered if loop anchors and CTCF peaks are within 10kb distance. c,

Upsetplot showing the number of loops detected in GM12878 by each combination of softwares. Loops

are considered identical if they are within 10kb of each other. For each combination of softwares, the

intersection (∩) of detected coordinates is shown.
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Supplementary Figure 4: Detection of loop and border patterns in yeast contact data a,

Detection of loops and borders in Hi-C data of S. cerevisiae synchronised in G1 and for a mutant

depleted in the protein Pds5 [2]. b, Bar plots showing enrichment in highly expressed genes (HEG) for

detected loops in G1 and an enrichment in centromeric regions for the Pds5 mutant (Precocious

Dissociation of Sisters gene). Bar plots showing enrichment in highly expressed genes for detected

borders in G1 and Pds5 mutant. (Fisher test, two-sided)



8

<20kb 20-30kb 30-40kb 60-70kb 80-90kb 100-160kb

a) Quantification Mode of Chromosight

b) Loop spectrum

0 20 40 60 80 100 120 140 160
Size between cohesin peaks (in kb)

0.2

0.0

Position

Scc1 (cohesin)

C
h
IP

-s
e
q

si
g
n
a
l

Lo
o
p
 S

co
re

s

...

Compute scores using
correlation with generic
kernel

Balancing, detrending
as in detection mode

Pileup

0.2

0.4

0.6

0.8

x

0.1

0.0

0.1

0.2

0.3

0.4

Lo
o
p
 s

co
re

c) Response to transcription level

0 2 4 6 8

0.0

0.1

0.2

0.3

0.4

B
o
rd

e
r 

sc
o
re

Transcription level (RPKM, log)

S.Cerevisiae (mitotic)

mitotic

G1

Supplementary Figure 5: Applications of quantification mode on yeast contact data a,

Chromosight quantification mode workflow: sub-matrices from certain 2D genomic positions are

extracted from balanced and detrended matrices (as in detection mode). Correlation with the kernel is

then computed for each sub-matrix and the mean of all the sub-matrices is giving a pileup

visualisation. Such 2D coordinates can be, for instance, pairs of protein enrichment peaks called from

ChIP-seq data. b, Loop spectrum computed for the cohesin peaks network. The loop score is given as

a function of distance between cohesin peaks for cells in mitotic state (data from [2]). Curves represent

lowess-smoothed data with 95% confidence intervals. c, Plot showing the border score as a funtion of

transcription levels in S. cerevisiae, (contact data and transcriptome data from [6]). The curve

represents lowess-smoothed data with 95% confidence intervals.



9

Examples of physical models

Model ①: 
2 roadblock points 

Model
 

②:
 

Contact maps from 
simulated chromosomes

Model ③:
one loading point
and 
one roadblock point 

one loading point

Contact map from experimental data, Bacillus subtilis :

Σ

Σ

Σ

"bow" pattern 

"hairpin" pattern

loop pattern

cell 1

cell 2

cell N
...

cell 1

cell 2

cell N
...

→   : parS 334
→ roadblock : rRNA operon

sum of symetric loops 

sum of asymetric loops 

cell N

cell 1

loading point

Supplementary Figure 6: Toy models that can link visual patterns and physical models.

Model 1: loop extruding motors with two roadblock points leading to a loop pattern. Model 2: loop

extruding motors with a specific loading point leading to a hairpin pattern. Model 3: loop extruding

motors with a specific loading point and a single roadblock leading to a bow pattern. The bow pattern

has been observed in contact data from Bacillus subtilis bacteria [7, 8]. By connecting the simulation

and experimental contact data, the identified roadblock is a highly transcribed gene, (rDNA operon)

and the loading site corresponds to the ParS 334 site. Molecular dynamics simulations were performed

using OpenMM [9] and libraries with default parameters of [10].
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Supplementary Figure 7: Detection of loops, borders, hairpins in human Hi-C data. a,

Effect of decreasing Chromosight’s Pearson coefficient detection threshold on loop detection.

Contact map in the vicinity of STAT1 gene in Hi-C data of lymphoblastoids [11] and total

number of detected loops are shown for 3 Pearson threshold values: 0.6, 0.5, 0.4. Decreasing the

Pearson threshold allows the detection of weak patterns. b, Zoom of contact maps 2 Mb around

different genes of interest: BRCA1, CTCF, IFIT1, NFκB, P53, RAPGEF1 in Hi-C data of [11].

Detection done with Pearson coefficient parameter set to 0.5.
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Supplementary Figure 8: Applications of quantification of loops and hairpins on

human contact data. a, Comparison of loop score distributions in WT (Homo sapiens, HeLa

cells) and in mutant cells depleted in Scc1 [12] for loops detected in WT condition. Associated

pileup plots of windows centered on detected loops in WT condition. µ: median of loop scores.

b, Comparison of hairpin score distributions in WT (Mus musculus, liver cells) and in mutant

cells depleted in NIPBL [13] for hairpins detected in the WT condition. Associated pileup plots

of windows centered on detected hairpins in WT condition. c, Loop spectrum showing

correlation scores with the loop kernel for pairs of Rad21 ChIP-seq peaks separated by increasing

distances, at different time points during release from mitosis into G1 (Homo sapiens, HeLa S3

cells) [14]. Curves represent lowess-smoothed data with 95% confidence intervals.
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Supplementary Figure 9: Detection of loops, borders, hairpins in various animals from

the DNA Zoo project [15]. From left to right, name of the species, associated pileup plots for

the called loops and loop spectra computed on the positions of detected loops. The loop

spectrum gives the size at which the detected loops have the highest scores. Curves represent

lowess-smoothed data with 95% confidence intervals. Zooms on the right show examples of

detected loops on Python bivittatus, Aquila chrysaetos and Pecten maximus, respectively.

Detection has been performed on a standard laptop with a calculation time of less than 5 min for

each pattern per organism. Credits for vectorized images: T. Michael Keesey (Elephas

maximus), Steven Traver (Panthera tigris), Anthony Caravaggi (Aquila chrysaetos), Chris Huh

(Lagenorhynchus obliquidens). Others are in the public domain and all are available on

phylopic.org.
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Supplementary Figure 10: Detection and quantification of loops in 3Cseq data of

Bacillus subtilis. a, Detection of loops in 3Cseq data of Bacillus subtilis [16]. Genome contact

map is shown at 10 kb resolution annotated with detected loops (carried on 2 kb data, 17x17

loop kernel). ChIP-chip signal of Structural Maintenance of Chromosomes proteins (SMC) is

plotted under the map. Note that the origin of replication is at the end of the reference genome

(bottom right of the contact map). b, Zooms of 3 genomic regions highlighted in panel a: in the

bow pattern, in intra-arm region or in inter-arms area. c, Quantification of loop signal for pairs of

SMC peaks for different sizes. Associated pileups of patterns for 4 size ranges are shown above.

The curve represents lowess-smoothed data with 95% confidence intervals. d, Quantification of

loop signals for pairs of SMC peaks between 20 and 200 kb in 2 conditions: G1 + 5 min and G1

+ 60 min. Mean of loop scores and associated p-value (Paired Mann Withney U test, two-sided).
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software parameter values best F1

chromosight --window-size 10,15,20 15

chromosight --min-dist 0,40000 40000

chromosight --pearson 0.30,0.35,0.40,0.45,0.50 0.30

chromosight --min-separation 0,50000 0

hicexplorer --windowSize 10,15,20 10

hicexplorer --peakWidth 4,5,6,7,8 5

hicexplorer --peakInteractionsThreshold 10,20,30 10

hicexplorer --pValuePreselection 0.01,0.02,0.05,0.1 0.05

cooltools --max-loci-separation 100000,200000,1000000,2000000 2000000

cooltools --max-nans-tolerated 5,10,15,20 10

cooltools --dots-clustering-radius 14000,19000,34000,39000 14000

hiccups -p 1,2,4,6 1

hiccups -i 6,10,14 14

hiccups -f 0.05,0.1,0.2 0.1

homer -poissonLoopGlobalBg 0.0001,0.001 0.001

homer -poissonLoopLocalBg 0.01,0.05,0.1 0.05

homer -window 2000,5000,10000 2000

Supplementary Table 1: Parameters used in the benchmark. Name and values of all

parameters tested in the benchmark for each software. The best F1 column indicates which value

yielded the best F1 score on the simulated dataset.
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Organism Experiment type Figure Ref Identifier

S. cerevisiae Hi-C, mitotic (nocodazole synchr.) Fig 2 [6]
SRR7706226,

SRR7706227

S. cerevisiae Hi-C, G1 (alpha factor synchr.) Fig 2 [2] SRR8769554

S. pombe Hi-C, Mitotic phase, 40 min Fig 2 [17] SRR5149256

S. cerevisiae Hi-C, Pds5 depleted, mitotic (cdc20 synchr.) Sup Fig 4 [2] SRR8769553

H. sapiens Hi-C, GM12878, asynchronous Fig 3 [11] SRR6675327

H. sapiens Hi-C, HeLa cells, WT Sup Fig 8 [12] GSM2747745

H. sapiens Hi-C, HeLa cells, depleted in Scc1 Sup Fig 8 [12] GSM2747747

M. musculus Hi-C, liver cells Sup Fig 8 [13] GSE93431

M. musculus Hi-C, liver cells, depleted in NIPBL Sup Fig 8 [13] GSE93431

H. sapiens
Hi-C, HeLa cells during cell cycle (R2, T0, T2h15,

T2h30, T3h, T4h, T8h)
Sup Fig 8 [14]

GSM3909703

GSM3909697

GSM3909696

GSM3909694

GSM3909691

GSM3909686

B. subtilis 3Cseq in G1 + 60 min Fig 3 [7] SRR2214080

B. subtilis 3Cseq in G1 + 5 min Sup Fig 10 [7] SRR2214069

Epstein Barr Virus ChIA-PET of CTCF in GM12878 cells Fig 3 [18] SRR2312566

H. sapiens In situ ChiA-PET, GM12878, asynchronous Fig 4 [19] 4DNFIMH3J7RW

H. sapiens DNA SPRITE, GM12878, asynchronous Fig 4 [20] 4DNFIUOOYQC3

H. sapiens HiChIP , GM12878, asynchronous Fig 4 [21]
GSE80820 HiChIP

GM cohesin.hic

H. sapiens Micro-C , hESC, asynchronous Fig 4 [22] 4DNFI9FVHJZQ

C. albicans Hi-C, asynchronous Fig 5 [23] SRR3381672

E. maximus Hi-C, asynchronous Sup Fig 9 [15]
Elephas maximus

rawchrom.hic

P. bivittatus Hi-C, asynchronous Sup Fig 9 [24]
Python bivittatus

rawchrom.hic

P. tigris Hi-C, asynchronous Sup Fig 9 [25]
Panthera tigris

rawchrom.hic

A. chrysaetos Hi-C, asynchronous Sup Fig 9 [26]
Aquila chrysaetos

rawchrom.hic

L. obliquidens Hi-C, asynchronous Sup Fig 9 [15]

Lagenorhynchus

obliquidens

rawchrom.hic

U. maritimus Hi-C, asynchronous Sup Fig 9 [27]
Ursus maritimus

rawchrom.hic

P. vampyrus Hi-C, asynchronous Sup Fig 9 [28]
Pectorus vampyrus

rawchrom.hic

A. mississippiensis Hi-C, asynchronous Sup Fig 9 [29][30]

Alligator mississi

-ppiensis

rawchrom.hic

P. maximus Hi-C, asynchronous Sup Fig 9 [31]
Pecten maximus

rawchrom.hic

Supplementary Table 2: Different contact datasets analysed in the present study. The

last column indicates either the identifier for the raw reads available on the Short Read Archive

server (SRA) (https://www.ncbi.nlm.nih.gov/sra), the identifier of the .cool files accessible on

the Gene Expression Omnibus server (GEO) https://www.ncbi.nlm.nih.gov/geo or the name of

hic files from DNA zoo project available on https://www.dnazoo.org/assemblies [15] from which

the analysis were made. mcool files coming from 4DN portal were downloaded from the server

https://data.4dnucleome.org [32].
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Organism Experiment type Figure Ref Identifier

S. cerevisiae
RNA-seq, mitotic

(nocodazole synchr.)
Fig 2 [6] SRR7692240

S. cerevisiae
ChIP-seq, Scc1PK9 IP

G1 releasing 60min
Fig 2 [33] SRR2065097, SRR2065092

H. sapiens ChIP-seq CTCF Fig 3 [5]
wgEncodeAwgTfbsBroad

Gm12878CtcfUniPk.narrowPeak

H. sapiens ChIP-seq RAD21 Fig 3 [5]
wgEncodeAwgTfbsHaib

Gm12878Rad21V0416101UniPk

H. sapiens ChIP-seq NIPBL Fig 3 [5]
GSM2443453 GM12878 NIPBL Rep1

2WCE Narrow Peaks peaks.narrowPeak

B. subtilis ChIP-chip of SMC Fig 3 [34] GSE14693

Epstein Barr Virus ChIP-seq CTCF Fig 3 [35] SRR036682

Epstein Barr Virus ChIP-seq RAD21 Fig 3 [18] SRR2312570

Supplementary Table 3: Other genomic datasets used in the present study. The last

column indicates either the identifier for the raw reads available on the Short Read Archive server

(SRA) (https://www.ncbi.nlm.nih.gov/sra), the identifier of the ChIP-chip files accessible on the

Gene Expression Omnibus server (GEO) https://www.ncbi.nlm.nih.gov/geo or the identifier of

ChIP-seq peak files available on http://genome.ucsc.edu.
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1.3 Change detection across biological conditions

Change detection is a classic problem in the field of signal processing and remote
sensing. Given two or more input signals such as images, one wants to identify
the portions that differ between them. This problem also applies to Hi-C contact
maps, where it natural to want to detect regions of contact maps that differ between
biological conditions, indicating changes in the organization of chromosomes. Im-
portantly, the significance of these differences have to be assessed, given the sparsity
of many areas of the contact maps (especially between DNA segments separated by
long distances in cis).

Several computational solutions have been developed to tackle this challenge. Some
of them, such as diffhic [108], formulate the problem similarly to a differential
expression RNAseq analysis using contact counts instead of read counts. This
approach has the benefit of being straightforward, however it only finds non-specific
variations in the amount of contacts. These variations can reflect specific spatial
interactions, but also differential compartment switches or insulation changes, which
could be caused by a number of different phenomena.

When I started working on Hi-C data, there was therefore a need for a program that
would detect significant changes in contact maps with a focus on specific chromatin
features. We developed pareidolia1, a software package for change detection with
an a priori on the type of signal to detect. The method is "supervised" in the sense
that it requires a kernel representing the feature of interest. Pareidolia relies on
Chromosight’s convolution engine to convert the contact map of each condition into
a map of correlation coefficients representing similarity with the feature of interest.
Change detection is then performed on these coefficients. As a consequence, rather
than looking for contacts increase, pareidolia looks for changes in feature similarity,
such as border sharpness or looping intensity.

1.3.1 Pareidolia algorithm

Pareidolia works by comparing one or several samples issued from two conditions
such as treatments or timepoints.

Assuming two conditions t = {t0, t1}, each with multiple biological samples (repli-
cates) r = {r1, r2, ..., rR}. The whole genome contact matrix from each sample
Hn×n

r,t is first processed using Chromosight’s convolution algorithm as described in

1Pareidolia: From Ancient Greek παρα (para, "alongside, concurrent") + εἴδωλον (eídōlon, "image"):
the tendency to interpret a vague stimulus as something known to the observer, such as interpreting
marks on Mars as canals, seeing shapes in clouds, or hearing hidden messages in music.

Chapter 1 Extracting biological signal from contact maps 69



1.2.4 to generate a matrix of similarity Mn×n
r,t with kernel K representing the pattern

of interest. In the resulting matrix, the value at position (i, j), thereafter denoted
Mr,t[i, j], is a Pearson correlation coefficient with K, therefore Mr,t[i, j] ∈ [−1, 1].

Change detection is applied using an algorithm inspired by median filtering-based
background formation [165] (Fig. II.G). First, we generate a background matrix
Bt for each condition (timepoint), whose values are defined as the median of all
replicates’ Chromosight correlation maps from that condition (Eq. 1.1). The change
matrix D is then obtained by taking the difference between condition backgrounds
(Eq. 1.2). Note that, although values in Bt and D are computed independently at
each position [i, j], the spatial dependency between values is taken into account
through the convolution operation used to produce Mr,t.

Bt[i, j] = median(M1,t[i, j],M2,t[i, j], ...,MR,t[i, j]) (1.1)

D[i, j] = Bt1 [i, j]−Bt0 [i, j] (1.2)

We then compute the matrix of standard errors S between each replicate and
their condition’s median background (Eq. 1.3). This technical variability (among
replicates) is then used to filter out noisy regions. This is done by generating a
Contrast-to-Noise Ratio (CNR) map C (Eq. 1.4) and applying a threshold to it. This
matrix represents the ratio of contrast (inter-condition difference) over noise (intra
condition variability).

S = 1
T

T∑
t=0

√√√√ 1
R

R∑
r=1

(Mr,t −Bt)2 (1.3)

C = |Bt1 −Bt0 |
S

(1.4)

Three coordinates sets are then defined to select regions of interest for change
detection:

• Positions with a local contact density above Td. If a kernel K of size mK × nK

is used to compute M , the local contact density L is defined as the proportion
of nonzero contact values within a window of mK × nk centered on H[i, j]
(Eq. 1.5). Each position must be above a threshold in all biological samples to
be considered (Eq. 1.6). This set is used to select for sufficient coverage.
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• Positions for which at least one biological sample from either condition has a
Chromosight score above threshold Tp (Eq. 1.7). This set is used to select for
clear patterns.

• Pixels in regions with a CNR above threshold Tc (Eq. 1.8). This set is used to
select for high contrast between conditions.

The required thresholds Tc, Tp and Td are provided with default values but can also
be set by the user. The intersection F of the 3 resulting coordinate sets is then
computed (Eq. 1.9) and the change matrix D is filtered to retain only coordinates
present in F (Eq. 1.10), effectively retaining change values passing all conditions
and setting others to 0.

Lr,t[i, j] =
mK∑
x=1

nK∑
y=1

(1− δ(0, Hr,t[i+ x− mK + 1
2 , j + y − nK + 1

2 ])) (1.5)

where δ(a, b) is the Kronecker delta:

δ(a, b) =

0, a 6= b

1, a = b

Fd = {(i, j) | min
r∈R

Lr,.[i, j] ≥ Td} (1.6)

Fp = {(i, j) | max
r∈R

Mr,.[i, j] ≥ Tp} (1.7)

Fc = {(i, j) | C[i, j] > Tc} (1.8)

F = Fc ∧ Fp ∧ Fd (1.9)

Df [i, j] =

D[i, j], (i, j) ∈ F

0, otherwise
(1.10)

Pareidolia can either return the pattern intensity changes Df at a set of predeter-
mined (i, j) positions provided as input, or perform a de-novo detection of differential
loops on the Hi-C map. For de-novo detection, pareidolia applies Chromosight’s im-
plementation of the connected component labelling algorithm for sparse matrices,
described in 1.2.4. This operation isolates contiguous foci of non-zero differential
changes in Df and retrieve the local absolute maximum in each focus. The list of
coordinates along with their respective differential intensity score is returned.
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Fig. II.G: Pareidolia algorithm. From top to bottom: The Hi-C contact maps of several
replicates (r) in two conditions (t0, t1) are shown, as well as the difference
between conditions. Chromosight’s convolution algorithm is used on each sample
1 to generate a map of correlation coefficients (M) with the kernel of interest
(loops in this case). For each condition, a median background (B) is computed
among replicates 2. The difference between these two backgrounds (D) is then
extracted 3 and filtered 4 using a combination of CNR, contact density and pattern
intensity thresholds to obtain the final change matrix (Df ).

The inner steps of Pareidolia are further detailed with visual representations of the
intermediate matrices and filters on experimental data in Appendix C.

1.3.2 Results on experimental data

To showcase the use of Pareidolia, we used it to measure loop changes upon depletion
of CTCF in murine cells using published data [166]. CTCF acts as a roadblock for the
motor protein cohesin which travels along the chromatin fiber. Cohesin accumulates
at CTCF binding sites, forming stable chromatin loops between pairs of CTCF binding
sites.

These looping interactions have been shown to be weakened or disappear in the
absence of cohesin [86] or CTCF [166]. Here we show an example use of Pareidolia
to quantify these 3D changes.
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The dataset consists of CTCF-AID mutant mouse embryonic stem cells (ES-E14TG2a).
When auxin treatment is applied, the CTCF-AID recombinant protein is degraded.
We use pareidolia to compare chromatin loops before and after auxin treatments,
using 2 replicates per condition.

With default parameters, pareidolia identifies a total of 2,997 disappearing differen-
tial loops and 845 appearing loops (Fig. II.H).

1.3.3 Perspectives and potential improvements

Pareidolia is one of the few available computational methods for differential Hi-C
analysis which leverages replicates [108, 109, 167–169]. While these methods
focus on differential contact enrichment, often through fitting a Poisson or negative
binomial model, Pareidolia detects change relative to a predefined pattern. In the
case of Hi-C data, we estimated that this was a proper solution, given the emphasis
of most if not all investigations on limited number of specific chromatin features such
as loops, stripes, etc. On the other hand, one may miss some unexpected changes in
some conditions, but these cases remain rare. Pareidolia is computationally efficient
due to the use of sparse matrices throughout the program and maximal use of
vectorized operations. Although a formal benchmark has yet to be performed, its
core functionality relies on Chromosight which has been thoroughly evaluated, and
gives promising results on empirical tests.

Although Pareidolia currently supports only two condition, the code was written
with the intent of being extended to multiple conditions or timepoints. This would
most likely involve a different change metric than background accumulation, such
as a regression, but could be implemented with relatively few modifications to the
code. A limitation of Pareidolia is the reliance on threshold values to filter noise and
filter differences. It could be possible to solve this issue by automatically selecting
thresholds based on the distribution of contacts and similarity scores in the input
samples.
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Fig. II.H: Pareidolia results on CTCF degradation experiments from [166]: a: Distribution of
chromatin loop change and size upon CTCF depletion as detected by pareidolia. b:
Zoom on a region of the Hi-C map from mouse chromosome 1. Disappearing loops
detected by pareidolia are highlighted in blue. For visualization purpose, replicates
were merged in Hi-C matrices shown. Processed data retrieved from https:
//data.4dnucleome.org, accessions 4DNES87HWQAX and 4DNES7UKQHOX.

74 Part II Results

https://data.4dnucleome.org
https://data.4dnucleome.org


2 Infection of Acanthamoeba castellanii by
Legionella

Legionella pneumophila alters its host signal transduction, metabolism and gene
regulation upon infection [170, 171]. In addition to all these changes, it also affects
host histone marks [37], which are known to be related to gene regulation and
genome architecture [64]. In this chapter, we investigate the genome structure of
the amoeba A. castellanii, a natural host of L. pneumophila, and how it is affected
during infection by the bacterium.

Several strains of A. castellanii have been isolated throughout history. These strains
may originate from different ecological niches of geographical locations and have
been cultivated in laboratories for long periods. As a result, they can differ in various
phenotypes, including susceptibility to infection. Comparing such divergent strains
can also help us understand what genomic features are important for pathogen
susceptibility.

As with most other genomics techniques, a prerequisite of Hi-C analyses is to have a
high quality reference genome with clearly delimited chromosomes. At the time of
writing, the A. castellanii reference genome is split into 3192 contigs merged into
384 scaffolds which do not represent chromosomes.

This prompted us to generate a chromosome-level genome assembly for two strains
of A. castellanii: The Neff strain [172], which is the most widely used strain for
genomic analyses in that species, and the C3 strain [173], which is generally used
for infection experiments with L. pneumophila due to higher intracellular bacterial
replication. In the following manuscript, we describe and compare the genomic
landscape of both strains, as well as the spatial organization of their genomes. We
also investigate changes happening in the 3D genome organization in response to
infection by L. pneumophila.
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Abstract

The unicellular amoeba Acanthamoeba castellanii is ubiquitous in aquatic
environments, where it preys on bacteria. The organism also hosts bacterial
endosymbionts, some of which are parasitic, including human pathogens such as
Chlamydia and Legionella spp. Here we report complete, high quality genome
sequences for two extensively studied A. castellanii strains, Neff and C3.
Combining long- and short-read data with Hi-C, we generated near
chromosome-level assemblies for both strains with 90% of the genome contained
in 29 scaffolds for the Neff strain and 31 for the C3 strain. Comparative genomics
revealed strain-specific functional enrichment, most notably genes related to
signal transduction in the C3 strain, and to viral replication in Neff. Furthermore,
we characterized the spatial organization of the A. castellanii genome and
showed that it is reorganized during infection by Legionella pneumophila.
Infection-dependent chromatin loops were found to be enriched in genes for
signal transduction and phosphorylation processes. In genomic regions where
chromatin organization changed during Legionella infection, we found functional
enrichment for genes associated with metabolism, organelle assembly, and
cytoskeleton organization, suggesting that changes in chromosomal folding are
associated with host cell biology during infection.

Keywords: amoeba; genome organization; evolution; assembly; Hi-C

Introduction
The first amoebae were isolated in 1913 [1], and the genus Acanthamoeba was es-

tablished in 1931 by Volkonsky [2]. It comprises different species of free living,

aerobic, unicellular protozoa, present throughout the world in soil and nearly all

aquatic environments [3]. The life cycle of Acanthamoeba includes a dormant cyst

with minimal metabolic activities under harsh conditions and a motile trophozoite

that can feed on small organisms and reproduce by binary fission in optimal con-

ditions [4]. Acanthamoeba is perhaps most widely known from its role as a human

pathogen, acting to cause the vision-threatening eye infection Acanthamoeba kerati-

tis, but it can also cause serious infections of the lungs, sinuses, skin, and a central

nervous system disease called granulomatous amoebic encephalitis [5]. The species

Acanthamoeba castellanii was first isolated in 1930 by Castellani as a contaminant

of a yeast culture [6].
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In their natural environment, Acanthamoeba spp. are characterized by the ability

to change their shape through pseudopode formation and are considered professional

phagocytes as they feed on bacteria, but may also phagocytose yeasts and algae.

However, some bacteria are resistant to degradation and live as endosymbionts

in these protozoa, and others even use the amoeba as a replication niche. Thus

Acanthamoeba are also reservoirs of microorganisms and viruses, including human

pathogens, which have adapted to survive inside these cells and resist digestion,

persist or even replicate as intracellular parasites. At least 15 different bacterial

species, two archaea and several eukaryotes and viruses have been shown to interact

with Acanthamoeba in the environment and may even co-exist at the same time

within the same host cell [7].

Although it was observed early on that bacteria could resist digestion of free-living

amoebae [8], it was not until the discovery that Legionella pneumophila replicated

in amoebae that researchers began studying the bacterium-amoeba relationship in

depth [9]. L. pneumophila is the agent responsible for Legionnaires’ disease, a severe

pneumonia that can be fatal if not treated promptly. In addition, many species of

amoebae have the ability to form highly resistant cysts in hostile environments,

providing shelter for their intracellular parasites [10]. Indeed, it is thought that

L. pneumophila may survive water disinfection treatments and contaminate water

distribution systems by encystation [11, 12, 13]. From these contaminated water

sources, L. pneumophila can reach the human lungs via aerosols contaminated with

the bacteria and replicate within the alveolar macrophages that are, like amoebae,

phagocytic cells.

L. pneumophila has the ability to escape the lysosomal degradation pathway of

both A. castellanii and human alveolar macrophages through the formation of a

protective vacuole (the Legionella-containing vacuole or LCV) where it multiplies

to high numbers. Once the host cell has been fully exploited and nutrients become

limited, L. pneumophila exits the host and infects a new cell [14].

To establish the LCV and replicate, L. pneumophila secretes over 300 effector

proteins into the host cytoplasm via a type four secretion system (T4SS) called

Dot/Icm [15], thereby manipulating host pathways and redirecting nutrients to

the LCV [16, 17]. In the early stages of infection, many of these proteins target

the host secretory pathway, including several small GTPases, to recruit endoplas-

mic reticulum-derived vesicles to the LCV [18]. During the intracellular cycle, a

wider range of processes, including membrane trafficking, cytoskeleton dynamics,

and signal transduction pathways, are targeted by these effectors [19, 20]. L. pneu-

mophila also directly alters the genome of its host by modifying epigenetic marks

of the host genome in human macrophages and A. castellanii. It secretes an effec-

tor named RomA with histone methyltransferase activity that is targeted to the

nucleus. RomA carries out genome-wide trimethylation of K14 of histone H3 [21],

leading to transcriptional changes that modulate the host response in favor of bac-

terial survival [21]. Concomitantly, L. pneumophila infection leads to genome-wide

changes in gene expression [22]. In many eukaryotes, gene regulation is intertwined

within the three-dimensional organization of chromosomes. The functional inter-

play between gene regulation and higher-order chromatin elements such as loops,

self-interacting domains and active/inactive compartments is actively being stud-

ied [23, 24]. Therefore, the infection of A. castellanii by L. pneumophila provides
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an amenable model with which to investigate how an intracellular bacterial infec-

tion may affect the regulation of chromosome folding, and its consequences, in a

eukaryotic host.

The investigation of genome organization and regulation of A. castellanii in re-

sponse to infection requires a highly contiguous genome assembly. The reference

genome sequence for A. castellanii, NEFF-v1 [25], is based on the Neff strain, iso-

lated from soil in California in 1957 [26]. This assembly is widely used by different

laboratories studying A. castellanii, but is fragmented into 384 scaffolds compris-

ing 3192 contigs, which makes chromosome-level analyses difficult, if not impossible,

and basic features of the A. castellanii genome, such as the number of chromosomes

and ploidy, remain undetermined. In addition, many teams investigating bacteria-

amoeba interactions use the ”C3” strain (ATCC 50739), isolated from a drinking

water reservoir in Europe in 1994 and identified as a mouse pathogen [27]. However,

genomic information is scarce for this strain and little is known about its similarity

to the Neff strain. Notably, these two A. castellanii strains have been cultivated

for several decades and were isolated from different ecological niches, but the ex-

tent of conservation between their genomes is unknown. It is difficult to investigate

the factors that determine the susceptibility of different A. castellanii strains to the

pathogen without proper genomic resources. These resources would also be required

to apply genome-wide omics approaches.

The goal of this work was to study how the A. castellanii C3 strain responds to L.

pneumophila infection through the lens of the three-dimensional organisation of its

genome. This analysis required the generation of a high quality reference genome

sequence of the C3 strain, as well as a new and improved assembly of the Neff ref-

erence genome. Illumina, Nanopore long read, and Hi-C data were used to generate

near chromosome-level assemblies of the genomes of both strains. Surprisingly, the

new Neff and C3 assemblies have a (gap-excluded) sequence divergence of 6.7%.

We find evidence for strain-specific enrichment of a handful of functions, including

ones related to signal transduction in C3, and one relating to viral replication and

virion assembly in Neff. Using the C3 assembly, RNA-seq and Hi-C, we were able

to analyze the genome folding and expression changes of A. castellanii in response

to the infection by L. pneumophila. We found infection-dependent chromatin loops

to be enriched in genes involved in signal transduction and phosphorylation.

Results
The A. castellanii Neff and C3 genome assemblies are highly contiguous and complete

We used a combination of Illumina short reads, Oxford Nanopore long reads and

Hi-C to assemble each genome to chromosome scale, with 90% of the Neff genome

contained within 28 scaffolds. This is in contrast to a previous estimate of approxi-

mately 20 chromosomes inferred using pulsed-field gel electrophoresis [28]. For both

the Neff and C3 strains, we first generated a raw de-novo assembly using Oxford

Nanopore long reads. To account for the error prone nature of long reads, we pol-

ished the first draft assemblies with paired-end shotgun Illumina sequences using

HyPo [29]. The polished assemblies were then scaffolded with long range Hi-C con-

tacts using our probabilistic program instaGRAAL, which exploits a Markov Chain

Monte Carlo algorithm to swap DNA segments until the most likely scaffolds are
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achieved [30]. Following the post-scaffolding polishing step of the program (see [30]),

the final genome assemblies displayed better contiguity (Table 1), completion, and

mapping statistics than the previous versions, with the cumulative scaffold lengths

quickly reaching a plateau (Fig. 1a). The assemblies of both strains are also slightly

longer, with a smaller number of contigs than the original Neff assembly (NEFF-v1)

(Fig. 1b). The BUSCO-completeness scores for both assemblies are also improved,

with 90.6% (Neff) and 91.8% (C3) complete eukaryotic universal single copy or-

thologs, compared to 77.6% for NEFF-v1. We also noted an increased proportion

of properly paired shotgun reads from 71% for NEFF-v1 to 84% for our new Neff

assembly, suggesting a reduced number of short mis-assemblies. Hi-C contact maps

present a convenient readout to explore large mis-assemblies in genome sequences

[31]. While this allowed us to manually address major unambiguous mis-assemblies,

a number of visible mis-assemblies remain in complex regions such as repeated se-

quences near telomeres and ribosomal DNAs (rDNAs). These mis-assemblies could

not be resolved with the data generated herein. In the C3 assembly, there are also a

few (at least 5) interchromosomal mis-assemblies which appear to be heterozygous

and cannot be resolved without a phased genome. We also found shotgun cover-

age to be highly heterogeneous between scaffolds, which is suggestive of aneuploidy

(Fig. S1).

A. castellanii strains Neff and C3 have partly non-overlapping gene complements

The generation of chromosome-scale genome assemblies for two different A. castel-

lanii strains afforded us the first opportunity to compare and contrast their coding

capacities. We used both Broccoli [32] and OrthoFinder [33] for inference of orthol-

ogous groups. A summary of the inferred orthogroups shared by, and specific to,

the Neff and C3 strains of A. castellanii is presented in Figure 2, with orthogroup

numbers from both orthologous clustering tools included. This figure only compares

Neff against C3, irrespective of orthogroup presence or absence in outgroup taxa.

In this analysis, each strain-specific gene that was not assigned to an orthogroup

by either program was still considered to be a single strain-specific orthogroup in

order to account for the presence of genes without any orthologs across the five

species. Broccoli predicted more orthogroups overall and more strain-specific genes

than OrthoFinder, but predicted fewer shared orthogroups. Despite these differ-

ences, the overall trend is similar for the two outputs. The number of orthogroups

shared by the two strains is roughly an order of magnitude greater than the number

specific to either strain, while the C3 strain has a greater number of strain-specific

orthogroups than the Neff strain as predicted by both programs.

To investigate how similar the A. castellanii gene complement was to other mem-

bers of Amoebozoa, A. castellanii orthogroups were evaluated for their presence

in three outgroup species. Both Broccoli and OrthoFinder outputs were analyzed

in this fashion. According to Broccoli, 43.5% of orthogroups shared by the two A.

castellanii strains were not present in the other three amoebae, while OrthoFinder

gave a figure of 48.4%. In the Neff strain, 49.1% of all orthogroups, shared or strain-

specific, were not found in the three outgroup amoebae according to Broccoli, com-

pared to 51.0% as predicted by OrthoFinder. In the C3 strain, the Broccoli results

indicate that 52.4% of all orthogroups are not present in the outgroup amoebae,
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while 52.8% were not found in the outgroup by OrthoFinder. This is in contrast

with A. castellanii strain C3 sharing an estimated 82.5% (Broccoli) to 89.4% (Or-

thoFinder) of its orthogroups with the Neff strain, and the Neff strain sharing an

estimated 88.9% (Broccoli) to 93.6% (OrthoFinder) of its orthogroups with the C3

strain.

A. castellanii accessory genes show strain-specific functional enrichment

In an attempt to gain insight into the functional significance of strain-specific genes

in the C3 and Neff genomes, the top 30 most significantly enriched terms were iden-

tified by topGO and plotted in order of decreasing p-value for each strain/ontology

combination (Supplementary Figures S8-S13). Notably, among C3-specific genes,

only two terms were found to be statistically significantly enriched for each of the

three ontologies at a 95% confidence level. Among Neff-specific genes, only one term

was significantly enriched in each of the ‘cellular component’ and ’molecular func-

tion’ ontologies, while three were significantly enriched in the ‘biological process’

ontology.

In C3, enriched molecular functions were ‘GTP binding’ (p = 5e-5) and ‘protein

serine/threonine phosphatase activity’ (p = 0.037), enriched biological processes

were ‘small GTPase mediated signal transduction’ (p = 8.5e-5) and ‘ubiquitin-

dependent protein catabolic processes’ (p = 0.029), and enriched cellular compo-

nents were ‘RNA polymerase II core complex’ (p = 0.026) and ‘the Golgi membrane’

(p = 0.036). In Neff, the enriched molecular function was ‘DNA helicase activity’ (p

= 0.0071), enriched biological processes were ‘telomere maintenance’ (p = 0.0027),

‘protein homooligomerization’ (p = 0.0135), and ‘DNA replication’ (p = 0.0403),

and the enriched cellular component was ‘virion parts’ (p = 0.012). When searched

against the nr database with BLASTp [34], the Neff genes found to be responsible

for both DNA helicase activity enrichment and telomere maintenance enrichment

had their best BLAST hits to PIF1 5’-to-3’ DNA helicases, those responsible for

protein homooligomerization enrichment had their best BLAST hits to K+ chan-

nel tetramerization domains, and the gene annotated as being a virion part had

its best BLAST hits to major capsid protein from various nucleocytoplasmic large

DNA viruses (NCLDVs).

The Neff strain has a divergent mannose binding protein

One particular gene of interest encodes a mannose binding protein, which is known

to be used as a receptor for cell entry by Legionella in some A. castellanii strains

[35]. The MEEI 0184 strain of A. castellanii, an isolate from a human corneal

infection, was used as a reference sequence, because it is the only strain in which

the mannose binding protein is biochemically characterized [36, 37]. The orthologs

from C3, Neff, and Acanthamoeba polyphaga were retrieved, and all four sequences

were aligned (Figure S14). The percent identity of each sequence to the reference

was calculated over the sites in the alignment where the A. polyphaga sequence

was not missing (Table 2). The C3 homolog was found to be 99.5% identical to

the MEEI 0184 homolog, whereas the Neff and A. polyphaga proteins were more

divergent, sharing 91.6% and 97.2% identity to MEEI 0184, respectively. Despite

being of the same species as the reference, the Neff strain homolog was found to
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be much more divergent than the A. polyphaga sequence is from the other two A.

castellanii strains. Interestingly, we observed that L. pneumophila replicates worse

in the Neff strain than the C3 strain in culture. This phenotype may result from

impaired receptor-mediated entry by Legionella into Neff cells due to differences in

the receptor encoding gene.

Spatial organisation of the A. castellanii genome

To our knowledge, no Hi-C contact maps have been generated from species of Amoe-

bozoa. Therefore, the Hi-C reads we used to generate the chromosome-scale scaf-

folding of two A. castellanii genomes also offer the opportunity to reveal the average

genome folding in a species of this clade. Hi-C reads were realigned along the new

assemblies of both the C3 and Neff strains to generate genome-wide contact maps.

Visualising the Hi-C contact maps of both genomes shows that A. castellanii chro-

mosomes are well resolved in our assemblies (Fig. 3). In Neff, the highest intensity

contacts are concentrated on the main diagonal, suggesting an absence of large-scale

mis-assemblies. On the other hand, the C3 assembly retains a few mis-assembled

blocks, mostly in the rDNA region where tandem repeats could not be resolved

correctly with the data available to us. However, for both strains the genome-wide

contact maps reveal a grid-like pattern, with contact enrichment between chromo-

some extremities resulting in discrete dots. These contacts can be interpreted as

a clustering of the telomeres, or subtelomeres, of the different chromosomes (Fig.

3a). Based on the presence of these inter-telomeric contacts patterns, Hi-C contact

maps suggest the presence of at least 35 chromosomes in both strains, ranging from

roughly 100 kbp to 2.5 Mbp in length (Fig. S15). Additionally we found 100 copies of

5S rDNA dispersed across most chromosomes for both strains, and 18S/28S rDNA

genes show increased contacts with subtelomeres (Fig. 3a).

In addition to large, interchromosomal subtelomeric contacts, we also explored

the existence of intrachromosomal chromatin 3D structures in the contact maps

using Chromosight, a program that detects patterns reflecting chromatin struc-

tures on Hi-C contact maps [38]. For both strains, Chromosight identified arrays

of chromatin loops along chromosomes, as well as boundaries separating chromatin

domains (Fig. 3b). Most chromatin loops are regularly spaced, with a typical size of

20 kbp (Fig. 3c). The chromatin domains correspond to discrete squares along the

diagonal (Fig. S3a). We overlapped all predicted genes in the C3 genome with the

domain borders detected from Hi-C data and measured their base expression using

RNA-seq we generated from that strain (see Methods). We selected the closest gene

to each domain border and found that the genes overlapping domain boundaries

are overall more highly expressed than those that do not (Fig. S2c). In addition,

the analysis showed that gene expression is negatively correlated with the distance

to the closest domain border (Fig. S2d). We performed the same comparison us-

ing chromatin loop anchors instead of domain borders. To a lesser extent, genes

overlapping chromatin loops are also associated with higher expression (Fig. S2a),

although it is not correlated with the distance from the closest loop (Fig. S2b).

Altogether, these results suggest that the chromatin structures observed in cis are

both associated with gene expression, although the association between gene expres-

sion and chromatin loop anchors is likely due to their co-localization with domain
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borders (Fig. S2e). Some microorganisms (e.g. budding yeasts and euryarchaeotes)

organize their chromosomes into micro-domains that correspond to expressed genes

[39, 40]. Our findings in A. castellanii bear an interesting similarity to this type of

organization.

L. pneumophila infection induces chromatin loop changes enriched in infection-related

functions

The generation of near-complete assemblies allowed us to tackle the question of

whether L. pneumophila infection impacts the 3D folding and transcription of the A.

castellanii C3 strain genome. We harvested cultured A. castellanii cells before and

5 hours following infection by L. pneumophila strain Paris [41] (Methods). The cells

were processed using Hi-C and RNA-seq (Methods), and the resulting reads aligned

against the reference genome to assess changes in the genome structure and the host

transcription program, respectively. RNA-seq was performed in triplicate, and Hi-

C in duplicate (Methods). To measure changes in trans-chromosomal contacts, we

merged the contact maps from our replicates and applied the serpentine adaptive

binning method to improve the signal-to-noise ratio [42]. We then computed aver-

age interactions between each pair of chromosomes before and after infection. For

each pair of chromosomes, we then used the log ratio of infected over uninfected

average contacts. Following infection a global decrease in trans-subtelomeric con-

tacts was observed, suggesting a slight de-clustering of chromosome ends (Fig. 4b).

In addition, the scaffold bearing 18S and 28S rDNA (scaffold 29), as well as two

other small scaffolds (35 and 36) displayed weaker interactions with other scaffolds

during infection (Fig. 4a).

We then assessed whether the behavior of cis contacts changes during infection.

First, we computed the average contact frequencies according to genomic distance

p(s) (Methods), which is a convenient way to unveil variations in the compaction

state of chromatin [43]. The p(s) curves show a global increase in long range contacts

following infection (Fig. S4b). The strengths of chromatin loops and domain bor-

ders before and 5h after infection were quantified using Chromosight [38]. However,

no significant average increase or decrease in the intensity of these structures (Fig.

S4a) was identified when computed over the whole genome. To focus on infection-

dependent chromatin structures, we filtered the detected patterns to retain those

showing the top 20% strongest change in Chromosight score during infection (either

appearing or disappearing). We performed a GO term enrichment analysis for genes

associated with infection-dependent chromatin loops (Methods). A significant en-

richment for Rho GTPase and phosphorelay signal transduction, protein catabolism

and GPI biosynthesis was found (Fig. S6a). The strongest loop changes were asso-

ciated with genes encoding Rho GTPase, GOLD and SET domains as well as genes

for proteins containing leucine-rich repeats and ankyrin repeats (Fig. S7).

We followed the same procedure for domain borders and found that genes associ-

ated with infection-dependent domain borders were significantly enriched in ’amino

acid transport’, ’cyclic nucleotide biosynthetic process’, ’protein modification’ and

’deubiquitination’ (Fig. S6b). Our results suggest that domain borders are gener-

ally associated with highly transcribed metabolic genes, consistent with previous

findings showing that such borders are associated with high transcription [44].
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By analyzing the A. castellanii RNA-seq data after infection with L. pneumophila,

we revealed that the expression of genes was globally impacted at 5h post infec-

tion compared to uninfected cells (Fig. S5a). This is consistent with recent results

showing that transcription is globally disrupted in A. castellanii Neff following in-

fection by L. pneumophila [22]. To investigate the relationship between this change

in gene expression and chromatin structure, we assigned the closest domain border

to each gene and compared their expression and border score changes during in-

fection. For the majority of genes, we found border intensity not to be correlated

with gene expression changes (Fig. S5b). Only genes undergoing extreme expression

changes during infection corresponded to changes in associated borders (Fig. S5c).

This raises the possibility that insulation domains in A. castellanii chromosomes

do not dictate gene expression programs as they do in mammals.

Recently, Li et al. [22] investigated gene expression changes at 3, 8, 16 and 24h

after infection of A. castellanii Neff by L. pneumophila. To further validate our

finding that chromatin domains are not units of regulation in A. castellanii, we

used these expression results and migrated the gene annotations to our C3 assembly

using liftoff [45]. This allowed us to compute co-expression between gene pairs during

infection (i.e., expression correlation). We found that gene pairs within the same

chromatin domain did not have a higher co-expression than gene pairs from different

domains at similar genomic distances (Fig. S3d).

Discussion
Chromosome-level assembly uncovers A. castellanii genome organization

Generation, analysis and comparison of the genome sequences of two A. castellanii

strains revealed heterogeneous coverage across scaffolds, which is consistent with

previous findings that A. castellanii has a high but variable ploidy of approximately

25n [46]. Previous estimates of the A. castellanii Neff karyotype using pulsed-field

gel electrophoresis estimated 17 to 20 unique chromosomes ranging from 250 kbp to

just over 2 Mbp [28], while our estimate suggests at least 35 unique chromosomes

with a similar size range of 100 kbp to 2.5 Mbp. The discrepancy between the

number of bands in the electrophoretic karyotype and our estimate may result from

chromosomes of similar size co-migrating on the gel, which we were able to resolve

using sequence- and contact-based information.

Considering features of the nuclear biology of A. castellanii, such as suspected

amitosis [47] and probable aneuploidy, our finding that 5S ribosomal DNA is dis-

persed across all chromosomes may serve to ensure a consistent copy number of 5S

rDNA in daughter cells.

It was previously estimated that A. castellanii has 24 copies of rDNA genes per

haploid genome [48]. Our data show that both strains contain 4 times as many

copies as originally thought. The decrease in interchromosomal contacts with rDNA-

containing scaffolds during infection may reflect an alteration in the nucleolus struc-

ture, probably caused by a global increase in translational activity. This would be

consistent with the global transcription shift observed in RNA-seq under infection

conditions.

At a first glance, the contact maps show a clustering of subtelomeric regions, but

do not display a Rabl conformation, where centromeres cluster to the spindle-pole
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body [49]. However, the precise positions of centromeres would be needed to verify

that they do not co-localize with subtelomeric regions.

Changes in chromatin structure likely reflect transcriptional changes

Infection of A. castellanii with L. pneumophila induced significant changes in chro-

matin loops and borders. Our analyses showed an enrichment in several interesting

GO terms at the sites of these infection-induced changes, many of them consis-

tent with known biological processes induced by L. pneumophila in amoebae and

macrophages. Several enriched terms are related to cell cycle regulation, including

mitotic cell cycle, cell cycle processes and cell cycle checkpoints (Fig. S6), which is

consistent with recent results showing that L. pneumophila prevents proliferation

of its natural host A. castellanii [50, 22]. L. pneumophila-induced alterations of the

host cell cycle may serve to avoid cell cycle phases that restrict bacterial replication

[51], or to prevent amoebal proliferation, which has been proposed to increase the

feeding efficiency of individual amoebae [52].

Several other GO terms that we found to be enriched at infection-dependent

loops or borders are related to host cell organelles, such as organelle assembly, mi-

crotubule cytoskeleton organization, protein localization to endoplasmic reticulum,

mitochondrion organization, electron transport chain, or mitochondrial respiratory

chain complexes (Fig. S6). This is interesting given that it is well known that during

infection, L. pneumophila hijacks host organelles such as the cytoskeleton, the endo-

plasmic reticulum, and mitochondria in both amoebae and macrophages [53, 54, 55].

Indeed, mitochondrial respiration and electron transport chain complexes were re-

cently shown to be altered in macrophages during L. pneumophila infection [54, 56].

Sites of infection-dependent chromatin reorganization also show enrichment in

functions related to changes in the general metabolism of the host, such as biosyn-

thetic and catabolic processes, including nucleotide and nucleoside synthesis, lipid

metabolism, or transport of amino acids and metal ions. To replicate intracellu-

larly, L. pneumophila acquires all its nutrients from the cytoplasm of the host cell.

Therefore, it is thought that bacteria-induced modulation of the host metabolism is

key to establishing a successful infection [57]. In summary, many of the GO terms

associated with changes in chromatin loops and borders during infection align with

the known biology of Legionella infection, suggesting a link between chromatin or-

ganization and many of the observed changes in host cells during infection.

It was previously shown that L. pneumophila infection halts host cell division

and is associated with a decrease of mRNA of the A. castellanii CDC2b gene, a

putative regulator of the A. castellanii cell cycle [50]. The large scale 3D changes

we observed in chromatin compaction (Fig. S4b) and interchromosomal contacts

(Fig. 4) are reminiscent of cell cycle changes in yeast and could suggest that the

bacterium stops the host’s cell cycle at a specific checkpoint.

We identified an array of regularly spaced chromatin loops in A. castellanii chro-

mosomes of approximately 20 kbp in size. This is consistent with size range of

chromatin loops observed in S. cerevisiae during the G2/M stage [58]. This simi-

larity in terms of regularity and size suggests that chromatin loops in A. castellanii

may serve a similar purpose of chromosome compaction for cell division as in yeast.

Our finding that DNA loop anchors and domain borders overlap highly expressed
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genes is also concordant with observations made in yeast and other species that do-

main borders are preferentially located at highly expressed genes [38, 59], and could

result from their role in blocking the processing SMC complexes [60], potentially to

avoid interferences between cohesin activity and transcription.

Unlike previously shown in Drosophila [61], we did not find an increase in co-

expression of genes sharing the same contact domain in A. castellanii. This suggests

chromatin domains may be caused by highly transcribed genes, and do not act as

units of regulation.

A. castellanii accessory genes may permit environmental adaptation

Despite the substantial number of genes predicted to be strain-specific in A. castel-

lanii, few functions were found to be significantly enriched in either the Neff or C3

strain set of strain-specific genes. Of these, the most biologically interesting is the

enrichment of both ‘small GTPase mediated signal transduction’ and ‘GTP bind-

ing’ genes in C3. Nearly all of the genes annotated as being involved in ‘small

GTPase mediated signal transduction’ biological processes are also annotated as

having ‘GTP binding’ molecular functions, which is not surprising – GTP binding

is an integral part of GTPase functionality. The enrichment of these two GO terms,

as well as protein serine/threonine phosphatase activity enrichment, suggests that

the C3 strain may have expanded its capacity for environmental sensing and associ-

ated cellular responses by expanding gene families involved in signal transduction.

Given the extensive gene repertoire in A. castellanii dedicated to cell signalling,

environmental sensing, and the cellular response [25], which is thought to help the

amoeba navigate diverse habitats and identify varied prey, it seems likely that al-

terations of this gene repertoire in C3 may have permitted further environmental

adaptations.

Another enrichment of note is that of ‘virion parts’ in the Neff strain of A. castel-

lanii. This enrichment comprises a single gene with a best BLAST hit to major

capsid proteins in various NCLDVs, including a very strong hit to Mollivirus siber-

icum. Many NCLDVs, including Mollivirus, are known viruses of Acanthamoeba

spp. [62]. Although no phylogenetic analyses were performed to investigate the ori-

gin of this major capsid protein gene in the Neff genome, it seems plausible that

it was acquired by lateral gene transfer during an NCLDV infection, perhaps by

Mollivirus or some closely related virus.

The remaining enriched functions have no obvious biological significance. They

could well be non-adaptive, having been generated through gene duplication, differ-

ential loss in the other surveyed amoebae, or lateral gene transfer, without confer-

ring any notable selective advantage. An improved understanding of Acanthamoeba

cell and molecular biology is needed to make sense of the gene enrichment data

presented herein.

Substitutions in the Neff mannose binding protein may inhibit Legionella entry

Alignment of the three A. castellanii mannose binding proteins (MBPs) and the A.

polyphaga homolog may help explain the difference in susceptibility to Legionella

infection between the Neff and C3 strains. The C3 strain mannose binding pro-

tein is highly similar to its counterpart in strain MEEI 0184, which was first to
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be biochemically characterized. The Neff strain MBP, however, is markedly more

divergent than even the A. polyphaga MBP, which is not known to participate in

Acanthamoeba-Legionella interactions [63]. These results are consistent with the hy-

pothesis that the Neff strain of A. castellanii is not a very good host for infection by

Legionella due to an accumulation of amino acid substitutions in its mannose bind-

ing protein, substitutions that may prevent Legionella from binding to this protein

during cell entry. Whether or not A. castellanii uses its MBP for feeding or recog-

nition of potential pathogens like Legionella is at present unclear, but it is worth

noting that the Neff strain has been in axenic culture since 1957, so it may be that

relaxed selective pressure on this protein, combined with repeated population bot-

tlenecking during culture maintenance, has allowed for mutations in the Neff strain

MBP gene to accumulate. At the present time, without available genome data for

strains more closely related to the Neff strain, it cannot be determined whether

these mutations arose in nature or in culture. However, given that the divergence

of the A. polyphaga ortholog to the MEEI 0184 strain is much less than that of the

Neff strain, despite all four strains having similar lifestyles in nature, evolution of

the Neff strain since being deposited in the culture collection seems likely.

Methods
Strains and growth conditions

A. castellanii strains Neff and C3 were grown on amoeba culture medium (2% Bacto

Tryptone, 0.1% sodium citrate, 0.1% yeast extract), supplemented with 0.1 M glu-

cose, 0.1 mM CaCl2, 2.5 mM KH2PO4, 4 mM MgSO4, 2.5 mM Na2HPO4, 0.05 mM

Fe4O21P6 at 20°C. L. pneumophila strain Paris was grown for 3 days on N-(2-

acetamido)-2-amino-ethanesulfonic acid (ACES)-buffered charcoal-yeast (BCYE)

extract agar, at 37 °C.

Infection timecourse

Infection of A. castellanii C3 with L. pneumophila was performed using MOI 10 over

5h in infection medium (0.5% sodium citrate supplemented with 0.1 mM CaCl2, 2.5

mM KH2PO4, 4 mM MgSO4, 2.5 mM Na2HPO4, 0.05 mM Fe4O21P6 at 20°C. At 5h

post-infection, amoebae were collected in a 15 mL tube, pelleted by centrifugation at

300 g for 10 minutes and washed twice in PBS, then crosslinked in 3% formaldehyde

during 20 minutes at room temperature (RT) with gentle shaking. 2.5 M glycine was

then added to reach a final concentration of 0.125 M over 20 minutes, centrifuged,

washed, and pellets were stored at -80 °C until DNA extraction.

Library preparations

Hi-C

Cell pellets were suspended in 1.2ml H2O and transferred to CK14 Precellys tubes.

Cells were broken with Precellys (6 cycles: 30 sec ON / 30 sec OFF) at 7500 RPM

and transferred into a tube. All Hi-C libraries for A. castellanii strains C3 and Neff

were prepared using the Arima kit and protocol with only the DpnII restriction

enzyme. Libraries were sequenced to produce 35 bp paired-end reads on an Illumina

NextSeq machine.
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Short-read sequencing

Illumina libraries SRX12218478 and SRX12218479 were prepared from A. castellanii

strains C3 and Neff genomic DNA, respectively, and sequenced by Novogene at

2x150 bp on an Illumina Novaseq 6000 machine.

For SRX4625411, a PCR-free library was prepared and sequenced by Génome

Québec from purified A. castellanii strain Neff genomic DNA. The library was

barcoded and run with other samples on an Illumina HiSeq X Ten instrument,

producing 150 bp paired-end reads.

RNA-seq

Poly-A selected libraries were prepared from purified A. castellanii total RNA. A.

castellanii strain C3 RNA-seq libraries were prepared using the stranded mRNA

Truseq kit from Illumina and sequenced in single-end mode at 150 bp on an Illumina

NextSeq machine.

For A. castellanii strain Neff (SRX7813524), the library was prepared and se-

quenced by Génome Québec. The library was barcoded and run with other samples

on an Illumina NovaSeq 6000 instrument, producing 300 bp paired-end reads.

Nanopore sequencing

For SRX12218489 and SRX12218490, DNA was extracted from A. castellanii strains

Neff and C3 using the QIAGEN Blood and Cell Culture DNA Kit (Qiagen) follow-

ing the specific recommendations detailed by Oxford Nanopore Technologies in the

info sheet entitled ”High molecular weight gDNA extraction from cell lines (2018)”

in order to minimize DNA fragmentation by mechanical constraints. Nanopore li-

braries were prepared with the ligation sequencing kit LSKQ109, flowcell model

MIN106D R9. Basecalling was performed using Guppy v2.3.1-1.

For other libraries, genomic DNA samples were obtained from A. castellanii strain

Neff using an SDS-based lysis method, followed by digestion with RNase A, then

proteinase K, and then a phenol-chloroform-based extraction. DNA samples were

cleaned with QIAgen G/20 Genomic Clean-up columns using the manufacturer’s

protocol, but with double the number of wash steps. Four different libraries were

prepared, using the SQK-RAD003 Rapid Sequencing Kit (SRX4620962), the SQK-

LSK308 1D2 Ligation Sequencing Kit (SRX4620963), the SQK-RAD004 Rapid

Sequencing Kit (SRX4620964), and the SQK-LSK108 Ligation Sequencing Kit

(SRX4620965). The SQK-LSK308 and SQK-RAD003 libraries were sequenced on

FLO-MIN107 flow cells, and the SQK-LSK108 and SQK-RAD004 libraries were

both sequenced on a FLO-MIN106 flow cell. All four libraries were basecalled with

Albacore 2.1.7, as they were sequenced prior to the release of Guppy. Adapters were

removed from the basecalled reads using Porechop v0.2.3.

Genome assembly

Nanopore reads were filtered using filtlong v0.2.0 with default parameters to keep

the best 80% reads according to length and quality. Illumina shotgun libraries were

used as reference for the filtering. A de novo assembly was generated from the raw

(filtered) Nanopore long reads using flye v2.3.6 with three iterations of polishing.

The resulting assembly was polished using both Nanopore and Illumina reads with
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HyPo v1.0.1. Contigs from the polished assembly bearing more than 60% of their se-

quence or 51% identity to the mitochondrial sequence from the NEFF v1 assembly

were separated from the rest of the assembly to prevent inclusion of mitochon-

drial contigs into the nuclear genome during scaffolding. Polished nuclear contigs

were scaffolded with Hi-C reads using instagraal v0.1.2 with default parameters.

Instagraal-polish was then used to fix potential errors introduced by the scaffolding

procedure. Mitotic contigs were then added at the end of the scaffolded assembly

and the final assembly was polished with the Illumina shotgun library data us-

ing two rounds of pilon polishing. The resulting assembly was edited manually to

remove spurious insertion of mitochondrial contigs in the scaffold and other contam-

inants. The final assembly was polished again using pilon with Rcorrector-corrected

reads [64]. Minimap2 v2.17 [65] was used for all long reads alignments, and bowtie2

v2.3.4.1 for short reads alignments.

Genome annotation

The structural genome annotation pipeline employed here was implemented sim-

ilarly as described in [66]. Briefly, RNA-Seq reads were mapped to the genome

assembly using STAR v2.7.3a [67], followed by both de novo and genome-guided

transcriptome assembly by Trinity v2.12.0 [68]. Both runs of Trinity were performed

with jaccard clipping to mitigate artificial transcript fusions. The resulting tran-

scriptome assemblies were combined and aligned to the genome assembly using

PASA v2.4.1 [69]. Protein sequences were aligned to the genome using Spaln v2.4.2

[70] to recover the most information from sequence similarity. The ab initio pre-

dictors employed were Augustus v3.3.2 [71], Snap [72], Genemark v4.33 [73], and

CodingQuarry v2.0 [74]. Finally, the PASA assembly, Spaln alignments, as well as

Augustus, Snap and Codingquarry gene models, were combined into a single con-

sensus with Evidencemodeler v1.1.1 [75].

Functional annotations were added using funannotate v1.5.3. [76] Repeated se-

quences were masked using repeatmasker. Predicted proteins were fed to Inter-

proscan v5.22 [77], Phobius v1.7.1 [78] and Eggnog-mapper v2.0.0 [79] were used to

generate functional annotations. Ribosomal RNA genes were annotated separately

using RNAmmer v1.2 [80] with HMMER 2.3.2.

As described in the Availability of data and materials section, the funannotate-

based script ”func annot from gene models.sh” used to add functional annotations

to existing gene models is provided in the Zenodo record and on the associated

github repository.

Analysis of sequence divergence

To compute the proportion of substituted positions in aligned segments between

the C3 and Neff strains, the two genomes were aligned using minimap2 with the

map-ont preset and -c flag. The gap-excluded sequence divergence (mismatches /

(matches + mismatches) was then computed in each primary alignment and the

average of divergences (weighted by segment lengths) was computed. This is im-

plemented in the script ”04 compute seq divergence.py” available in the genome

analysis repository listed in Availability of data and materials
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Orthogroup inference

Orthogroups were inferred using the predicted proteomes of both the Neff and C3

strains, with Dictyostelium discoideum, Physarum polycephalum, and Vermamoeba

vermiformis as outgroups to improve the accuracy of orthogroup inference. The

outgroup predicted proteomes were retrieved from PhyloFisher [81]. Both Broccoli

[32] and OrthoFinder [33] were run with default settings for orthogroup inference.

Gene content comparison of Neff and C3 strains

Custom Python scripts were used to retrieve genes unique to each A. castellanii

strain, as well as orthogroups that were shared between the two strains. Genes were

only determined to be strain-specific or shared if both Broccoli and OrthoFinder

assigned them as such; genes were excluded from the analysis if both tools did not

agree. For both strains, functional assignments for each gene ID were extracted

from funannotate output and tabulated. The tabulated assignments and strain-

specific gene IDs were fed into the R package topGO [82] to analyze GO term

enrichment in the strain-specific genes. Fisher’s exact test with the weight algorithm

was implemented in topGO for the Neff- and C3-specific genes for each of the three

ontologies (biological process, cellular component, and molecular function). When

building the GOdata objects for these three ontologies, nodeSize was set to 10 for

both the biological process and molecular function ontologies, and 5 for the cellular

component ontology due to the lower number of GO terms in this ontology.

Mannose Binding Protein Comparison

Mannose binding protein (MBP) amino acid sequences from three strains of A.

castellanii (Neff, C3, and MEEI 0184) and one strain of Acanthamoeba polyphaga

were retrieved, aligned using MAFFT-linsi (v7.475) [83], and visualized in Jalview

(v2.11.1.3) [84]. The MEEI 0184 strain sequence was retrieved from NCBI (Acces-

sion: AAT37865.1), and the Neff and C3 sequences were retrieved from the predicted

proteomes generated in this study with the MEEI 0184 sequence as a BLASTp [34]

query. The A. polyphaga genome does not have a publicly available predicted pro-

teome, so its MBP protein sequence was manually extracted from several contigs

in the genome sequence (NCBI accession: GCA 000826345.1) using tBLASTn with

the MEEI 0184 sequence as a query (the sequence encoding the first 8 amino acids

of the protein could not be found in the genome due to a truncated contig).

Hi-C analyses

Reads were aligned with bowtie2 v2.4.1, and Hi-C matrices were generated using

hicstuff v3.0.1 [85]. For all comparative analyses, matrices were downsampled to the

same number of contacts using cooltools (https://www.github.com/mirnylab/cooltools)

and balancing normalization was performed using the ICE algorithm [86]. Loops

and domain borders were detected using Chromosight v1.6.1 [38] using the merged

replicates at a resolution of 2 kbp. We measured the intensity changes in Chro-

mosight scores during infection using pareidolia (v0.6.1) [87] on 3 pseudo replicates

generated by sampling the merged contact maps, as described in [88]. This was done

to account for contact coverage heterogeneity across replicates. The 20% threshold

used to select differential patterns amounts to 1.2% false detections for loops and

2.3% for borders when comparing pseudo-replicates from the same condition.
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package for resolving eukaryotic relationships. PLOS Biology 19(8), 3001365 (2021).

doi:10.1371/journal.pbio.3001365. Publisher: Public Library of Science. Accessed 2021-10-06

82. Alexa, A., Rahnenfuhrer, J.: topGO: Enrichment Analysis for Gene Ontology. Bioconductor version: Release

(3.13) (2021). doi:10.18129/B9.bioc.topGO. https://bioconductor.org/packages/topGO/ Accessed

2021-10-06

83. Katoh, K., Standley, D.M.: MAFFT Multiple Sequence Alignment Software Version 7: Improvements in

Performance and Usability. Molecular Biology and Evolution 30(4), 772–780 (2013).

doi:10.1093/molbev/mst010. Accessed 2021-10-06

84. Waterhouse, A.M., Procter, J.B., Martin, D.M.A., Clamp, M., Barton, G.J.: Jalview Version 2—a multiple

sequence alignment editor and analysis workbench. Bioinformatics 25(9), 1189–1191 (2009).

doi:10.1093/bioinformatics/btp033. Accessed 2021-10-06

85. Matthey-Doret, C., baudrly, axelcournac, Amaury, Remi-Montagne, Guiglielmoni, N., Foutel-Rodier, T., Scolari,

V.F.: koszullab/hicstuff: Standardized help messages. Zenodo (2021). doi:10.5281/zenodo.4722873.

https://zenodo.org/record/4722873 Accessed 2021-10-06

86. Imakaev, M., Fudenberg, G., McCord, R.P., Naumova, N., Goloborodko, A., Lajoie, B.R., Dekker, J., Mirny,

L.A.: Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nature Methods 9(10),

999–1003 (2012). doi:10.1038/nmeth.2148. Number: 10 Publisher: Nature Publishing Group. Accessed

2021-04-27

87. Matthey-Doret, C.: koszullab/pareidolia: v0.6.1 (2021). doi:10.5281/zenodo.5062485.

https://zenodo.org/record/5062485 Accessed 2021-07-02

88. Yang, T., Zhang, F., Yardımcı, G.G., Song, F., Hardison, R.C., Stafford, W., Yue, F., Li, Q.: HiCRep: assessing

the reproducibility of Hi-C data using a stratum-adjusted correlation coefficient, 37



Matthey-Doret et al. Page 20 of 36

Figures

0 10 20 30 40

0 100 200 300 400

C3

Neff

NEFF_v1

0 80 160 240 320

Contig index

0

10

20

30

40

50

C
u
m

u
la

ti
v
e
 l
e
n
g
th

 (
M

b
p
)

Cumulative length

S: single

M: missing

D: duplicated

F: Fragmented

a

c

b
Assembly length [Mb]

# contigs

Figure 1 Assembly statistics for A. castellanii genomes. Comparison of genome assemblies for
strains C3 and Neff, versus the previous NEFF-v1 genome assembly [25]. a, Cumulative length
plot showing the relationship between number of contigs (largest to smallest) and length of the
assembly. b, General continuity metrics. c, BUSCO statistics showing the status of universal single
copy orthologs in eukaryotes for each assembly.

Figure 2 Numbers of strain-specific and shared orthologous groups in the genomes of A.
castellanii strains C3 and Neff. Orthology inference was conducted with both Broccoli and
OrthoFinder. Dictyostelium discoideum, Physarum polycephalum, and Vermamoeba vermiformis
were used as outgroups to improve accuracy of orthogroup inference.
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Figure 3 Spatial organisation of the A. castellanii genome. a, Top: Whole genome Hi-C contact
maps of the Neff (left) and C3 (right) genomes, with a magnification of the 3 largest scaffolds.
The genomes are divided into 16 kbp bins, and each pixel represents the contact intensity between
a pair of bins. Each scaffold is visible as a red square on the diagonal. In both strains, there is an
enrichment of inter-scaffold contacts towards telomeres, suggesting a spatial clustering of
telomeres, as shown on the model in the right margin. Bottom: 4C-like representation of spatial
contacts between rDNA and the rest of the genome. Scaffolds are delimited by grey vertical lines.
Contacts of all rDNAs are enriched towards telomere. The genomic position of 18S and 28S genes
are highlighted with triangles on the top panel and the occurences of 8S rDNA sequences are
shown with vertical red lines on the bottom panel. b, High resolution the contact map for a region
of the C3 genome showing chromatin loops detected by Chromosight as blue circles. c, Size
distribution of chromatin loops detected in the C3 strain.



Matthey-Doret et al. Page 22 of 36

a

I/U

bPairwise interchromosomal 
contacts change

Lo
g
2

(In
fe

cte
d
 / U

n
in

fe
cte

d
)

C
h
ro

m
o
so

m
e
s

Average change in 
telomeric clustering

Figure 4 Changes in trans-chromosomal contacts between A. castellanii chromosomes
following L. pneumophila infection. a, Average contact change during infection between each
pair of chromosomes. Chromosome lengths are shown below the interaction matrix, with the
chromosome bearing 18S and 28S rDNA highlighted in green b, Representative inter-telomeric
contacts between a pair of chromosomes (Neff scaffolds 3 and 11). The average inter-telomeric
contact profile generated from all pairs of chromosomes is shown as a pileup. The Log ratio
between the infected (I) and uninfected (U) profiles is shown as a ratio (right).
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Tables

Assembly Neff-v1 Neff C3
Genome size (Mbp) 42.0 43.8 46.1

# scaffolds 384 111 174
# of Ns (Mbp) 2.6 (6.1%) 0 (0%) 0 (0%)

N50 (Mbp) 0.3 1.3 1.4
Largest scaffold (Mbp) 2.0 2.5 2.4

GC% 57.90 58.44 58.64
# protein coding genes 14,974 15,497 16,837

Table 1 Genome statistics for the finished assemblies of Neff, C3 (this study) and the reference
Neff-v1 genome.

Strain Identity Gaps
Neff 757/826 (91.6%) 1/826 (0.12%)
C3 821/825 (99.5%) 0

A. polyphaga 802/825 (97.5%) 0
Table 2 Identity of mannose binding proteins from A. polyphaga and A. castellanii strains Neff and
C3 to their homolog in A. castellanii strain MEEI 0184 across 788 sites of a 834-site amino acid
alignment. The first 46 sites of the alignment were excluded from the calculation because the 5’ end
of the gene in A. polyphaga was missing due to a truncated contig.
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Supplementary figures
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Figure S1 Coverage across scaffolds of A. castellanii compared to a known haploid. a, Illumina
short-reads coverage along the 10 largest scaffolds of A. castellanii Neff in a 100 kbp sliding
window, with the horizontal green line showing genome median coverage. b, Variability of median
coverage per chromosome (relative to genome median) for A. castellanii strains C3 and Neff, and
asynchronous Saccharomyces cerevisiae strain BY4741, a known haploid. For S. cerevisiae, library
SRR1569870 was used.
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Figure S2 Gene expression according to position relative to chromatin structures. Expression of
the closest gene to each loop anchors versus a, overlap status with chromatin loops and b,
distance to closest loop. Expression of the closest gene to domain borders versus c, overlap status
with domain borders and d, distance to closest border. P-values reported for overlap comparisons
are obtained using Mann-Whitney U test, correlation coefficients and associated p-values are
computed using Spearman’s correlation test. e, Overlap between chromatin loop anchors and
domain borders represented as a Venn diagram.
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Figure S3 Relationship between genes and insulation domains. a, Example domains detected by
Chromosight in the C3 strain, with theoretical genes for demonstration. b, Relationship between
inter-gene distance and number of domains separating them. c, Distribution of mean inter-gene
contacts according to domain separation status. d, Distribution of gene-pairs co-expression
according to domain separation status. For all panels, only gene pairs separated by less than the
median domain size were selected.
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Figure S4 Global comparisons of infection Hi-C results between replicates. a, Distribution of
Chromosight loops and borders scores for all 4 samples. b, Distance-contact decay function
(denoted P(s)) and its slope.
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Figure S5 Relationship between differential expression and domain insulation during infection. a,
Volcano plot showing differential gene expression (DE) of infected (5h p.i.) versus uninfected
amoeba. Genes with significant corrected p-values (FDR¡5%) are shown in red. b, Changes in
gene expression and insulation strength of closest domain border during infection. Linear
regression lines, Spearman correlation coefficients and associated p-values are shown separately for
genes with extreme fold change values (95% quantile) and the rest. c, Spearman correlation
coefficient between expression fold change and domain insulation change, and associated
FDR-corrected p-values (FDR¡5%) for different subsets of genes according to the threshold of
extreme fold change. Values are colored according to the 95% threshold selected in b.
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Figure S6 GO term enrichment test results for genes overlapping infection-dependent a,
chromatin loops and b, domain borders. Histograms show the distribution of loop and border
score changes during infection, with highlighted portions showing the 80% percentile threshold
used to include genes in the GO enrichment test.
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Figure S7 Hi-C zooms on strongest pattern changes during infection. Description of the closest
genes are shown below each zoom. Balanced contact map zooms showing a, strongest border
decrease and b, decrease. Serpentine-binned contact maps showing c, strongest loop decrease and
d, increase.

Figure S8 Most significant biological process GO term enrichments in genes specific to
Acanthamoeba castellanii strain C3. Enrichment was determined using topGO, with nodeSize set
to 10 when building the GOdata object. The size of the circles at the end of the bars represents
the number of genes annotated under that GO term in the genome, and the colour scale of the
circles represents the ratio of how many genes were found in the strain-specific set for that term
compared to how many were expected.
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Figure S9 Most significant molecular function GO term enrichments in genes specific to
Acanthamoeba castellanii strain C3. Enrichment was determined using topGO, with nodeSize set
to 10 when building the GOdata object. The size of the circles at the end of the bars represents
the number of genes annotated under that GO term in the genome, and the colour scale of the
circles represents the ratio of how many genes were found in the strain-specific set for that term
compared to how many were expected.
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Figure S10 Most significant cellular component GO term enrichments in genes specific to
Acanthamoeba castellanii strain C3. Enrichment was determined using topGO, with nodeSize set
to 5 when building the GOdata object. The size of the circles at the end of the bars represents the
number of genes annotated under that GO term in the genome, and the colour scale of the circles
represents the ratio of how many genes were found in the strain-specific set for that term
compared to how many were expected.
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Figure S11 Most significant biological process GO term enrichments in genes specific to
Acanthamoeba castellanii strain Neff. Enrichment was determined using topGO, with nodeSize
set to 10 when building the GOdata object. The size of the circles at the end of the bars
represents the number of genes annotated under that GO term in the genome, and the colour
scale of the circles represents the ratio of how many genes were found in the strain-specific set for
that term compared to how many were expected.
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Figure S12 Most significant molecular function GO term enrichments in genes specific to
Acanthamoeba castellanii strain Neff. Enrichment was determined using topGO, with nodeSize
set to 10 when building the GOdata object. The size of the circles at the end of the bars
represents the number of genes annotated under that GO term in the genome, and the colour
scale of the circles represents the ratio of how many genes were found in the strain-specific set for
that term compared to how many were expected.
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Figure S13 Most significant cellular component GO term enrichments in genes specific to
Acanthamoeba castellanii strain Neff. Enrichment was determined using topGO, with nodeSize
set to 5 when building the GOdata object. The size of the circles at the end of the bars represents
the number of genes annotated under that GO term in the genome, and the colour scale of the
circles represents the ratio of how many genes were found in the strain-specific set for that term
compared to how many were expected.

Figure S14 Multiple sequence alignment of mannose binding protein orthologs across three
strains of Acanthamoeba castellanii and one strain of Acanthamoeba polyphaga. Sites are
coloured according to the Clustalx colour scheme and residues differing from the consensus at any
given site are not coloured. The alignment was generated with MAFFT-linsi, and was viewed and
coloured in Jalview.
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Figure S15 Predicted karyotype of A. castellanii strains C3 and Neff. For each strain, 35
scaffolds likely to be chromosomes based on the presence of inter-telomeric contact patterns on
the contact maps are ordered by size. Colored bands indicate the position of rDNA along the
chromosome sequence.



2.2 Inter-strain sequence divergence

To put into perspective the divergence between A. castellanii strains Neff and C3,
here we compare them to 11 other amoeba species whose genomes are available.
As described in the previous section, we extracted all predicted coding sequences
from each species and used orthofinder (v2.3.3) to constitute groups of orthologous
genes among these proteomes.

We constructed a phylogenetic tree using orthofinder’s built-in implementation of the
STAG (Species Tree inference from All Genes) procedure [174]. Briefly, Orthofinder
builds a tree for each gene based on multiple sequence alignment, and then uses all
gene trees where all species are available to build a species tree. The species tree
is then rooted by Orthofinder using the STRIDE (Species Tree Root Inference from
gene Duplication Events) procedure [175]. In the resulting tree, C3 and Neff are
highly divergent from the closest available relative, Planoprotostelium fungivorum
(Fig. II.Ia). Both strains exhibit a high (protein) sequence divergence, with about
0.084 amino-acid substitution per site. This is comparable to inter-species divergence
in some groups, for example 0.061 between Entamoeba histolytica and Entamoeba
dispar. It is important to note, however, that branch length and topology may be
inaccurate for distantly related groups. This could be due to numerous factors,
including low quality of assemblies used to infer proteomes, contaminations and
and horizontal gene transfers [176]. When computing the DNA sequence divergence
across aligned genomic segments between the two strains, we observe an average of
6.65% nucleotide substitutions (Fig. II.J). In comparison, computing this same metric
between Neff and Dictyostelium discoideum yields 11.8% substitutions, however this
could be an underestimate, since focusing on aligned segments will likely select for
regions with high conservation.

As mentioned earlier, over 10% of A. castellanii orthogroups are strain-specific (Fig.
II.Ib), further emphasizing their strong differences. There also seems the be a few
major genomic rearrangements between the two strains, however it is hard to assess
whether these are genuine inter-strain differences. These segments could also be
the product of mis-assemblies induced by the collapse of heterozygous structural
variants in either strains.
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Fig. II.I: Comparison of A. castellanii strains C3 and Neff with other species. a: Phylogenetic
tree of A. castellanii strains C3 and Neff and 11 other amoeba species built based on
all coding sequences. Distances represent substitution per position. b: Comparison
of orthogroups content between A. castellanii and the 11 other amoeba species
used in the tree.

Chapter 2 Infection of Acanthamoeba castellanii by Legionella 113



Gap-excluded DNA sequence divergence: Neff and C3 strains
Mean divergence: 6.65%

Fig. II.J: Density plot showing the distribution of sequence (gap-excluded) divergence
across aligned blocks between A. castellanii strains C3 and Neff.
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3 Infection of murine macrophages by
Salmonella

In the former chapter, we presented the investigation of the infection process of a
natural host by a bacterial pathogen. In this chapter, we investigate the opportunistic
infection of mammalian macrophages by Salmonella enterica through the prism of
genome folding. Notably whether, and how S. enterica infection affects the chromatin
of its eukaryotic host. Much like Legionella, Salmonella manipulates its host cell’s
defense and signalling to promote its own survival in their cytoplasm [41]. Using a
mouse Bone Marrow Macrophage (BMM) model, we measured changes in chromatin
architecture, accessibility and gene expression in different infection conditions and
timepoints to explore the potential epigenetic deregulations happening during this
process.

In the case of A. castellanii, infection involved an unicellular host. Here, infection
takes place in mammalian cells, whose much larger genomes have an intertwined,
complex tridimensional organization. Notably, they are segmented into active and
inactive compartments, and they contain long-range regulatory elements organized
into chromatin domains and exhibiting cell type specificity [177].

Here we focus on bone marrow-derived macrophages. These cells originate from
hematopoietic stem cells and go through a complex differentiation process (Fig.
II.La). After differentiation, they retain a strong plasticity and can be activated by
cues in their environment to become "polarized" into one of two main activation
states (Fig. II.Lb). M1 macrophages secrete high amounts of cytokines and promote
inflammation, while M2 macrophages suppress immune response and focus on tissue
repair [178]. Together with neutrophils, M1 Macrophages are first responders to
infection and act as key modulators and effectors cells during the immune response.
During a bacterial infection, they will indeed phagocytose bacterial cells and initiate
adaptive immunity by activating T cells through antigen presentation via the Major
Histocompatibility Complex II (MHC-II). Additionally, they release cytokines and
chemokines, which promote inflammation and further recruitment of other immune
cells, and secrete anti-microbial molecules to destroy infectious cells. However, in
the case of a prolonged infection, this strong immune reaction can have detrimental
outcomes to the host and result in organ damages, or even lethal shock [179].
This overstimulation is avoided by a process known as endotoxin- or LPS-tolerance.
This state of reduced immune response is triggered by continuous exposure to
lipopolysaccharides exposed on the bacterial cell surface and skews the macrophage
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population towards M2 polarization [180]. LPS-tolerance must also be tightly
balanced, as suppressed immunity can lead to secondary infection or even sepsis.
Such regulation is known to involve a combination of signalling and gene-specific
chromatin changes through histone modifications [181].

Throughout the next sections, we describe an ongoing investigation, done in col-
laboration with the laboratory of Sophie Helaine at Harvard Medical School and
her postdoc Peter W. Hill currently at Imperial College, of changes in chromosome
conformation in macrophages following infection by Salmonella. As we will focus on
changes happening during late infection, LPS-tolerance is especially relevant to the
understanding of this chapter.

Fig. II.L: Macrophage differentiation from hematopoietic stem cells. a: Cellular dif-
ferentiation pathway leading from bone marrow stem cells to macrophages
b: Macrophage polarization from M0 to M1 (pro-inflammatory) or M2 (anti-
inflammatory) macrophages. For either forms, molecules associated with in-
duction of polarization, surface exposure and secretion are listed, as well as
its functions. Adapted from "Stem cell differentiation from bone marrow" and
"Macrophage subtypes in atherosclerosis", by BioRender.com (2020). Retrieved
from https://app.biorender.com/biorender-templates

Chapter 3 Infection of murine macrophages by Salmonella 117



ALTERATION OF CHROMATIN STRUCTURE DURING LPS
TOLERANCE ACQUISITION IN Salmonella enterica-INFECTED

MACROPHAGES

A PREPRINT

Cyril Matthey-Doret1,2, Peter W. Hill3, Agnès Thierry1, Sophie Helaine4,*, Romain Koszul1,*

October 28, 2021

1 Institut Pasteur, Spatial Regulation of Genomes unit, CNRS, UMR 3525, C3BI USR 3756, Paris, France
2 Sorbonne Université, Collège Doctoral, F-75005 Paris, France
3 Department of Medicine, MRC CMBI, Imperial College London, London, UK
4 Department of Microbiology, Harvard Medical School, 77 Ave Pasteur, Boston, MA 02115, USAHMS Department of
Microbiology, Harvard, US

ABSTRACT

In vertebrates, the immune response to bacterial infection involves a complex balance to clear
infectious agents without damaging the tissues. During prolonged infections, LPS tolerance is
key to this balance, causing a temporary reduction in the inflammatory response to regenerate and
preserve tissues. Many regulatory layers are important to coordinate infectious response, including
phosphorylation cascades, histone modifications, and micro-RNAs. Gene expression and epigenetic
changes are often intertwined with spatial organization of the genome. In this work, we study changes
in chromatin structure during infection of murine bone macrophages by Salmonella enterica. We find
global changes during late infection, when LPS tolerance presumably take place, and identify several
pathways associated with chromatin changes.

Keywords Genomics · Hi-C · Host-parasite · Infection

Introduction

Salmonella is an intracellular bacterium and human pathogen causing an enteric disease known as salmonellosis in many
animals. It is usually contracted by ingestion of contaminated food or water, and infiltrates the intestinal epithelium.
Salmonella destabilizes the tight junctions inbetween epithelial cells, favoring the migration of neutrophils through the
epithelial layer by stimulating the mitogen-activated protein kinase (MAPK) and NF-κB pathways [1, 2]. The sensing
of bacterial lipopolysaccharides (LPS) present on the bacterial cell surface by immune cells through Toll-like receptors
(TLR) elicits the production of interleukins and activation of caspase genes [3], which further increases intestinal
inflammation.

Salmonella cellular infection is mediated by two type 3 secretion systems (T3SS), encoded by distinct pathogenicity
islands, Salmonella pathogenicity island (SPI) 1 and 2. Both T3SS mediate the transfer of bacterial proteins (or effectors)
into the host-cell cytoplasm, but they are active at different time during infection. The SPI1 T3SS is used mainly for
invasion of non-phagocytic cells and induction of inflammatory response, whereas the SPI2 T3SS is important for
bacterial survival in macrophages and establishment of systemic disease [4].

Salmonella can infect many cell types in the epithelium by T3SS SPI1-mediated endocytosis, and enter macrophages
through phagocytosis [5]. During systemic infection, macrophages phagocytose Salmonella at mesentric lymph nodes
and transport the bacteria to other sites such as the spleen, liver and bone marrow [6]. The bacterium can survive for
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long periods in these macrophages and form ganulomas. Upon cell entry, Salmonella secretes effector proteins through
its T3SS to manipulate the host defenses and metabolism, and replicate inside the cell. A combination of replicating
and non-replicating bacteria can co-exist within the host cell [7]. Non-replicating, dormant cells - also called persisters
- display an increased antibiotic recalcitrance and are of particular concern for the relapse of Salmonella infection
following stoppage of antibiotic treatment [8].

In response to bacterial infection, host macrophages secrete chemokines and cytokines to recruit other immune cells to
the infection site. They also produce reactive oxygen species (ROS) and microbicidal molecules to kill surrounding
bacterial cells [9, 10]. This response is stimulated by LPS present on the cell surface of gram-negative bacteria
such as Salmonella. However, in cases of intense and prolonged exposure, this can lead to over-stimulation of the
immune system, sometimes resulting in an endotoxic shock which poses the threat of tissue damage, organ failure
and death. To avoid such outcome, the body can enter a transient state of hyporesponsiveness to infection known as
endotoxin-tolerance, or LPS-tolerance. During this period, macrophages are reprogrammed to cease production of
inflammatory molecules and instead focus on tasks such as tissue repair and phagocytosis of cellular debris [11].

A complex interplay takes place between host inflammatory factors and bacterial effectors. Upon invasion of the
intestinal lumen by Salmonella, the release of ROS by macrophages leads to a growth advantage for the pathogen over
resident bacteria from the microbiome [12]. Conversely, after cellular entry, Salmonella effectors dampen inflammation
to favor intracellular survival, reducing IL-8 secretion and MAPK-mediated inflammation using its effector proteins
[13]. This suggests that Salmonella can increase or decrease inflammatory response depending on the stage of infection.
Understanding how bacteria manipulate the host immune response is an important step towards treating and mitigating
risks associated with Salmonella infection. Many levels or regulation are affected by the bacterium, including signal
transduction pathways [14], mitochondrial metabolism [15], RNA splicing [16] and histone marks [17].

In mammals, gene regulation is intertwined with genome compaction and folding. At the broadest level, chromatin is
segregated into active and inactive compartments, which can change according to the needs of the cell [18]. The genome
is also partitioned into Topologically Associating Domains (TADs) which insulate genes and regulatory elements
from each others [19, 20]. Within TADs, chromatin loops mediated by the structural maintenance complex cohesin
(SMC, [21]) can modulate the folding of chromatin. Cohesins mediate the expansion of small loops through an active
process called loop extrusion [22]. As a consequence, it has been proposed that these loops could mediate regulatory
interactions by bringing physically closer together promoters and regulatory elements such as enhancers. In mammals,
the boundaries of these chromatin structures are mainly formed by the transcription CCTC-binding factor (CTCF) [23].
CTCF-bound positions have been shown to delimit the anchors of loop basis. CTCF-mediated loops have been proposed
to play roles in immunity, for instance by increasing the expression of genes in the major histocompatibility complex
(MHC) locus [24, 25, 26], or coordinating the expression of interleukins [27, 28]. The LPS-tolerance phenomenon is
thought to be regulated by epigenetic mechanisms such as histone modifications [29, 30, 31], but thus far there has been
little investigation of the implication of genome conformation in that process.

Here we investigate the consequences of Salmonella infection on the genome structure of mammalian host cells. Using
Hi-C in Mouse bone marrow macrophages (BMM), we describe the spatial genomic features at early and late Salmonella
infection, and how they relate to gene deregulation. We find genome-wide changes in chromatin compartments and
overall organization during late infection (around 20h post infection). This coincides with the time at which LPS
tolerance is acquired [32]. We find large compartment switches associated with the MHC complex and chemokine genes.
We also identify strong changes in chromatin loops, compartment and expression associated with chemokine genes,
known to regulate cell migration and chemotaxis. Finally, we observe changes in expression and long range interactions
during infection for several markers of LPS tolerance, as well as the anti-inflammatory cytokine Interleukin-10.

Results

Chromosome folding is altered in late infection

We used Hi-C to capture the chromosome conformation of both murine BMM cells infected by Salmonella as well
as bystander cells exposed to Salmonella (Methods). Hi-C was performed in uninfected cells, and at two time points
representing early (2h) and late (20h) infection. BMM cells infected by a Salmonella ∆SsaV mutant strain deficient for
the T3SS SPI2 and unable to inject effector proteins into the host cytoplasm, were also processed by Hi-C. We used
3 different Hi-C derived features to measure chromosome structural changes. First, the stratum-adjusted correlation
coefficient [33], which measures the overall contact similarity between Hi-C matrices of sample pairs (Fig. 1a). Second,
the slope of the distance-contacts decay function (Fig. 1b), which reflects chromatin compaction averaged over the
genome. Finally, the A/B compartment eigenvectors (Fig. 1c), which encode the segmentation of the genome into
active and inactive chromatin. The strongest changes took place during late (20h) infection, regardless of Salmonella
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genotype or bystander versus infected status. Infection time point (20h vs 2h) was the main determinant with respect to
all 3 aforementioned features.

The time at which we observed the strongest conformational changes coincides with the time range for the acquisition
of LPS tolerance (16 - 48h) [34]. To focus on such changes, we re-sequenced Hi-C libraries from samples infected by
WT Salmonella at those time points (each time point in duplicates). This allowed us to inspect changes in fine grained
chromatin structures, such as chromatin loops and TAD borders.

We used Hi-C to measure compartment changes at two time points in infected cells. Genome-wide A/B compartmental-
ization was more pronounced at late infection (Fig. 1d) compared to early infection or uninfected cells. These large
scale changes could be attributed to physiological changes in late infection.

Using RNA-seq we generated from the same samples at 2h and 20h post infection (Methods), we investigated the
expression of known LPS-response marker genes [32]. We found that the negative regulators of LPS response were
upregulated in late infection (Fig. S1a), with some of these changes occurring concomitantly to changes in chromatin
loops patterns in the Hi-C data (Fig. S1b). The groups of previously reported positive and negative regulators of
LPS-tolerance were largely consistent with our differential expression results (Fig. S1c)

10 5 0 5 10

PC1 (67.30 %)

4

2

0

2

4

6

P
C

2
 (

7
.4

0
 %

)

10 5 0 5 10

PC1 (67.30 %)

4

2

0

2

4

6

P
C

2
 (

7
.4

0
 %

)

PCA on compartment eigenvectors

Condition
Salmonella genotype
Infection time

Condition

uninfected

infected

bystander

Infection time

0

2h

20h

Salmonella genotype

ssaV

WT

C
o
rr

e
la

ti
o
n
 c

o
e
ffi

ci
e
n
t

10 10

10 9

10 8

P
(s

)

Distance law

105 106 107

Distance (bp)

1.2

1.0

0.8

0.6

0.4

S
lo

p
e

a b

c d
Lo

g
2

 c
o
n
ta

ct
fr

e
q

u
e
n
cy

B

A

E1 rank

B

A

E
1

 r
a
n
k

AAAB

BB BA

Figure 1: Global changes in genome conformation happen during late Salmonella infection. a, Heatmap of HiCRep
stratum adjusted correlation coefficients between all pairs of samples. b, Distance-dependent contact decay (top) and
its slope (bottom) according to infection time. c, PCA of chromatin compartment vectors with samples colored by
condition (top) and infection time (bottom). d, Saddle plots showing compartment insulation intensity during infection.
Hi-C interactions are binned according to their rank on the compartment eigenvector (E1) and discretized into quantiles.
Saddle plots show the average intensity of interactions between each pair of eigenvector quantile (top) and their change
during infection (bottom) using the Log ratio of saddles between different time points.
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Global structural changes in the MHC region

We used CHESS [35] to detect structural changes occurring between early and late infection. CHESS extracted
350 features corresponding to structural changes, encompassing a total of 1,110 genes. We performed a functional
enrichment analysis using Gprofiler [36] to identify gene ontology terms presenting enrichment in structural changes.
Among all 155 significant terms (full list in table S1), the most strongly enriched terms are related to antigen presentation
and the Major Histocompatibility Complex (MHC) (Fig. 2a). A visible compartment change is observed in the magnified
contact map of the corresponding region, (Fig. 2b) as well as an insulation change, at a finer resolution. Out of the 7
MHC genes located in the region identified by CHESS (H2-Q1,2,4,6,7,10 and H2-D1), 3 show significantly higher
expression during late infection (H2-Q4,6,7, log fold changes 0.6, 1.9 and 1.9).

Chromatin alterations are enriched in cell migration pathways

We ran a gene set enrichment analysis (GSEA) independently for four features to identify changes occurring during
late infection (20h vs 2h): A/B compartment, chromatin loops, domain borders and gene expression. After multiple
testing correction (Benjamini Hochberg, FDR rate=0.1), all four features became enriched at 20h in gene sets related to
leukocyte chemotaxis and migration. To visually explore the relationships between structural features and expression,
and the gene set overlap between GO terms, we generated a graph from all gene sets with (non-corrected) p-values
below 0.05 using Enrichment Map [37] (methods). In this graph, each node represents the gene set of a GO term, and
nodes are connected if they share at least 37.5% of their genes. Nodes are colored according to the features in which
they were found to have a significant p-values. The largest connected component of this graph contains GO terms
related to chemotaxis and migration, as well as other pathways (Fig. 3a). Chromatin features are limited to certain
modules of that graph, while gene expression is deregulated in most nodes.

The genes associated with structural and expression changes in sets pertaining to chemotaxis mostly belong to a cluster
of chemokine ligand (CXCL) genes (Fig. 3b). These genes produce small cytokines controlling the migration and
adhesion of monocytes and have previously been associated with increased expression in LPS tolerance [30]. In
addition, CXCL5 and CXCL9 expression is thought to be maintained through histone acetylation and methylation [30].
Our results suggest that these histone modifications are accompanied by changes in chromatin loops and borders, as
well as a global switch to the A compartment (Fig. 3b).

Increase in chromatin looping at the IL-10 locus

In order to refine the position of chromatin loops anchors, we generated ATAC-seq data at 2h and 20h post infection
(Methods). We intersected chromatin loop anchors with ATAC-seq accessibility peaks, and classified them based on
their location (TSS, TTS, inter-gene, intronic, exonic). This classification was further expanded using publicly available
ChIP-seq datasets of histone marks in BMM to include enhancer, promoter and repressed (Methods, S2). Among loops
overlapping differential ATAC-seq peaks (20h vs 2h p.i), we found 36 loops anchored at the promoters of differentially
expressed genes, including genes related to cell adhesion and cytoskeleton (ACTN1, ICAM5, P2RX4, TGFB1).

We also found that a chromatin loop appears next to the Il-10 gene during late infection, bridging it with the Fcmr and
Il-24 genes, both of which harbour repressive marks and did not have detectable expression in our RNA-seq data. The
anti-inflammatory cytokine interleukin 10 (IL-10) downregulates the inflammatory response to prevent damage to the
host. Its expression is regulated by CTCF [27], and it is thought that chromatin looping coordinates the gene expression
in that locus [27]. Our results forther support the role of CTCF looping in interleukin regulation.

Il-10 is activated by the TLR4 pathway which directly depends on LPS stimulation. While its expression upon LPS
stimulation is known to be stronger in tolerized macrophages compared to naive macrophages, we found a lower
expression of IL-10 in late infection compared to early infection (log2 fold change: -4.55, q-value: 4e-147). This is
likely due to the absence of LPS-restimulation in late infection.

Discussion

In this work, we studied changes in chromatin organization of muring BMM following infection by Salmonella enterica.
We found that most changes in global chromatin structure happened at late infection (20h p.i.), whereas it is mostly
unchanged in early (2h p.i.) infection. This time point corresponds with the onset of LPS tolerance, which was shown to
be dependant on histone modifications [30]. While response to acute infection is accompanied by extensive changes in
local chromatin accessibility within 1h of infection [38], we found no concomitant substantial changes in 3D chromatin
reorganisation. These results are largely in agreement with the proposed role of regulators of 3D chromatin structure (i.e.
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Figure 2: Hi-C changes during late infection. a, Overrepresentation analysis analysis of gene ontology terms in
CHESS-positive regions showing structural changes during infection. The top 10 terms with highest enrichment odds
ratio are highlighted. Point size represent the number of genes constituting a GO term, and the horizontal position
represents the p-value from Fisher exact test adjusted for multiple testing using g:profiler’s SCS algorithm [36]. Terms
are split into 3 based on their GO category: CC (cellular component), BP (biological process) or MF (molecular
function). b, Hi-C contacts around the MHC locus at low (top) and medium (bottom) resolutions. Contacts are shown
during early (left) and late (middle) infection. The serpentine-binned ratio showing contact changes during infection
is shown on the right. Colored lines on the main diagonal represent MHC genes identified by CHESS as part of a
structural change. c, Distribution of loops (top) and borders (bottom) intensity throughout the whole genome at early
and late infection. Pileup plots show the average 2D profile of patterns in each condition. P-values are computed using
Wilcoxon’s signed-rank test.

cohesin, CTCF) keeping the macrophage genome organised in a way that facilitates rapid response to TLR signalling
[27, 39].
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Figure 3: Gene set enrichment analysis of chromatin features. a, Largest connected component of the GSEA graph from
chromatin features and gene expression change in . Each node is a GO:BP term, edges represent the proportion of gene
overlap between terms (minimum cutoff 37.5%). Nodes are colored according to the feature (expression, compartment,
border or loop change) in which they are significantly enriched during late infection (20h vs 2h). Functional subregions
of the graph have been manually annotated, and the frame is colored based on its gene expression change (red:
significantly downregulated, green: significantly upregulated, grey: neutral). b, Feature enrichment for genes involved
in the GO term "Regulation of leukocyte chemotaxis", denoted by a red star on the graph. c, Hi-C contacts in the region
containing chemokine genes CXCL3 and CXCL5. Chemokine genes are highlighted in green along the main diagonal.
All matrices were binned at 10kb resolution and smoothed using Serpentine adaptive binning.

During late infection (20h), we observed an enrichment of chromatin structural changes, and a general up-regulation of
genes involved in chemotaxis and cell migration. Interestingly, it was shown that M2 macrophages, which share other
key characteristics with the macrophage phenotype associated with LPS tolerance, are more motile [40].

The large compartment switch we observe at the MHC locus, along with increased expression of several MHC genes of
the H2-Q region are consistent with previous findings based on microscopy observations that transcriptional changes at
the MHC locus are associated with chromatin reorganization [41], however the role of H2-Q family genes is still poorly
understood [42].

Similarly, the chromatin looping observed at Il-10 confirms previous observations [27]. It is especially interesting that
the inhibition of Il-10 expression is associated with specific interactions at chromosomal regions harboring repressive
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Figure 4: a, Contact map region in a 1Mbp region around the Il10 gene in early (2h) and late (20h) infection. Vertical
black liines indicate the region shown in b. b, Epigenetic landscape around IL-10. A chromatin loop anchored next to
the Il10 gene appears at 20h p.i. (top). The right anchor falls into a region with enhancer epigenetic marks. The left
anchor falls close to Il24 and is rich in repressive marks.

marks. Further investigation will require histone ChIP-seq from infected macrophages which was not performed in this
study, as histone marks used here are derived from resting BMM and may be markedly different from LPS-stimulated
BMM.

Generally, the absence of chromatin changes during early infection could suggest that large structural changes operate
on a slower time scale and correspond to the establishment of long term tolerance.

Methods

Libraries preparation

Hi-C library preparation

Hi-C libraries were prepared according to the Arima protocol using only the DpnII and HinfI enzymes. Libraries were
sequenced using paired end sequencing at 35bp on an Illumina NextSeq 500 machine.

ATAC-seq library preparation

ATAC-seq library preparation was carried out according to the published Omni-ATAC protocol [43]. Libraries were
sequenced on an Illumina NextSeq 500 using paired end sequencing.

RNA-seq library preparation

RNA was isolated using the Quick DNA-RNA Miniprep Kit following the manufacturer’s protocol. Following RNA
isolation, macrophage rRNA was depleted using the NEBNext rRNA Depletion Kit following the manufacturer’s
protocol. RNA-Seq libraries were generated using the NEBNext Ultra II Directional RNA Library Kit for Illumina and
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the NEBNext Multiplex Oligos for Illumina following the manufacturer’s protocol. Libraries were sequenced on an
Illumina NextSeq 500 using single read sequencing.

RNA-Seq/ATAC-Seq infections and FACS sorting

Wild type or ∆ssaV Salmonella enterica serovar Typhimurium (strain SL1344) expressing the pFCcGssaG plasmid
(i.e. ssaG promoter expressed GFP, constitutive mCherry) [44] were grown overnight in MgMES pH 5.0 medium
(170 mM 2-(N-morpholino)ethanesulfonic acid (MES) at pH 5.0, 5 mM KCl, 7.5 mM (NH4)2SO4, 0.5 mM K2SO4,
1 mM KH2PO4, 8 mM MgCl2, 38 mM glycerol, and 0.1% casamino acids). Stationary phase bacteria were then
opsonized with 8% mouse serum for 20 minutes and added to the BMDM at a MOI of 10. At 30 min post-infection,
macrophages were washed 3x with PBS, and fresh BMDM medium containing gentamicin (50 µg/ml) was added. At
2.5 h post-infection, macrophages were washed 1x with PBS, and fresh BMDM medium containing gentamicin (10
µg/ml) was added. Prior to isolation by FACS, uninfected macrophages and macrophages at 2h and 18h post-infection
were washed with PBS three times and detached from the surface with cold PBS and scraping. Macrophages were then
centrifuged at 4 ◦C at 300g, the supernatant discarded, and macrophages resuspended in cold sterile PBS. For infected
macrophages, 5E4 macrophages containing either wild type or ∆ssaV Salmonella (mCherry+ population) were isolated
by FACS. For uninfected macrophages, 5E4 macrophages were isolated by FACS. For FACS isolation, apoptotic
macrophages and doublets were excluded by gating, and the samples were sorted under continuous cooling to 4 ◦C by a
BD Aria III into cold sterile PBS. Isolated macrophages in PBS were then centrifuged at 500g for 5 min at 4 ◦C, the
supernatant was removed, and macrophage pellets were either used immediately for ATAC-seq library preparation or
snap frozen in liquid nitrogen and stored at -80 ◦C until RNA was isolated for RNA-Seq library preparation.

Analyses

All analyses were done using the mm10 reference genome assembly.

Differential accessibility peaks

ATACseq data was processed using the nf-core/atacseq pipeline (v1.2.1). Within nfcore/atacseq, consensus peaks were
obtained using MACS2 (v2.2.7.1) and differential peaks from DESeq2 with FDR<0.05 were selected.

Histone marks ChIPseq

Publicly available histone mark ChIPseq datasets were retrieved from ENCODE and processed using the nf-core/chipseq
pipeline (v1.2.1) in single-end mode. The following marks and respective accession numbers were used: H3K4Me1
(ENCSR000CFE), H3K4Me2 (SRR930721, SRR930722), H3K4Me3 (ENCSR000CFF), H3K27Me3 (SRR930746),
H3K27Ac (ENCSR000CFD).

Differential expression

Libraries were aligned using Hisat2 (1.24.0.123) and transcripts were quantified into TPM using salmon (v0.14.1).
Differential expression was measured between 2h and 20h p.i. using DESeq2.

Hi-C analyses

Hi-C matrices were generated using hicstuff (v3.0.1) [45]. Matrix balancing (normalization) was performed using the
Cooler implementation of the ICE algorithmm [46] Compartments were extracted using the cooltools API [47].

Reproducibility between replicates was assessed using the hicreppy implementation (https://github.com/
cmdoret/hicreppy)of the HiCrep algorithm [33]. Briefly, a correlation coefficient is computed between pairs
of sample for each diagonal separately, and a weighted average of correlation coefficients is then returned, with
the weights being inversely proportional to the genomic distance corresponding to each diagonal. The operation is
performed separately on each chromosome, and the average of all chromosomes, weighted by their length is used.

Chromatin loops and domain borders were detected using chromosight [48] (v1.5.1) and pattern intensity changes
between conditions were computed using pareidolia (v.0.6.0) [49]. Compartment segmentation was performed using
cooltools (v0.3.2) [47] using the correlation with gene density to orient eigenvectors. Hi-C matrices were binned at
320kb for compartment detection and Hi-C rep and 10kb for all other analyses.

Each gene was assigned the closest loop anchor and domain border within 200kb (if any). CHESS was used to identify
genes located in regions undergoing major structural changes during infection.
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Gene set enrichment analysis

GSEA was performed using the python package gseapy [50]. The analysis was run 4 times independently on different
phenotypes representing changes between 2h and 20h p.i. The phenotypes used were: differential pattern scores (loop
and borders) from Pareidolia, compartment eigenvector differences from cooltools, and gene expression log2 fold
change from DeSeq2. For structural phenotypes, values were assigned to genes using bedtools genome arithmetic
operations [51]: Borders and loops were assigned to the closest gene within 200kb, and compartment values were
assigned to genes using bedtools intersect.

For visualizing the network graph, the union of all terms with p-values below 0.05 (without multiple testing correction)
for all phenotypes was used. The graph was generated using cytoscape with the enrichmentMap plugin [37]. Nodes
were colored by dataset (i.e. where the phenotypes’ p-values are below 0.05) for visualization.

Integration of epigenomic data

Chromatin loops in figure S2 were intersected with differntial ATAC peaks to refine retain only loops with both anchors
within 10kb (a margin of 1 pixel on the Hi-C contact map) of differentially accessible ATAC peaks (FDR <0.05).
Average normalized histone mark intensity scores were assigned to each peak and K-means clustering (k=3) was used
on those intensities to classify anchors into 3 groups: promoter (highest H3K4Me3), enhancer (highest H3K4Me1) or
low activity (other peaks). Peaks were histone marks were not available were labelled "unknown". Promoter anchors
were further refined to include only those located in promoter regions (-1kb to +100bp from TSS).

Code availability

All codes to reproduce analyses is available on a Github repository at https://github.com/cmdoret/mouse_
salmonella_infection.git where data processing is packaged into a Snakemake pipeline, and downstream analyses
are provided as jupyter notebooks.
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Figure S1: Analysis of select LPS response marker genes from [32]. a, Expression of 22 genes known to be positive
(Tol. up) or negative (Tol. low) regulators of the LPS response, in our RNAseq results. b, Example Hi-C regions from
genes with strong loop changes. Contacts at early (2h, left) late (20h, middle) and change during late infection (20h/2h,
right) are shown. All matrices were binned at 10kb and ratios are smoothed using Serpentine adaptive binning. c, Gene
expression correlation between LPS marker genes. Pearson correlation across all 4 samples is shown (duplicates at 2h
and 20h).
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Expression correlation between anchor genes of chromatin loops
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Clustering of ATAC peaks by histone mark intensity

Figure S2: Analysis of epigenetic marks at loop anchors. a, Distribution of ATACseq peaks based on histone
mark intensities H3K4Me3 and H3K4Me1. Colors represent cluster value assigned on the basis of 5 histone marks
(H3K4Me1, H3K4Me2, H3K4Me3, H3K27Ac, H3K27Me3). b, Correlation between base gene expression (baseMean),
gene expression fold change during infection (log2FoldChange), histone marks and loop intensity change during
infection (loop change) at loop anchors. c, Expression correlation between gene pairs at loop anchors based on loop
categories. Loop categories are defined as either anchor containing a histone mark-derived annotation.

Table S1: Table of significantly enriched GO terms for genes in CHESS-
detected regions with structural changes.

source name id logqval size intersect
GO:MF protein binding GO:0005515 9.089 10189 534
GO:MF binding GO:0005488 7.078 14895 712
GO:MF TAP binding GO:0046977 5.547 12 8
GO:MF TAP complex binding GO:0062061 5.276 9 7
GO:MF enzyme binding GO:0019899 4.827 2164 144
GO:MF identical protein binding GO:0042802 4.644 2140 142
GO:MF CD8 receptor binding GO:0042610 4.346 11 7
GO:MF transcription factor binding GO:0008134 4.272 571 53
GO:MF protein-containing complex binding GO:0044877 4.083 1464 104
GO:MF beta-2-microglobulin binding GO:0030881 3.982 12 7
GO:MF ion binding GO:0043167 3.421 5862 314
GO:MF anion binding GO:0043168 3.026 2420 149
GO:MF transferase activity GO:0016740 2.852 2277 141
GO:MF T cell receptor binding GO:0042608 2.673 17 7
GO:MF oligopeptide binding GO:1900750 2.673 17 7
GO:MF glutathione binding GO:0043295 2.673 17 7
GO:MF organic cyclic compound binding GO:0097159 2.382 5768 303
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source name id logqval size intersect
GO:MF glutathione transferase activity GO:0004364 2.366 33 9
GO:MF catalytic activity GO:0003824 2.332 5665 298
GO:MF peptide antigen binding GO:0042605 2.292 19 7
GO:MF heterocyclic compound binding GO:1901363 2.286 5672 298
GO:MF transcription coregulator activity GO:0003712 2.273 448 40
GO:MF protein homodimerization activity GO:0042803 2.063 676 53
GO:MF protein dimerization activity GO:0046983 1.809 1052 73
GO:BP metabolic process GO:0008152 12.491 11429 598
GO:BP cellular metabolic process GO:0044237 12.464 10350 554
GO:BP organic substance metabolic process GO:0071704 11.676 10989 577
GO:BP primary metabolic process GO:0044238 10.626 10243 542
GO:BP cellular nitrogen compound metabolic process GO:0034641 10.222 6201 364
GO:BP nitrogen compound metabolic process GO:0006807 9.931 9669 515
GO:BP macromolecule metabolic process GO:0043170 8.141 9484 499
GO:BP biosynthetic process GO:0009058 7.867 5882 339
GO:BP cellular macromolecule metabolic process GO:0044260 7.821 7962 432
GO:BP cellular biosynthetic process GO:0044249 7.801 5715 331
GO:BP organic cyclic compound metabolic process GO:1901360 7.314 5829 334
GO:BP cellular aromatic compound metabolic process GO:0006725 7.256 5618 324
GO:BP organic substance biosynthetic process GO:1901576 7.165 5779 331
GO:BP nucleobase-containing compound metabolic process GO:0006139 6.484 5416 311
GO:BP cellular response to stress GO:0033554 6.394 1805 132
GO:BP heterocycle metabolic process GO:0046483 6.381 5535 316
GO:BP cellular macromolecule biosynthetic process GO:0034645 6.147 4744 278
GO:BP regulation of cellular biosynthetic process GO:0031326 5.978 4088 246
GO:BP cellular nitrogen compound biosynthetic process GO:0044271 5.903 4705 275
GO:BP macromolecule biosynthetic process GO:0009059 5.773 4782 278
GO:BP regulation of biosynthetic process GO:0009889 5.593 4167 248
GO:BP nucleic acid metabolic process GO:0090304 5.483 4962 285
GO:BP protein localization GO:0008104 5.040 2452 161
GO:BP regulation of cellular macromolecule biosynthetic process GO:2000112 4.908 3880 231
GO:BP organonitrogen compound metabolic process GO:1901564 4.822 6326 344
GO:BP aromatic compound biosynthetic process GO:0019438 4.752 4042 238
GO:BP nucleobase-containing compound biosynthetic process GO:0034654 4.706 3963 234
GO:BP heterocycle biosynthetic process GO:0018130 4.684 4028 237
GO:BP organic cyclic compound biosynthetic process GO:1901362 4.628 4181 244
GO:BP regulation of macromolecule biosynthetic process GO:0010556 4.581 3913 231
GO:BP RNA metabolic process GO:0016070 4.305 4470 256
GO:BP transcription DNA-templated GO:0006351 4.236 887 211
GO:BP nucleic acid-templated transcription GO:0097659 4.217 3534 211
GO:BP RNA biosynthetic process GO:0032774 4.068 3549 211
GO:BP gene expression GO:0010467 4.055 5933 322
GO:BP cellular protein metabolic process GO:0044267 3.910 4815 270
GO:BP regulation of transcription DNA-templated GO:0006355 3.796 887 203
GO:BP regulation of nucleic acid-templated transcription GO:1903506 3.777 3413 203
GO:BP regulation of RNA biosynthetic process GO:2001141 3.738 3417 203
GO:BP protein metabolic process GO:0019538 3.677 5474 299
GO:BP regulation of nitrogen compound metabolic process GO:0051171 3.582 5706 309
GO:BP cellular macromolecule localization GO:0070727 3.453 1726 117
GO:BP localization GO:0051179 3.440 6168 329
GO:BP macromolecule localization GO:0033036 3.393 2897 176
GO:BP cellular protein localization GO:0034613 3.360 1714 116
GO:BP regulation of cellular metabolic process GO:0031323 3.318 6073 324
GO:BP regulation of primary metabolic process GO:0080090 3.221 5886 315
GO:BP cellular localization GO:0051641 3.164 2777 169
GO:BP nitrogen compound transport GO:0071705 3.094 1986 129
GO:BP regulation of nucleobase-containing compound metabolic process GO:0019219 3.059 3931 224
GO:BP regulation of RNA metabolic process GO:0051252 2.941 3691 212
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source name id logqval size intersect
GO:BP regulation of macromolecule metabolic process GO:0060255 2.835 6363 334
GO:BP positive regulation of cellular biosynthetic process GO:0031328 2.755 1956 126
GO:BP establishment of localization GO:0051234 2.720 4658 256
GO:BP positive regulation of nitrogen compound metabolic process GO:0051173 2.714 3069 181
GO:BP positive regulation of nucleic acid-templated transcription GO:1903508 2.650 1616 108
GO:BP regulation of metabolic process GO:0019222 2.646 6841 354
GO:BP positive regulation of RNA biosynthetic process GO:1902680 2.637 1617 108
GO:BP establishment of protein localization GO:0045184 2.502 1647 109
GO:BP macromolecule modification GO:0043412 2.358 3823 215
GO:BP positive regulation of biosynthetic process GO:0009891 2.268 1999 126
GO:BP positive regulation of macromolecule metabolic process GO:0010604 2.149 3467 197
GO:BP nitrobenzene metabolic process GO:0018916 2.111 4 4
GO:BP cellular component organization or biogenesis GO:0071840 2.090 6270 325
GO:BP positive regulation of metabolic process GO:0009893 2.007 3760 210
GO:BP localization within membrane GO:0051668 2.003 654 53
GO:BP protein transport GO:0015031 1.984 1535 101
GO:BP regulation of gene expression GO:0010468 1.978 4888 262
GO:BP protein localization to membrane GO:0072657 1.948 589 49
GO:BP transport GO:0006810 1.929 4502 244
GO:BP positive regulation of nucleobase-containing compound metabolic process GO:0045935 1.920 1912 120
GO:BP organic substance transport GO:0071702 1.903 2416 145
GO:BP positive regulation of cellular metabolic process GO:0031325 1.817 3275 186
GO:BP positive regulation of RNA metabolic process GO:0051254 1.804 1745 111
GO:BP positive regulation of macromolecule biosynthetic process GO:0010557 1.799 1844 116
GO:BP transcription by RNA polymerase II GO:0006366 1.762 2492 148
GO:BP cellular protein modification process GO:0006464 1.745 3644 203
GO:BP protein modification process GO:0036211 1.745 3644 203
GO:BP cellular response to organic substance GO:0071310 1.744 2453 146
GO:BP cellular response to chemical stimulus GO:0070887 1.725 3097 177
GO:BP cellular component organization GO:0016043 1.655 6090 314
GO:BP positive regulation of protein-containing complex assembly GO:0031334 1.598 240 26
GO:BP antigen processing and presentation of peptide antigen GO:0048002 1.513 64 12
GO:BP establishment of localization in cell GO:0051649 1.512 2031 124
GO:BP cellular response to organic cyclic compound GO:0071407 1.497 595 48
GO:BP response to stress GO:0006950 1.404 3817 209
GO:BP negative regulation of cellular process GO:0048523 1.348 5068 266
GO:BP xenobiotic catabolic process GO:0042178 1.312 15 6
GO:CC intracellular anatomical structure GO:0005622 29.657 14111 750
GO:CC membrane-bounded organelle GO:0043227 24.868 11812 654
GO:CC organelle GO:0043226 23.998 12827 690
GO:CC intracellular membrane-bounded organelle GO:0043231 22.652 11363 630
GO:CC intracellular organelle GO:0043229 22.543 12510 674
GO:CC cytoplasm GO:0005737 19.392 11093 609
GO:CC intracellular organelle lumen GO:0070013 12.853 4581 296
GO:CC organelle lumen GO:0043233 12.840 4582 296
GO:CC membrane-enclosed lumen GO:0031974 12.840 4582 296
GO:CC nucleus GO:0005634 9.341 7208 404
GO:CC nuclear lumen GO:0031981 9.119 4062 256
GO:CC nucleoplasm GO:0005654 8.838 3560 230
GO:CC cytosol GO:0005829 7.797 3849 240
GO:CC intracellular protein-containing complex GO:0140535 5.380 712 64
GO:CC protein-containing complex GO:0032991 5.201 5312 297
GO:CC bounding membrane of organelle GO:0098588 4.812 1676 117
GO:CC MHC class I peptide loading complex GO:0042824 4.727 15 8
GO:CC MHC class I protein complex GO:0042612 4.590 11 7
GO:CC endomembrane system GO:0012505 4.303 4006 231
GO:CC mitochondrion GO:0005739 4.303 1827 123
GO:CC organelle membrane GO:0031090 4.074 3076 185
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source name id logqval size intersect
GO:CC endoplasmic reticulum exit site GO:0070971 3.882 31 10
GO:CC nuclear protein-containing complex GO:0140513 3.060 1168 83
GO:CC intracellular non-membrane-bounded organelle GO:0043232 3.041 4500 247
GO:CC non-membrane-bounded organelle GO:0043228 2.928 4515 247
GO:CC Golgi medial cisterna GO:0005797 2.817 24 8
GO:CC Golgi apparatus GO:0005794 2.804 1449 97
GO:CC endoplasmic reticulum GO:0005783 2.761 1761 113
GO:CC endoplasmic reticulum protein-containing complex GO:0140534 2.220 135 18
GO:CC endoplasmic reticulum membrane GO:0005789 2.138 993 70
GO:CC catalytic complex GO:1902494 2.103 1334 88
GO:CC endoplasmic reticulum subcompartment GO:0098827 2.054 999 70
GO:CC nuclear outer membrane-endoplasmic reticulum membrane network GO:0042175 2.047 1018 71
GO:CC COPII-coated ER to Golgi transport vesicle GO:0030134 1.990 58 11
GO:CC MHC protein complex GO:0042611 1.912 23 7
GO:CC perinuclear region of cytoplasm GO:0048471 1.846 776 57
GO:CC organelle subcompartment GO:0031984 1.737 1580 99
GO:CC intercellular bridge GO:0045171 1.470 77 12
GO:CC intrinsic component of endoplasmic reticulum membrane GO:0031227 1.451 154 18
GO:CC mitochondrial outer membrane GO:0005741 1.354 185 20
GO:CC cytoplasmic vesicle membrane GO:0030659 1.346 489 39
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III

Discussion and conclusion

In this last part, we discuss the findings from this work and place them in
the context of the field in its current state. We also discuss the limitations
of our approaches and how to improve on it. Finally we briefly reflect
upon future developments and perspectives for chromosome conforma-
tion analyses in infection biology.



1 Biological and technical discussions

1.1 Representation of protozoan genomes

The representation of species with fully sequenced genomes is traditionally skewed
towards mammals and vertebrate animals [182]. Many groups which are much more
abundant in nature or ecologically important are underrepresented in reference
genome databases [183]. Acanthamoeba provides a fitting example, as they are
ubiquitous in aquatic environment and form important interactions with numerous
other microorganisms, yet have no chromosome quality reference available. This,
despite being used in numerous studies as the host of viruses or bacteria [31, 184,
185]. The reference genomes of the two A. castellanii strains generated here provide
the first high quality reference in the Acanthamoeba group and thus represent a
valuable resource for the comparative study of amoebae.

1.2 Host plasticity of intracellular bacteria

Throughout the previous part, we have developed new approaches to detect chro-
matin features and quantify their changes during infection (chapter 1). We then
applied these methods in two different infection settings: infection of the amoeba
A. castellanii by L. pneumophila (chapter 2) and of murine bone marrow-derived
macrophages by S. enterica (chapter 3). Although both are intracellular bacteria
with similar infection strategies, they can infect very different eukaryotic hosts with
highly divergent evolutionary histories. The size of the mouse haploid genome out-
classes that of A. castellanii by two orders of magnitude (4.3 Gbp vs 45 Mbp) and its
spatial organization appears much more complex, with A/B compartmentation and
intricate nested loops bridging very long distances. Despite all their differences, both
unicellular and human hosts are susceptible to L. pneumophila infection. This is most
impressive knowing that human is an evolutionary dead-end for L. pneumophila due
to the absence of human-to-human transmission. The bacterial genome is therefore
shaped exclusively by selective pressure in its natural unicellular hosts. The ability
to infect multicellular hosts is probably associated to the high conservation of the
targeted pathways and has been attributed to the wide range of protozoan hosts
infected by the bacterium [186].
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This conservation was also visible in our results, as several processes deregulated
during infection are common between Legionella and Salmonella, such as cell cycle
regulation, cytoskeleton organization, protein ubiquitination and transmembrane
transport.

1.3 Combination of effects

The analyses presented in this work focus on the description of changes happening in
global chromatin structure during infection. One issue with this type of experiments
is that we observe the combined effect of the pathogen activity and the host immune
response. There are means to dampen one of these effects, such as the use of mutant
pathogens which are unable to secrete effector proteins as control to trigger host
response (as used in Chapter chapter 3). Although these controls do not completely
emulate the pathogen activity, as it will not replicate [187] and therefore will not
elicit the same immune response, they are still useful to separate the effect of
the infection and pathogen exposure. In the case of L. pneumophila (chapter 2),
reproducing the infections with mutants for the dotA secretion system and romA
methyl-transferase would allow further isolation of the chromatin changes caused
by the infection and romA activity.

At large scale, decoupling and deciphering the individual factors at play during
infection ultimately requires the use of mutagenesis screens, such as Transposon
insertion or CRISPR. Such approaches assess the effect on host survival and not
chromatin changes, and to our knowledge there is no method to screen for chromatin
structure modifiers, the closest being MAP-C, a screen to assess the effect of mutations
on contacts between a pair of predetermined loci [188]. Regardless, more descriptive
approaches such as the ones used in this work are still important to understand the
extent of changes happening during infection. Specifically, they can still inform us
on the type of structural changes that the genome undergoes and global importance
of genome organization during infection. They can also outline discrete regions
of change in the contact pattern, and point at regulatory pathways perturbations
induced by the pathogens.

1.4 Power limitations

Results from genomic analyses are especially sensitive to the parameters and methods
used. This makes reproducibility in bioinformatics of utmost importance. Much like
RNA-seq, Hi-C has considerable technical variability which needs to be accounted
for using multiple replicates.
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It was proposed that RNA-seq experiments for differential expression analysis should
comprise at least 6 replicates and ideally 12 [189]. While this is probably true
for most omics experiments, this entails a high cost which is often the limiting
factor when designing experiments in genomics. Although Hi-C contacts may be less
susceptible to technical variataion (especially at shorter range) and exhibit spatial
dependency, there can still be substantial variability across biological replicates
[106].

The core issue with low replicate numbers is the lack of power to distinguish
between biological variability across replicates and differences due to the condition
of interest. As a consequence, when fewer replicates are used, lower effect sizes
(fold changes in the case of gene expression) become undetectable. This is especially
problematic when studying gene regulation, where small changes in expression
could be relevant.

Unlike RNA-seq, where the standard for analyses is well established and most soft-
wares can account for replicates and experimental design, most methods available
for Hi-C analysis do not leverage replicate information. This restricts the power of
analysis to the detection of major changes.

1.5 Reproducibility and reliability challenges

The lack of standards for Hi-C data formats and processing causes a general frag-
mentation of bioinformatic tools, with many redundant softwares of variable quality.
One recurrent issue is the absence - or low quality - of unit tests and documentation,
which are unfortunately still not regarded as standard in the computational biology
community. Unit tests validate each logic block of the software using inputs with
known truths, as such, they could be viewed as an equivalent to control experi-
ments in molecular biology. Software lacking these controls is more likely to contain
undetected bugs that could impact results and potentially lead to false conclusions.

Some general practices can be adopted to address these issues, such as writing
comprehensive documentation, solid tests and ensure long term software mainte-
nance, but as it stands there is little incentive to do so in academia. Such incentives
could come in the form of dedicated fundings for open source bioinformatics soft-
ware development, for which candidates would be evaluated on the quality of their
tools rather than traditional bibliometric indicators which are poorly correlated
with software quality [190]. Ultimately, some of these quality criteria should be
also enforced globally in the publishing process to ensure that tools meet quality
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standards for publication, as was done for example by the Journal of Open Source
Software [191].

Although adopting such practices would increase the effort and time required to
develop methods, the resulting tools would be more reliable, easier to use and
more widely adopted, thus benefiting the global research community in the long
run. Fortunately, recent years have seen an increasing adoption of good practices
in bioinformatic software. One such example is the nf-core ecosystem backed by
SciLifeLab, a public institution dedicated to open-source scientific software develop-
ment https://www.scilifelab.se. The generalization of similar initiatives could
mean that the quality of bioinformatics software will undergo major improvements
in the foreseeable future [192, 193]. The general scientific community has seen
other open science successes, providing a more positive outlook on the future of
scientific software quality. Notable examples include the Zenodo platform for the
sharing and long term archival of scientific software and data [194], or the non-profit
NumFOCUS [195] which supports general scientific software development.
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2 Perspectives of genomics for infection
biology

2.1 The 3D genome and the advent of deep
learning

It can look attractive to produce a model of the 3D genome, ideally a predictive one,
that would be able to infer how the structure reacts to specific changes. However,
in many organisms, the rules governing genome organization are intricate and it
would be unwieldy to model them explicitly. Deep learning provides an attractive
framework to produce such a model without knowing all the rules involved. There
are already successful applications of deep learning in biology for various different
tasks such as gene annotation [196, 197], variant calling [198], classification of
coding RNA [199], prediction of nucleosome positioning [200] and perhaps most
importantly, protein structure prediction [201]. More recently progress has also
been made for the prediction prediction gene expression and promoter-enhancer
interactions solely from the DNA sequence [202].

Generally, applications of deep learning in the 3D genome field have been limited to
denoising or improving the resolution of Hi-C matrices. Recently however, there have
been successful attempts at predicting the structure of mammalian genomes from the
DNA sequence, including (and most importantly) the prediction of conformational
changes induced by mutations [203, 204]. In the future, these approaches could be
helpful to identify mutations or regions to focus on, and one could imagine it being
used to model the consequences of infection on the host.

Unfortunately, several limitations must be overcome before deep learning methods
can become an amenable tool to understand the relationship between biological
processes and genome structure. First, it requires tremendous amounts of training
data, which in the case of Hi-C remains expensive to generate. Then, such model
would also require information about all the factors at play in the process, which we
do not know. Even in the event that we manage to obtain a model that effectively
predicts conformational changes, in most cases this is still unsatisfying: The general
scientific interest is usually to understand the rules and logic that connect the biologi-
cal process (e.g. infection) to structural changes. In deep learning models these rules
are obscured, taking the form of large weight matrices, and extracting biological

140 Part III Discussion and conclusion



meaning from them would require consequent advances in model interpretability
[205].
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3 Perspectives

As 3C protocols improve, as I have observed during the course of the last three
years, and the cost of sequencing decreases, it becomes possible to probe finer
details of spatial regulation during bacterial infection. While current projects are
mostly limited to analyzing major changes, higher sequencing depth and increasing
numbers of replicates will allow for more contrast and with it, the detection of more
subtle changes in spatial interactions [206].

Another exciting perspective is the advent of single-cell omics methods. This is
especially interesting for infection genomics, where bulk Hi-C signal contains a
mixture of cells at different infection stage and cell cycle phase. These single-cell
methodologies may allow further refining the analysis and deconvolute different
effects obscuring the signal of interest.

In future years, we expect to see major developments in the use of 3D genomics to
understand the deregulation induced by infection. There is still much to be learnt in
the interplay of the various layers of regulation, and spatial organization will likely
become an integrative part of many projects aiming to understand it. This work
allowed us to observe the general chromosomal biology of A. castellanii, but it would
be interesting to study the behaviour of specific features in more details, such as the
role of subtelomeric or rDNA clustering. This will also require additional effort to
resolve repeated sequences in the assembly. Exploring different infection systems,
such as different amoebae hosts, bacteria, or even megaviruses would also provide
more insights into whether there are conserved hallmarks of spatial chromosomal
changes during infection.

More generally, as more infection studies integrate Hi-C data with epigenetic marks
and expression, it will be interesting to study in more details the interplay of
structural changes with regulatory information to better understand the factors
determining the importance of long range interactions in gene regulation.
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A Supplementary information

A.1 Sparse convolution in Chromosight

The explanation below describes how Chromosight reformulates convolution into a
matrix multiplication problem to better handle large sparse matrices. The algorithm
is inspired from [207]. For brevity, we call the operation "convolution" throughout
the section, although cross-correlation could be considered more accurate as we
do not transpose the kernel. Let S be the signal (Hi-C) matrix and K the kernel
matrix.

S =


4 2 1

2 4 1

1 1 3

K =

10 12

11 13

 (A.1)

The dimensions of the desired convolution output are defined by:

(mS −mK + 1)× (nS − nK + 1) (A.2)

Note this corresponds to a convolution in "valid" mode, where edge values are
truncated.

We transform each column of the kernel into a Toeplitz matrix with the same number
of columns as the input signal. In this matrix, each value along the diagonals is
constant.

T0 =

10 11 0

0 10 11

 T1 =

12 13 0

0 12 13

 (A.3)
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The convolution of the signal and kernel can now be replaced by a sum of dot
products between the signal and Toeplitz matrices built from the column filters. For
each dot product, the signal is shifted according to the order of filters to respect
operations performed during convolution.

C = S ∗K (A.4)

= S[:, 0 : sn− kn+ 1] · T0 + S[:, 1 : sn− kn+ 2] · T1 (A.5)

Where · is the matrix dot product operator and ∗ is the convolution operator. The
complete convolution algorithm used in chromosight is given as pseudocode in
algorithm 1.

Algorithm 1 Calculate C = S ∗K using matrix products

Require: S, mS × nS matrix
Require: K, mK × nK matrix
Ensure: mS >= mK , nS >= nK

Let {T0, ..., TnK} be mK × nS matrices
y ← 0
while y 6= nK do
t← 0
while t 6= nS do
Ty[t, :]← K[:, t]T

end while
end while
Let C be a (mS −mK + 1)× (nS − nK + 1) matrix
C ←

∑nK
i=0 TnK · S[:, i : sn− kn+ 1 + kj] {Signal shifted according to each filter}
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B Chromosight case study

B.1 Quantification of metaphasic loops in yeast
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Example use of Chromosight: Loops during yeast metaphase

August 27, 2021

In this notebook, we demonstrate how chromosight quantify can be used to compare chromatin
loops between S. cerevisiae cultures arrested in G1 phase vs metaphase. In this notebook, we re-
analyse Hi-C data from Garcia-Luis, J., Lazar-Stefanita, L., Gutierrez-Escribano, P. et al., 2019.

Input data:

Files used in this analysis are the output from chromosight quantify. Loop scores were com-
puted on all 2-way combinations from a set of high confidence RAD21 binding sites separated by
10 to 50kb, on two Hi-C datasets at 2kb resolution: One with G1-arrested cells and the other with
metaphase-arrested cells.

• scer_w303_g1_2kb_SRR8769554.cool: Hi-C matrix of cells stopped in G1 phase, at 2kb res-
olution. From Dauban et al. 2020

• scer_w303_mitotic_2kb_merged.cool: Hi-C matrix of metaphasic cells, at 2kb resolution.
From Garcia-Luis et al. 2019

• rad21.bed2d: bed file containing all pairs of positions of RAD21 (cohesin) peaks in metapha-
sic S. cerevisiae separated by 10-50kb.

Note: see the end of this notebook for an explanation on how to generate a bed2d file
from a ChIP-seq bed file.

Getting loop scores

Loop scores at all pairs of positions can be computed using chromosight quantify. However, to
ensure scores are comparable, the number of contacts should be similar between matrices. When
using cool files, cooler can be used for this operation:

$ cooler info input/scer_w303_mitotic_2kb_merged.cool | grep sum
"sum": 44048750

$ cooler info input/scer_w303_g1_2kb_SRR8769554.cool | grep sum
"sum": 5862820

The G1 matrix has around 5.8M contacts whereas the metaphase matrix has 44M. Fortunately,
chromosight has a --subsample option, which can be used to bring both matrices to the same
coverage before computing scores:
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chromosight quantify --pattern loops \
--subsample 5862820 \
--win-fmt npy \
scer_cohesin_peaks.bed2d \
input/scer_w303_g1_2kb_SRR8769554.cool \
quantify/rad21_g1

chromosight quantify --pattern loops \
--subsample 5862820 \
--win-fmt npy \
input/scer_cohesin_peaks.bed2d \
input/scer_w303_mitotic_2kb_merged.cool \
quantify/rad21_metaphase

For each condition, chromosight quantify generates 2 files:

• A table containing the coordinates and pattern matching scores of all input coordinates.
• A numpy binary file containing a stack of images around the input coordinates. Those im-

ages are stored in the same order as the coordinates from the table.

quant i fy/
rad21_g1 . npy
rad21_g1 . t sv
rad21_metaphase . npy
rad21_metaphase . t sv

Analysing loop scores

We can now use python to load and compare results from chromosight quantify. Below are a
series of analyses showing some examples of downstream processing that can be performed on
chromosight results.

[203]: %config InlineBackend.figure_format = 'svg'
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy.ndimage as ndi
import chromosight.kernels as ck
import scipy.stats as st
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')

res = 2000
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[204]: # Load images (vignettes) around RAD21 interactions coordinates
images_g = np.load('quantify/rad21_g1.npy')
images_m = np.load('quantify/rad21_metaphase.npy')

# Load lists of RAD21 interactions coordinates with their loop scores
# Compute loop size (i.e. anchor distance) for each RAD21 combination
get_sizes = lambda df: np.abs(df.start2 - df.start1)
loops_g = pd.read_csv('quantify/rad21_g1.tsv', sep='\t')
loops_g['loop_size'] = get_sizes(loops_g)
loops_m = pd.read_csv('quantify/rad21_metaphase.tsv', sep='\t')
loops_m['loop_size'] = get_sizes(loops_m)

# Merge data from both conditions into a single table
loops_g['condition'] = 'g1'
loops_m['condition'] = 'metaphase'
loops_df = pd.concat([loops_g, loops_m]).reset_index(drop=True)
images = np.concatenate([images_g, images_m])

# Remove NaN scores (e.g. in repeated regions or overlap the matrix edge)
nan_mask = ~np.isnan(loops_df['score'])
loops_df = loops_df.loc[nan_mask, :]
images = images = images[nan_mask, :, :]

# The loop kernel can be loaded using chromosight.kernels.loops
kernel = np.array(ck.loops['kernels'][0])
pileup_kw = {'vmin': -1, 'vmax': 1, 'cmap': 'seismic'}

Peeking at the input coordinates

Images around RAD21 sites 2-way combinations extracted by chromosight can be viewed using
numpy and matplotlib. Note there are series off overlapping and slightly shifted images. This is
because of adjacent RAD21 sites which are closer in the genome than the size of the vignettes.

[193]: # Decide how many rows and columns of images to show
r, c = 5, 15
valid_imgs = np.where(~loops_g.score.isnull() & ~loops_g.score.isnull())[0]
fig, axes = plt.subplots(r, c, figsize=(12, 4), subplot_kw={'xticks':[],␣

↪→'yticks':[]})
# Show each image as a greyscale vignette
for i, ax in zip(valid_imgs, axes.flat):

img = images_g[i, :, :] # Showing examples from the end of the image stack␣
↪→(M phase)

ax.imshow(img, cmap=plt.cm.gray_r, interpolation='nearest')
plt.suptitle("Intersection between RAD21 sites, G1 phase")
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[193]: Text(0.5, 0.98, 'Intersection between RAD21 sites, G1 phase')

[194]: fig, axes = plt.subplots(r, c, figsize=(12, 4), subplot_kw={'xticks':[],␣
↪→'yticks':[]})

first_m = np.where(loops_df.condition == 'metaphase')[0][0]
# Show each image as a greyscale vignette
for i, ax in zip(valid_imgs, axes.flat):

img = images_m[i, :, :] # Showing examples from the end of the image stack␣
↪→(M phase)

ax.imshow(img, cmap=plt.cm.gray_r, interpolation='nearest')
plt.suptitle("Intersection between RAD21 sites, Metaphase")

[194]: Text(0.5, 0.98, 'Intersection between RAD21 sites, Metaphase')

4



Comparing the distribution of scores

The distribution of chromosight scores (i.e. correlation coefficients with the loop kernel) can be
compared between the 2 conditions, revealing that metaphasic cells tend to have stronger loops.

[196]: sns.violinplot(data=loops_df, x='condition', y='score')
plt.ylabel('chromosight loop score')
plt.title('Comparison of loop scores between G1 and metaphasic cells')
plt.axhline(0, c='grey')

[196]: <matplotlib.lines.Line2D at 0x7f53f4892a50>

Using different metrics

Chromosight scores loops using their pearson correlation with a “loop kernel” (see below). How-
ever, one might want to use another metric than chromosight’s score to rank loops. One such
metric commonly used in the litterature is the “corner score”, which uses the contrast between the
center of the image (C) and the corner (R).
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[197]: import matplotlib.patches as patches
fig, axes = plt.subplots(1, 2, sharex=True, sharey=True)
axes[0].imshow(np.log(kernel), **pileup_kw)
axes[0].set_title("Chromosight's loop kernel")
axes[1].imshow(np.zeros((17, 17)))
center_rect = patches.Rectangle(

(8-2, 8-2), 4, 4, linewidth=1, edgecolor='r', facecolor='r'
)
corner_rect = patches.Rectangle(

(17-5, 0), 4, 4, linewidth=1, edgecolor='g', facecolor='g'
)
axes[1].annotate('C', (8, 8), color='w', weight='bold', fontsize=14,␣

↪→ha='center', va='center')
axes[1].annotate('R', (14, 2), color='w', weight='bold', fontsize=14,␣

↪→ha='center', va='center')
axes[1].add_patch(center_rect)
axes[1].add_patch(corner_rect)
axes[1].set_title("Corner score: C - R")

[197]: Text(0.5, 1.0, 'Corner score: C - R')

The function defined below could be used to compute the corner score. It computes the difference
between the average of contacts in the center and top right corner. Using the rop right corner
is better to avoid contacts enrichments for due to the diagonal. This is a pretty intuitive metric
tailored based on expectations we have about loops. Here, we define center and corner radii as
10% of the image radius. For our 17x17 images, this means both regions will be 2+1 = 3x3 pixels.
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[198]: def corner_score(image, prop_radius=0.1):
"""
Compute a loop intensity score from a pileup

Parameters
----------
image : numpy.array of floats

2D array representing the window around a pattern.
prop_radius : float

Proportion of image radius used when selecting
center and corner contacts.

Returns
-------
float :

Corner score, defined as mean(center) - mean(corner).
"""
n, m = image.shape
center = int(prop_radius * n)
half_h = n // 2
half_w = m // 2
le = half_h - center
ri = half_h + center + 1
hi = half_w - center
lo = half_w + center + 1
center_mean = np.nanmean(image[hi:lo, le:ri])
top_right_mean = np.nanmean(image[:hi, ri:])
return center_mean - top_right_mean
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This homemade corner score correlates well with chromosight’s pearson score:

[199]: import scipy.stats as st
loops_df['corner_score'] = [corner_score(m) for m in images]
comp_df = loops_df.loc[

~np.isnan(loops_df.corner_score) & ~np.isnan(loops_df.score), :
]
sns.regplot(data=comp_df, x='corner_score', y='score')
plt.title(

r'Correlation between chromosight and corner score, $\rho$: '
f'{np.round(st.pearsonr(comp_df.corner_score, comp_df.score)[0], 2)}')

[199]: Text(0.5, 1.0, 'Correlation between chromosight and corner score, $\\rho$:
0.71')

By computing the pileup (average) of all patterns separately for G1 and M conditions, we can vi-
sually appreciate the stronger loop signal in metaphasic cells (M) compared to G1. Computing the
chromosight and corner score directly on those pileups shows that the chromosight score makes
it easier to discriminate the two conditions. The [-1,1] range is also convenient to interpret results.
Note that the chromosight score below is just the pearson coefficient of the pileup with the loop
kernel.
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[200]: centroid_g1 = np.apply_along_axis(np.nanmean, 0, images[loops_df.condition ==␣
↪→'g1'])

centroid_m = np.apply_along_axis(np.nanmean, 0, images[loops_df.condition ==␣
↪→'metaphase'])

fig, ax = plt.subplots(1, 2)
ax[0].imshow(np.log(centroid_g1), **pileup_kw)
ax[0].set_title(

f'G1 corner score: {corner_score(centroid_g1):.2f}\n'
f'G1 chromosight score: {np.round(st.pearsonr(centroid_g1.flat, kernel.

↪→flat)[0], 2)}'
)
ax[1].imshow(np.log(centroid_m), **pileup_kw)
ax[1].set_title(

f'M corner score: {corner_score(centroid_m):.2f}\n'
f'M chromosight score: {st.pearsonr(centroid_m.flat, kernel.flat)[0]:.2f}'

)
plt.show()

Instead of summarizing the 2 conditions using only pileups, we can compare the ability of both
score to separate the G1 and metaphasic cells based on the distribution of all patterns. Note that
both scores are z-transformed to make their ranges comparable.
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[201]: corner = comp_df.drop('score', axis=1).rename(columns={'corner_score': 'score'})
corner['metric'] = 'corner score'
corner['score'] = st.zscore(corner['score'])
chromo = comp_df.drop('corner_score', axis=1)
chromo['metric'] = 'chromosight'
chromo['score'] = st.zscore(chromo['score'])
comp_scores = pd.concat([corner, chromo]).reset_index(drop=True)
sns.violinplot(data=comp_scores, x='metric', y='score', split=True,␣

↪→hue='condition', inner='quartile')
plt.ylabel('metric z-score')
plt.title('Discriminative power: chromosight vs corner score')

[201]: Text(0.5, 1.0, 'Discriminative power: chromosight vs corner score')

Comparison of loop footprints

For vizualisation purposes, each window can be summarized to a 1D band representing the sum of
columns or rows. Here, we compute both the average of rows and columns, and use the element-
wise average of both 1D vectors. This gives a good approximation of a ‘loop footprint’ and is
convenient for visualisation.

Each image is centered to its mean to homogenize the overall contact counts in windows. This
avoid having globally darker or lighter images and emphasizes relative contrasts within the im-
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ages.

Bands are then sorted by loop size (i.e. distance between anchors) and plotted as a stack from
shortest to longest distance interactions.

[ ]: # Center images by subtracting their mean
centered = images.copy()
for img in range(centered.shape[0]):

centered[img] -= np.nanmean(centered[img])

# Summarise each image by taking the average of its row and col sums.
bands = (np.nansum(centered, axis=1) + np.nansum(centered, axis=2)) / 2

# Reorder bands by distance between anchors
sort_var = 'loop_size'
sorted_bands = bands[np.argsort(loops_df[sort_var]), :]
sorted_cond = loops_df.condition.iloc[np.argsort(loops_df[sort_var])]
sorted_centered = centered[np.argsort(loops_df[sort_var])]

# Define a subset to visualise (too many images so see them all at once)
#smallest_group = np.min(np.unique(sorted_cond, return_counts=True)[1])-1
#smallest_group = 500

# Define saturation threshold for the colormaps
vmax_bands = np.percentile(bands, 99.9)
vmax_img = np.percentile(centered, 99)

[202]: fig, axes = plt.subplots(2, 2, figsize=(8, 10))
for i, cond in enumerate(['g1', 'metaphase']):

axes[0, i].imshow(
sorted_bands[sorted_cond == cond, :],
cmap='afmhot_r',
vmax=vmax_bands,

)
axes[0, i].set_title(cond)
# Compute pileup by averaging all windows for each condition
centroid = np.apply_along_axis(

np.nanmean,
0,
images[loops_df.condition == cond],

)
axes[1, i].imshow(np.log(centroid), **pileup_kw)
axes[0,i].set_aspect('auto')
# The rest is just to improve figure aesthetics
axes[0, i].set_xticks([])
axes[1, i].set_yticks([])
if i > 0:
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axes[0, i].set_yticks([])
else:

#axes[0, i].set_yticklabels([], ["10kb", "25kb", "50kb"])
axes[0, i].set_yticks(

[0, sorted_bands[sorted_cond == cond, :].shape[0]]
)
axes[0, i].set_yticklabels(

['10kb', '50kb'],
minor=False,
rotation=45

)

axes[1, i].set_xticks([0, centroid.shape[0] // 2, centroid.shape[0]])
half_w = int((res * centroid.shape[0] // 2) / 1000)
half_w_bp = int(half_w * res / 1000)
axes[1, i].set_xticklabels([f"{-half_w_bp}kb", "0", f"{half_w_bp}kb"])
#axes[1, i].set_title(f"corner score: {np.round(corner_score(centroid), 2)}")

axes[0, 0].set_ylabel('Distance between RAD21 sites')
axes[1, 0].set_ylabel('Loop pileups')
plt.suptitle(f'Loop bands for pairs of RAD21 sites')
#plt.savefig('figs/bands_pileup_prots.svg')

[202]: Text(0.5, 0.98, 'Loop bands for pairs of RAD21 sites')
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Note: Generating a BED2D file

ChIP-seq peaks are often stored as BED files, containing genomic intervals where DNA-binding
proteins are enriched. Such files can be used to generate a BED2D file for chromosight quantify.
This is done by generating all possible 2-ways combinations of peaks that follow desired criteria.
In the example below, we use bedtools and awk to generate all intrachromosomal combinations
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where peaks are separated by more than 10kb and less than 50kb.

MINDIST=10000
MAXDIST=50000
bedtools window -a input/scer_cohesin_peaks.bed \

-b input/scer_cohesin_peaks.bed \
-w $MAXDIST \

| awk -vmd=$MINDIST '$1 == $4 && ($5 - $2) >= md {print}' \
| sort -k1,1 -k2,2n -k4,4 -k5,5n \
> input/scer_cohesin_peaks.bed2d

14



B.2 Output visualisation

Appendix B Chromosight case study 161



Plotting Chromosight’s output

August 27, 2021

Chromosight generates tabular text files with loops coordinates and scores. This file can be loaded
into your favorite scripting language for visualization. For the purpose of this demonstration, we
show how to plot the contact maps with detected coordinates using python, pandas and cooler.

The data shown here was generated with the following commands:

chromosight detect data_test/example.cool -m8000 -M50000 -p0.35 detect/example_loops
chromosight detect data_test/example.cool --pattern borders detect/example_borders
chromosight detect data_test/example.cool --pattern hairpins detect/example_hairpins

Which will detect all loops of size 8-50kb in example.cool and filter those with a score above 0.35.
The output files will be located in the detect/ folder.

[35]: %config InlineBackend.figure_format = 'svg'
import re
import json
import numpy as np
import pandas as pd
import cooler
import matplotlib.pyplot as plt
import chromosight.utils.detection as cud

# Load detected patterns' tables
loops = pd.read_csv('detect/example_loops.tsv', sep='\t')
borders = pd.read_csv('detect/example_borders.tsv', sep='\t')
hairpins = pd.read_csv('detect/example_hairpins.tsv', sep='\t')

# Load Hi-C data in cool format
c = cooler.Cooler("../../data_test/example.cool")

View the whole genome matrix

To plot the whole matrix with patterns, the matrix is extracted from the cool file and columns bin1
and bin2 are used. Those columns contain the genome-wide bin number of pattern coordinates,
and matches the whole genome matrix. Plotting the whole genome is straightforward, but likely
to take too much memory for larger genomes.
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[36]: %matplotlib inline
# Plot the whole matrix
plt.figure(figsize=(10, 10))
mat = c.matrix(sparse=False, balance=True)[:]
plt.imshow(mat ** 0.2, cmap='afmhot_r')
plt.scatter(loops.bin2, loops.bin1, edgecolors='blue', facecolors='none',␣

↪→label='loops')
plt.scatter(borders.bin2, borders.bin1, c='lightblue', label='borders')
plt.scatter(hairpins.bin2, hairpins.bin1, c='green', label='hairpins')
plt.legend()
plt.show()

2



View a matrix region

To reduce the amount of memory required, we can define a region of interest. The corresponding
matrix region can be fetched from the cool file using cooler, and patterns falling within that region
can be filtered using pandas. Since we want to overlay the patterns on top of the region matrix,
the bin1 and bin2 columns should be adjusted to be relative to the region’s start instead of the
genome.

[ ]: def subset_region(df, region):
"""
Given a pattern dataframe and UCSC region string, retrieve only patterns in␣

↪→that region.
"""
# Split the region string at each occurence of - or : (yields 3 elements)
chrom, start, end = re.split('[-:]', region)
start, end = int(start), int(end)
# Only keep patterns on the same chromosome as the region and
# within the start-end interval
subset = df.loc[

(df.chrom1 == chrom) &
(df.chrom2 == chrom) &
(df.start1 >= start) &
(df.start2 >= start) &
(df.end1 < end) &
(df.end2 < end), :

]
return subset

[37]: # Select a region of interest
region = 'chr2:200000-300000'
mat = c.matrix(sparse=False, balance=True).fetch(region)

loops_sub = subset_region(loops, region)
borders_sub = subset_region(borders, region)
hairpins_sub = subset_region(hairpins, region)

# Make genome-based bin numbers relative to the region
for df in [loops_sub, borders_sub, hairpins_sub]:

df.bin1 -= c.extent(region)[0]
df.bin2 -= c.extent(region)[0]
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[38]: %matplotlib inline
plt.figure(figsize=(7, 7))
plt.imshow(np.log10(mat), cmap='afmhot_r')
plt.scatter(loops_sub.bin2, loops_sub.bin1, edgecolors='blue',␣

↪→facecolors='none', label='loops')
plt.scatter(borders_sub.bin2, borders_sub.bin1, c='lightblue', label='borders')
plt.scatter(hairpins_sub.bin2, hairpins_sub.bin1, c='green', label='hairpins')
plt.legend()
plt.show()
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Plot the distribution of scores

Scores of detected patterns are provided as Pearson correlation coefficient with the template and
are stored in the ‘score’ column of the tabular output. Their distribution can be viewed with
regular histogram functions. Since we use a threshold for detection (the --pearson option in the
command line interface), the score lower end of the distribution will be truncated at this threshold.

Different patterns will have different score distributions and default thresholds.

[39]: %matplotlib inline
plt.figure(figsize=(8, 8))
fig, ax = plt.subplots(3, 1, sharex=True)
for i, (df, pat) in enumerate(zip([loops, borders, hairpins], ['loops',␣

↪→'borders', 'hairpins'])):
ax[i].hist(df.score, 20)
ax[i].set_title(pat)

plt.tight_layout()

<Figure size 576x576 with 0 Axes>
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Looking at detected patterns

Windows around detected patterns in the processed matrix are stored in the JSON / npy file when
running chromosight’s detect or quantify commands. These windows are in the same order as the
coordinates in the output table.

[40]: # Load input json file into a dictionary
loop_wins = json.load(open('detect/example_loops.json', 'r'))
# Note that keys are string, as required by the JSON format,
# so we convert them to int() for convenience
loop_wins = {int(i): np.array(w) for i, w in loop_wins.items()}
# Make an empty 3D array of shape N_coords x height x width
wins = np.zeros((len(loop_wins.items()), *loop_wins[0].shape))
# Fill the 3D array with windows values
for i, w in loop_wins.items(): wins[i] = w

For example, we can plot the best 40 windows around detected loops ordered by score:

[41]: %matplotlib inline
plt.figure(figsize=(10, 10))

fig, ax = plt.subplots(8, 5, figsize=(8, 12))

for i, n in enumerate(np.argsort(loops.score)[39::-1]):
m, s = np.nanmean(loop_wins[n]), np.nanstd(loop_wins[n])
ax.flat[i].imshow((loop_wins[n] - m) / s, cmap='afmhot_r', vmax=4)
ax.flat[i].set_title(f'{loops.score[n]:.2f}')
ax.flat[i].set_xticks([])
ax.flat[i].set_yticks([])

plt.tight_layout()

<Figure size 720x720 with 0 Axes>
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The pileup can also be re-computed from these windows using chromosight’s helper function.
This is useful to plot the pileup for a subset of the detected patterns, or just to generate the pileup
plot with different aesthetics.

[42]: %matplotlib inline
plt.figure(figsize=(4, 4))
pileup = cud.pileup_patterns(wins)
plt.imshow(pileup, cmap='coolwarm', vmax=1.8, vmin=0)

[42]: <matplotlib.image.AxesImage at 0x7f571dcb6f50>
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Change detection in pattern intensities

September 9, 2021

This notebook details the inner working of Pareidolia and walks through each step with code and
visualization. We show the intermediate steps, parameters involved and use a small region of
mouse chromosome 14 as an example to visualize the results.

Throughout the notebook, we call internal functions of pareidolia and chromosight to show the
transformations going on inside the program. In a normal use case, however, this whole process
is not neccessary and the user can simply execute the program as explained in the documentation,
either through the command line interface or the python API.

Background

We compare several samples issued from 2 different timepoints (t0, t1). Multiple samples (repli-
cates) (r1, r2, ..., rR) can share the same timepoint. Each sample has a matrix Mr,t where Mr,t[i, j] is
a Pearson correlation coefficient with a kernel K representing the pattern of interest. If the kernel
was of size KmxKn, the correlation coefficient was computed as:

Mr,t[i, j] = Corr(K, Hr,t[i−
Km

2
: i +

Km

2
, j− Kn

2
: j +

Kn

2
])

Where Hr,t is the Hi-C matrix of the sample.

The method is inspired by median filtering-based background formation. We start by generating
a background matrix for each condition (timepoint), whose values are defined as the median of
all replicates in that condition:

Bt[i, j] = median(M1,t, M2,t, ..., MR,t)

Next, we compute global background matrix, defined as:

B = median(B1, B2, ..., BT)

Finally we extract the change as the difference between each condition ’s background.

D = Bt1 − Bt0

Changes can then filtered on various criteria to extract patches of strong differences

1



[486]: from typing import Iterable, Optional, Tuple, Iterator, Set
from skimage.filters import threshold_otsu
import matplotlib.pyplot as plt
import scipy.sparse as sp
import chromosight.kernels as ck
import chromosight.utils.preprocessing as cup
import chromosight.utils.detection as cud
import pareidolia.detection as pad
import pareidolia.preprocess as pap
import pareidolia.hic_utils as pah
import numpy as np
import pandas as pd
import cooler
RES = 40000
region = 'chr14:12900000-14000000'

Example data

In this case, we are using mice bone macrophage infected by a bacterium at different timepoints.
Each timepoint includes several replicates. We will be comparing infected samples to non-infected
samples.

[487]: def get_cool(sample: str) -> cooler.Cooler:
"""Given a sample name, load the corresponding cool file."""
cool_path = f'./data/output/cool/{sample}.mcool::/resolutions/{RES}'
try:

cool = cooler.Cooler(cool_path)
except OSError:

cool = None
return cool

# Load references to cool files from each sample into the dataframe
samples = pd.read_csv('samples.tsv', sep='\t', usecols=[0, 4])
samples["cool"] = samples.library.apply(get_cool)
samples['cond'] = 'control'
samples.loc[samples.infection_time > 0, 'cond'] = 'treat'
# Remove samples without Hi-C data
samples = samples.loc[~samples.cool.isnull(), :]
samples = samples.set_index('library')
samples.head(20)
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[487]: infection_time cool cond
library
PM51 0 <Cooler "PM51.mcool::/resolutions/40000"> control
PM52 20 <Cooler "PM52.mcool::/resolutions/40000"> treat
PM53 20 <Cooler "PM53.mcool::/resolutions/40000"> treat
PM54 2 <Cooler "PM54.mcool::/resolutions/40000"> treat
PM55 2 <Cooler "PM55.mcool::/resolutions/40000"> treat
PM121 0 <Cooler "PM121.mcool::/resolutions/40000"> control
PM122 20 <Cooler "PM122.mcool::/resolutions/40000"> treat
PM123 20 <Cooler "PM123.mcool::/resolutions/40000"> treat
PM124 2 <Cooler "PM124.mcool::/resolutions/40000"> treat
PM125 2 <Cooler "PM125.mcool::/resolutions/40000"> treat
PM126 20 <Cooler "PM126.mcool::/resolutions/40000"> treat
PM127 20 <Cooler "PM127.mcool::/resolutions/40000"> treat

Preprocessing matrices We first need to convert Hi-C matrices into convolution maps for a pat-
tern of interest (e.g. loops). We also need to make sure we are comparing the same positions be-
tween maps by keeping the same nonzero values in sparse matrices. We also work on a subregion
of the matrices to make computations faster.

Below, we perform the steps which are done internally in Pareidolia to explore the intermedi-
ates used to compute and filter changes. The examples are visualized on a small region to make
visualizations more clear.

Pareidolia measures changes relative to the a pattern of interest, represented by the kernel K. De-
fault chromosight kernels shown below can be used by providing the kernel name. Alternatively,
a user defined matrix can be provided.

[488]: %matplotlib inline

fig, ax = plt.subplots(1, len(ck.kernel_names), figsize=(15, 20))
for a, name in zip(ax, ck.kernel_names):

kernel_mat = np.array(getattr(ck, name)['kernels'][0])
a.imshow(np.log1p(kernel_mat), cmap='bwr')
a.set_title(name)

The first step is to preprocess Hi-C matrices. We work on sparse matrices to reduce memory usage.
In order for samples to be comparable, they must have the same sparsity structure (the positions
of explicitely stored values).
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First, we subsample contacts in all matrices to ensure they have the same coverage (i.e. the cov-
erage of the lowest sample). We also detrend the matrix for the distance-contact decay gradient.
The resulting matrix (also called observed/expected) is computed by dividing each value by the
average of its diagonal.

[489]: %matplotlib inline
region = 'chr14:21600000-26000000'
# Compute lowest amount of contacts among all matrices
min_contacts = pah.get_min_contacts(samples.cool, region=region)

# Subsample, preprocess and subset matrices
samples['mat'] = samples.cool.apply(

lambda c: pah.preprocess_hic(c, min_contacts=min_contacts, region=region)
)
fig, ax = plt.subplots(1, 2, figsize=(12, 8))
ax[0].imshow(np.log1p(samples.cool['PM51'].matrix(sparse=False, balance=False).

↪→fetch(region)), cmap='afmhot_r')
ax[0].set_title('Balanced contact matrix')
ax[1].set_title('Observed/expected contact matrix')
ax[1].imshow(np.log1p(samples.mat['PM51'].toarray()), cmap='afmhot_r')

[489]: <matplotlib.image.AxesImage at 0x7f86369de890>

Then, we compute the missing bins in each sample (genomic bins of low coverage) and take the
union of those bins across samples. The resulting mask is applied on all samples.
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[490]: %matplotlib inline

# Get bins valid in all matrices
common_valid = pap.get_common_valid_bins(samples.mat)

# Generate mask to remove all bins missing in any matrix
common_mask = cup.make_missing_mask(

samples.mat[0].shape,
common_valid,
common_valid,
max_dist=None,
sym_upper=True

)

# Make sure missing bins are set to 0 in all matrices and discard lower triangle
samples.mat = samples.mat.apply(lambda m: cup.erase_missing(sp.triu(m),␣

↪→common_valid, common_valid))

plt.imshow(common_mask.toarray())
plt.title("Common missing bins mask")

[490]: Text(0.5, 1.0, 'Common missing bins mask')

Each sample’s preprocessed matrix is fed to Chromosight’s convolution engine to return a matrix
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of identical dimension whose values are the correlation coefficient with the kernel matrix at each
position.

[491]: # Compute correlation maps, using the same mask for all samples
# Note normxcorr2 returns a map of correlations, and one of p-values
# (None by default). Hence the slicing of the output
samples['corr'] = samples.mat.apply(lambda m: cud.normxcorr2(

m,
ck.loops['kernels'][0],
full=True,
missing_mask=common_mask,
sym_upper=True

)[0])

Then, we take the union of nonzero positions across all samples’ correlation matrices and enforce
explicit storage of those positions across samples. This will ensure all samples have the same
sparsity, so that we can perform operations directly on the aligned nonzero values.

[492]: # First option: Keep values that are present in any matrix to zero
total_nnz_set = pap.get_nnz_union(samples['corr'])
samples['corr_union'] = samples['corr'].apply(lambda c: pap.fill_nnz(c,␣

↪→total_nnz_set))

[493]: %matplotlib inline
plt.imshow(samples.corr_union['PM51'].toarray())
plt.title("M: correlation matrix (single sample)")
plt.colorbar()

[493]: <matplotlib.colorbar.Colorbar at 0x7f863684c350>
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[494]: # Take one infected (t=20h) and one uninfected matrix. Visualise the␣
↪→median-filter

# based background accumulation
u_union = samples['corr_union'].loc[samples.cond == 'control'].values
i_union = samples['corr_union'].loc[samples.cond == 'treat'].values
bg_uni = pad.median_bg(u_union)
bg_inf = pad.median_bg(i_union)

[495]: bg_inf

[495]: <110x110 sparse matrix of type '<class 'numpy.float64'>'
with 6067 stored elements in Compressed Sparse Row format>

[496]: %matplotlib inline
diff = bg_inf.toarray() - bg_uni.toarray()

f, ax = plt.subplots(1, 3, sharex=True, sharey=True, figsize=(12, 4))
ax[0].imshow(bg_uni.toarray(), cmap='viridis')
ax[0].set_title("$B_u$: Median background, control")
ax[1].imshow(bg_inf.toarray(), cmap='viridis')
ax[1].set_title("$B_i$: Median background, treatment")
ax[2].imshow(diff, cmap='seismic', vmin=-1, vmax=1)
ax[2].set_title("$D= B_i - B_u$")
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[496]: Text(0.5, 1.0, '$D= B_i - B_u$')

Filtering changes

We can clearly identify regions that change between conditions, however this is only based on the
median and does not account for variability. It would be better to penalize regions with technical
variability.

Pareidolia uses a combination of 3 filters to select region with differential pattern intensity.

• Pearson score: At least 1 sample must have a pearson score (pattern similarity) above Tp.
• Local contact density: All samples must have a local contact density (nonzero contacts in

surrounding window) above Td
• Contrast-to-noise ratio: The contrast-to-noise-ratio D

σ with sigma being within-condition
position-wise standard errors must be above Tc

[497]: Td, Tp, Tc = 0.2, 0.35, 0.2

pearson_fail = [
(m.data < Tp).astype(bool) for m in samples["corr_union"]

]
pearson_fail = np.bitwise_and.reduce(pearson_fail)

# Get thresholded pearson matrix
ex = samples['corr_union']['PM51'].copy().tocoo()
P = sp.coo_matrix(

([True for _ in range(sum(~pearson_fail))], (ex.row[~pearson_fail], ex.
↪→col[~pearson_fail])),

shape=ex.shape,
dtype=bool)

# Get thresholded CNR matrix
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_, C = pah._median_bg_subtraction(
pd.DataFrame(

{
'cond': ['ctrl' if c else 'treat' for c in samples.cond.values ==␣

↪→'control'],
'mat': samples.corr_union

},
),
control='ctrl',
cnr_thresh=Tc

)
C.data[C.data < Tc] = 0.0
C.data[C.data > 0] = 1

# Get thresholded density matrix
L = pah.make_density_filter(samples.mat, Td, win_size=17, sym_upper=True)

# Convert everything to dense boolean array for visualization
filt = lambda m: m.toarray().astype(bool)
P, C, L = filt(P), filt(C), filt(L)

[504]: %matplotlib inline
fig, ax = plt.subplots(1, 4, figsize=(15, 4), sharex=True, sharey=True)
ax[0].imshow(P, cmap='Greys')
ax[0].set_title('P: Pearson filter')
ax[1].imshow(C, cmap='Greys')
ax[1].set_title('C: CNR filter')
ax[2].imshow(L, cmap='Greys')
ax[2].set_title('L: Local density filter')
ax[3].imshow(P * C * L, cmap='Greys')
ax[3].set_title('$F: P * L * C$')

[504]: Text(0.5, 1.0, '$F: P * L * C$')

We can then use the resulting filter F to mask the pattern chang matrix.
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[505]: %matplotlib inline
diff_f = diff * P * C * L
plt.imshow(diff_f, cmap='seismic', vmin=-.5, vmax=.5)

[505]: <matplotlib.image.AxesImage at 0x7f8635e01bd0>

Finally, discrete patches of change (or foci) are extracted from the matrix, and the coordinate of
the local maximum of change value in each patch is returned.

[506]: %matplotlib inline
foci, foci_mat = cud.pick_foci(sp.csr_matrix(np.abs(diff_f)), pearson=0,␣

↪→min_size=3)
foci_mat= foci_mat.toarray().astype(float)
foci_mat[foci_mat != 0] = 10
fig, ax = plt.subplots(1, 2, sharex=True, sharey=True, figsize=(12, 8))
ax[0].imshow(foci_mat, cmap='jet')
ax[0].scatter(foci[:, 1], foci[:, 0], edgecolors='green', facecolors='none')
ax[1].imshow(diff, cmap='seismic', vmax=1, vmin=-1)
ax[1].scatter(foci[:, 1], foci[:, 0], edgecolors='green', facecolors='none')

[506]: <matplotlib.collections.PathCollection at 0x7f8635cd4ed0>
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We can now visualize the original contact maps (averaged by condition) with the overlay of de-
tected differential loop positions:

[507]: control_contacts = np.dstack(
[clr.matrix(balance=True, sparse=False).fetch(region) for clr in samples.

↪→cool[samples.cond=='control']]
).mean(axis=2)
treatment_contacts = np.dstack(

[clr.matrix(balance=True, sparse=False).fetch(region) for clr in samples.
↪→cool[samples.cond=='treat'][:2]]

).mean(axis=2)

[508]: %matplotlib inline
fig, ax = plt.subplots(1, 3, sharex=True, sharey=True, figsize=(16, 8))
vmax = np.nanpercentile(control_contacts**0.2, 98)
ax[0].imshow(control_contacts**0.2, cmap='afmhot_r', vmax=vmax)
ax[0].scatter(foci[:, 1], foci[:, 0], edgecolors='green', facecolors='none')
ax[0].set_title('Control contacts')
ax[1].imshow(treatment_contacts**0.2, cmap='afmhot_r', vmax=vmax)
ax[1].set_title('Treated contacts')
ax[1].scatter(foci[:, 1], foci[:, 0], edgecolors='green', facecolors='none')
ax[2].imshow(np.log2(treatment_contacts/control_contacts), cmap='seismic',␣

↪→vmin=-0.5, vmax=0.5)

[508]: <matplotlib.image.AxesImage at 0x7f8635ba4f90>
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Novo Genome Assembly from Long Uncorrected Reads“. In: Genome Research 27.5
(May 2017), pp. 737–746 (cit. on p. 27).

[145] Bruce J. Walker, Thomas Abeel, Terrance Shea, et al. „Pilon: An Integrated Tool for
Comprehensive Microbial Variant Detection and Genome Assembly Improvement“.
In: PLOS ONE 9.11 (Nov. 2014), e112963 (cit. on p. 27).

[146] Ritu Kundu, Joshua Casey, and Wing-Kin Sung. HyPo: Super Fast & Accurate Polisher
for Long Read Genome Assemblies. Biorxiv. Bioinformatics, Dec. 2019 (cit. on p. 27).

[147] Aaron M. Wenger, Paul Peluso, William J. Rowell, et al. „Accurate Circular Consensus
Long-Read Sequencing Improves Variant Detection and Assembly of a Human
Genome“. In: Nature Biotechnology 37.10 (Oct. 2019), pp. 1155–1162 (cit. on
p. 27).

[148] Dandan Lang, Shilai Zhang, Pingping Ren, et al. „Comparison of the Two Up-to-Date
Sequencing Technologies for Genome Assembly: HiFi Reads of Pacific Biosciences
Sequel II System and Ultralong Reads of Oxford Nanopore“. In: GigaScience 9.12
(Nov. 2020) (cit. on p. 27).

[149] Haoyu Cheng, Gregory T. Concepcion, Xiaowen Feng, Haowen Zhang, and Heng
Li. „Haplotype-Resolved de Novo Assembly Using Phased Assembly Graphs with
Hifiasm“. In: Nature Methods 18.2 (Feb. 2021), pp. 170–175 (cit. on p. 27).

[150] Barı̧s Ekim, Bonnie Berger, and Rayan Chikhi. „Minimizer-Space de Bruijn Graphs:
Whole-Genome Assembly of Long Reads in Minutes on a Personal Computer“. In:
Cell Systems (Sept. 2021) (cit. on p. 27).

[151] Ernest T Lam, Alex Hastie, Chin Lin, et al. „Genome Mapping on Nanochannel Arrays
for Structural Variation Analysis and Sequence Assembly“. In: Nature Biotechnology
30.8 (Aug. 2012), pp. 771–776 (cit. on p. 27).

[152] Matt Ravenhall, Nives Škunca, Florent Lassalle, and Christophe Dessimoz. „Inferring
Horizontal Gene Transfer“. In: PLOS Computational Biology 11.5 (May 2015). Ed. by
Shoshana Wodak, e1004095 (cit. on p. 28).

Bibliography 193



[153] Genome 10K Community of Scientists. „Genome 10K: A Proposal to Obtain Whole-
Genome Sequence for 10 000 Vertebrate Species“. In: Journal of Heredity 100.6
(Nov. 2009), pp. 659–674 (cit. on p. 29).

[154] Monica Poelchau, Christopher Childers, Gary Moore, et al. „The I5k Workspace@NAL
- Enabling Genomic Data Access, Visualization and Curation of Arthropod Genomes“.
In: Nucleic Acids Research 43.D1 (Jan. 2015), pp. D714–D719 (cit. on p. 29).

[155] Darwin Tree Of Life. https://www.darwintreeoflife.org/ (cit. on p. 29).

[156] Deanna M Church, Valerie A Schneider, Karyn Meltz Steinberg, et al. „Extending
Reference Assembly Models“. In: Genome Biology 16.1 (Dec. 2015), p. 13 (cit. on
p. 29).

[157] Heng Li, Xiaowen Feng, and Chong Chu. „The Design and Construction of Reference
Pangenome Graphs with Minigraph“. In: Genome Biology 21.1 (Dec. 2020), p. 265
(cit. on p. 29).

[158] Bryce van de Geijn, Graham McVicker, Yoav Gilad, and Jonathan K Pritchard.
„WASP: Allele-Specific Software for Robust Molecular Quantitative Trait Locus
Discovery“. In: Nature Methods 12.11 (Nov. 2015), pp. 1061–1063 (cit. on p. 29).

[159] Charlotte Cockram, Agnès Thierry, and Romain Koszul. „Generation of Gene-Level
Resolution Chromosome Contact Maps in Bacteria and Archaea“. In: STAR Protocols
2.2 (June 2021), p. 100512 (cit. on p. 32).

[160] Axel Cournac, Hervé Marie-Nelly, Martial Marbouty, Romain Koszul, and Julien
Mozziconacci. „Normalization of a Chromosomal Contact Map“. In: BMC Genomics
13.1 (2012), p. 436 (cit. on p. 33).

[161] Nezar Abdennur and Leonid A Mirny. „Cooler: Scalable Storage for Hi-C Data and
Other Genomically Labeled Arrays“. In: Bioinformatics 36.1 (Jan. 2020), pp. 311–
316 (cit. on p. 34).

[162] Cyril Matthey-Doret, Lyam Baudry, Amaury Bignaud, et al. Simple Library/Pipeline
to Generate and Handle Hi-C Data. https:// github.com/koszullab/hicstuff. Mar.
2021 (cit. on p. 34).

[163] Joachim Wolff, Rolf Backofen, and Björn Grüning. Loop Detection Using Hi-C Data
with HiCExplorer. Biorxiv. Mar. 2020 (cit. on p. 37).

[164] Suhas S.P. Rao, Miriam H. Huntley, Neva C. Durand, et al. „A 3D Map of the Human
Genome at Kilobase Resolution Reveals Principles of Chromatin Looping“. In: Cell
159.7 (Dec. 2014), pp. 1665–1680 (cit. on p. 37).
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