Topology-Selective Fluorescent "Light-Up" Probes for G-Quadruplex DNA Based on Photoinduced Electron Transfer - Université Paris Cité Access content directly
Journal Articles Chemistry - A European Journal Year : 2018

Topology-Selective Fluorescent "Light-Up" Probes for G-Quadruplex DNA Based on Photoinduced Electron Transfer

Abstract

Six novel probes were prepared by covalent attachment of a G4-DNA ligand (PDC) to various coumarin or pyrene fluorophores. In the absence of DNA, the fluorescence of all probes is quenched due to intramolecular photoinduced electron transfer (PET) evidenced by photophysical and electrochemical studies, molecular modeling and DFT calculations. All probes demonstrate similarly high thermal stabilization of various G4-DNA substrates belonging to different folding topologies, as assessed by fluorescence melting experiments; however, their fluorimetric response is strongly heterogeneous with respect to structures of the probes and G4-DNA targets. Thus, the probes containing the 7-diethylaminocoumarin fluorophore demonstrate significant fluorescence enhancement in the presence of G4-DNA, with the strongest " light-up " response (20-to 180-fold) observed for antiparallel G4 structures as well as for hybrid G4 structures, formed by the variants of human telomeric sequence and capable of a conformation change to the antiparallel isoform. These results shed light on the influence of the linker and electronic properties of fluorophores on the efficiency of G4-DNA " light-up " probes operating via PET.
Fichier principal
Vignette du fichier
2018-Chemistry A European Journal - G4 DNA probe.pdf (2.37 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01821778 , version 1 (22-06-2018)

Identifiers

Cite

Xiao Xie, Oksana Reznichenko, Ludovic Chaput, Pascal G.P. Martin, Marie-Paule Teulade-Fichou, et al.. Topology-Selective Fluorescent "Light-Up" Probes for G-Quadruplex DNA Based on Photoinduced Electron Transfer. Chemistry - A European Journal, 2018, ⟨10.1002/chem.201801701⟩. ⟨hal-01821778⟩
328 View
460 Download

Altmetric

Share

Gmail Facebook X LinkedIn More