Homogeneous Besov and Triebel–Lizorkin spaces associated to non-negative self-adjoint operators - Université Paris Cité
Article Dans Une Revue Journal of Mathematical Analysis and Applications Année : 2017

Homogeneous Besov and Triebel–Lizorkin spaces associated to non-negative self-adjoint operators

A.G. Georgiadis
  • Fonction : Auteur
G. Kyriazis
  • Fonction : Auteur
  • PersonId : 1210282
P. Petrushev
  • Fonction : Auteur

Résumé

Homogeneous Besov and Triebel-Lizorkin spaces with complete set of indices are introduced in the general setting of a doubling metric measure space in the presence of a non-negative self-adjoint operator whose heat kernel has Gaussian localization and the Markov property. The main step in this theory is the development of distributions modulo generalized polynomials. Some basic properties of the general homogeneous Besov and Triebel-Lizorkin spaces are established, in particular, a discrete (frame) decomposition of these spaces is obtained.

Dates et versions

hal-03916995 , version 1 (31-12-2022)

Identifiants

Citer

A.G. Georgiadis, Gerard Kerkyacharian, G. Kyriazis, P. Petrushev. Homogeneous Besov and Triebel–Lizorkin spaces associated to non-negative self-adjoint operators. Journal of Mathematical Analysis and Applications, 2017, 449 (2), pp.1382-1412. ⟨10.1016/j.jmaa.2016.12.049⟩. ⟨hal-03916995⟩
11 Consultations
3 Téléchargements

Altmetric

Partager

More