Accelerated proximal boosting
Abstract
Gradient boosting is a prediction method that iteratively combines weak learners to produce a complex and accurate model. From an optimization point of view, the learning procedure of gradient boosting mimics a gradient descent on a functional variable. This paper proposes to build upon the proximal point algorithm when the empirical risk to minimize is not differentiable. In addition , the novel boosting approach, called accelerated proximal boosting, benefits from Nesterov's acceleration in the same way as gradient boosting [Biau et al., 2018]. Advantages of leveraging proximal methods for boosting are illustrated by numerical experiments on simulated and real-world data. In particular, we exhibit a favorable comparison over gradient boosting regarding convergence rate and prediction accuracy.
Origin : Files produced by the author(s)
Loading...