Kernel and wavelet density estimators on manifolds and more general metric spaces - Université Paris Cité
Article Dans Une Revue Bernoulli Année : 2020

Kernel and wavelet density estimators on manifolds and more general metric spaces

Galatia Cleanthous
  • Fonction : Auteur
  • PersonId : 1210205
Athanasios G Georgiadis
  • Fonction : Auteur
Pencho Petrushev
  • Fonction : Auteur
  • PersonId : 1210207
Dominique Picard
  • Fonction : Auteur

Résumé

We consider the problem of estimating the density of observations taking values in classical or nonclassical spaces such as manifolds and more general metric spaces. Our setting is quite general but also sufficiently rich in allowing the development of smooth functional calculus with well localized spectral kernels, Besov regularity spaces, and wavelet type systems. Kernel and both linear and nonlinear wavelet density estimators are introduced and studied. Convergence rates for these estimators are established and discussed.
Fichier principal
Vignette du fichier
2020-BEJ1171.pdf (296.84 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03916881 , version 1 (31-12-2022)

Identifiants

Citer

Galatia Cleanthous, Athanasios G Georgiadis, Gerard Kerkyacharian, Pencho Petrushev, Dominique Picard. Kernel and wavelet density estimators on manifolds and more general metric spaces. Bernoulli, 2020, Bernouilli, 26, ⟨10.3150/19-bej1171⟩. ⟨hal-03916881⟩
47 Consultations
48 Téléchargements

Altmetric

Partager

More