GATA5 SUMOylation is indispensable for zebrafish cardiac development - Université Paris Cité Accéder directement au contenu
Article Dans Une Revue Biochimica et Biophysica Acta (BBA) - General Subjects Année : 2017

GATA5 SUMOylation is indispensable for zebrafish cardiac development

Bin Wen (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14) , Hao Yuan (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14) , Xiaohui Liu (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14) , Haihong Wang (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14) , Saijuan Chen (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14) , Zhu Chen (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14) , Hugues de The (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15) , Jun Zhou (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14) , Jun Zhu (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14)

Résumé

Background: SUMOylation is a critical regulatory protein modification in eukaryotic cells and plays a pivotal role in cardiac development and disease. Several cardiac transcription factors are modified by SUMO, but little is known about the impact of SUMOylation on their function during cardiac development. Methods: We used a zebrafish model to address the impact of SUMOylation on GATA5, an essential transcription factor in zebrafish cardiac development. GATA5 SUMOylation was probed by western blot, the subcellular localization and transcriptional activity of GATA5 mutants were examined by immunostaining and luciferase reporter assay. The in vivo function of GATA5 SUMOylation was evaluated by gata5 mutants mRNA microinjection and in situ hybridization in gata5 morphants and ubc9 mutants. Results: Firstly, we identified GATA5 as a SUMO substrate, and lysine 324 (K324) and lysine 360 (K360) as two major modification sites. Conversion of lysine to arginine at these two sites did not affect subcellular localization, but did affect the transcriptional activity of GATA5. Secondly, in vivo experiments demonstrated that the wild type (WT) and K324R mutant of gata5 could rescue impaired cardiac precursor differentiation, while the K360R mutant of gata5 drastically lost this potency in gata5 morphant. Furthermore, in SUMOylationdeficient ubc9 mutants, the abnormal expression pattern displayed by the early markers of cardiac development (nkx2.5 and mef2cb) could be restored using a sumo-gata5 fusion, but not with a WT gata5. Conclusion: GATA5 SUMOylation is indispensable for early zebrafish cardiac development. General significance: Our studies highlight the potential importance of transcription factor SUMOylation in cardiac development.
Fichier non déposé

Dates et versions

hal-04055430 , version 1 (02-04-2023)

Identifiants

Citer

Bin Wen, Hao Yuan, Xiaohui Liu, Haihong Wang, Saijuan Chen, et al.. GATA5 SUMOylation is indispensable for zebrafish cardiac development. Biochimica et Biophysica Acta (BBA) - General Subjects, 2017, 1861, pp.1691 - 1701. ⟨10.1016/j.bbagen.2017.03.005⟩. ⟨hal-04055430⟩
17 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More